51
|
Wholey WY, Meyer AR, Yoda ST, Chackerian B, Zikherman J, Cheng W. Minimal Determinants for Lifelong Antiviral Antibody Responses in Mice from a Single Exposure to Virus-like Immunogens at Low Doses. Vaccines (Basel) 2024; 12:405. [PMID: 38675787 PMCID: PMC11054763 DOI: 10.3390/vaccines12040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The durability of an antibody (Ab) response is highly important for antiviral vaccines. However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs from primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of protein antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. The introduction of internal nucleic acids dramatically modulates the magnitude of Ab responses without an alteration of the long-term kinetic trends. These Abs are characterized by very slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimizing vaccine design.
Collapse
Affiliation(s)
- Wei-Yun Wholey
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Alexander R. Meyer
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Sekou-Tidiane Yoda
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Wei Cheng
- Department of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (W.-Y.W.); (A.R.M.); (S.-T.Y.)
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
Dufloo J, Sanjuán R. Temperature impacts SARS-CoV-2 spike fusogenicity and evolution. mBio 2024; 15:e0336023. [PMID: 38411986 PMCID: PMC11005339 DOI: 10.1128/mbio.03360-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 02/28/2024] Open
Abstract
SARS-CoV-2 infects both the upper and lower respiratory tracts, which are characterized by different temperatures (33°C and 37°C, respectively). In addition, fever is a common COVID-19 symptom. SARS-CoV-2 has been shown to replicate more efficiently at low temperatures, but the effect of temperature on different viral proteins remains poorly understood. Here, we investigate how temperature affects the SARS-CoV-2 spike function and evolution. We first observed that increasing temperature from 33°C to 37°C or 39°C increased spike-mediated cell-cell fusion. We then experimentally evolved a recombinant vesicular stomatitis virus expressing the SARS-CoV-2 spike at these different temperatures. We found that spike-mediated cell-cell fusion was maintained during evolution at 39°C but was lost in a high proportion of viruses that evolved at 33°C or 37°C. Consistently, sequencing of the spikes evolved at 33°C or 37°C revealed the accumulation of mutations around the furin cleavage site, a region that determines cell-cell fusion, whereas this did not occur in spikes evolved at 39°C. Finally, using site-directed mutagenesis, we found that disruption of the furin cleavage site had a temperature-dependent effect on spike-induced cell-cell fusion and viral fitness. Our results suggest that variations in body temperature may affect the activity and diversification of the SARS-CoV-2 spike. IMPORTANCE When it infects humans, SARS-CoV-2 is exposed to different temperatures (e.g., replication site and fever). Temperature has been shown to strongly impact SARS-CoV-2 replication, but how it affects the activity and evolution of the spike protein remains poorly understood. Here, we first show that high temperatures increase the SARS-CoV-2 spike fusogenicity. Then, we demonstrate that the evolution of the spike activity and variants depends on temperature. Finally, we show that the functional effect of specific spike mutations is temperature-dependent. Overall, our results suggest that temperature may be a factor influencing the activity and adaptation of the SARS-CoV-2 spike in vivo, which will help understanding viral tropism, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Jérémy Dufloo
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, Consejo Superior de Investigaciones Científicas-Universitat de València, Paterna, València, Spain
| |
Collapse
|
53
|
Ngare I, Tan TS, Toyoda M, Kuwata T, Takahama S, Nakashima E, Yamasaki N, Motozono C, Fujii T, Minami R, Barabona G, Ueno T. Factors Associated with Neutralizing Antibody Responses following 2-Dose and 3rd Booster Monovalent COVID-19 Vaccination in Japanese People Living with HIV. Viruses 2024; 16:555. [PMID: 38675897 PMCID: PMC11053946 DOI: 10.3390/v16040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
People living with HIV (PLWH) could be at risk of blunted immune responses to COVID-19 vaccination. We investigated factors associated with neutralizing antibody (NAb) responses against SARS-CoV-2 and variants of concern (VOCs), following two-dose and third booster monovalent COVID-19 mRNA vaccination in Japanese PLWH. NAb titers were assessed in polyclonal IgG fractions by lentiviral-based pseudovirus assays. Overall, NAb titers against Wuhan, following two-dose vaccination, were assessed in 82 PLWH on treatment, whereby 17/82 (20.73%) were classified as low-NAb participants. Within the low-NAb participants, the third booster vaccination enhanced NAb titers against Wuhan and VOCs, albeit to a significantly lower magnitude than the rest. In the multivariate analysis, NAb titers against Wuhan after two-dose vaccination correlated with age and days since vaccination, but not with CD4+ count, CD4+/CD8+ ratio, and plasma high-sensitivity C-Reactive protein (hsCRP). Interestingly, an extended analysis within age subgroups revealed NAb titers to correlate positively with the CD4+ count and negatively with plasma hsCRP in younger, but not older, participants. In conclusion, a third booster vaccination substantially enhances NAb titers, but the benefit may be suboptimal in subpopulations of PLWH exhibiting low titers at baseline. Considering clinical and immune parameters could provide a nuanced understanding of factors associated with vaccine responses in PLWH.
Collapse
Affiliation(s)
- Isaac Ngare
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Toong Seng Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Mako Toyoda
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Soichiro Takahama
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Eriko Nakashima
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Naoya Yamasaki
- Division of Transfusion Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (N.Y.); (T.F.)
| | - Chihiro Motozono
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Teruhisa Fujii
- Division of Transfusion Medicine, Hiroshima University Hospital, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (N.Y.); (T.F.)
| | - Rumi Minami
- NHO, Kyushu Medical Center, 1-8-1 Jigyohama, Chuo-ku, Fukuoka 810-8563, Japan; (S.T.); (E.N.); (R.M.)
| | - Godfrey Barabona
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-8555, Japan; (I.N.); (T.S.T.); (M.T.); (T.K.); (C.M.); (G.B.)
- Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
- Joint Research Center for Human Retrovirus Infection, Kagoshima University, 8-35-1, Sakuragaoka, Kagoshima 890-8544, Japan
| |
Collapse
|
54
|
Bermejo-Jambrina M, van der Donk LE, van Hamme JL, Wilflingseder D, de Bree G, Prins M, de Jong M, Nieuwkerk P, van Gils MJ, Kootstra NA, Geijtenbeek TB. Control of complement-induced inflammatory responses to SARS-CoV-2 infection by anti-SARS-CoV-2 antibodies. EMBO J 2024; 43:1135-1163. [PMID: 38418557 PMCID: PMC10987522 DOI: 10.1038/s44318-024-00061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
Dysregulated immune responses contribute to the excessive and uncontrolled inflammation observed in severe COVID-19. However, how immunity to SARS-CoV-2 is induced and regulated remains unclear. Here, we uncover the role of the complement system in the induction of innate and adaptive immunity to SARS-CoV-2. Complement rapidly opsonizes SARS-CoV-2 particles via the lectin pathway. Complement-opsonized SARS-CoV-2 efficiently induces type-I interferon and pro-inflammatory cytokine responses via activation of dendritic cells, which are inhibited by antibodies against the complement receptors (CR) 3 and 4. Serum from COVID-19 patients, or monoclonal antibodies against SARS-CoV-2, attenuate innate and adaptive immunity induced by complement-opsonized SARS-CoV-2. Blocking of CD32, the FcγRII antibody receptor of dendritic cells, restores complement-induced immunity. These results suggest that opsonization of SARS-CoV-2 by complement is involved in the induction of innate and adaptive immunity to SARS-CoV-2 in the acute phase of infection. Subsequent antibody responses limit inflammation and restore immune homeostasis. These findings suggest that dysregulation of the complement system and FcγRII signaling may contribute to severe COVID-19.
Collapse
Affiliation(s)
- Marta Bermejo-Jambrina
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Lieve Eh van der Donk
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - John L van Hamme
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Doris Wilflingseder
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Godelieve de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Internal Medicine, Amsterdam UMC location AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
| | - Menno de Jong
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Pythia Nieuwkerk
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, GGD, Amsterdam, The Netherlands
- Department of Medical Psychology (J3-2019-1), Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location AMC University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Teunis Bh Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC location AMC, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
55
|
Merwaiss F, Lozano‐Sanchez E, Zulaica J, Rusu L, Vazquez‐Vilar M, Orzáez D, Rodrigo G, Geller R, Daròs J. Plant virus-derived nanoparticles decorated with genetically encoded SARS-CoV-2 nanobodies display enhanced neutralizing activity. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:876-891. [PMID: 37966715 PMCID: PMC10955499 DOI: 10.1111/pbi.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.
Collapse
Affiliation(s)
- Fernando Merwaiss
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Enrique Lozano‐Sanchez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - João Zulaica
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Luciana Rusu
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Marta Vazquez‐Vilar
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Diego Orzáez
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| | - Guillermo Rodrigo
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - Ron Geller
- Institute for Integrative Systems BiologyConsejo Superior de Investigaciones Científicas – Universitat de ValènciaPaternaSpain
| | - José‐Antonio Daròs
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas – Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
56
|
Silva MDO, Castro-Amarante MF, Venceslau-Carvalho AA, Almeida BDS, Daher IP, de Souza-Silva GA, Yamamoto MM, Koike G, de Souza EE, Wrenger C, Ferreira LCDS, Boscardin SB. Enhanced Immunogenicity and Protective Effects against SARS-CoV-2 Following Immunization with a Recombinant RBD-IgG Chimeric Protein. Vaccines (Basel) 2024; 12:356. [PMID: 38675739 PMCID: PMC11054318 DOI: 10.3390/vaccines12040356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
The unprecedented global impact caused by SARS-CoV-2 imposed huge health and economic challenges, highlighting the urgent need for safe and effective vaccines. The receptor-binding domain (RBD) of SARS-CoV-2 is the major target for neutralizing antibodies and for vaccine formulations. Nonetheless, the low immunogenicity of the RBD requires the use of alternative strategies to enhance its immunological properties. Here, we evaluated the use of a subunit vaccine antigen generated after the genetic fusing of the RBD with a mouse IgG antibody. Subcutaneous administration of RBD-IgG led to the extended presence of the protein in the blood of immunized animals and enhanced RBD-specific IgG titers. Furthermore, RBD-IgG immunized mice elicited increased virus neutralizing antibody titers, measured both with pseudoviruses and with live original (Wuhan) SARS-CoV-2. Immunized K18-hACE2 mice were fully resistant to the lethal challenge of the Wuhan SARS-CoV-2, demonstrated by the control of body-weight loss and virus loads in their lungs and brains. Thus, we conclude that the genetic fusion of the RBD with an IgG molecule enhanced the immunogenicity of the antigen and the generation of virus-neutralizing antibodies, supporting the use of IgG chimeric antigens as an approach to improve the performance of SARS-CoV-2 subunit vaccines.
Collapse
Affiliation(s)
- Mariângela de Oliveira Silva
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Maria Fernanda Castro-Amarante
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Alexia Adrianne Venceslau-Carvalho
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bianca da Silva Almeida
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Isabela Pazotti Daher
- Laboratory of Immunology, Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Guilherme Antonio de Souza-Silva
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Marcio Massao Yamamoto
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Gabriela Koike
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| | - Edmarcia Elisa de Souza
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Luís Carlos de Souza Ferreira
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Silvia Beatriz Boscardin
- Laboratory of Antigen Targeting to Dendritic Cells, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (M.d.O.S.)
| |
Collapse
|
57
|
Lavell AHA, Schramade AE, Sikkens JJ, van der Straten K, van Dort KA, Slim MA, Appelman B, van Vught LA, Vlaar APJ, Kootstra NA, van Gils MJ, Smulders YM, de Jongh RT, Bomers MK. 25-Hydroxyvitamin D concentrations do not affect the humoral or cellular immune response following SARS-CoV-2 mRNA vaccinations. Vaccine 2024; 42:1478-1486. [PMID: 37775466 DOI: 10.1016/j.vaccine.2023.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND To improve effectiveness of vaccination against SARS-CoV-2, it is important to identify factors that influence the immune response induced by vaccination. Evidence for the role of vitamin D in immune response against SARS-CoV-2 is contradictory. It is therefore of interest whether 25-hydroxyvitamin D (25[OH]D) concentrations affect the humoral and/or cellular response following SARS-CoV-2 vaccination. METHODS In this prospective cohort study, blood samples were collected from 98 SARS-CoV-2 naive health care workers (HCW) receiving the first two doses of either BNT162b2 or mRNA-1273 in 2021. Wild-type spike (S) protein binding and neutralizing antibodies were determined approximately three weeks after the first dose and four to five weeks after the second dose. Antigen specific T-cells and functionality (proliferative response and interferon gamma [IFN-γ] release) were determined in 18 participants four weeks after the second dose of BNT162b2. We studied the association between 25(OH)D concentrations, which were determined prior to vaccination, and humoral and cellular immune responses following vaccination. RESULTS We found no association between 25(OH)D concentrations (median 55.9 nmol/L [IQR 40.5-69.8]) and binding or neutralizing antibody titers after complete vaccination (fold change of antibody titers per 10 nmol/L 25(OH)D increase: 0.98 [95% CI 0.93-1.04] and 1.03 [95% CI: 0.96-1.11], respectively), adjusted for age, sex and type of mRNA vaccine. Subsequently, continuous 25(OH)D concentrations were divided into commonly used clinical categories (<25 nmol/L [n = 6, 6%], 25-49 nmol/L [n = 33, 34%], 50-75 nmol/L [n = 37, 38%] and ≥75 nmol/L [n = 22, 22%]), but no association with the humoral immune response following vaccination was found. Also, 25(OH)D concentrations were not associated with the SARS-CoV-2 specific T cell response. CONCLUSION No association was found between 25(OH)D concentrations and the humoral or cellular immune response following mRNA vaccination against SARS-CoV-2. Based on our findings there is no rationale to advise vitamin D optimization preceding SARS-CoV-2 vaccination in HCW with moderate vitamin D status.
Collapse
Affiliation(s)
- A H A Lavell
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands
| | - A E Schramade
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands
| | - J J Sikkens
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands
| | - K van der Straten
- Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - K A van Dort
- Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ, the Netherlands
| | - M A Slim
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Intensive Care, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - B Appelman
- Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - L A van Vught
- Amsterdam UMC Location University of Amsterdam, Center for Experimental and Molecular Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Intensive Care, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A P J Vlaar
- Amsterdam UMC Location University of Amsterdam, Department of Intensive Care, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - N A Kootstra
- Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Experimental Immunology, 1105 AZ, the Netherlands
| | - M J van Gils
- Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands; Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Y M Smulders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands
| | - R T de Jongh
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism Research Institute, Amsterdam, the Netherlands
| | - M K Bomers
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Department of Internal Medicine, Department of Infectious Diseases and Department of Endocrinology and Metabolism, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands; Amsterdam Institute for Infection & Immunity, Amsterdam, the Netherlands.
| |
Collapse
|
58
|
Oprea C, Quirke S, Ianache I, Bursa D, Antoniak S, Bogdanic N, Vassilenko AI, Aimla K, Matulionyte R, Rukhadze N, Harxhi A, Fleischhans L, Lakatos B, Sedlacek D, Dragovic G, Verhaz A, Yancheva N, Acet O, Protopapas K, Kowalska JD. HIV disease metrics and COVID-19 infection severity and outcomes in people living with HIV in central and eastern Europe. HIV Med 2024; 25:343-352. [PMID: 38014768 DOI: 10.1111/hiv.13578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND To date there remains much ambiguity in the literature regarding the immunological interplay between SARS-CoV-2 and HIV and the true risk posed to coinfected individuals. There has been little conclusive data regarding the use of CD4 cell count and HIV viral load stratification as predictors of COVID-19 severity in this cohort. METHODS We performed a retrospective, observational cohort study on people living with HIV (PLWH) who contracted COVID-19 in central and eastern Europe. We enrolled 536 patients from 16 countries using an online survey. We evaluated patient demographics, HIV characteristics and COVID-19 presentation and outcomes. Statistical analysis was performed using SPSS 20.1. RESULTS The majority of the study cohort were male (76.4%) and 152 (28.3%) had a significant medical comorbidity. Median CD4 cell count at COVID-19 diagnosis was 605 cells/μL [interquartile range (IQR) 409-824]. The majority of patients on antiretroviral therapy (ART) were virally suppressed (92%). In univariate analysis, CD4 cell count <350 cells/μL was associated with higher rates of hospitalization (p < 0.0001) and respiratory failure (p < 0.0001). Univariate and multivariate analyses found that an undetectable HIV VL was associated with a lower rate of hospitalization (p < 0.0001), respiratory failure (p < 0.0001), ICU admission or death (p < 0.0001), and with a higher chance of full recovery (p < 0.0001). CONCLUSION We can conclude that detectable HIV viral load was an independent risk factor for severe COVID-19 illness and can be used as a prognostic indicator in this cohort.
Collapse
Affiliation(s)
- Cristiana Oprea
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
- Carol Davila University for Medicine and Pharmacy, Bucharest, Romania
| | - Siobhan Quirke
- Department of Medicine, Galway University Hospital, Galway, Ireland
| | - Irina Ianache
- Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
- Carol Davila University for Medicine and Pharmacy, Bucharest, Romania
| | - Dominik Bursa
- Department of Adults' Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Sergii Antoniak
- Viral Hepatitis and AIDS Department, Gromashevsky Institute of Epidemiology and Infectious Diseases, Kyiv, Ukraine
| | - Nikolina Bogdanic
- University Hospital for Infectious Diseases, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Anne I Vassilenko
- Global Fund Grant Management Department, Republican Scientific and Practical Center for Medical Technologies, Minsk, Belarus
| | | | - Raimonda Matulionyte
- Vilnius University, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Nino Rukhadze
- Infectious Diseases, AIDS and Clinical Immunology Center, Tbilisi, Georgia
| | - Arjan Harxhi
- University Hospital Center of Tirana, Infectious Disease Service, Tirana, Albania
| | - Lukáš Fleischhans
- Department of Infectious Diseases, 1st Faculty of Medicine, Charles University in Prague and Faculty Hospital Bulovka Hospital, Prague, Czech Republic
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, South-Pest Central Hospital, National Center of HIV, Budapest, Hungary
| | - Dalibor Sedlacek
- Charles University, Faculty of Medicine in Plzeň, University Hospital Plzeň, Plzen, Czech Republic
| | - Gordana Dragovic
- Faculty of Medicine, University of Belgrade, Department of Pharmacology, Clinical Pharmacology and Toxicology, Belgrade, Serbia
| | - Antonija Verhaz
- Department for Infectious Diseases, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Nina Yancheva
- Department for AIDS, Specialized Hospital for Active Treatment of Infectious and Parasitic Disease Sofia, Sofi, Bulgaria
| | - Oguzhan Acet
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Konstantinos Protopapas
- University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
59
|
Wholey WY, Meyer AR, Yoda ST, Chackerian B, Zikherman J, Cheng W. Minimal determinants for lifelong antiviral antibody responses in BALB/c mice from a single exposure to virus-like immunogens at low doses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.20.529089. [PMID: 36865112 PMCID: PMC9979986 DOI: 10.1101/2023.02.20.529089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
However, due to the complex compositions of natural virions, the molecular determinants of Ab durability from viral infection or inactivated viral vaccines have been incompletely understood. Here we used a reductionist system of liposome-based virus-like structures to examine the durability of Abs in primary immune responses in mice. This system allowed us to independently vary fundamental viral attributes and to do so without additional adjuvants to model natural viruses. We show that a single injection of antigens (Ags) orderly displayed on a virion-sized liposome is sufficient to induce a long-lived neutralizing Ab (nAb) response. Introduction of internal nucleic acids dramatically modulates the magnitude of long-term Ab responses without alteration of the long-term kinetic trends. These Abs are characterized by exceptionally slow off-rates of ~0.0005 s-1, which emerged as early as day 5 after injection and these off-rates are comparable to that of affinity-matured monoclonal Abs. A single injection of these structures at doses as low as 100 ng led to lifelong nAb production in BALB/c mice. Thus, a minimal virus-like immunogen can give rise to potent and long-lasting antiviral Abs in a primary response in mice without live infection. This has important implications for understanding both live viral infection and for optimized vaccine design.
Collapse
|
60
|
Timilsina U, Ivey EB, Duffy S, Plianchaisuk A, The Genotype to Phenotype Japan (G2P-Japan) Consortium, Ito J, Sato K, Stavrou S. SARS-CoV-2 ORF7a Mutation Found in BF.5 and BF.7 Sublineages Impacts Its Functions. Int J Mol Sci 2024; 25:2351. [PMID: 38397027 PMCID: PMC10889720 DOI: 10.3390/ijms25042351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
A feature of the SARS-CoV-2 Omicron subvariants BF.5 and BF.7 that recently circulated mainly in China and Japan was the high prevalence of the ORF7a: H47Y mutation, in which the 47th residue of ORF7a has been mutated from a histidine (H) to a tyrosine (Y). Here, we evaluated the effect of this mutation on the three main functions ascribed to the SARS-CoV-2 ORF7a protein. Our findings show that H47Y mutation impairs the ability of SARS-CoV-2 ORF7a to antagonize the type I interferon (IFN-I) response and to downregulate major histocompatibility complex I (MHC-I) cell surface levels, but had no effect in its anti-SERINC5 function. Overall, our results suggest that the H47Y mutation of ORF7a affects important functions of this protein, resulting in changes in virus pathogenesis.
Collapse
Affiliation(s)
- Uddhav Timilsina
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Emily B. Ivey
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Sean Duffy
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| | - Arnon Plianchaisuk
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
| | | | - Jumpei Ito
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
| | - Kei Sato
- Division of Systems Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan; (A.P.); (J.I.); (K.S.)
- International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8369, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8581, Japan
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0862, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Spyridon Stavrou
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (U.T.); (E.B.I.); (S.D.)
| |
Collapse
|
61
|
Zhang F, Schmidt F, Muecksch F, Wang Z, Gazumyan A, Nussenzweig MC, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. mBio 2024; 15:e0167223. [PMID: 38193662 PMCID: PMC10865855 DOI: 10.1128/mbio.01672-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/08/2023] [Indexed: 01/10/2024] Open
Abstract
The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. We investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, the removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain and the receptor-binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated S protein and reduced S trafficking to the cell surface. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies cloned from convalescent individuals. The N343 glycan reduced the overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 S glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.IMPORTANCEThe attachment of glycans to the spike proteins of viruses during their synthesis and movement through the secretory pathway can affect their properties. This study shows that the glycans attached to the severe acute respiratory syndrome coronavirus-2 spike protein enable its movement to the cell surface and incorporation into virus particles. Certain glycans, including one that is attached to asparagine 343 in the receptor-binding domain of the spike protein, can also affect virus neutralization by antibodies. This glycan can increase or decrease sensitivity to individual antibodies, likely through direct effects on antibody epitopes and modulation of spike conformation. However, the overall effect of the glycan in the context of the polyclonal mixture of antibodies in convalescent serum is to reduce neutralization sensitivity. Overall, this study highlights the complex effects of glycosylation on spike protein function and immune evasion.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York, USA
| |
Collapse
|
62
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Richter A, Bdeir N, Graichen L, Moldenhauer AS, Dopfer-Jablonka A, Stankov MV, Simon-Loriere E, Schulz SR, Jäck HM, Čičin-Šain L, Behrens GMN, Drosten C, Hoffmann M, Pöhlmann S. SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency. Cell 2024; 187:596-608.e17. [PMID: 38194966 PMCID: PMC11317634 DOI: 10.1016/j.cell.2023.12.025] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/03/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
BA.2.86, a recently identified descendant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.2 sublineage, contains ∼35 mutations in the spike (S) protein and spreads in multiple countries. Here, we investigated whether the virus exhibits altered biological traits, focusing on S protein-driven viral entry. Employing pseudotyped particles, we show that BA.2.86, unlike other Omicron sublineages, enters Calu-3 lung cells with high efficiency and in a serine- but not cysteine-protease-dependent manner. Robust lung cell infection was confirmed with authentic BA.2.86, but the virus exhibited low specific infectivity. Further, BA.2.86 was highly resistant against all therapeutic antibodies tested, efficiently evading neutralization by antibodies induced by non-adapted vaccines. In contrast, BA.2.86 and the currently circulating EG.5.1 sublineage were appreciably neutralized by antibodies induced by the XBB.1.5-adapted vaccine. Collectively, BA.2.86 has regained a trait characteristic of early SARS-CoV-2 lineages, robust lung cell entry, and evades neutralizing antibodies. However, BA.2.86 exhibits low specific infectivity, which might limit transmissibility.
Collapse
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Richter
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Najat Bdeir
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Luise Graichen
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | | | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Etienne Simon-Loriere
- G5 Evolutionary Genomics of RNA Viruses, Institut Pasteur, Université Paris Cité, 75015 Paris, France; National Reference Center for Viruses of respiratory Infections, Institut Pasteur, 75015 Paris, France
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, 30625 Hannover, Germany; German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, 30625 Hannover, Germany; Center for Individualized Infection Medicine, a joint venture of HZI and MHH, 30625 Hannover, Germany
| | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
63
|
Shen F, Liang C, Yang CX, Lu Y, Li AQ, Duan Y, Zhang M, Tian RR, Dong XQ, Zheng YT, Pang W. SARS-CoV-2 breakthrough infections following inactivated vaccine vaccination induce few neutralizing antibodies against the currently emerging Omicron XBB variants. Virol Sin 2024; 39:173-176. [PMID: 38000528 PMCID: PMC10877414 DOI: 10.1016/j.virs.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/22/2023] [Indexed: 11/26/2023] Open
Abstract
•Inactivated vaccine breakthrough infection with ancestral variants induced nearly undetectable nAbs against XBB variants. •Inactivated vaccine breakthrough infection with Omicron BA.1 or BA.5 evoked very weak nAbs against XBB variants. •BA.5 infection induced higher nAbs against XBB variants than BA.1 infection.
Collapse
Affiliation(s)
- Fan Shen
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chun Liang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui-Xian Yang
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Ying Lu
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - An-Qi Li
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Duan
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi Zhang
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Ren-Rong Tian
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xing-Qi Dong
- Yunnan Provincial Infectious Disease Hospital, Kunming, 650399, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Pang
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
64
|
Wholey WY, Meyer AR, Yoda ST, Mueller JL, Mathenge R, Chackerian B, Zikherman J, Cheng W. An integrated signaling threshold initiates IgG response towards virus-like immunogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577643. [PMID: 38469153 PMCID: PMC10926662 DOI: 10.1101/2024.01.28.577643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Class-switched neutralizing antibody (nAb) production is rapidly induced upon many viral infections. However, due to the presence of multiple components in typical virions, the precise biochemical and biophysical signals from viral infections that initiate nAb responses remain inadequately defined. Using a reductionist system of synthetic virus-like structures (SVLS) containing minimal, highly purified biochemical components commonly found in enveloped viruses, here we show that a foreign protein on a virion-sized liposome can serve as a stand-alone danger signal to initiate class-switched nAb responses in the absence of cognate T cell help or Toll-like receptor signaling but requires CD19, the antigen (Ag) coreceptor on B cells. Introduction of internal nucleic acids (iNAs) obviates the need for CD19, lowers the epitope density (ED) required to elicit the Ab response and transforms these structures into highly potent immunogens that rival conventional virus-like particles in their ability to elicit strong Ag-specific IgG. As early as day 5 after immunization, structures harbouring iNAs and decorated with just a few molecules of surface Ag at doses as low as 100 ng induced all IgG subclasses of Ab known in mice and reproduced the IgG2a/2c restriction that has been long observed in live viral infections. These findings reveal a shared mechanism for nAb response upon viral infection. High ED is capable but not necessary for driving Ab secretion in vivo . Instead, even a few molecules of surface Ag, when combined with nucleic acids within these structures, can trigger strong antiviral IgG production. As a result, the signaling threshold for the induction of neutralizing IgG is set by dual signals originating from both ED on the surface and the presence of iNAs within viral particulate immunogens. One-sentence summary Reconstitution of minimal viral signals necessary to initiate antiviral IgG.
Collapse
|
65
|
Sankhala RS, Lal KG, Jensen JL, Dussupt V, Mendez-Rivera L, Bai H, Wieczorek L, Mayer SV, Zemil M, Wagner DA, Townsley SM, Hajduczki A, Chang WC, Chen WH, Donofrio GC, Jian N, King HAD, Lorang CG, Martinez EJ, Rees PA, Peterson CE, Schmidt F, Hart TJ, Duso DK, Kummer LW, Casey SP, Williams JK, Kannan S, Slike BM, Smith L, Swafford I, Thomas PV, Tran U, Currier JR, Bolton DL, Davidson E, Doranz BJ, Hatziioannou T, Bieniasz PD, Paquin-Proulx D, Reiley WW, Rolland M, Sullivan NJ, Vasan S, Collins ND, Modjarrad K, Gromowski GD, Polonis VR, Michael NL, Krebs SJ, Joyce MG. Diverse array of neutralizing antibodies elicited upon Spike Ferritin Nanoparticle vaccination in rhesus macaques. Nat Commun 2024; 15:200. [PMID: 38172512 PMCID: PMC10764318 DOI: 10.1038/s41467-023-44265-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
The repeat emergence of SARS-CoV-2 variants of concern (VoC) with decreased susceptibility to vaccine-elicited antibodies highlights the need to develop next-generation vaccine candidates that confer broad protection. Here we describe the antibody response induced by the SARS-CoV-2 Spike Ferritin Nanoparticle (SpFN) vaccine candidate adjuvanted with the Army Liposomal Formulation including QS21 (ALFQ) in non-human primates. By isolating and characterizing several monoclonal antibodies directed against the Spike Receptor Binding Domain (RBD), N-Terminal Domain (NTD), or the S2 Domain, we define the molecular recognition of vaccine-elicited cross-reactive monoclonal antibodies (mAbs) elicited by SpFN. We identify six neutralizing antibodies with broad sarbecovirus cross-reactivity that recapitulate serum polyclonal antibody responses. In particular, RBD mAb WRAIR-5001 binds to the conserved cryptic region with high affinity to sarbecovirus clades 1 and 2, including Omicron variants, while mAb WRAIR-5021 offers complete protection from B.1.617.2 (Delta) in a murine challenge study. Our data further highlight the ability of SpFN vaccination to stimulate cross-reactive B cells targeting conserved regions of the Spike with activity against SARS CoV-1 and SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kerri G Lal
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jaime L Jensen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Letzibeth Mendez-Rivera
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongjun Bai
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lindsay Wieczorek
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sandra V Mayer
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Samantha M Townsley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Agnes Hajduczki
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gina C Donofrio
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ningbo Jian
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hannah A D King
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth J Martinez
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Phyllis A Rees
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Caroline E Peterson
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | | | | | | | | | - Bonnie M Slike
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Lauren Smith
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Isabella Swafford
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Paul V Thomas
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ursula Tran
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L Bolton
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | | | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Dominic Paquin-Proulx
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Morgane Rolland
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sandhya Vasan
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Natalie D Collins
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Vaccine Research and Development, Pfizer, Pearl River, New York, NY, USA
| | - Gregory D Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shelly J Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| |
Collapse
|
66
|
Zang T, Osei Kuffour E, Baharani VA, Canis M, Schmidt F, Da Silva J, Lercher A, Chaudhary P, Hoffmann HH, Gazumyan A, Miranda IC, MacDonald MR, Rice CM, Nussenzweig MC, Hatziioannou T, Bieniasz PD. Heteromultimeric sarbecovirus receptor binding domain immunogens primarily generate variant-specific neutralizing antibodies. Proc Natl Acad Sci U S A 2023; 120:e2317367120. [PMID: 38096415 PMCID: PMC10740387 DOI: 10.1073/pnas.2317367120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/23/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination will likely be a key component of strategies to curtail or prevent future sarbecovirus pandemics and to reduce the prevalence of infection and disease by future SARS-CoV-2 variants. A "pan-sarbecovirus" vaccine, that provides maximum possible mitigation of human disease, should elicit neutralizing antibodies with maximum possible breadth. By positioning multiple different receptor binding domain (RBD) antigens in close proximity on a single immunogen, it is postulated that cross-reactive B cell receptors might be selectively engaged. Heteromultimeric vaccines could therefore elicit individual antibodies that neutralize a broad range of viral species. Here, we use model systems to investigate the ability of multimeric sarbecovirus RBD immunogens to expand cross-reactive B cells and elicit broadly reactive antibodies. Homomultimeric RBD immunogens generated higher serum neutralizing antibody titers than the equivalent monomeric immunogens, while heteromultimeric RBD immunogens generated neutralizing antibodies recognizing each RBD component. Moreover, RBD heterodimers elicited a greater fraction of cross-reactive germinal center B cells and cross-reactive RBD binding antibodies than did homodimers. However, when serum antibodies from RBD heterodimer-immunized mice were depleted using one RBD component, neutralization activity against the homologous viral pseudotype was removed, but neutralization activity against pseudotypes corresponding to the other RBD component was unaffected. Overall, simply combining divergent RBDs in a single immunogen generates largely separate sets of individual RBD-specific neutralizing serum antibodies that are mostly incapable of neutralizing viruses that diverge from the immunogen components.
Collapse
Affiliation(s)
- Trinity Zang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| | | | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Justin Da Silva
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
| | - Alexander Lercher
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Pooja Chaudhary
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | - Ileana C. Miranda
- Laboratory of Comparative Pathology, The Rockefeller University, New York, NY10065
| | - Margaret R. MacDonald
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Charles M. Rice
- Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, NY10065
| | - Michel C. Nussenzweig
- HHMI, The Rockefeller University, New York, NY10065
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY10065
| | | | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY10065
- HHMI, The Rockefeller University, New York, NY10065
| |
Collapse
|
67
|
Tan C, Wang N, Deng S, Wu X, Yue C, Jia X, Lyu Y. The development and application of pseudoviruses: assessment of SARS-CoV-2 pseudoviruses. PeerJ 2023; 11:e16234. [PMID: 38077431 PMCID: PMC10710176 DOI: 10.7717/peerj.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/14/2023] [Indexed: 12/18/2023] Open
Abstract
Although most Coronavirus disease (COVID-19) patients can recover fully, the disease remains a significant cause of morbidity and mortality. In addition to the consequences of acute infection, a proportion of the population experiences long-term adverse effects associated with SARS-CoV-2. Therefore, it is still critical to comprehend the virus's characteristics and how it interacts with its host to develop effective drugs and vaccines against COVID-19. SARS-CoV-2 pseudovirus, a replication-deficient recombinant glycoprotein chimeric viral particle, enables investigations of highly pathogenic viruses to be conducted without the constraint of high-level biosafety facilities, considerably advancing virology and being extensively employed in the study of SARS-CoV-2. This review summarizes three methods of establishing SARS-CoV-2 pseudovirus and current knowledge in vaccine development, neutralizing antibody research, and antiviral drug screening, as well as recent progress in virus entry mechanism and susceptible cell screening. We also discuss the potential advantages and disadvantages.
Collapse
Affiliation(s)
- Conglian Tan
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Nian Wang
- Chengdu Medical College, Chengdu, Sichuan, China
| | - Shanshan Deng
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoheng Wu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| | - Xu Jia
- Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, Sichuan, China
| | - Yuhong Lyu
- Key Laboratory of Microbial Drugs Innovation and Transformation, Medical College, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
68
|
Ko HL, Lee DK, Kim Y, Jang HJ, Lee YW, Lee HY, Seok SH, Park JW, Limb JK, On DI, Yun JW, Lyoo KS, Song D, Yeom M, Lee H, Seong JK, Lee S. Development of a neutralization monoclonal antibody with a broad neutralizing effect against SARS-CoV-2 variants. Virol J 2023; 20:285. [PMID: 38041113 PMCID: PMC10693169 DOI: 10.1186/s12985-023-02230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has challenged the effectiveness of current therapeutic regimens. Here, we aimed to develop a potent SARS-CoV-2 antibody with broad neutralizing effect by screening a scFv library with the spike protein receptor-binding domain (RBD) via phage display. METHODS SKAI-DS84 was identified through phage display, and we performed pseudovirus neutralization assays, authentic virus neutralization assays, and in vivo neutralization efficacy evaluations. Furthermore, surface plasmon resonance (SPR) analysis was conducted to assess the physical characteristics of the antibody, including binding kinetics and measure its affinity for variant RBDs. RESULTS The selected clones were converted to human IgG, and among them, SKAI-DS84 was selected for further analyses based on its binding affinity with the variant RBDs. Using pseudoviruses, we confirmed that SKAI-DS84 was strongly neutralizing against wild-type, B.1.617.2, B.1.1.529, and subvariants of SARS-CoV-2. We also tested the neutralizing effect of SKAI-DS84 on authentic viruses, in vivo and observed a reduction in viral replication and improved lung pathology. We performed binding and epitope mapping experiments to understand the mechanisms underlying neutralization and identified quaternary epitopes formed by the interaction between RBDs as the target of SKAI-DS84. CONCLUSIONS We identified, produced, and tested the neutralizing effect of SKAI-DS84 antibody. Our results highlight that SKAI-DS84 could be a potential neutralizing antibody against SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hae Li Ko
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
- Department of Microbiology, College of Medical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Deuk-Ki Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
- Department of Microbiology, College of Medical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Younghyeon Kim
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea
- Department of Microbiology, College of Medical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hui Jeong Jang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jin-Kyung Limb
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea
| | - Da In On
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Kwang-Soo Lyoo
- College of Veterinary Medicine, Jeonbuk National University, Iksan, 54596, Republic of Korea
| | - Daesub Song
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minjoo Yeom
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hanbyeul Lee
- Department of Veterinary Medicine Virology Laboratory, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center (KMPC), Seoul National University, Seoul, 08826, South Korea.
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 Program for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
| | - Sungjin Lee
- Division of Research Program, Scripps Korea Antibody Institute, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
69
|
Moghadasi SA, Moraes SN, Harris RS. Cellular Assays for Dynamic Quantification of Deubiquitinase Activity and Inhibition. J Mol Biol 2023; 435:168316. [PMID: 37858708 DOI: 10.1016/j.jmb.2023.168316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Deubiquitinases (DUBs) are proteolytic enzymes that catalyze the removal of ubiquitin from protein substrates. The critical role of DUBs in regulating protein ubiquitination makes them attractive drug targets in oncology, neurodegenerative disease, and antiviral development. Biochemical assays for quantifying DUB activity have enabled characterization of substrate preferences and discovery of small molecule inhibitors. However, assessing the efficacy of these inhibitors in cellular contexts to support clinical drug development has been limited by a lack of tractable cell-based assays. To address this gap, we developed a two-color flow cytometry-based assay that allows for sensitive quantification of DUB activity and inhibition in living cells. The utility of this system was demonstrated by quantifying the potency of GRL0617 against the viral DUB SARS-CoV-2 PLpro, identifying potential GRL0617 resistance mutations, and performing structure-function analysis of the vOTU domain from the recently emerged Yezo virus. In addition, the system was optimized for cellular DUBs by modifying a GFP-targeting nanobody to recruit USP7 and USP28 to benchmark a panel of reported inhibitors and assess inhibition kinetics. Together, these results demonstrate the utility of these assays for studying DUB biology in a cellular context with potential to aid in inhibitor discovery and development.
Collapse
Affiliation(s)
- Seyed Arad Moghadasi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Sofia N Moraes
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
70
|
Kumar S, Delipan R, Chakraborty D, Kanjo K, Singh R, Singh N, Siddiqui S, Tyagi A, Jha V, Thakur KG, Pandey R, Varadarajan R, Ringe RP. Mutations in S2 subunit of SARS-CoV-2 Omicron spike strongly influence its conformation, fusogenicity, and neutralization sensitivity. J Virol 2023; 97:e0092223. [PMID: 37861334 PMCID: PMC10688319 DOI: 10.1128/jvi.00922-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. In vivo, these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.
Collapse
Affiliation(s)
- Sahil Kumar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rathina Delipan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | | | - Kawkab Kanjo
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore, India
| | | | - Nittu Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Samreen Siddiqui
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Akansha Tyagi
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Vinitaa Jha
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India
| | - Krishan G. Thakur
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Rajesh Pandey
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | | | - Rajesh P. Ringe
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
71
|
Rosati M, Terpos E, Homan P, Bergamaschi C, Karaliota S, Ntanasis-Stathopoulos I, Devasundaram S, Bear J, Burns R, Bagratuni T, Trougakos IP, Dimopoulos MA, Pavlakis GN, Felber BK. Rapid transient and longer-lasting innate cytokine changes associated with adaptive immunity after repeated SARS-CoV-2 BNT162b2 mRNA vaccinations. Front Immunol 2023; 14:1292568. [PMID: 38090597 PMCID: PMC10711274 DOI: 10.3389/fimmu.2023.1292568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Cytokines and chemokines play an important role in shaping innate and adaptive immunity in response to infection and vaccination. Systems serology identified immunological parameters predictive of beneficial response to the BNT162b2 mRNA vaccine in COVID-19 infection-naïve volunteers, COVID-19 convalescent patients and transplant patients with hematological malignancies. Here, we examined the dynamics of the serum cytokine/chemokine responses after the 3rd BNT162b2 mRNA vaccination in a cohort of COVID-19 infection-naïve volunteers. Methods We measured serum cytokine and chemokine responses after the 3rd dose of the BNT162b2 mRNA (Pfizer/BioNtech) vaccine in COVID-19 infection-naïve individuals by a chemiluminescent assay and ELISA. Anti-Spike binding antibodies were measured by ELISA. Anti-Spike neutralizing antibodies were measured by a pseudotype assay. Results Comparison to responses found after the 1st and 2nd vaccinations showed persistence of the coordinated responses of several cytokine/chemokines including the previously identified rapid and transient IL-15, IFN-γ, CXCL10/IP-10, TNF-α, IL-6 signature. In contrast to the transient (24hrs) effect of the IL-15 signature, an inflammatory/anti-inflammatory cytokine signature (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CXCL8/IL-8, IL-1Ra) remained at higher levels up to one month after the 2nd and 3rd booster vaccinations, indicative of a state of longer-lasting innate immune change. We also identified a systemic transient increase of CXCL13 only after the 3rd vaccination, supporting stronger germinal center activity and the higher anti-Spike antibody responses. Changes of the IL-15 signature, and the inflammatory/anti-inflammatory cytokine profile correlated with neutralizing antibody levels also after the 3rd vaccination supporting their role as immune biomarkers for effective development of vaccine-induced humoral responses. Conclusion These data revealed that repeated SARS-Cov-2 BNT162b2 mRNA vaccination induces both rapid transient as well as longer-lasting systemic serum cytokine changes associated with innate and adaptive immune responses. Clinical trial registration Clinicaltrials.gov, identifier NCT04743388.
Collapse
Affiliation(s)
- Margherita Rosati
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
- Basic Science Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Tina Bagratuni
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
72
|
Popov P, Kalinin R, Buslaev P, Kozlovskii I, Zaretckii M, Karlov D, Gabibov A, Stepanov A. Unraveling viral drug targets: a deep learning-based approach for the identification of potential binding sites. Brief Bioinform 2023; 25:bbad459. [PMID: 38113077 PMCID: PMC10783863 DOI: 10.1093/bib/bbad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has spurred a wide range of approaches to control and combat the disease. However, selecting an effective antiviral drug target remains a time-consuming challenge. Computational methods offer a promising solution by efficiently reducing the number of candidates. In this study, we propose a structure- and deep learning-based approach that identifies vulnerable regions in viral proteins corresponding to drug binding sites. Our approach takes into account the protein dynamics, accessibility and mutability of the binding site and the putative mechanism of action of the drug. We applied this technique to validate drug targeting toward severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein S. Our findings reveal a conformation- and oligomer-specific glycan-free binding site proximal to the receptor binding domain. This site comprises topologically important amino acid residues. Molecular dynamics simulations of Spike in complex with candidate drug molecules bound to the potential binding sites indicate an equilibrium shifted toward the inactive conformation compared with drug-free simulations. Small molecules targeting this binding site have the potential to prevent the closed-to-open conformational transition of Spike, thereby allosterically inhibiting its interaction with human angiotensin-converting enzyme 2 receptor. Using a pseudotyped virus-based assay with a SARS-CoV-2 neutralizing antibody, we identified a set of hit compounds that exhibited inhibition at micromolar concentrations.
Collapse
Affiliation(s)
- Petr Popov
- Tetra-d, Rheinweg 9, Schaffhausen, 8200, Switzerland
- School of Science, Constructor University Bremen gGmbH, 28759, Bremen, Germany
| | - Roman Kalinin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Pavel Buslaev
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Igor Kozlovskii
- Tetra-d, Rheinweg 9, Schaffhausen, 8200, Switzerland
- School of Science, Constructor University Bremen gGmbH, 28759, Bremen, Germany
| | - Mark Zaretckii
- Tetra-d, Rheinweg 9, Schaffhausen, 8200, Switzerland
- School of Science, Constructor University Bremen gGmbH, 28759, Bremen, Germany
| | - Dmitry Karlov
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Street, Belfast, BT9 7BL Northern Ireland, U.K
| | - Alexander Gabibov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexey Stepanov
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road MB-10, La Jolla, 92037, CA, USA
| |
Collapse
|
73
|
Wang Q, Guo Y, Tam AR, Valdez R, Gordon A, Liu L, Ho DD. Deep immunological imprinting due to the ancestral spike in the current bivalent COVID-19 vaccine. Cell Rep Med 2023; 4:101258. [PMID: 37909042 PMCID: PMC10694617 DOI: 10.1016/j.xcrm.2023.101258] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/22/2023] [Accepted: 10/03/2023] [Indexed: 11/02/2023]
Abstract
To combat the evolving SARS-CoV-2 Omicron variants, bivalent COVID-19 mRNA vaccines, encoding both ancestral and Omicron BA.5 spikes, have replaced monovalent vaccines in numerous countries. However, fourth doses of either vaccine result in similar neutralizing antibody titers against Omicron subvariants, raising the possibility of immunological imprinting. To address this, we investigate antibody responses in 72 participants given three doses of a monovalent mRNA vaccine, followed by a bivalent or monovalent booster, or those with breakthrough infections with BA.5 or BQ. Bivalent boosters do not show notably higher binding or virus-neutralizing titers against various SARS-CoV-2 variants compared to monovalent ones. However, breakthrough infections lead to significantly better neutralization of Omicron subvariants. Multiple analyses, including antigenic mapping, suggest that the ancestral spike in bivalent vaccines is causing deep immunological imprinting, preventing broadening of antibodies to the BA.5 component, thereby defeating its intended goal. Its removal from future vaccine compositions is therefore strongly recommended.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Anthony R Tam
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA.
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| | - David D Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
74
|
Wang Q, Li Z, Guo Y, Mellis IA, Iketani S, Liu M, Yu J, Valdez R, Lauring AS, Sheng Z, Gordon A, Liu L, Ho DD. Evolving antibody evasion and receptor affinity of the Omicron BA.2.75 sublineage of SARS-CoV-2. iScience 2023; 26:108254. [PMID: 38026207 PMCID: PMC10654603 DOI: 10.1016/j.isci.2023.108254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/20/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 Omicron BA.2.75 has diversified into multiple subvariants with additional spike mutations and several are expanding in prevalence, particularly CH.1.1 and BN.1. Here, we investigated the viral receptor affinities and neutralization evasion properties of major BA.2.75 subvariants actively circulating in different regions worldwide. We found two distinct evolutionary pathways and three newly identified mutations that shaped the virological features of these subvariants. One phenotypic group exhibited a discernible decrease in viral receptor affinities, but a noteworthy increase in resistance to antibody neutralization, as exemplified by CH.1.1, which is apparently as resistant as XBB.1.5. In contrast, a second group demonstrated a substantial increase in viral receptor affinity but only a moderate increase in antibody evasion, as exemplified by BN.1. We also observed that all prevalent SARS-CoV-2 variants in the circulation presently, except for BN.1, exhibit profound levels of antibody evasion, suggesting this is the dominant determinant of virus transmissibility today.
Collapse
Affiliation(s)
- Qian Wang
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiteng Li
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Ian A. Mellis
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Michael Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Riccardo Valdez
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S. Lauring
- Division of Infectious Diseases, Department of Internal Medicine, Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Aubree Gordon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - David D. Ho
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
75
|
He M, Zhan X, Liu C, Li L, Zhao X, Ren L, Li K, Luo X. The relationship between self-control and mental health problems among Chinese university students. Front Public Health 2023; 11:1224427. [PMID: 38026364 PMCID: PMC10644003 DOI: 10.3389/fpubh.2023.1224427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Background Mental health issues are often associated with poor self-control. Therefore, effective interventions against mental health problems should include self-control training. However, it is unclear whether the effect of self-control varies across different types of mental health problems. Methods A cross-sectional survey was conducted using the convenience sampling method at five universities in Chongqing, China, where 1,409 students reported their demographic information, level of self-control, and symptoms of irritability, depression, and anxiety. Descriptive statistical methods and a network analysis approach were employed to explore the relationship between self-control and symptoms of irritability, depression, and anxiety among 1,409 students. The bridging links between self-control and the three mental health problems were analyzed. Results The findings revealed a negative correlation between self-control and symptoms of irritability, depression, and anxiety among university students. Impulse control was found to be the bridge between self-control and irritability or anxiety symptoms, while resistance to temptation was the bridge between self-control and depressive symptoms. Conclusion These results demonstrate the different relationship between self-control with irritability, anxiety, and depressive symptoms. The findings of this study may shed light on future mental health interventions for university students during potential public health emergencies, such as prior knowledge of the main types of psychological problems among university students, which may allow for the development of precise self-control intervention strategies, such as targeting impulsivity or resistance to temptation.
Collapse
Affiliation(s)
- Mu He
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaoqing Zhan
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Chang Liu
- Brain Park, Turner Institute for Brain and Mental Health and School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Ling Li
- College of General Education, Chongqing Water Resources and Electric Engineering College, Chongqing, China
| | - Xiaojie Zhao
- College of General Education, Chongqing Water Resources and Electric Engineering College, Chongqing, China
| | - Lei Ren
- Military Psychology Section, Logistics University of PAP, Tianjin, China
- Military Mental Health Services and Research Center, Tianjin, China
| | - Kuiliang Li
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Xi Luo
- Medical English Department, College of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
76
|
Guerra D, Beaumont T, Radić L, Kerster G, van der Straten K, Yuan M, Torres JL, Lee WH, Liu H, Poniman M, Bontjer I, Burger JA, Claireaux M, Caniels TG, Snitselaar JL, Bijl TP, Kruijer S, Ozorowski G, Gideonse D, Sliepen K, Ward AB, Eggink D, de Bree GJ, Wilson IA, Sanders RW, van Gils MJ. Broad SARS-CoV-2 neutralization by monoclonal and bispecific antibodies derived from a Gamma-infected individual. iScience 2023; 26:108009. [PMID: 37841584 PMCID: PMC10570122 DOI: 10.1016/j.isci.2023.108009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has remained a medical threat due to the evolution of multiple variants that acquire resistance to vaccines and prior infection. Therefore, it is imperative to discover monoclonal antibodies (mAbs) that neutralize a broad range of SARS-CoV-2 variants. A stabilized spike glycoprotein was used to enrich antigen-specific B cells from an individual with a primary Gamma variant infection. Five mAbs selected from those B cells showed considerable neutralizing potency against multiple variants, with COVA309-35 being the most potent against the autologous virus, as well as Omicron BA.1 and BA.2, and COVA309-22 having binding and neutralization activity against Omicron BA.4/5, BQ.1.1, and XBB.1. When combining the COVA309 mAbs as cocktails or bispecific antibodies, the breadth and potency were improved. In addition, the mechanism of cross-neutralization of the COVA309 mAbs was elucidated by structural analysis. Altogether these data indicate that a Gamma-infected individual can develop broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Denise Guerra
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tim Beaumont
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Laura Radić
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gius Kerster
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Karlijn van der Straten
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan L. Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hejun Liu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Meliawati Poniman
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Ilja Bontjer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Judith A. Burger
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Mathieu Claireaux
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom G. Caniels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Jonne L. Snitselaar
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Tom P.L. Bijl
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Sabine Kruijer
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David Gideonse
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Kwinten Sliepen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dirk Eggink
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, the Netherlands
| | - Godelieve J. de Bree
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Internal Medicine, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory of Experimental Virology, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| |
Collapse
|
77
|
Hueting D, Schriever K, Sun R, Vlachiotis S, Zuo F, Du L, Persson H, Hofström C, Ohlin M, Walldén K, Buggert M, Hammarström L, Marcotte H, Pan-Hammarström Q, Andréll J, Syrén PO. Design, structure and plasma binding of ancestral β-CoV scaffold antigens. Nat Commun 2023; 14:6527. [PMID: 37845250 PMCID: PMC10579346 DOI: 10.1038/s41467-023-42200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/03/2023] [Indexed: 10/18/2023] Open
Abstract
We report the application of ancestral sequence reconstruction on coronavirus spike protein, resulting in stable and highly soluble ancestral scaffold antigens (AnSAs). The AnSAs interact with plasma of patients recovered from COVID-19 but do not bind to the human angiotensin-converting enzyme 2 (ACE2) receptor. Cryo-EM analysis of the AnSAs yield high resolution structures (2.6-2.8 Å) indicating a closed pre-fusion conformation in which all three receptor-binding domains (RBDs) are facing downwards. The structures reveal an intricate hydrogen-bonding network mediated by well-resolved loops, both within and across monomers, tethering the N-terminal domain and RBD together. We show that AnSA-5 can induce and boost a broad-spectrum immune response against the wild-type RBD as well as circulating variants of concern in an immune organoid model derived from tonsils. Finally, we highlight how AnSAs are potent scaffolds by replacing the ancestral RBD with the wild-type sequence, which restores ACE2 binding and increases the interaction with convalescent plasma.
Collapse
Affiliation(s)
- David Hueting
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Karen Schriever
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Helena Persson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Drug Discovery and Development Platform, Science for Life Laboratory, Solna, Sweden
| | - Camilla Hofström
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Drug Discovery and Development Platform, Science for Life Laboratory, Solna, Sweden
| | - Mats Ohlin
- Drug Discovery and Development Platform, Science for Life Laboratory, Solna, Sweden
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Karin Walldén
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Marcus Buggert
- Center for Infectious Disease, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Juni Andréll
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| | - Per-Olof Syrén
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden.
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
78
|
Boshah H, Samkari F, Valle-Pérez AU, Alsawaf SM, Aldoukhi AH, Bilalis P, Alshehri SA, Susapto HH, Hauser CAE. Evaluation of Potential Peptide-Based Inhibitors against SARS-CoV-2 and Variants of Concern. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3892370. [PMID: 37869628 PMCID: PMC10589072 DOI: 10.1155/2023/3892370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/26/2023] [Accepted: 09/11/2023] [Indexed: 10/24/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has greatly affected all aspect of life. Although several vaccines and pharmaceuticals have been developed against SARS-CoV-2, the emergence of mutated variants has raised several concerns. The angiotensin-converting enzyme (ACE2) receptor cell entry mechanism of this virus has not changed despite the vast mutation in emerging variants. Inhibiting the spike protein by which the virus identifies the host ACE2 receptor is a promising therapeutic countermeasure to keep pace with rapidly emerging variants. Here, we synthesized two ACE2-derived peptides, P1 and P25, to target and potentially inhibit SARS-CoV-2 cell entry. These peptides were evaluated in vitro using pseudoviruses that contained the SARS-CoV-2 original spike protein, the Delta-mutated spike protein, or the Omicron spike protein. An in silico investigation was also done for these peptides to evaluate the interaction of the synthesized peptides and the SARS-CoV-2 variants. The P25 peptide showed a promising inhibition potency against the tested pseudoviruses and an even higher inhibition against the Omicron variant. The IC50 of the Omicron variant was 60.8 μM, while the IC50s of the SARS-CoV-2 original strain and the Delta variant were 455.2 μM and 546.4 μM, respectively. The in silico experiments also showed that the amino acid composition design and structure of P25 boosted the interaction with the spike protein. These findings suggest that ACE2-derived peptides, such as P25, have the potential to inhibit SARS-CoV-2 cell entry in vitro. However, further in vivo studies are needed to confirm their therapeutic efficacy against emerging variants.
Collapse
Affiliation(s)
- Hattan Boshah
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Faris Samkari
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Alexander U. Valle-Pérez
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Sarah M. Alsawaf
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Ali H. Aldoukhi
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Panayiotis Bilalis
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Salwa A. Alshehri
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hepi H. Susapto
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Smart Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
79
|
Wang J, Liu T, Gu S, Yang HH, Xie W, Gao C, Gu D. Cytoplasm Hydrogelation-Mediated Cardiomyocyte Sponge Alleviated Coxsackievirus B3 Infection. NANO LETTERS 2023; 23:8881-8890. [PMID: 37751402 PMCID: PMC10573321 DOI: 10.1021/acs.nanolett.3c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/27/2023] [Indexed: 09/28/2023]
Abstract
Viral myocarditis (VMC), commonly caused by coxsackievirus B3 (CVB3) infection, lacks specific treatments and leads to serious heart conditions. Current treatments, such as IFNα and ribavirin, show limited effectiveness. Herein, rather than inhibiting virus replication, this study introduces a novel cardiomyocyte sponge, intracellular gelated cardiomyocytes (GCs), to trap and neutralize CVB3 via a receptor-ligand interaction, such as CAR and CD55. By maintaining cellular morphology, GCs serve as sponges for CVB3, inhibiting infection. In vitro results revealed that GCs could inhibit CVB3 infection on HeLa cells. In vivo, GCs exhibited a strong immune escape ability and effectively inhibited CVB3-induced viral myocarditis with a high safety profile. The most significant implication of this study is to develop a universal antivirus infection strategy via intracellular gelation of the host cell, which can be employed not only for treating defined pathogenic viruses but also for a rapid response to infection outbreaks caused by mutable and unknown viruses.
Collapse
Affiliation(s)
- Jingzhe Wang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
- Shenzhen
Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tonggong Liu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Siyao Gu
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hui-hui Yang
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Weidong Xie
- Shenzhen
Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical
and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Cheng Gao
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| | - Dayong Gu
- Department
of Laboratory Medicine, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University,
Shenzhen Second People’s Hospital, Shenzhen Key Laboratory
of Medical Laboratory and Molecular Diagnostics, Shenzhen 518035, China
| |
Collapse
|
80
|
Zhang L, Kempf A, Nehlmeier I, Cossmann A, Dopfer-Jablonka A, Stankov MV, Schulz SR, Jäck HM, Behrens GMN, Pöhlmann S, Hoffmann M. Neutralisation sensitivity of SARS-CoV-2 lineages EG.5.1 and XBB.2.3. THE LANCET. INFECTIOUS DISEASES 2023; 23:e391-e392. [PMID: 37716358 DOI: 10.1016/s1473-3099(23)00547-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/18/2023]
Affiliation(s)
- Lu Zhang
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research, partner site Hannover-Braunschweig, Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany; Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
81
|
Thadani NN, Gurev S, Notin P, Youssef N, Rollins NJ, Ritter D, Sander C, Gal Y, Marks DS. Learning from prepandemic data to forecast viral escape. Nature 2023; 622:818-825. [PMID: 37821700 PMCID: PMC10599991 DOI: 10.1038/s41586-023-06617-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/06/2023] [Indexed: 10/13/2023]
Abstract
Effective pandemic preparedness relies on anticipating viral mutations that are able to evade host immune responses to facilitate vaccine and therapeutic design. However, current strategies for viral evolution prediction are not available early in a pandemic-experimental approaches require host polyclonal antibodies to test against1-16, and existing computational methods draw heavily from current strain prevalence to make reliable predictions of variants of concern17-19. To address this, we developed EVEscape, a generalizable modular framework that combines fitness predictions from a deep learning model of historical sequences with biophysical and structural information. EVEscape quantifies the viral escape potential of mutations at scale and has the advantage of being applicable before surveillance sequencing, experimental scans or three-dimensional structures of antibody complexes are available. We demonstrate that EVEscape, trained on sequences available before 2020, is as accurate as high-throughput experimental scans at anticipating pandemic variation for SARS-CoV-2 and is generalizable to other viruses including influenza, HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We provide continually revised escape scores for all current strains of SARS-CoV-2 and predict probable further mutations to forecast emerging strains as a tool for continuing vaccine development ( evescape.org ).
Collapse
Affiliation(s)
- Nicole N Thadani
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sarah Gurev
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - Pascal Notin
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Noor Youssef
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Nathan J Rollins
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Seismic Therapeutic, Watertown, MA, USA
| | - Daniel Ritter
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Chris Sander
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yarin Gal
- OATML Group, Department of Computer Science, University of Oxford, Oxford, UK
| | - Debora S Marks
- Marks Group, Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
82
|
Cantoni D, Wilkie C, Bentley EM, Mayora-Neto M, Wright E, Scott S, Ray S, Castillo-Olivares J, Heeney JL, Mattiuzzo G, Temperton NJ. Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature. Front Immunol 2023; 14:1184362. [PMID: 37790941 PMCID: PMC10544934 DOI: 10.3389/fimmu.2023.1184362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Background The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus. This systematic review and meta-analysis was designed to comprehensively evaluate the correlation between the two assays. Methods Using PubMed and Google Scholar, reports that incorporated neutralisation assays with both pseudotyped virus, authentic virus, and the application of a mathematical formula to assess the relationship between the results, were selected for review. Our searches identified 67 reports, of which 22 underwent a three-level meta-analysis. Results The three-level meta-analysis revealed a high level of correlation between pseudotyped viruses and authentic viruses when used in an neutralisation assay. Reports that were not included in the meta-analysis also showed a high degree of correlation, with the exception of lentiviral-based pseudotyped Ebola viruses. Conclusion Pseudotyped viruses identified in this report can be used as a surrogate for authentic virus, though care must be taken in considering which pseudotype core to use when generating new uncharacterised pseudotyped viruses.
Collapse
Affiliation(s)
- Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Craig Wilkie
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Emma M. Bentley
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Edward Wright
- Viral Pseudotype Unit, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Simon Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| | - Surajit Ray
- School of Mathematics & Statistics, University of Glasgow, Glasgow, United Kingdom
| | - Javier Castillo-Olivares
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
| | - Jonathan Luke Heeney
- Laboratory of Viral Zoonotics, Department of Veterinary Medicine, University of Cambridge, Cambridge University, Cambridge, United Kingdom
- DIOSynVax, University of Cambridge, Cambridge, United Kingdom
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham, United Kingdom
| |
Collapse
|
83
|
Roper KJ, Thomas J, Albalawi W, Maddocks E, Dobson S, Alshehri A, Barone FG, Baltazar M, Semple MG, Ho A, Turtle L, Paxton WA, Pollakis G. Quantifying neutralising antibody responses against SARS-CoV-2 in dried blood spots (DBS) and paired sera. Sci Rep 2023; 13:15014. [PMID: 37697014 PMCID: PMC10495436 DOI: 10.1038/s41598-023-41928-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023] Open
Abstract
The ongoing SARS-CoV-2 pandemic was initially managed by non-pharmaceutical interventions such as diagnostic testing, isolation of positive cases, physical distancing and lockdowns. The advent of vaccines has provided crucial protection against SARS-CoV-2. Neutralising antibody (nAb) responses are a key correlate of protection, and therefore measuring nAb responses is essential for monitoring vaccine efficacy. Fingerstick dried blood spots (DBS) are ideal for use in large-scale sero-surveillance because they are inexpensive, offer the option of self-collection and can be transported and stored at ambient temperatures. Such advantages also make DBS appealing to use in resource-limited settings and in potential future pandemics. In this study, nAb responses in sera, venous blood and fingerstick blood stored on filter paper were measured. Samples were collected from SARS-CoV-2 acutely infected individuals, SARS-CoV-2 convalescent individuals and SARS-CoV-2 vaccinated individuals. Good agreement was observed between the nAb responses measured in eluted DBS and paired sera. Stability of nAb responses was also observed in sera stored on filter paper at room temperature for 28 days. Overall, this study provides support for the use of filter paper as a viable sample collection method to study nAb responses.
Collapse
Affiliation(s)
- Kelly J Roper
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Emily Maddocks
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Susan Dobson
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Abdullateef Alshehri
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Francesco G Barone
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, Liverpool, L69 3BX, UK
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Malcolm G Semple
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Liverpool, UK
| | - Antonia Ho
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Lance Turtle
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - William A Paxton
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology (CIMI), Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, L69 7BE, UK.
- Faculty of Health and Life Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK.
| |
Collapse
|
84
|
Wang Z, Muecksch F, Raspe R, Johannsen F, Turroja M, Canis M, ElTanbouly MA, Santos GSS, Johnson B, Baharani VA, Patejak R, Yao KH, Chirco BJ, Millard KG, Shimeliovich I, Gazumyan A, Oliveira TY, Bieniasz PD, Hatziioannou T, Caskey M, Nussenzweig MC. Memory B cell development elicited by mRNA booster vaccinations in the elderly. J Exp Med 2023; 220:e20230668. [PMID: 37368240 DOI: 10.1084/jem.20230668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Despite mRNA vaccination, elderly individuals remain especially vulnerable to severe consequences of SARS-CoV-2 infection. Here, we compare the memory B cell responses in a cohort of elderly and younger individuals who received mRNA booster vaccinations. Plasma neutralizing potency and breadth were similar between the two groups. By contrast, the absolute number of SARS-CoV-2-specific memory B cells was lower in the elderly. Antibody sequencing revealed that the SARS-CoV-2-specific elderly memory compartments were more clonal and less diverse. Notably, memory antibodies from the elderly preferentially targeted the ACE2-binding site on the RBD, while those from younger individuals targeted less accessible but more conserved epitopes. Nevertheless, individual memory antibodies elicited by booster vaccines in the elderly and younger individuals showed similar levels of neutralizing activity and breadth against SARS-CoV-2 variants. Thus, the relatively diminished protective effects of vaccination against serious disease in the elderly are associated with a smaller number of antigen-specific memory B cells that express altered antibody repertoires.
Collapse
Affiliation(s)
- Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University , New York, NY, USA
- Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany
| | - Raphael Raspe
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Frederik Johannsen
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Martina Turroja
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University , New York, NY, USA
| | - Mohamed A ElTanbouly
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | | | - Brianna Johnson
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Viren A Baharani
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
- Laboratory of Retrovirology, The Rockefeller University , New York, NY, USA
| | - Rachel Patejak
- Laboratory of Retrovirology, The Rockefeller University , New York, NY, USA
| | - Kai-Hui Yao
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Bennett J Chirco
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Katrina G Millard
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Irina Shimeliovich
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University , New York, NY, USA
- Howard Hughes Medical Institute , Maryland, MD, USA
| | | | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University , New York, NY, USA
- Howard Hughes Medical Institute , Maryland, MD, USA
| |
Collapse
|
85
|
Coelho GM, Cataneo AHD, Raboni SM, Nogueira MB, de Paula CBV, Almeida ACSF, Rogerio VZ, Zanchin NT, de Noronha L, Zanluca C, Duarte Dos Santos CN. Development of an anti-SARS-CoV-2 monoclonal antibody panel and its applicability as a reagent in high-throughput fluorescence reduction neutralization and immunohistochemistry assays. J Med Virol 2023; 95:e29111. [PMID: 37750235 DOI: 10.1002/jmv.29111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Since its emergence in late 2019, coronavirus disease 2019 (COVID-19) has caused millions of deaths and socioeconomic losses. Although vaccination significantly reduced disease mortality, it has been shown that protection wanes over time, and that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) may escape vaccine-derived immunity. Therefore, serological studies are necessary to assess protection in the population and guide vaccine regimens. A common measure of protective immunity is the presence of neutralizing antibodies (nAbs). However, the gold standard for measuring nAbs (plaque reduction neutralization test, or PRNT) is laborious and time-consuming, limiting its large-scale applicability. We developed a high-throughput fluorescence reduction neutralization assay (FRNA) to detect SARS-CoV-2 nAbs. Because the assay relies on immunostaining, we developed and characterized monoclonal antibodies (mAbs) to lower costs and reduce the assay's vulnerability to reagent shortages. Using samples of individuals vaccinated with COVID-19 and unvaccinated/pre-pandemic samples, we showed that FRNA results using commercial and in-house mAbs strongly correlated with those of the PRNT method while providing results in 70% less time. In addition to providing a fast, reliable, and high-throughput alternative for measuring nAbs, the FRNA can be easily customized to assess SARS-CoV-2 VOCs. Additionally, the mAb we produced was able to detect SARS-CoV-2 in pulmonary tissues by immunohistochemistry assays.
Collapse
Affiliation(s)
- Gabriela M Coelho
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz), Curitiba, Paraná, Brasil
| | - Allan H D Cataneo
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz), Curitiba, Paraná, Brasil
| | - Sonia M Raboni
- Complexo Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Paraná, Brasil
| | - Meri B Nogueira
- Complexo Hospital de Clínicas, Universidade Federal Do Paraná, Curitiba, Paraná, Brasil
| | - Caroline B Vaz de Paula
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brasil
| | - Ana C S F Almeida
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brasil
| | - Vanessa Z Rogerio
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas (ICC/Fiocruz), Curitiba, Paraná, Brasil
| | - Nilson T Zanchin
- Laboratório de Biologia Estrutural e Engenharia de Proteínas, Instituto Carlos Chagas (ICC/Fiocruz), Curitiba, Paraná, Brasil
| | - Lucia de Noronha
- Laboratório de Patologia Experimental, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brasil
| | - Camila Zanluca
- Laboratório de Virologia Molecular, Instituto Carlos Chagas (ICC/Fiocruz), Curitiba, Paraná, Brasil
| | | |
Collapse
|
86
|
Hollingsworth SA, Noland CL, Vroom K, Saha A, Sam M, Gao Q, Zhou H, Grandy DU, Singh S, Wen Z, Warren C, Ma XS, Malashock D, Galli J, Go G, Eddins M, Mayhood T, Sathiyamoorthy K, Fridman A, Raoufi F, Gomez-Llorente Y, Patridge A, Tang Y, Chen SJ, Bailly M, Ji C, Kingsley LJ, Cheng AC, Geierstanger BH, Gorman DM, Zhang L, Pande K. Discovery and multimerization of cross-reactive single-domain antibodies against SARS-like viruses to enhance potency and address emerging SARS-CoV-2 variants. Sci Rep 2023; 13:13668. [PMID: 37608223 PMCID: PMC10444775 DOI: 10.1038/s41598-023-40919-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Coronaviruses have been the causative agent of three epidemics and pandemics in the past two decades, including the ongoing COVID-19 pandemic. A broadly-neutralizing coronavirus therapeutic is desirable not only to prevent and treat COVID-19, but also to provide protection for high-risk populations against future emergent coronaviruses. As all coronaviruses use spike proteins on the viral surface to enter the host cells, and these spike proteins share sequence and structural homology, we set out to discover cross-reactive biologic agents targeting the spike protein to block viral entry. Through llama immunization campaigns, we have identified single domain antibodies (VHHs) that are cross-reactive against multiple emergent coronaviruses (SARS-CoV, SARS-CoV-2, and MERS). Importantly, a number of these antibodies show sub-nanomolar potency towards all SARS-like viruses including emergent CoV-2 variants. We identified nine distinct epitopes on the spike protein targeted by these VHHs. Further, by engineering VHHs targeting distinct, conserved epitopes into multi-valent formats, we significantly enhanced their neutralization potencies compared to the corresponding VHH cocktails. We believe this approach is ideally suited to address both emerging SARS-CoV-2 variants during the current pandemic as well as potential future pandemics caused by SARS-like coronaviruses.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, 700 Bay Road, Redwood City, CA, 94063, USA
| | - Cameron L Noland
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Haihong Zhou
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - David U Grandy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Zhiyun Wen
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Christopher Warren
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel Malashock
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jennifer Galli
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Gwenny Go
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Michael Eddins
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Todd Mayhood
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Arthur Fridman
- Data Science and Informatics, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ, 07065, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yacob Gomez-Llorente
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Andrea Patridge
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yinyan Tang
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Chengjie Ji
- NovaBioAssays, LLC, 52 Dragon Ct, Woburn, MA, 01801, USA
| | - Laura J Kingsley
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Boehringer Ingelheim, 900 Ridgebury Rd, Ridgefield, CT, 06877, USA
| | - Alan C Cheng
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Bernhard H Geierstanger
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel M Gorman
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
| | - Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA.
| |
Collapse
|
87
|
Murphy EA, Guzman-Cardozo C, Sukhu AC, Parks DJ, Prabhu M, Mohammed I, Jurkiewicz M, Ketas TJ, Singh S, Canis M, Bednarski E, Hollingsworth A, Thompson EM, Eng D, Bieniasz PD, Riley LE, Hatziioannou T, Yang YJ. SARS-CoV-2 vaccination, booster, and infection in pregnant population enhances passive immunity in neonates. Nat Commun 2023; 14:4598. [PMID: 37563124 PMCID: PMC10415289 DOI: 10.1038/s41467-023-39989-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
The effects of heterogeneous infection, vaccination and boosting histories prior to and during pregnancy have not been extensively studied and are likely important for protection of neonates. We measure levels of spike binding antibodies in 4600 patients and their neonates with different vaccination statuses, with and without history of SARS-CoV-2 infection. We investigate neutralizing antibody activity against different SARS-CoV-2 variant pseudotypes in a subset of 259 patients and determined correlation between IgG levels and variant neutralizing activity. We further study the ability of maternal antibody and neutralizing measurements to predict neutralizing antibody activity in the umbilical cord blood of neonates. In this work, we show SARS-CoV-2 vaccination and boosting, especially in the setting of previous infection, leads to significant increases in antibody levels and neutralizing activity even against the recent omicron BA.1 and BA.5 variants in both pregnant patients and their neonates.
Collapse
Affiliation(s)
- Elisabeth A Murphy
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, US
| | | | - Ashley C Sukhu
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, US
| | - Debby J Parks
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, US
| | - Malavika Prabhu
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, US
| | - Iman Mohammed
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, US
| | - Magdalena Jurkiewicz
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, US
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, US
| | | | - Marie Canis
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, US
| | - Eva Bednarski
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, US
| | | | | | - Dorothy Eng
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, US
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, US
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, US
| | - Laura E Riley
- Department of Obstetrics & Gynecology, Weill Cornell Medicine, New York, NY, US
| | | | - Yawei J Yang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, US.
- Department of Pathology and Laboratory Medicine, New York Presbyterian/Weill Cornell Medical Center, New York, NY, US.
| |
Collapse
|
88
|
Hickerson BT, Khalenkov AM, Xie T, Frucht DM, Scott DE, Ilyushina NA. Interchangeability of the Assays Used to Assess the Activity of Anti-SARS-CoV-2 Monoclonal Antibodies. Viruses 2023; 15:1698. [PMID: 37632039 PMCID: PMC10459467 DOI: 10.3390/v15081698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
The recent global COVID-19 pandemic caused by SARS-CoV-2 lasted for over three years. A key measure in combatting this pandemic involved the measurement of the monoclonal antibody (mAb)-mediated inhibition of binding between the spike receptor-binding domain (RBD) and hACE2 receptor. Potency assessments of therapeutic anti-SARS-CoV-2 mAbs typically include binding or cell-based neutralization assays. We assessed the inhibitory activity of five anti-SARS-CoV-2 mAbs using ELISA, surface plasmon resonance (SPR), and four cell-based neutralization assays using different pseudovirus particles and 293T or A549 cells expressing hACE2 with or without TMPRSS2. We assessed the interchangeability between cell-based and binding assays by applying the Bland-Altman method under certain assumptions. Our data demonstrated that the IC50 [nM] values determined by eight neutralization assays are independent of the cell line, presence of TMPRSS2 enzyme on the cell surface, and pseudovirus backbone used. Moreover, the Bland-Altman analysis showed that the IC50 [nM] and KD [nM] values determined by neutralization/ELISA or by SPR are equivalent and that the anti-spike mAb activity can be attributed to one variable directly related to its tertiary conformational structure conformation, rate dissociation constant Koff. This parameter is independent from the concentrations of the components of the mAb:RBD:hACE2 complexes and can be used for a comparison between the activities of the different mAbs.
Collapse
Affiliation(s)
- Brady T. Hickerson
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (B.T.H.); (T.X.); (D.M.F.)
| | - Alexey M. Khalenkov
- Division of Plasma Derivatives, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (A.M.K.); (D.E.S.)
| | - Tao Xie
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (B.T.H.); (T.X.); (D.M.F.)
| | - David M. Frucht
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (B.T.H.); (T.X.); (D.M.F.)
| | - Dorothy E. Scott
- Division of Plasma Derivatives, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (A.M.K.); (D.E.S.)
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research II, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (B.T.H.); (T.X.); (D.M.F.)
| |
Collapse
|
89
|
Nehlmeier I, Kempf A, Arora P, Cossmann A, Dopfer-Jablonka A, Stankov MV, Schulz SR, Jäck HM, Behrens GMN, Pöhlmann S, Hoffmann M. Host cell entry and neutralisation sensitivity of the SARS-CoV-2 XBB.1.16 lineage. Cell Mol Immunol 2023; 20:969-971. [PMID: 37156807 PMCID: PMC10165563 DOI: 10.1038/s41423-023-01030-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023] Open
Affiliation(s)
- Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Prerna Arora
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany
| | - Anne Cossmann
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Alexandra Dopfer-Jablonka
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Metodi V Stankov
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Sebastian R Schulz
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054, Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine 3, Friedrich-Alexander University of Erlangen-Nürnberg, Glückstraße 6, 91054, Erlangen, Germany
| | - Georg M N Behrens
- Department of Rheumatology and Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Centre for Individualized Infection Medicine (CiiM), Feodor-Lynen-Straße 7, 30625, Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany.
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Wilhelmsplatz 1, 37073, Göttingen, Germany.
| |
Collapse
|
90
|
Feng JL, Wang WJ, Jin PF, Zheng H, Jin LR, Xia X, Zhang XY, Li ZP, Li JX, Zhu FC. Comparison of antibody persistency through one year between one-dose and two-dose regimens of Ad5-nCoV vaccine for COVID-19. Hum Vaccin Immunother 2023; 19:2230760. [PMID: 37428653 DOI: 10.1080/21645515.2023.2230760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
This post-hoc analysis compared the receptor-binding domain (RBD)-specific and pseudovirus neutralizing antibodies against the wild-type SARS-CoV-2 strain elicited by one or two doses (56-d interval) of Ad5-nCoV vaccine regimen (NCT04341389 and NCT04566770). Both trials had low-dose and high-dose groups. Propensity score matching was used to adjust the baseline between one- and two-dose regimens. To predict the decrease in antibody titers 1 y after vaccination, half-lives of RBD-binding antibodies and pseudovirus neutralizing antibodies were computed. We obtained 34 and 29 pairs of participants in the low- and high-dose groups based on the propensity score matching. The two-dose regimen of Ad5-nCoV increased the peaking level of neutralizing antibodies compared to the one-dose regimen at day 28, but the responses of the neutralizing antibodies were not consistent with those of the RBD antibodies. Half-lives of the RBD-binding antibodies in the two-dose Ad5-nCoV regimen (202-209 days) were longer than those in the one-dose regimen (136-137 d); half-lives of the pseudovirus neutralizing antibody in the one-dose Ad5-nCoV regimen (177 d) were longer than those in the two-dose regimen (116-131 d). The predicted positive rates of RBD-binding antibodies in the one-dose regimen (34.1%-38.3%) would be lower than those in the two-dose Ad5-nCoV regimen (67.0%-84.0%), while the positive rates of pseudovirus neutralizing antibodies in the one-dose regimen (65.4%-66.7%) would be higher than those in the two-dose regimen (48.3%-58.0%). The two-dose Ad5-nCoV regimen with a 56-d interval had no effect on the persistence of neutralizing antibodies but slowed decay trend of RBD-binding antibodies.
Collapse
Affiliation(s)
- Jia-Lu Feng
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R China
| | - Wen-Juan Wang
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R China
| | - Peng-Fei Jin
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R China
| | - Hui Zheng
- School of Public Health, Southeast University, Nanjing, P.R China
| | - Lai-Run Jin
- School of Public Health, Southeast University, Nanjing, P.R China
| | - Xin Xia
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R China
| | - Xiao-Yin Zhang
- School of Public Health, Southeast University, Nanjing, P.R China
| | - Zhuo-Pei Li
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R China
| | - Jing-Xin Li
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R China
- School of Public Health, Southeast University, Nanjing, P.R China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R China
| | - Feng-Cai Zhu
- School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, P.R China
- National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, P.R China
- School of Public Health, Southeast University, Nanjing, P.R China
- Institute of Global Public Health and Emergency Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P.R China
| |
Collapse
|
91
|
Tyson GB, Jones S, Montreuil-Spencer C, Logan N, Scott S, Sasvari H, McDonald M, Marshall L, Murcia PR, Willett BJ, Weir W, Hosie MJ. Increase in SARS-CoV-2 Seroprevalence in UK Domestic Felids Despite Weak Immunogenicity of Post-Omicron Variants. Viruses 2023; 15:1661. [PMID: 37632004 PMCID: PMC10458763 DOI: 10.3390/v15081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Throughout the COVID-19 pandemic, SARS-CoV-2 infections in domestic cats have caused concern for both animal health and the potential for inter-species transmission. Cats are known to be susceptible to the Omicron variant and its descendants, however, the feline immune response to these variants is not well defined. We aimed to estimate the current seroprevalence of SARS-CoV-2 in UK pet cats, as well as characterise the neutralising antibody response to the Omicron (BA.1) variant. A neutralising seroprevalence of 4.4% and an overall seroprevalence of 13.9% was observed. Both purebred and male cats were found to have the highest levels of seroprevalence, as well as cats aged between two and five years. The Omicron variant was found to have a lower immunogenicity in cats than the B.1, Alpha and Delta variants, which reflects previous reports of immune and vaccine evasion in humans. These results further underline the importance of surveillance of SARS-CoV-2 infections in UK cats as the virus continues to evolve.
Collapse
Affiliation(s)
- Grace B. Tyson
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Sarah Jones
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Chloe Montreuil-Spencer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Sam Scott
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Hagar Sasvari
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Michael McDonald
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Leigh Marshall
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Pablo R. Murcia
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Brian J. Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| | - Margaret J. Hosie
- MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
92
|
Nangarlia A, Hassen FF, Canziani G, Bandi P, Talukder C, Zhang F, Krauth D, Gary EN, Weiner DB, Bieniasz P, Navas-Martin S, O'Keefe BR, Ang CG, Chaiken I. Irreversible Inactivation of SARS-CoV-2 by Lectin Engagement with Two Glycan Clusters on the Spike Protein. Biochemistry 2023; 62:2115-2127. [PMID: 37341186 PMCID: PMC10663058 DOI: 10.1021/acs.biochem.3c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Host cell infection by SARS-CoV-2, similar to that by HIV-1, is driven by a conformationally metastable and highly glycosylated surface entry protein complex, and infection by these viruses has been shown to be inhibited by the mannose-specific lectins cyanovirin-N (CV-N) and griffithsin (GRFT). We discovered in this study that CV-N not only inhibits SARS-CoV-2 infection but also leads to irreversibly inactivated pseudovirus particles. The irreversibility effect was revealed by the observation that pseudoviruses first treated with CV-N and then washed to remove all soluble lectin did not recover infectivity. The infection inhibition of SARS-CoV-2 pseudovirus mutants with single-site glycan mutations in spike suggested that two glycan clusters in S1 are important for both CV-N and GRFT inhibition: one cluster associated with the RBD (receptor binding domain) and the second with the S1/S2 cleavage site. We observed lectin antiviral effects with several SARS-CoV-2 pseudovirus variants, including the recently emerged omicron, as well as a fully infectious coronavirus, therein reflecting the breadth of lectin antiviral function and the potential for pan-coronavirus inactivation. Mechanistically, observations made in this work indicate that multivalent lectin interaction with S1 glycans is likely a driver of the lectin infection inhibition and irreversible inactivation effect and suggest the possibility that lectin inactivation is caused by an irreversible conformational effect on spike. Overall, lectins' irreversible inactivation of SARS-CoV-2, taken with their breadth of function, reflects the therapeutic potential of multivalent lectins targeting the vulnerable metastable spike before host cell encounter.
Collapse
Affiliation(s)
- Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Farah Fazloon Hassen
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Praneeta Bandi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Choya Talukder
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Douglas Krauth
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ebony N Gary
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - David B Weiner
- The Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Paul Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, New York 10065, United States
- Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, United States
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- Department of Microbiology and Immunology, Center for Molecular Virology & Translational Neuroscience, Institute for Molecular Medicine & Infectious Disease, Philadelphia, Pennsylvania 19102, United States
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, NIH, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Charles G Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
93
|
Zhang F, Schmidt F, Muecksch F, Wang Z, Gazumyan A, Nussenzweig MC, Gaebler C, Caskey M, Hatziioannou T, Bieniasz PD. SARS-CoV-2 spike glycosylation affects function and neutralization sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547241. [PMID: 37425700 PMCID: PMC10327196 DOI: 10.1101/2023.06.30.547241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The glycosylation of viral envelope proteins can play important roles in virus biology and immune evasion. The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) includes 22 N-linked glycosylation sequons and 17 O-linked glycosites. Here, we investigated the effect of individual glycosylation sites on SARS-CoV-2 S function in pseudotyped virus infection assays and on sensitivity to monoclonal and polyclonal neutralizing antibodies. In most cases, removal of individual glycosylation sites decreased the infectiousness of the pseudotyped virus. For glycosylation mutants in the N-terminal domain (NTD) and the receptor binding domain (RBD), reduction in pseudotype infectivity was predicted by a commensurate reduction in the level of virion-incorporated spike protein. Notably, the presence of a glycan at position N343 within the RBD had diverse effects on neutralization by RBD-specific monoclonal antibodies (mAbs) cloned from convalescent individuals. The N343 glycan reduced overall sensitivity to polyclonal antibodies in plasma from COVID-19 convalescent individuals, suggesting a role for SARS-CoV-2 spike glycosylation in immune evasion. However, vaccination of convalescent individuals produced neutralizing activity that was resilient to the inhibitory effect of the N343 glycan.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Fabian Schmidt
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Current address: King Abdullah University of Science and Technology, Thuwal, Makkah, Saudi Arabia. Center for Integrative Infectious Disease Research, Universitätsklinikum Heidelberg, 69120 Heidleberg, Germany
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
- Current address: Laboratory of Translational Immunology of Viral Infections, Charité - Universitätsmedizin Berlin, Germany
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
94
|
Budhadev D, Hooper J, Rocha C, Nehlmeier I, Kempf AM, Hoffmann M, Krüger N, Zhou D, Pöhlmann S, Guo Y. Polyvalent Nano-Lectin Potently Neutralizes SARS-CoV-2 by Targeting Glycans on the Viral Spike Protein. JACS AU 2023; 3:1755-1766. [PMID: 37388683 PMCID: PMC10302749 DOI: 10.1021/jacsau.3c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Mutations in spike (S) protein epitopes allow SARS-CoV-2 variants to evade antibody responses induced by infection and/or vaccination. In contrast, mutations in glycosylation sites across SARS-CoV-2 variants are very rare, making glycans a potential robust target for developing antivirals. However, this target has not been adequately exploited for SARS-CoV-2, mostly due to intrinsically weak monovalent protein-glycan interactions. We hypothesize that polyvalent nano-lectins with flexibly linked carbohydrate recognition domains (CRDs) can adjust their relative positions and bind multivalently to S protein glycans, potentially exerting potent antiviral activity. Herein, we displayed the CRDs of DC-SIGN, a dendritic cell lectin known to bind to diverse viruses, polyvalently onto 13 nm gold nanoparticles (named G13-CRD). G13-CRD bound strongly and specifically to target glycan-coated quantum dots with sub-nM Kd. Moreover, G13-CRD neutralized particles pseudotyped with the S proteins of Wuhan Hu-1, B.1, Delta variant and Omicron subvariant BA.1 with low nM EC50. In contrast, natural tetrameric DC-SIGN and its G13 conjugate were ineffective. Further, G13-CRD potently inhibited authentic SARS-CoV-2 B.1 and BA.1, with <10 pM and <10 nM EC50, respectively. These results identify G13-CRD as the 1st polyvalent nano-lectin with broad activity against SARS-CoV-2 variants that merits further exploration as a novel approach to antiviral therapy.
Collapse
Affiliation(s)
- Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cheila Rocha
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Madeleine Kempf
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
95
|
Mambelli F, Marinho FV, Andrade JM, de Araujo ACVSC, Abuna RPF, Fabri VMR, Santos BPO, da Silva JS, de Magalhães MTQ, Homan EJ, Leite LCC, Dias GB, Heck N, Mendes DAGB, Mansur DS, Báfica A, Oliveira SC. Recombinant Bacillus Calmette-Guérin Expressing SARS-CoV-2 Chimeric Protein Protects K18-hACE2 Mice against Viral Challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1925-1937. [PMID: 37098890 PMCID: PMC10247535 DOI: 10.4049/jimmunol.2200731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/24/2023] [Indexed: 04/27/2023]
Abstract
COVID-19 has accounted for more than 6 million deaths worldwide. Bacillus Calmette-Guérin (BCG), the existing tuberculosis vaccine, is known to induce heterologous effects over other infections due to trained immunity and has been proposed to be a potential strategy against SARS-CoV-2 infection. In this report, we constructed a recombinant BCG (rBCG) expressing domains of the SARS-CoV-2 nucleocapsid and spike proteins (termed rBCG-ChD6), recognized as major candidates for vaccine development. We investigated whether rBCG-ChD6 immunization followed by a boost with the recombinant nucleocapsid and spike chimera (rChimera), together with alum, provided protection against SARS-CoV-2 infection in K18-hACE2 mice. A single dose of rBCG-ChD6 boosted with rChimera associated with alum elicited the highest anti-Chimera total IgG and IgG2c Ab titers with neutralizing activity against SARS-CoV-2 Wuhan strain when compared with control groups. Importantly, following SARS-CoV-2 challenge, this vaccination regimen induced IFN-γ and IL-6 production in spleen cells and reduced viral load in the lungs. In addition, no viable virus was detected in mice immunized with rBCG-ChD6 boosted with rChimera, which was associated with decreased lung pathology when compared with BCG WT-rChimera/alum or rChimera/alum control groups. Overall, our study demonstrates the potential of a prime-boost immunization system based on an rBCG expressing a chimeric protein derived from SARS-CoV-2 to protect mice against viral challenge.
Collapse
Affiliation(s)
- Fábio Mambelli
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fábio V. Marinho
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juvana M. Andrade
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C. V. S. C. de Araujo
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P. F. Abuna
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Victor M. R. Fabri
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno P. O. Santos
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - João S. da Silva
- Platform of Bi-Institutional Research in Translational Medicine, Oswaldo Cruz Foundation-Fiocruz, Ribeirão Preto, São Paulo, Brazil
| | - Mariana T. Q. de Magalhães
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - E. Jane Homan
- ioGenetics LLC, Madison, Wisconsin, United States of America
| | | | - Greicy B.M. Dias
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicoli Heck
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel A. G. B. Mendes
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Daniel S. Mansur
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - André Báfica
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
96
|
Dong T, Wang M, Liu J, Ma P, Pang S, Liu W, Liu A. Diagnostics and analysis of SARS-CoV-2: current status, recent advances, challenges and perspectives. Chem Sci 2023; 14:6149-6206. [PMID: 37325147 PMCID: PMC10266450 DOI: 10.1039/d2sc06665c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
The disastrous spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has induced severe public healthcare issues and weakened the global economy significantly. Although SARS-CoV-2 infection is not as fatal as the initial outbreak, many infected victims suffer from long COVID. Therefore, rapid and large-scale testing is critical in managing patients and alleviating its transmission. Herein, we review the recent advances in techniques to detect SARS-CoV-2. The sensing principles are detailed together with their application domains and analytical performances. In addition, the advantages and limits of each method are discussed and analyzed. Besides molecular diagnostics and antigen and antibody tests, we also review neutralizing antibodies and emerging SARS-CoV-2 variants. Further, the characteristics of the mutational locations in the different variants with epidemiological features are summarized. Finally, the challenges and possible strategies are prospected to develop new assays to meet different diagnostic needs. Thus, this comprehensive and systematic review of SARS-CoV-2 detection technologies may provide insightful guidance and direction for developing tools for the diagnosis and analysis of SARS-CoV-2 to support public healthcare and effective long-term pandemic management and control.
Collapse
Affiliation(s)
- Tao Dong
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
- School of Pharmacy, Medical College, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Mingyang Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Junchong Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Pengxin Ma
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Shuang Pang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Wanjian Liu
- Qingdao Hightop Biotech Co., Ltd 369 Hedong Road, Hi-tech Industrial Development Zone Qingdao 266112 China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| |
Collapse
|
97
|
Hoffmann M, Wong LYR, Arora P, Zhang L, Rocha C, Odle A, Nehlmeier I, Kempf A, Richter A, Halwe NJ, Schön J, Ulrich L, Hoffmann D, Beer M, Drosten C, Perlman S, Pöhlmann S. Omicron subvariant BA.5 efficiently infects lung cells. Nat Commun 2023; 14:3500. [PMID: 37311762 PMCID: PMC10262933 DOI: 10.1038/s41467-023-39147-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
The SARS-CoV-2 Omicron subvariants BA.1 and BA.2 exhibit reduced lung cell infection relative to previously circulating SARS-CoV-2 variants, which may account for their reduced pathogenicity. However, it is unclear whether lung cell infection by BA.5, which displaced these variants, remains attenuated. Here, we show that the spike (S) protein of BA.5 exhibits increased cleavage at the S1/S2 site and drives cell-cell fusion and lung cell entry with higher efficiency than its counterparts from BA.1 and BA.2. Increased lung cell entry depends on mutation H69Δ/V70Δ and is associated with efficient replication of BA.5 in cultured lung cells. Further, BA.5 replicates in the lungs of female Balb/c mice and the nasal cavity of female ferrets with much higher efficiency than BA.1. These results suggest that BA.5 has acquired the ability to efficiently infect lung cells, a prerequisite for causing severe disease, suggesting that evolution of Omicron subvariants can result in partial loss of attenuation.
Collapse
Affiliation(s)
- Markus Hoffmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| | - Lok-Yin Roy Wong
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Prerna Arora
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Lu Zhang
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Cheila Rocha
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Abby Odle
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Amy Kempf
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Richter
- Institute of Virology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Nico Joel Halwe
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Jacob Schön
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Lorenz Ulrich
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Donata Hoffmann
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institut für Virusdiagnostik (IVD), Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Stanley Perlman
- Departments of Microbiology and Immunology, BSB 3-712, University of Iowa, Iowa City, IA, USA
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany.
- Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
98
|
Zhang F, Jenkins J, de Carvalho RVH, Nakandakari-Higa S, Chen T, Abernathy ME, Baharani VA, Nyakatura EK, Andrew D, Lebedeva IV, Lorenz IC, Hoffmann HH, Rice CM, Victora GD, Barnes CO, Hatziioannou T, Bieniasz PD. Pan-sarbecovirus prophylaxis with human anti-ACE2 monoclonal antibodies. Nat Microbiol 2023; 8:1051-1063. [PMID: 37188812 PMCID: PMC10234812 DOI: 10.1038/s41564-023-01389-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/19/2023] [Indexed: 05/17/2023]
Abstract
Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.
Collapse
Affiliation(s)
- Fengwen Zhang
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | - Jesse Jenkins
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | | | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Viren A Baharani
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA
| | | | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Irina V Lebedeva
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, The Rockefeller University, New York, NY, USA
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
99
|
Qin K, Honjo K, Sherrill-Mix S, Liu W, Stoltz RM, Oman AK, Hall LA, Li R, Sterrett S, Frederick ER, Lancaster JR, Narkhede M, Mehta A, Ogunsile FJ, Patel RB, Ketas TJ, Cruz Portillo VM, Cupo A, Larimer BM, Bansal A, Goepfert PA, Hahn BH, Davis RS. Exposure of progressive immune dysfunction by SARS-CoV-2 mRNA vaccination in patients with chronic lymphocytic leukemia: A prospective cohort study. PLoS Med 2023; 20:e1004157. [PMID: 37384638 PMCID: PMC10309642 DOI: 10.1371/journal.pmed.1004157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (β2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.
Collapse
Affiliation(s)
- Kai Qin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Kazuhito Honjo
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Scott Sherrill-Mix
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Regina M. Stoltz
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Allisa K. Oman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Lucinda A. Hall
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ran Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Sarah Sterrett
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ellen R. Frederick
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey R. Lancaster
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Mayur Narkhede
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amitkumar Mehta
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Foluso J. Ogunsile
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rima B. Patel
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Thomas J. Ketas
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Victor M. Cruz Portillo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Albert Cupo
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Benjamin M. Larimer
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paul A. Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Beatrice H. Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Randall S. Davis
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
100
|
Colin P, Ringe RP, Yasmeen A, Ozorowski G, Ketas TJ, Lee WH, Ward AB, Moore JP, Klasse PJ. Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization. Retrovirology 2023; 20:9. [PMID: 37244989 DOI: 10.1186/s12977-023-00624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations. RESULTS We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes. CONCLUSION Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.
Collapse
Affiliation(s)
- Philippe Colin
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Université de Toulouse, CNRS, INSERM, UPS, Toulouse, France
| | - Rajesh P Ringe
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Anila Yasmeen
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thomas J Ketas
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Consortium for HIV Vaccine 14 Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA
| | - P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, 1300 York Avenue, 62 , New York, NY, 10065, USA.
| |
Collapse
|