51
|
Zhang F, Lee J, Wang D, Dong Z. Differential growth of IFN-beta-engineered tumor cells in nude and IFN receptor-null mice. J Interferon Cytokine Res 2006; 26:108-18. [PMID: 16487031 DOI: 10.1089/jir.2006.26.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the therapeutic potential of interferon-beta (IFN-beta) against tumors that resist its antiproliferative effects. Mouse fibrosarcoma cells (UV-2237m-P) and their counterparts, transfected with either IFN-beta cDNA (UV-2237m-IFN-beta) or its control vector (UV-2237m-neo), were used in the study. UV-2237m-IFN-beta cells, still expressing functional IFN receptors, were resistant to the antiproliferative effects of IFN-beta. UV-2237m-P and UV-2237m-neo cells produced progressive tumors in both nude and IFN receptor-null nude (IFNAR-/-nude) mice. In contrast, growth of UV-2237m-IFN-beta cells was significantly delayed in nude mice. UV-2237m-IFN-beta tumors from nude mice contained fewer microvessels, fewer proliferating cells, and more apoptotic cells than did UV-2237m-P and UV-2237m-neo tumors. They expressed high levels of inducible nitric oxide synthase (iNOS) and were densely infiltrated by macrophages. Incubation with macrophages from nude mice, but not those from IFNAR-/- nude mice or iNOS-null/nude mice, led to more significant killing of UV-2237m-IFN-beta cells than that of control cells, which was blocked by iNOS inhibitor N-methylarginine. Similarly, more UV-2237m-IFN-beta cells were killed when they were incubated with spleen lymphocytes from nude mice. These data indicate that IFN-beta can inhibit growth of IFN-beta-resistant tumors by T cell-independent host-mediated mechanisms, including the role of macrophages, natural killer (NK) cells, and iNOS activity.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Female
- Interferon-beta/physiology
- Killer Cells, Natural/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Macrophages, Peritoneal/immunology
- Mice
- Mice, Knockout
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Receptors, Interferon/biosynthesis
- Receptors, Interferon/deficiency
- Receptors, Interferon/genetics
Collapse
Affiliation(s)
- Fahao Zhang
- Department of Cancer Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
52
|
Baumert JT, Sparmann G, Emmrich J, Liebe S, Jaster R. Inhibitory effects of interferons on pancreatic stellate cell activation. World J Gastroenterol 2006; 12:896-901. [PMID: 16521217 PMCID: PMC4066154 DOI: 10.3748/wjg.v12.i6.896] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze and to compare the effects of interferon (IFN)-α, IFN-β, and IFN-γ on pancreatic stellate cell (PSC) activation in vitro and to elucidate the molecular basis of IFN action.
METHODS: PSCs were isolated from rat’s pancreatic tissue, cultured and stimulated with recombinant rat IFNs. Cell proliferation and collagen synthesis were assessed by measuring the incorporation of 5-bromo-2’-deoxyuridine (BrdU) into DNA and [3H]-proline into acetic acid-soluble proteins, respectively. Apoptotic cells were determined by FACS analysis (sub-G1 peak method). Exhibition of the myofibroblastic PSC phenotype was monitored by immunoblot analysis of α-smooth muscle actin (α-SMA) expression. To assess the activation of signal transducer and activator of transcription (STAT), Western blots using phospho-STAT-specific antibodies were performed. In studies on STAT1 function, expression of the protein was inhibited by siRNA.
RESULTS: IFN-β and IFN-γ, but not IFN-α significantly diminished PSC proliferation and collagen synthesis. IFN-γ was the only IFN that clearly inhibited α-SMA expression. Under the experimental conditions used, no enhanced rate of apoptotic cell death was observed in response to any IFN treatment. IFN-β and IFN-γ induced a strong increase of STAT1 and STAT3 tyrosine phosphorylation, while the effect of IFN-α was much weaker. Inhibition of STAT1 expression with siRNA was associated with a significantly reduced growth-inhibitory effect of IFN-γ.
CONCLUSION: IFN-β and particularly IFN-γ display inhibitory effects on PSC activation in vitro and should be tested regarding their in vitro efficiency. Growth inhibition by IFN-γ action requires STAT1.
Collapse
Affiliation(s)
- Jan-Tido Baumert
- Department of Medicine, Division of Gastroenterology, Medical Faculty, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | |
Collapse
|
53
|
Abstract
Metazoan cells secrete small proteins termed cytokines that execute a variety of biological functions essential for the survival of organisms. Binding of cytokines that belong to the hematopoietin- or interferon-family, to their cognate receptors on the surface of target cells, induces receptor aggregation, which in turn sequentially triggers tyrosine-phosphorylation-dependent activation of receptor-associated Janus-family tyrosine kinases (JAKs), receptors, and signal transducers and activators of transcription (STATs). Phosphorylated STATs form dimers that migrate to the nucleus, bind to cognate enhancer elements and activate transcription of target genes. Each cytokine activates a specific set of genes to execute its biological functions with a certain degree of redundancy. Cytokine signals are, in general, transient in nature. Therefore, under normal physiological conditions, initiation and attenuation of cytokine signals are tightly controlled via multiple cellular and molecular mechanisms. Aberrant activation of cytokine signaling pathways is, however, found under a variety of patho-physiological conditions including cancer and immune diseases.
Collapse
Affiliation(s)
- S Jaharul Haque
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
54
|
Pasut G, Veronese FM. PEGylation of Proteins as Tailored Chemistry for Optimized Bioconjugates. ADVANCES IN POLYMER SCIENCE 2005. [DOI: 10.1007/12_022] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
55
|
Dafny N, Yang PB. Interferon and the central nervous system. Eur J Pharmacol 2005; 523:1-15. [PMID: 16226745 DOI: 10.1016/j.ejphar.2005.08.029] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 07/01/2005] [Accepted: 08/18/2005] [Indexed: 01/14/2023]
Abstract
Interferons (IFNs) were discovered as natural antiviral substances produced during viral infection and were initially characterized for their ability to "interfere" with viral replication, slow cell proliferation, and profound alteration of immunity. The IFNs are synthesized and secreted by monocytes, macrophages, T-lymphocytes, neurons, and glia cells. The different IFNs are classified into three classes: alpha, beta, and gamma. alpha-IFN produced in the brain exerts direct effects on the brain and endocrine system by activating the neurosecretory hypothalamic neurons and regulates the hypothalamic-pituitary-adrenocortical axis. IFNs modulate neurophysiological activities of many brain region involving in pain, temperature, and food intake regulation. alpha-IFN administration activates the sympathetic nerves innervating components of the immune system. IFNs may serve as regulatory mediators between the central nervous system, the immune system, and endocrine system. IFN is used as immunologic therapy to treat various hematologic malignancies and infectious ailments and autoimmune diseases.
Collapse
Affiliation(s)
- Nachum Dafny
- Department of Neurobiology and Anatomy, The University of Texas, Medical School, P.O. Box 20708, Houston, Texas 77225, USA.
| | | |
Collapse
|
56
|
Abstract
Interferon (IFN)-Zeta/limitin has been considered as a novel type I IFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-Zeta/limitin shows some sequence homology with IFN-alpha and IFN-beta, has a globular structure with five alpha-helices and four loops, and recognizes IFN-alpha/beta receptor. Although IFN-zeta/limitin displays antiviral, immunomodulatory, and antitumor effects, it has much less lympho-myelosuppressive activities than IFN-alpha. Treatment of cells with type I IFNs induces and/or activates a number of molecules, which regulate cell cycle and apoptosis. It is noteworthy that IFN-zeta/limitin activates the Tyk2-Daxx and Tyk2-Crk pathways weaker than IFN-alpha. Because experiments using antisense oligonucleotides have revealed their essential role in type I IFN-related suppression of lympho-hematopoiesis, little ability of IFN-zeta/limitin to activate the Tyk2-dependent signaling pathway may explain its uniquely narrow range of biological activities. Further analysis of structure-function relationship of type I IFNs will establish an engineered cytokine with useful features of IFN-zeta/limitin.
Collapse
Affiliation(s)
- Kenji Oritani
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| | | |
Collapse
|
57
|
Lamken P, Gavutis M, Peters I, Van der Heyden J, Uzé G, Piehler J. Functional Cartography of the Ectodomain of the Type I Interferon Receptor Subunit ifnar1. J Mol Biol 2005; 350:476-88. [PMID: 15946680 DOI: 10.1016/j.jmb.2005.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2005] [Revised: 04/29/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
Ligand-induced cross-linking of the type I interferon (IFN) receptor subunits ifnar1 and ifnar2 induces a pleiotrophic cellular response. Several studies have suggested differential signal activation by flexible recruitment of the accessory receptor subunit ifnar1. We have characterized the roles of the four Ig-like sub-domains (SDs) of the extracellular domain of ifnar1 (ifnar1-EC) for ligand recognition and receptor assembling. Various sub-fragments of ifnar1-EC were expressed in insect cells and purified to homogeneity. Solid phase binding assays with the ligands IFN(alpha)2 and IFN(beta) revealed that all three N-terminal SDs were required and sufficient for ligand binding, and that IFN(alpha)2 and IFN(beta) compete for this binding site. Cellular binding assays with different fragments, however, highlighted the key role of the membrane-proximal SD for the formation of an in situ IFN-receptor complex. Even substitution with the corresponding SD from homologous cytokine receptors did not restore high-affinity ligand binding. Receptor assembling analysis on supported lipid bilayers in vitro revealed that the membrane-proximal SD controls appropriate orientation of the receptor on the membrane, which is required for efficient association of ifnar1 into the ternary complex.
Collapse
Affiliation(s)
- Peter Lamken
- Institute of Biochemistry, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Pasut G, Guiotto A, Veronese FM. Protein, peptide and non-peptide drug PEGylation for therapeutic application. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.6.859] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
N/A, 魏 来. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:440-442. [DOI: 10.11569/wcjd.v13.i4.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
60
|
Luik A, Knapp S, Thursz M, Thomas HC, Schlaak JF. Autoregulatory role of interleukin-10 in hepatitis C patients treated with IFN-alpha. J Interferon Cytokine Res 2005; 24:585-93. [PMID: 15626155 DOI: 10.1089/jir.2004.24.585] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Interferon-alpha2 (IFN-alpha2) is used as standard treatment of patients with chronic hepatitis C (cHCV), but little is known about the immunomodulatory effects of this cytokine in vivo. We have studied immunologic parameters in freshly isolated peripheral blood mononuclear cells (PBMC) of 26 patients with cHCV 12 h before and 12 h after the first s.c. injection of 5-6 MU IFN-alpha2. In PBMC obtained after IFN injection, a substantial increase in IL-10 production after antigen-specific and nonspecific stimulation was observed, whereas IFN-gamma production and proliferation were significantly diminished compared with PBMC obtained before IFN injection. Patients were stratified according to single nucleotide polymorphisms (SNPs) in the interleukin-10 (IL-10) promoter, which have been associated with the response to IFN therapy. Induction of IL-10 and suppression of IFN-gamma levels were more prominent in patients with genotype CC at position -592 (n = 15) compared with patients with genotype AA/AC (n = 11). In conclusion, our data indicate that IFN-alpha2 therapy can potently enhance IL-10 and suppress IFN-gamma production of PBMC, which is, at least partially, dependent on an SNP in the IL-10 promoter. This suggests an autoregulatory role of IL-10 in IFN therapy.
Collapse
Affiliation(s)
- Armin Luik
- University of Mainz, Department of Medicine, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
61
|
Wang SZ, Roberts RM. Interaction of stress-activated protein kinase-interacting protein-1 with the interferon receptor subunit IFNAR2 in uterine endometrium. Endocrinology 2004; 145:5820-31. [PMID: 15345682 DOI: 10.1210/en.2004-0991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During early pregnancy in ruminants, a type I interferon (IFN-tau) signals from the conceptus to the mother to ensure the functional survival of the corpus luteum. IFN-tau operates through binding to the type I IFN receptor (IFNR). Here we have explored the possibility that IFNAR2, one of the two subunits of the receptor, might interact with hitherto unknown signal transduction factors in the uterus that link IFN action to pathways other than the well established Janus kinase-signal transducer and activator of transcription pathways. A yeast two-hybrid screen of an ovine (ov) endometrial cDNA library with the carboxyl-terminal 185 amino acids of ovIFNAR2 as bait identified stress-activated protein kinase-interacting protein 1 (ovSin1) as a protein that bound constitutively through its own carboxyl terminus to the receptor. ovSin1 is a little studied, 522-amino acid-long polypeptide (molecular weight, 59,200) that is highly conserved across vertebrates, but has identifiable orthologs in Drosophila and yeast. It appears to be expressed ubiquitously in mammals, although in low abundance, in a wide range of mammalian tissues in addition to endometrium. Sin1 mRNA occurs in at least two alternatively spliced forms, the smaller of which lacks a 108-bp internal exon. ovSin1, although not exhibiting features of a membrane-spanning protein, such as IFNAR2, is concentrated predominantly in luminal and glandular epithelial cells of the uterine endometrium. When ovSin1 and ovIFNAR2 are coexpressed, the two proteins can be coimmunoprecipitated and colocalized to the plasma membrane and to perinuclear structures. Sin1 provides a possible link among type I IFN action, stress-activated signaling pathways, and control of prostaglandin production.
Collapse
Affiliation(s)
- Shu-Zong Wang
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
62
|
Uddin S, Platanias LC. Mechanisms of type-I interferon signal transduction. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 37:635-641. [PMID: 15607020 DOI: 10.5483/bmbrep.2004.37.6.635] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Interferons regulate a number of biological functions including control of cell proliferation, generation of antiviral activities and immumodulation in human cells. Studies by several investigators have identified a number of cellular signaling cascades that are activated during engagement of interferon receptors. The activation of multiple signaling cascades by the interferon receptors appears to be critical for the generation of interferon-mediated biological functions and immune surveillance. The present review summarizes the existing knowledge on the multiple signaling cascades activated by Type I interferons. Recent developments in this research area are emphasized and the implications of these new discoveries on our understanding of interferon actions are discussed.
Collapse
Affiliation(s)
- Shahab Uddin
- King Fahad National Center for Children's Cancer and Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | | |
Collapse
|
63
|
Oritani K, Tomiyama Y. Interferon-3/Limitin: Novel Type I Interferon That Displays a Narrow Range of Biological Activity. Int J Hematol 2004; 80:325-31. [PMID: 15615256 DOI: 10.1532/ijh97.04087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Interferon zeta (IFN-zeta)/limitin has been regarded as a novel type I IFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-zeta/limitin, which has some sequence homology with IFN-alpha and IFN-beta, has a globular structure with 5 alpha helices and 4 loops and recognizes IFN-alpha/beta receptor. Although it displays antiviral, immunomodulatory, and antitumor effects, IFN-zeta/limitin has much less lymphomyelosuppressive activity than IFN-alpha. Unique interactions between IFN-zeta/limitin and the receptor probably led to the narrow range of signals and biological activities. A human homologue of IFN-zeta/limitin may be clinically more effective than IFN-alpha and IFN-beta because it has fewer adverse effects. Moreover, further analysis of the structure-function relationship may establish an engineered cytokine with the useful features of IFN-zeta/limitin.
Collapse
Affiliation(s)
- Kenji Oritani
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | |
Collapse
|
64
|
Leaman DW, Chawla-Sarkar M, Jacobs B, Vyas K, Sun Y, Ozdemir A, Yi T, Williams BR, Borden EC. Novel growth and death related interferon-stimulated genes (ISGs) in melanoma: greater potency of IFN-beta compared with IFN-alpha2. J Interferon Cytokine Res 2004; 23:745-56. [PMID: 14769151 DOI: 10.1089/107999003772084860] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interferon (IFN)-dependent cellular effects are mediated by transcriptional induction of responsive genes, collectively referred to as IFN-stimulated genes (ISGs). Which ISGs regulate the potent antiviral, antiproliferative, apoptosis-inducing, antiangiogenic, and immunologic effects of IFNs remains largely undetermined. To identify genes that might be useful for predicting or targeting apoptosis induction in response to IFNs, WM9 melanoma cells were assessed. WM9 cells had equivalent antiviral activity in response to IFN-beta and IFN-alpha2 but underwent apoptosis only in response to IFN-beta. RNA samples from WM9 cells and WM35 cells, a second melanoma cell line, treated with IFN-alpha2 or IFN-beta were assessed on oligonucleotide arrays. For 95% of genes assessed, IFN-beta was more potent than IFN-alpha2 in inducing ISG expression. Using a 22,000-gene oligonucleotide array, the largest yet reported for assessing ISG induction, approximately 910 genes were identified as induced by IFN-beta at 500 U/ml, and 260 ISGs were identified as significantly induced by IFN-beta at both 50 and 500 U/ml. Of these 260, 209 were defined as new ISGs based on the array analysis. Confirmation by Northern blot or semiquantitative or quantitative PCR was undertaken for 28, and all were confirmed. Nearly half of the 260 genes were functionally categorized as encoding growth-regulatory proteins. Of the 104 with described growth-regulatory function, 71 were induced more than three times by 500 U/ml and twice by 50 U/ml IFN-beta, and 48 of these were new ISGs. Included in this latter category were tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), XIAP-associated factor 1 (XAF1), galectin 9, a cyclin E binding protein, amphiphysin 1, MyD88, and several ubiquitin pathway genes. The diversity of stimulated genes suggests the full therapeutic potential of IFN regulation of gene expression has yet to be realized.
Collapse
Affiliation(s)
- Douglas W Leaman
- Department of Biological Sciences, University of Toledo, OH 43606, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Schröder K, Jaster R. Interferon-alpha inhibits interleukin-3-induced proliferation of Ba/F3 cells in a protein kinase R-dependent manner. Cell Signal 2004; 16:167-74. [PMID: 14636887 DOI: 10.1016/s0898-6568(03)00127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have previously shown that interferon-alpha (IFN-alpha) inhibits proliferation of Ba/F3 cells by interfering with the action of the mitogen interleukin-3 (IL-3) [Cell Signal 11 (1999) 769]. Here, we have characterised the role of protein kinase R (PKR), an IFN-alpha-inducible enzyme, in the mediation of IL-3-antagonistic IFN-alpha effects. Downregulation of PKR expression by antisense oligonucleotide treatment blocked IFN-alpha-induced growth inhibition. Reduction of PKR levels and overexpression of a dominant-negative PKR mutant correlated with diminished inhibitory IFN-alpha effects on the IL-3-dependent expression of a luciferase reporter construct, GAS-luc. Furthermore, increased nuclear levels of STAT1 (bound in ISGF3 complexes) were observed in PKR-depleted cells cultured with or without IFN-alpha. Together, our data indicate an essential role of PKR in the mediation of IL-3-antagonistic IFN-alpha effects on Ba/F3 cells. They also suggests that activation of STAT1, an essential mediator of IFN effects, is insufficient for growth inhibition if PKR is not expressed.
Collapse
Affiliation(s)
- Katrin Schröder
- Division of Gastroenterology, Department of Medicine, Medical Faculty, University of Rostock, E.-Heydemann-Str. 6, 18057 Rostock, Germany
| | | |
Collapse
|
66
|
Foster GR, Masri SH, David R, Jones M, Datta A, Lombardi G, Runkell L, de Dios C, Sizing I, James MJ, Marelli-Berg FM. IFN-α Subtypes Differentially Affect Human T Cell Motility. THE JOURNAL OF IMMUNOLOGY 2004; 173:1663-70. [PMID: 15265895 DOI: 10.4049/jimmunol.173.3.1663] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The type I IFN family includes 14 closely related antiviral cytokines that are produced in response to viral infections. They bind to a common receptor, and have qualitatively similar biological activities. The physiological relevance of this redundancy is still unclear. In this study, we analyzed and compared the effects of two potent antiviral type I IFNs, IFN-alpha 2 and IFN-alpha 8, on the motility of various populations of human T lymphocytes in vitro. In this study, we show that IFN-alpha 2 induces chemokinesis of both CD4(+) and CD8(+) T cells at various stages of differentiation, and induces functional changes that result in enhanced T cell motility, including up-regulation of the integrins LFA-1 and VLA-4, and subsequently, increased ICAM-1- and fibronectin-dependent migration. In contrast, IFN-alpha 8 did not affect T cell motility, despite having similar antiviral properties and similar effects on the induction of the antiviral protein MxA. However, transcription of other IFN-stimulated genes showed that transcription of these genes is selectively activated by IFN-alpha 2, but not IFN-alpha 8, in T cells. Finally, while the antiviral activity of the two subtypes is inhibited by Abs against the two subunits of the IFN-alpha receptor, the chemokinetic effect of IFN-alpha 2 is selectively blocked by Abs against the A1 receptor subunit. These observations are consistent with the possibility that subtype-specific intracellular signaling pathways are activated by type I IFNs in T lymphocytes.
Collapse
Affiliation(s)
- Graham R Foster
- Hepatobiliary Group, Department of Gastroenterology, Queen Mary's School of Medicine and Dentistry at Barts and The Royal London Hospital, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Lamken P, Lata S, Gavutis M, Piehler J. Ligand-induced Assembling of the Type I Interferon Receptor on Supported Lipid Bilayers. J Mol Biol 2004; 341:303-18. [PMID: 15312780 DOI: 10.1016/j.jmb.2004.05.059] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/14/2004] [Accepted: 05/17/2004] [Indexed: 11/28/2022]
Abstract
Type I interferons (IFNs) elicit antiviral, antiproliferative and immuno-modulatory responses through binding to a shared receptor consisting of the transmembrane proteins ifnar1 and ifnar2. Differential signaling by different interferons, in particular IFNalphas and IFNbeta, suggests different modes of receptor engagement. Using reflectometric interference spectroscopy (RIfS), we studied kinetics and affinities of the interactions between IFNs and the extracellular receptor domains of ifnar1 (ifnar1-EC) and ifnar2 (ifnar2-EC). For IFNalpha2, we determined a K(D) value of 3 nM and 5 microM for the interaction with ifnar2-EC and ifnar1-EC, respectively. As compared to IFNalpha2, IFNbeta formed complexes with ifnar2-EC as well as ifnar1-EC with substantially higher affinity. For neither IFNalpha2 nor IFNbeta was stabilization of the complex with ifnar1-EC in the presence of soluble ifnar2-EC observed. We investigated ligand-induced complex formation with ifnar1-EC and ifnar2-EC being tethered onto solid-supported, fluid lipid bilayers by RIfS and total internal reflection fluorescence spectroscopy. We observed very stable binding of IFNalpha2 at high receptor surface concentrations with an apparent k(d) value approximately 200 times lower than that for ifnar2-EC alone. The apparent k(d) value was strongly dependent on the surface concentration of the receptor components, suggesting kinetic stabilization. This was corroborated by the fast exchange of labeled IFNalpha2 bound to the receptor by unlabeled IFNalpha2. Taken together, our results indicate that IFN first binds to ifnar2 and subsequently recruits ifnar1 in a transient fashion. In particular, this second step is much more efficient for IFNbeta than for IFNalpha2, which could explain differential activities observed for these IFNs.
Collapse
Affiliation(s)
- Peter Lamken
- Institute of Biochemistry, Johann Wolfgang Goethe-University, Biocenter N210, Marie-Curie-Strasse 9, 60439 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
68
|
Arduini RM, Li Z, Rapoza A, Gronke R, Hess DM, Wen D, Miatkowski K, Coots C, Kaffashan A, Viseux N, Delaney J, Domon B, Young CN, Boynton R, Chen LL, Chen L, Betzenhauser M, Miller S, Gill A, Pepinsky RB, Hochman PS, Baker DP. Expression, purification, and characterization of rat interferon-β, and preparation of an N-terminally PEGylated form with improved pharmacokinetic parameters. Protein Expr Purif 2004; 34:229-42. [PMID: 15003256 DOI: 10.1016/j.pep.2003.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 11/11/2003] [Indexed: 11/21/2022]
Abstract
To identify potential new clinical uses and routes of administration for human interferon-beta-1a (IFN-beta-1a), we have developed an expression and purification procedure for the preparation of highly purified rat interferon-beta (IFN-beta) suitable for testing in rat models of human disease. An expression vector containing the rat IFN-beta signal sequence and structural gene was constructed and transfected into Chinese hamster ovary (CHO) cells. The protein was purified from CHO cell conditioned medium and purified to > 99.5% purity using standard chromatographic techniques. Analytical characterization indicated that the protein was a heavily glycosylated monomeric protein, with two of the four predicted N-glycosylation sites occupied. Analysis of the attached oligosaccharides showed them to be a complex mixture of bi-antennary, tri-antennary, and tetra-antennary structures with a predominance of sialylated tri-antennary and tetra-antennary structures. Peptide mapping, N-terminal sequencing, and mass spectrometry confirmed the identity and integrity of the purified protein. The purified protein had a specific activity of 2.1x10(8)U/mg when assayed on rat RATEC cells, which is similar in magnitude to the potencies observed for murine IFN-beta and human IFN-beta-1a assayed on murine and human cells, respectively. We also prepared an N-terminally PEGylated form of rat IFN-beta in which a 20 kDa methoxy polyethylene glycol (PEG)-propionaldehyde was attached to the N-terminal alpha-amino group of Ile-1. The PEGylated protein, which retained essentially full in vitro antiviral activity, had improved pharmacokinetic parameters in rats as compared to the unmodified protein. Both the unmodified and PEGylated forms of rat IFN-beta will be useful for testing in rat models of human disease.
Collapse
|
69
|
Lin R, Noyce RS, Collins SE, Everett RD, Mossman KL. The herpes simplex virus ICP0 RING finger domain inhibits IRF3- and IRF7-mediated activation of interferon-stimulated genes. J Virol 2004; 78:1675-84. [PMID: 14747533 PMCID: PMC369457 DOI: 10.1128/jvi.78.4.1675-1684.2004] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus infection induces a rapid cellular response in cells characterized by the induction of interferon. While interferon itself does not induce an antiviral response, it activates a number of interferon-stimulated genes that collectively function to inhibit virus replication and spread. Previously, we and others reported that herpes simplex virus type 1 (HSV-1) induces an interferon -independent antiviral response in the absence of virus replication. Here, we report that the HSV-1 proteins ICP0 and vhs function in concert to disable the host antiviral response. In particular, we show that ICP0 blocks interferon regulatory factor IRF3- and IRF7-mediated activation of interferon-stimulated genes and that the RING finger domain of ICP0 is essential for this activity. Furthermore, we demonstrate that HSV-1 modifies the IRF3 pathway in a manner different from that of the small RNA viruses most commonly studied.
Collapse
Affiliation(s)
- Rongtuan Lin
- Lady Davis Research Institute, Montreal H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
70
|
Foser S, Weyer K, Huber W, Certa U. Improved biological and transcriptional activity of monopegylated interferon-α-2a isomers. THE PHARMACOGENOMICS JOURNAL 2003; 3:312-9. [PMID: 14569259 DOI: 10.1038/sj.tpj.6500204] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The addition of polyethyleneglycol (PEG) side chains to interferon alpha-2a improves the serum stability and clinical efficacy. Current commercial PEG-INF formulations such as PEGASYS are heterogeneous and contain multiple monopegylated isomers. We have analyzed the activity of nine, purified monopegylated variants in antiproliferative, antiviral and binding assays, together with a global transcriptional analysis using DNA oligonucleotide microarrays. We show a direct correlation between biological and transcriptional activity for all isomers and an inversed correlation between IFN-receptor 2a affinity and signal transduction. Two out of nine positional isomers have a higher specific biological and transcriptional activity than the mixture, which can be explained by unique structural features of interferon signaling, which involves two distinct receptors. The possible clinical implications are discussed, which might guide the development of pegylated interferons with improved pharmacological properties.
Collapse
Affiliation(s)
- S Foser
- Department of Pharma Technical Operations Biotechnology, F Hoffmann La Roche Ltd, Basel, Switzerland
| | | | | | | |
Collapse
|
71
|
Kawamoto SI, Oritani K, Asada H, Takahashi I, Ishikawa J, Yoshida H, Yamada M, Ishida N, Ujiie H, Masaie H, Tomiyama Y, Matsuzawa Y. Antiviral activity of limitin against encephalomyocarditis virus, herpes simplex virus, and mouse hepatitis virus: diverse requirements by limitin and alpha interferon for interferon regulatory factor 1. J Virol 2003; 77:9622-31. [PMID: 12915574 PMCID: PMC187381 DOI: 10.1128/jvi.77.17.9622-9631.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Limitin has sequence homology with alpha interferon (IFN-alpha) and IFN-beta and utilizes the IFN-alpha/beta receptor. However, it has no influence on the proliferation of normal myeloid and erythroid progenitors. In this study, we show that limitin has antiviral activity in vitro as well as in vivo. Limitin inhibited not only cytopathic effects in encephalomyocarditis virus- or herpes simplex virus (HSV) type 1-infected L929 cells, but also plaque formation in mouse hepatitis virus (MHV) type 2-infected DBT cells. In addition, administration of limitin to mice suppressed MHV-induced hepatitis and HSV-induced death. The antiviral activity may be mediated in part by 2',5'-oligoadenylate synthetase, RNA-dependent protein kinase, and Mx protein, which inhibit viral replication or degrade viral components, because limitin induced their mRNA expression and enzyme activity. While limitin has antiviral activity as strong as that of IFN-alpha in vitro (the concentration that provided 50% inhibition of cytopathic effect is approximately 30 pg/ml), IFN regulatory factor 1 (IRF-1) dependencies for induction of an antiviral state were different for limitin and IFN-alpha. In IRF-1-deficient fibroblasts, a higher concentration of limitin than of IFN-alpha was required for the induction of antiviral activity and the transcription of proteins from IFN-stimulated response element. The unique signals and the fewer properties of myelosuppression suggest that a human homolog of limitin may be used as a new antiviral drug.
Collapse
Affiliation(s)
- Shin-Ichiro Kawamoto
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Lutfalla G, Crollius HR, Stange-thomann N, Jaillon O, Mogensen K, Monneron D. Comparative genomic analysis reveals independent expansion of a lineage-specific gene family in vertebrates: the class II cytokine receptors and their ligands in mammals and fish. BMC Genomics 2003; 4:29. [PMID: 12869211 PMCID: PMC179897 DOI: 10.1186/1471-2164-4-29] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 07/17/2003] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The high degree of sequence conservation between coding regions in fish and mammals can be exploited to identify genes in mammalian genomes by comparison with the sequence of similar genes in fish. Conversely, experimentally characterized mammalian genes may be used to annotate fish genomes. However, gene families that escape this principle include the rapidly diverging cytokines that regulate the immune system, and their receptors. A classic example is the class II helical cytokines (HCII) including type I, type II and lambda interferons, IL10 related cytokines (IL10, IL19, IL20, IL22, IL24 and IL26) and their receptors (HCRII). Despite the report of a near complete pufferfish (Takifugu rubripes) genome sequence, these genes remain undescribed in fish. RESULTS We have used an original strategy based both on conserved amino acid sequence and gene structure to identify HCII and HCRII in the genome of another pufferfish, Tetraodon nigroviridis that is amenable to laboratory experiments. The 15 genes that were identified are highly divergent and include a single interferon molecule, three IL10 related cytokines and their potential receptors together with two Tissue Factor (TF). Some of these genes form tandem clusters on the Tetraodon genome. Their expression pattern was determined in different tissues. Most importantly, Tetraodon interferon was identified and we show that the recombinant protein can induce antiviral MX gene expression in Tetraodon primary kidney cells. Similar results were obtained in Zebrafish which has 7 MX genes. CONCLUSION We propose a scheme for the evolution of HCII and their receptors during the radiation of bony vertebrates and suggest that the diversification that played an important role in the fine-tuning of the ancestral mechanism for host defense against infections probably followed different pathways in amniotes and fish.
Collapse
Affiliation(s)
- Georges Lutfalla
- Défenses antivirales et antitumorales, CNRS-UMR5124, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Hugues Roest Crollius
- Genoscope-Centre National de Sequencage, CNRS UMR8030, 2 rue Gaston Cremieux, 91000, Evry, France
| | - Nicole Stange-thomann
- Whitehead Institute MIT Center for Genome Research, 320 Charles Street, Cambridge, Massachusetts 02141, U.S.A
| | - Olivier Jaillon
- Genoscope-Centre National de Sequencage, CNRS UMR8030, 2 rue Gaston Cremieux, 91000, Evry, France
| | - Knud Mogensen
- Défenses antivirales et antitumorales, CNRS-UMR5124, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| | - Danièle Monneron
- Défenses antivirales et antitumorales, CNRS-UMR5124, 1919 route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
73
|
Abstract
The progressive growth of neoplasms and the production of metastasis depend on the development of adequate vasculature, i.e., angiogenesis. The extent of angiogenesis is determined by the balance between positive- and negative-regulating molecules that are released by tumor and host cells in the microenvironment. The growth of many neoplasms is associated with the absence of the endogenous inhibitor of angiogenesis, interferon beta (IFN beta). A survey of multiple mouse and human tumors shows a lack of IFN beta associated with extensive angiogenesis. Therapy with IFN alpha or beta either by subcutaneous injection of the protein or by introduction of viral vectors that contain the IFN beta gene inhibit angiogenesis and, hence, progressive tumor growth.
Collapse
Affiliation(s)
- I J Fidler
- Department of Cancer Biology, Box 173, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030,USA.
| |
Collapse
|
74
|
Jackson DP, Watling D, Rogers NC, Banks RE, Kerr IM, Selby PJ, Patel PM. The JAK/STAT pathway is not sufficient to sustain the antiproliferative response in an interferon-resistant human melanoma cell line. Melanoma Res 2003; 13:219-29. [PMID: 12777975 DOI: 10.1097/00008390-200306000-00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The mechanism of resistance of malignant melanoma to treatment with interferon-alpha is unknown, and currently there is no reliable method of predicting response. Signalling via the JAK/STAT pathway is known to mediate many interferon-regulated events and has been implicated in mediating the antiproliferative response. The objective of this study was to determine whether defects in JAK/STAT signalling may be responsible for interferon resistance. The in vitro response to interferon was determined in a panel of established melanoma cell lines, and the components and functioning of the JAK/STAT pathway were examined in sensitive and resistant cell lines. Two melanoma cell lines, characterized as sensitive (MM418) and resistant (MeWo) to the antiproliferative effect of interferon, were both shown by Western blotting to possess all the protein components of the JAK/STAT pathway, and were shown to be capable of producing functional transcription factors using an electrophoretic mobility shift assay and a ribonuclease protection assay of known interferon-induced genes. In addition, both cell lines had intact antiviral and HLA upregulation responses. These data suggest that there is no defect in the JAK/STAT pathway per se in the MeWo cell line, and that the substantial resistance to interferon must be mediated through components either downstream or additional to this signalling pathway. Others have shown JAK/STAT defects to be responsible for interferon resistance in some melanoma cell lines. However, our results highlight the likely heterogeneity in the mechanisms leading to interferon resistance both in cell lines and tumours, and suggest that a clinical assay based on analysis of components of the JAK/STAT pathway may have only limited use as a predictor of interferon response.
Collapse
Affiliation(s)
- David P Jackson
- Cancer Research UK Clinical Centre, St James's University Hospital, Leeds, UK.
| | | | | | | | | | | | | |
Collapse
|
75
|
Oritani K, Hirota S, Nakagawa T, Takahashi I, Kawamoto SI, Yamada M, Ishida N, Kadoya T, Tomiyama Y, Kincade PW, Matsuzawa Y. T lymphocytes constitutively produce an interferonlike cytokine limitin characterized as a heat- and acid-stable and heparin-binding glycoprotein. Blood 2003; 101:178-85. [PMID: 12393653 DOI: 10.1182/blood-2002-01-0045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several reports have described "multifunctional" eukaryotic mRNAs producing more than one protein through alternative translational initiation at multiple AUG codons. There are 2 such codons in the 5' region of our recently cloned limitin gene where 2 open reading frames overlap by 34 nucleotides. The deduced protein translated from the first ATG contains 33 amino acids, lacks a signal peptide, and has no obvious effects on the transfected 293T cells. We found that the second ATG is more effective as a translational initiation site than the first ATG and yields a secreted protein of 182 amino acids with the same activity as products made with full-length limitin cDNA. Immunohistochemical and reverse transcription-polymerase chain reaction analysis revealed that the longer limitin protein is produced by mature T lymphocytes in spleen and thymus as well as by bronchial epithelial and salivary duct cells in healthy mice. Properties of recombinant limitin were determined, revealing it to be a serologically distinct, heat- and acid-stable, heparin-binding glycoprotein with the potential for dimerization. Although the longer limitin protein is structurally and characteristically related to type I interferons, its production is uniquely regulated by translation as well as transcription.
Collapse
Affiliation(s)
- Kenji Oritani
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
We have proposed a unifying hypothesis of the etiopathogenesis of autoimmunity that defines autoimmunity as a type I interferon (IFN) immunodeficiency syndrome. We have examined toxicity and potential efficacy in three phase I (type 1 diabetes, rheumatoid arthritis, multiple sclerosis) and one phase II clinical trials in multiple sclerosis (MS). In a phase I open-label trial in type 1 diabetes, ingested IFN-alpha preserved residual beta cell function in recent onset patients. In a second phase I trial, treatment of rheumatoid arthritis (RA) with ingested IFN-alpha reduced the secretion of interleukin-1 (IL-1), a proinflammatory cytokine. In a third phase I trial in MS, there was a significant decrease in peripheral blood mononuclear cell (PBMC) IL-2 and IFN-gamma production after ingesting IFN-alpha. In a phase II randomized, placebo-controlled, double-blind trial in MS, 10,000 IU ingested IFN-alpha significantly decreased gadolinium enhancements compared with the placebo group at month 5. Tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma cytokine secretion in the 10,000 IU group at month 5 showed a significant decrease that corresponded with the effect of ingested IFN-alpha on decreasing gadolinium enhancements. Ingested IFN-alpha was not toxic in any of these clinical trials. These studies suggest that ingested IFN-alpha may have a potential role in the treatment of autoimmunity.
Collapse
Affiliation(s)
- Staley A Brod
- Multiple Sclerosis Research Group, Department of Neurology, Graduate School of Biomedical Sciences in Immunology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
77
|
Brod SA. Ingested type I interferon: state of the art as treatment for autoimmunity. Exp Biol Med (Maywood) 2002; 227:981-8. [PMID: 12486207 DOI: 10.1177/153537020222701105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We have proposed a unifying hypothesis of the etiopathogenesis of autoimmunity that defines autoimmunity as a type I interferon (IFN) immunodeficiency syndrome. We have examined toxicity and potential efficacy in three phase I (type 1 diabetes, rheumatoid arthritis, multiple sclerosis) and one phase II clinical trials in multiple sclerosis. In a phase I open-label trial in type 1 diabetes, ingested IFN-alpha preserved residual beta-cell function in recent onset patients. In a second phase I trial, treatment of rheumatoid arthritis with ingested IFN-alpha reduced the secretion of interleukin (IL)-1, a pro-inflammatory cytokine. In a third phase I trial in multiple sclerosis, there was a significant decrease in peripheral blood mononuclear cell IL-2 and IFN-gamma production after ingesting IFN-alpha. In a phase II randomized, placebo-controlled, double-blind trial in multiple sclerosis, 10,000 IU ingested IFN-alpha significantly decreased gadolinium enhancements compared with the placebo group at month 5. Tumor necrosis factor-alpha and IFN-gamma cytokine secretion in the 10,000 IU group at month 5 showed a significant decrease that corresponded with the effect of ingested IFN-alpha on decreasing gadolinium enhancements. Ingested IFN-alpha was not toxic in any of these clinical trials. These studies suggest that ingested IFN-alpha may have a potential role in the treatment of autoimmunity.
Collapse
Affiliation(s)
- Staley A Brod
- Multiple Sclerosis Research Group, Department of Neurology, Graduate School of Biomedical Sciences in Immunology, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.
| |
Collapse
|
78
|
Velichko S, Wagner TC, Turkson J, Jove R, Croze E. STAT3 activation by type I interferons is dependent on specific tyrosines located in the cytoplasmic domain of interferon receptor chain 2c. Activation of multiple STATS proceeds through the redundant usage of two tyrosine residues. J Biol Chem 2002; 277:35635-41. [PMID: 12105218 DOI: 10.1074/jbc.m204578200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human type I interferons (IFNs) play an important role in the regulation of antiviral defense mechanisms, immunomodulatory activities, and growth control. Recent efforts have demonstrated the importance of IFNs in the activation of signal transducers and activators of transcription (STATs). The role of STAT1 and STAT2 in IFN-dependent JAK-STAT signaling is well established; however, the role of STAT3 and its activation by IFNs remains unclear. Understanding the IFN-dependent regulation of STAT3 is of increasing interest because recent studies have demonstrated that STAT3 may play a role in cancer. Studies have revealed that STAT3 is constitutively active in a number of cancer cell lines and that overexpression of an active form of STAT3 transforms normal fibroblasts. Therefore, STAT3 exhibits properties indicative of known oncogenes. In this report, we define the role of the type I IFN receptor in STAT3 activation and identify for the first time tyrosine residues present in the cytoplasmic domain of IFNAR2c that are critical for STAT3 activation. The regulation of STAT3 activation by IFNs was measured in a human lung fibrosarcoma cell line lacking IFNAR2c but stably expressing various IFNAR2c tyrosine mutants. We show here that in addition to IFN-dependent tyrosine phosphorylation of STAT3, activation using a STAT3-dependent electrophoretic mobility shift assay and a STAT3-specific reporter can also be demonstrated. Furthermore, we demonstrate that type I IFN-dependent activation of STAT3 proceeds through a novel mechanism that is dependent on two tyrosines, Tyr(337) and Tyr(512), present in IFNAR2c and contained within a conserved six-amino acid residue motif, GxGYxM. Surprisingly, both tyrosines were previously shown to be required for type I IFN-dependent STAT1 and STAT2 activation. Our results reveal that type I IFNs activate multiple STATs via the overlapping usage of two tyrosine residues located in the cytoplasmic domain of IFNAR2c.
Collapse
Affiliation(s)
- Sharlene Velichko
- Department of Immunology, Berlex Biosciences Inc., Richmond, California 94804 and the Molecular Oncology and Drug Discovery Programs, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612
| | | | | | | | | |
Collapse
|
79
|
Prietzsch H, Brock J, Kleine HD, Liebe S, Jaster R. Interferon-alpha inhibits cell cycle progression by Ba/F3 cells through the antagonisation of interleukin-3 effects on key regulators of G(1)/S transition. Cell Signal 2002; 14:751-9. [PMID: 12034356 DOI: 10.1016/s0898-6568(02)00023-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular mechanisms of interferon-alpha (IFN-alpha)-mediated cell growth inhibition are incompletely understood. Here, we have analysed how IFN-alpha interferes with the interleukin-3 (IL-3)-stimulated cell cycle progression by Ba/F3 cells. The antiproliferative cytokine caused a delay in cell cycle progression, which correlated with a diminished activation of the cyclin-dependent kinases 2 and 4 in IL-3-stimulated cells. While IFN-alpha did not affect the expression of p27(Kip1) and p21(Waf1), it efficiently inhibited the IL-3-induced expression of D-type cyclin and cyclin E proteins. No IL-3-antagonistic effects of the IFN, however, were observed at the mRNA level of cyclin expression. Furthermore, IFN-alpha suppressed the IL-3-induced release of E2F transcription factors from the retinoblastoma protein (pRb) and enhanced pRb-mediated transcriptional repression. The growth factor-antagonistic action of IFN-alpha correlated with a strong stimulation of protein kinase R expression, suggesting that inhibition of protein synthesis plays a pivotal role in IFN-alpha-mediated inhibition of cell cycle progression.
Collapse
Affiliation(s)
- Holger Prietzsch
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
80
|
Rosenfeld CS, Han CS, Alexenko AP, Spencer TE, Roberts RM. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod 2002; 67:847-53. [PMID: 12193393 DOI: 10.1095/biolreprod.102.004267] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
81
|
Nagabhushan TL, Reichert P, Walter MR, Murgolo NJ. Type I interferon structures: Possible scaffolds for the interferon-alpha receptor complex. CAN J CHEM 2002. [DOI: 10.1139/v02-158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structures of several type I interferons (IFNs) are known. We review the structural information known for IFN alphas and compare them to other interferons and cytokines. We also review the structural information known or proposed for IFNcell receptor complexes. However, the structure of the IFN cell receptor IFN receptor2 (IFNAR2) and IFN receptor1 (IFNAR1) complex has not yet been determined. This paper describes a structural model of human IFN-IFNAR2/IFNAR1 complex using human IFN-α2bdimer as the ligand. Both the structures of recombinant human IFN-α2band IFN-β were determined by X-ray crystallography as zinc-mediated dimers. Our proposed model was generated using human IFN-α2bdimer docked with IFNAR2/IFNAR1. We compare our model with the receptor complex models proposed for IFN-β and IFN-γ to contrast similarities and differences. The mutual binding sites of human IFN-α2band IFNAR2/IFNAR1 complex are consistent with available mutagenesis studies.Key words: three dimensional structure, antiviral activity, receptor, interferon.
Collapse
|
82
|
Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF. Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv Drug Deliv Rev 2002; 54:547-70. [PMID: 12052714 DOI: 10.1016/s0169-409x(02)00027-3] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The type I interferon alpha family consists of small proteins that have clinically important anti-infective and anti-tumor activity. Interferon alpha-2b (Intron A) combination therapy with ribavirin is the current standard of care for the treatment of chronic hepatitis C virus infection. A drawback to the therapy however, is the short serum half-life and rapid clearance of the interferon alpha protein. Schering-Plough has developed a semi-synthetic form of Intron A by attaching a 12-kDa mono-methoxy polyethylene glycol to the protein (PEG Intron) which fulfills the requirements of a long-acting interferon alpha protein while providing significant clinical benefits. A detailed physicochemical and biological characterization of PEG Intron revealed its composition of pegylated positional isomers and the specific anti-viral activity associated with each of them. Though pegylation appeared to decrease the specific activity of the interferon alpha-2b protein, the potency of PEG Intron, independent of protein concentration, was comparable to the Intron A standard at both the molecular and cellular level. Importantly, PEG Intron has demonstrated an enhanced pharmacokinetic profile in both animal and human studies. Recently, PEG Intron in combination with ribavirin has been shown to be very effective in reducing hepatitis C viral load and maintaining effective sustained viral suppression in patients. Because of the improved clinical benefits, it is anticipated that the PEG Intron plus ribavirin combination therapy will become the new standard of care for the treatment of chronic hepatitis C.
Collapse
Affiliation(s)
- Yu-Sen Wang
- Structural Chemistry, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
83
|
Giron-Michel J, Weill D, Bailly G, Legras S, Nardeux PC, Azzarone B, Tovey MG, Eid P. Direct signal transduction via functional interferon-alphabeta receptors in CD34+ hematopoietic stem cells. Leukemia 2002; 16:1135-42. [PMID: 12040445 DOI: 10.1038/sj.leu.2402492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2001] [Accepted: 01/29/2002] [Indexed: 11/09/2022]
Abstract
Affinity purified, freshly isolated CD34+ progenitors were shown to express low levels of type I interferon (IFN) receptors (740 +/- 60 binding sites/cell, K(d) 0.7 +/- 0.04 nM) determined by Scatchard's analysis using a radiolabelled, neutralizing, monoclonal antibody directed against the IFNAR1 chain of the human type I IFN receptor. Treatment of freshly isolated (day 0), highly purified (>95% pure) CD34+ cells with recombinant IFN-alpha resulted in rapid tyrosine phosphorylation and activation of STAT1, Tyk2 and JAK1 as shown by Western immunoblotting. Similarly, IFN treatment was shown by confocal microscopy to result in rapid nuclear localization of the transcription factors IRF1 and STAT2, demonstrating the presence of functional IFN receptors on freshly isolated (day 0) CD34+ cells. The number of specific type I IFN receptor binding sites expressed on hematopoietic progenitor cells increased to some 1440 +/- 40 per cell after 11 days of cultivation of CD34+ cells in vitrosuggesting that receptor expression increases with cell differentiation. IFN-mediated signal transduction and the inhibitory effect of IFN-alpha on 7 or 14 days CFU-GM and BFU-E colony formation was abrogated in the presence of the anti-IFNAR1 mAb, indicating that IFN-alpha acts directly on the proliferation of human hematopoietic progenitor cells via receptor activated signal transduction without excluding the induction of other cytokines or growth factors by residual accessory cells.
Collapse
Affiliation(s)
- J Giron-Michel
- Laboratoire d'Oncologie Virale, UPR 9045, CNRS, Villejuif, France
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Shen H, Zhang M, Minuk GY, Gong Y. Different effects of rat interferon alpha, beta and gamma on rat hepatic stellate cell proliferation and activation. BMC Cell Biol 2002; 3:9. [PMID: 11940252 PMCID: PMC111058 DOI: 10.1186/1471-2121-3-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2001] [Accepted: 04/08/2002] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Liver fibrosis is the common sequel of chronic liver diseases. Recent studies have identified hepatic stellate cells as the primary cell type mediating hepatic fibrogenesis. It has been demonstrated that hepatic stellate cells undergo a process of activation during the development of liver fibrosis. During the activation process, hepatic stellate cells acquire myofibroblast-like phenotype featuring the expression of smooth muscle alpha actin. Interferons have been employed for the treatment of viral hepatitis. However, it is unclear what is the effect of interferons on the prevention and treatment of liver fibrosis. Moreover, it is not clear whether there are any differences among interferon alpha, interferon beta, and interferon gamma in the treatment of liver fibrosis. Therefore, our objective in current study is to investigate the effects of rat interferon-alpha, interferon-beta, and interferon-gamma on the proliferation and activation of rat hepatic stellate cells. RESULTS Rat interferon-beta and interferon-gamma significantly inhibited rat hepatic stellate cell proliferation while rat interferon-alpha did not affect the cell proliferation under the same culture condition. Inhibition of cell proliferation was confirmed by both WST-1 cell proliferation assay and 5-bromo-2'-deoxy-uridine incorporation assay. Similar results were observed regarding interferons regulation of hepatic stellate cell activation. Both rat interferon-beta and interferon-gamma reduced smooth muscle alpha-actin abundance after 6 days treatment, but rat interferon-alpha did not alter smooth muscle alpha-actin level. CONCLUSIONS Our results indicate that rat interferon-alpha and interferon-beta have different biological effects on rat hepatic stellate cells and suggest that there are different signaling events between interferon-alpha and interferon-beta in hepatic stellate cells.
Collapse
Affiliation(s)
- Hong Shen
- Departments of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Manna Zhang
- Departments of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Gerald Y Minuk
- Departments of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
- Pharmacology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - Yuewen Gong
- Departments of Internal Medicine, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
- Biochemistry & Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
85
|
Abstract
Type I interferon (IFN-I) is constitutively produced in the bone marrow (BM), and induced at sites of inflammation and following infection by viruses or microorganisms. We have previously shown that IFN-I regulates the generation and selection of normal B cell populations in the BM. In the present work, we assess the effects of IFN-I on mature B cell function by monitoring the responses of IFN-alpha/beta-treated murine splenic B cells to apoptotic, mitogenic and activating stimuli. A similar analysis is performed on BM mature B cells obtained from wild-type or IFN-I receptor-deficient mice. IFN-alpha/beta is shown to induce B cells to a state of partial activation characterized by the up-regulation of CD69, CD86 and CD25 molecules in the absence of either proliferation or terminal differentiation. B cells treated with IFN-alpha/beta show an increased survival and resistance to Fas-mediated apoptosis. IFN-alpha/beta also enhances B cell responses to BCR ligation such as calcium fluxes, IgM internalization, induction of activation markers and proliferation. These results indicate that in addition to its inhibitory effect on viral replication and T cell apoptosis, IFN-alpha/beta plays an essential role during an inflammatory response by lowering the threshold for B cell induction, thereby promoting fast and polyclonal antibody responses.
Collapse
Affiliation(s)
- Déborah Braun
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2781 Oeiras, Portugal
| | | | | |
Collapse
|
86
|
da Silva AJ, Brickelmaier M, Majeau GR, Lukashin AV, Peyman J, Whitty A, Hochman PS. Comparison of gene expression patterns induced by treatment of human umbilical vein endothelial cells with IFN-alpha 2b vs. IFN-beta 1a: understanding the functional relationship between distinct type I interferons that act through a common receptor. J Interferon Cytokine Res 2002; 22:173-88. [PMID: 11911800 DOI: 10.1089/107999002753536149] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We analyzed whether interferon-alpha 2b (IFN-alpha 2b) and IFN-beta 1a engage their common receptor to generate activated receptor complexes possessing distinct signaling properties. Human vascular endothelial cells (HUVEC) are 100-1000-fold more sensitive to IFN-beta 1a than to IFN-alpha 2b in in vitro assays. An nonarray-based expression profiling (GeneCalling) technology was employed to compare the patterns and levels of gene expression induced by these IFN as the broadest means by which signaling events could be measured. To distinguish subtype-related differences from dose-related effects, RNA was prepared from HUVEC treated with 50-5000 pg/ml of each IFN. The results showed that at 50 pg/ml IFN, only a subset of the genes induced by IFN-beta 1a were also induced by IFN-alpha 2b and that individual genes were induced to higher levels by IFN-beta 1a. In contrast, at 5000 pg/ml, both subtypes induced essentially identical sets of genes to similar levels of expression. No genes were seen to be induced uniquely by IFN-alpha 2b but not by IFN-beta 1a. The results show that the two IFN are intrinsically capable of inducing similar gene induction responses and do not provide evidence that they generate activated receptor complexes possessing distinct signaling properties. In contrast, the two IFN generate gene induction patterns that are both qualitatively and quantitatively distinct at subsaturating and potentially physiologically more relevant concentrations.
Collapse
|
87
|
Steinbach F, Mauel S, Beier I. Recombinant equine interferons: expression cloning and biological activity. Vet Immunol Immunopathol 2002; 84:83-95. [PMID: 11825600 DOI: 10.1016/s0165-2427(01)00396-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interferons (IFNs) are important mediators of the immune system. Their antiviral activity is an integral part of the innate immune defence, but all IFNs have immune regulatory functions also. Besides rec.eq.IFN-beta detailed descriptions on other rec.IFNs were lacking and none of the proteins was available. To compare the equine IFNs and allow detailed studies on proteins and bioactivity, we performed the expression cloning of rec.eq.IFN-alpha, -beta and -gamma. To achieve maximal expression, a bacterial expression system was chosen. Additionally, rec.eq.IFN-beta and -gamma were expressed in mouse B-cells. The antiviral activity was characterised using different cell lines and equine viruses. The results demonstrate a broad antiviral activity of rec.eq.IFN-alpha being active against all viruses tested, including the equine herpesviruses EHV-1 and -4, while rec.eq.IFN-beta was only active using primary horse cells. Protection depended on viruses, cell lines, infectious doses, amount and time of IFN action prior to infection. While rec.eq.IFN-gamma did not act antivirally, it was effective as an immune modulator of monocytes in vitro. The implications of our findings on clinical immunology and virology, including therapeutic applications of equine IFNs will be discussed.
Collapse
Affiliation(s)
- Falko Steinbach
- Institute of Virology, FU Berlin, Königin-Luise-Str. 49, 14195, Berlin, Germany.
| | | | | |
Collapse
|
88
|
Dondi E, Pattyn E, Lutfalla G, Van Ostade X, Uzé G, Pellegrini S, Tavernier J. Down-modulation of type 1 interferon responses by receptor cross-competition for a shared Jak kinase. J Biol Chem 2001; 276:47004-12. [PMID: 11602573 DOI: 10.1074/jbc.m104316200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the large number of class I and II cytokine receptors, only four Janus kinase (Jak) proteins are expressed in mammalian cells, implying the shared use of these kinases by many different receptor complexes. Consequently, if receptor numbers exceed the amount of available Jak, cross-interference patterns can be expected. We have engineered two model cellular systems expressing two different exogenous Tyk2-interacting receptors. A receptor chimera was generated wherein the extracellular part of the interferon type 1 receptor (Ifnar1) component of the interferon-alpha/beta receptor is replaced by the equivalent domain of the erythropoietin receptor. Despite Tyk2 activation, erythropoietin treatment of cells expressing this erythropoietin receptor/Ifnar1 chimera did not evoke any detectable IFN-type response. However, a dose-dependent interference with signal transduction via the endogenous Ifnar complex was found for STAT1, STAT2, STAT3, Tyk2, and Jak1 activation, for gene induction, and for antiviral activity. In a similar approach, cells expressing the beta1 chain of the interleukin-12 receptor showed a reduced transcriptional response to IFN-alpha as well as reduced STAT and kinase activation. In both model systems, titration of the Tyk2 kinase away from the Ifnar1 receptor chain accounts for the observed cross-interference.
Collapse
Affiliation(s)
- E Dondi
- Laboratoire de Signalisation des Cytokines, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, cedex 15 France
| | | | | | | | | | | | | |
Collapse
|
89
|
Grace M, Youngster S, Gitlin G, Sydor W, Xie L, Westreich L, Jacobs S, Brassard D, Bausch J, Bordens R. Structural and biologic characterization of pegylated recombinant IFN-alpha2b. J Interferon Cytokine Res 2001; 21:1103-15. [PMID: 11798469 DOI: 10.1089/107999001317205240] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The type I interferon-alpha (IFN-alpha) family is a family of natural small proteins that have clinically important anti-infective and antitumor activity. We have developed a semisynthetic protein-polymer conjugate of IFN-alpha2b (Intron A) by attaching a 12,000-Da monomethoxypolyethylene glycol (PEG-12000) polymer to the protein. PEG conjugation is thought to increase the serum half-life and thereby prolong patient exposure to IFN-alpha2b without altering the biologic potency to the protein. Matrix-assisted laser desorption ionization/mass spectrometry (MALDI-MS), high-performance size exclusion chromatography (HPSEC), circular dichroism (CD) analysis and tryptic digestion peptide analysis of PEG Intron demonstrated that the IFN-alpha2b protein was approximately 95% monopegylated and that the primary, the secondary, and the tertiary structures were unaltered. Pegylation did not affect the epitope recognition of antibodies used for Intron A quantitation. An extensive analysis of the pegylated positional isomers revealed that approximately 50% of PEG Intron was monopegylated on the His(34) residue of the IFN-alpha2b protein. The highest antiviral activity of the pegylated positional isomers for PEG Intron was associated with the His(34) pegylated isomer. The specific activity for PEG Intron in an antiviral cytopathic protection assay was 28%, relative to Intron A. However, the potency of PEG Intron, defined as bioactivity independent of protein concentration, was comparable to Intron A at both the molecular and cellular levels in a battery of in vitro assays. Equivalent units of PEG Intron and Intron A were indistinguishable for the induction of several key IFN-induced genes, including 2',5'-oligoadenylate synthetase (2',5'-OAS) and protein kinase R (PKR), in Molt 4 cells. The antiviral dose-response curves revealed that there were no significant differences between PEG Intron and Intron A. This demonstrated that the introduction of more IFN-alpha2b protein associated with equivalent unit dosing of PEG Intron did not create any antagonism or agonism in the antiviral assay. In assays for the immune response, PEG Intron and Intron A displayed comparable potency for both natural-killer (NK) and lymphokine-activated killer (LAK) cell cytolytic activity and for the induction of class I major histocompatibility protein. These results demonstrate that PEG Intron maintains an in vitro biologic potency profile for both antiviral and immunotherapeutic activity that is highly comparable to that of Intron A.
Collapse
Affiliation(s)
- M Grace
- Biotechnology Development, Schering-Plough Research Institute, Union, NJ 07083, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Oritani K, Kincade PW, Zhang C, Tomiyama Y, Matsuzawa Y. Type I interferons and limitin: a comparison of structures, receptors, and functions. Cytokine Growth Factor Rev 2001; 12:337-48. [PMID: 11544103 DOI: 10.1016/s1359-6101(01)00009-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The type I interferon (IFN) family includes IFN-alpha, IFN-beta, IFN-pi, and IFN-tau. These molecules are clustered according to sequence homologies, use of the same cell surface receptor, and similar functions. IFN-alpha and IFN-beta have a globular structure composed of five a-helices. Their receptors, IFNAR1 and IFNAR2, belong to the class II cytokine receptor family for a-helical cytokines. Information about structure-function relationships between these and other IFNs is being provided by comparative sequence analysis, reference to a prototypic three-dimensional structure, analysis with monoclonal antibodies, construction of hybrid molecules and site directed mutagenesis. While much remains to be done, it should someday be possible to understand differences among IFNs in terms of how they interact with their corresponding receptors. Our recently identified IFN-like molecule, limitin, has weak sequence homology to IFN-alpha, IFN-beta, and IFN-omega and displays its biological functions through the same IFN-alpha/beta receptors. While limitin has antiproliferative, immunomodulatory, and antiviral effects like IFN-alpha and IFN-beta, it is unique in lacking influence on myeloid and erythroid progenitors. Further analysis of this functionally unique cytokine should be informative about complex IFN-receptor interactions. Furthermore, a human homologue or synthetic variant might be superior for clinical applications as an IFN without myelosuppressive properties.
Collapse
Affiliation(s)
- K Oritani
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
91
|
Takahashi I, Kosaka H, Oritani K, Heath WR, Ishikawa J, Okajima Y, Ogawa M, Kawamoto S, Yamada M, Azukizawa H, Itami S, Yoshikawa K, Tomiyama Y, Matsuzawa Y. A new IFN-like cytokine, limitin, modulates the immune response without influencing thymocyte development. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:3156-63. [PMID: 11544301 DOI: 10.4049/jimmunol.167.6.3156] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A novel IFN-like molecule, limitin, was recently identified and revealed to suppress B lymphopoiesis through the IFN-alphabeta receptor, although it lacked growth suppression on myeloid and erythroid progenitors. Here we have studied diverse effects of limitin on T lymphocytes and compared limitin with previously known IFNs. Like IFN-alpha and -beta, limitin modified immunity in the following responses. It suppressed mitogen- and Ag-induced T cell proliferation through inhibiting the responsiveness to exogenous IL-2 rather than suppressing the production of IL-2. In contrast, limitin enhanced cytotoxic T lymphocyte activity associated with the perforin-granzyme pathway. To evaluate the effect of limitin in vivo, a lethal graft-versus-host disease assay was established. Limitin-treatment of host mice resulted in the enhancement of graft-versus-host disease. Limitin did not influence thymocyte development either in fetal thymus organ cultures or in newborn mice injected with limitin-Ig, suggesting that limitin is distinguishable from IFN-alpha and -beta. From these findings, it can be speculated that the human homolog of limitin may be applicable for clinical usage because of its IFN-like activities with low adverse effects on, for example, T lymphopoiesis, erythropoiesis, and myelopoiesis.
Collapse
Affiliation(s)
- I Takahashi
- Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Xu W, Presnell SR, Parrish-Novak J, Kindsvogel W, Jaspers S, Chen Z, Dillon SR, Gao Z, Gilbert T, Madden K, Schlutsmeyer S, Yao L, Whitmore TE, Chandrasekher Y, Grant FJ, Maurer M, Jelinek L, Storey H, Brender T, Hammond A, Topouzis S, Clegg CH, Foster DC. A soluble class II cytokine receptor, IL-22RA2, is a naturally occurring IL-22 antagonist. Proc Natl Acad Sci U S A 2001; 98:9511-6. [PMID: 11481447 PMCID: PMC55483 DOI: 10.1073/pnas.171303198] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2001] [Accepted: 06/15/2001] [Indexed: 11/18/2022] Open
Abstract
IL-22 is an IL-10 homologue that binds to and signals through the class II cytokine receptor heterodimer IL-22RA1/CRF2-4. IL-22 is produced by T cells and induces the production of acute-phase reactants in vitro and in vivo, suggesting its involvement in inflammation. Here we report the identification of a class II cytokine receptor designated IL-22RA2 (IL-22 receptor-alpha 2) that appears to be a naturally expressed soluble receptor. IL-22RA2 shares amino acid sequence homology with IL-22RA1 (also known as IL-22R, zcytor11, and CRF2-9) and is physically adjacent to IL-20Ralpha and IFN-gammaR1 on chromosome 6q23.3-24.2. We demonstrate that IL-22RA2 binds specifically to IL-22 and neutralizes IL-22-induced proliferation of BaF3 cells expressing IL-22 receptor subunits. IL-22RA2 mRNA is highly expressed in placenta and spleen by Northern blotting. PCR analysis using RNA from various tissues and cell lines showed that IL-22RA2 was expressed in a range of tissues, including those in the digestive, female reproductive, and immune systems. In situ hybridization revealed the dominant cell types expressing IL-22RA2 were mononuclear cells and epithelium. Because IL-22 induces the expression of acute phase reactants, IL-22RA2 may play an important role as an IL-22 antagonist in the regulation of inflammatory responses.
Collapse
Affiliation(s)
- W Xu
- ZymoGenetics Inc., Seattle, WA 98102, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Båve U, Vallin H, Alm GV, Rönnblom L. Activation of natural interferon-alpha producing cells by apoptotic U937 cells combined with lupus IgG and its regulation by cytokines. J Autoimmun 2001; 17:71-80. [PMID: 11488639 DOI: 10.1006/jaut.2001.0519] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently demonstrated that IgG from patients with systemic lupus erythematosus (SLE) in combination with U937 cells made apoptotic by UV-irradiation, can induce interferon-alpha (IFN-alpha) production in normal peripheral blood mononuclear cells (PBMC). In the present study we show by flow cytometry that the actual IFN-alpha producing cells (IPC) among PBMC had the same phenotype (HLA-DR+, CD4+, CD11b-, CD11c-, CD14-, CD19-, CD32-, CD36+, CD40+, CD45RA+, CD68+, CD83+, CD86-, IL-3R+ and IL-10R-) and low frequency (approximately 2/10(4)PBMC) as the IPC activated by Herpes simplex virus type I. Consequently, these cells correspond to the natural IPC, also described as type 2 precursor dendritic cells. We also demonstrated that cytokines of possible importance in the pathogenesis in SLE had effects on the IFN-alpha production. Specifically, the IFN-alpha production was strongly increased by the type I IFNs, IFN-alpha and -beta, but markedly inhibited by IL-10 and also to some extent by TFN-alpha. In contrast, the cytokines IFN-gamma, IL-6, TGF-beta and GM-CSF had no clear effects. No production of IL-10 was detected in PBMC stimulated by apoptotic U937 cells and SLE IgG. These results may explain the cause of the ongoing IFN-alpha production in SLE patients and its relation to the autoimmune process.
Collapse
Affiliation(s)
- U Båve
- Department of Medical Sciences, Section of Rheumatology, University Hospital, Uppsala, Sweden.
| | | | | | | |
Collapse
|
94
|
Taniguchi T, Takaoka A. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2001; 2:378-86. [PMID: 11331912 DOI: 10.1038/35073080] [Citation(s) in RCA: 398] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biological systems have acquired adaptability and robustness against rapid environmental changes. A typical example is the immune system, which eradicates invading pathogens such as viruses. Interferons alpha and beta, which are produced in response to viral infection, are essential components of this system but are also produced at low levels in the absence of infection. What is the purpose of the constitutive weak interferon-alpha/beta signal?
Collapse
Affiliation(s)
- T Taniguchi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
95
|
Sedlacek HH. Pharmacological aspects of targeting cancer gene therapy to endothelial cells. Crit Rev Oncol Hematol 2001; 37:169-215. [PMID: 11248576 DOI: 10.1016/s1040-8428(00)00113-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targeting cancer gene therapy to endothelial cells seems to be a rational approach, because (a) a clear correlation exists between proliferation of tumor vessels and tumor growth and malignancy, (b) differences of cell membrane structures between tumor endothelial cells and normal endothelial cells exist which could be used for targeting of vectors and (c) tumor endothelial cells are accessible to vector vehicles in spite of the peculiarities of the transvascular and interstitial blood flow in tumors. Based on the knowledge on the pharmacokinetics of macromolecules it can be concluded that vectors targeting tumor endothelial cells should own a long blood residence time after intravascular application. This precondition seems to be fulfilled best by vectors exhibiting a slight anionic charge. A long blood residence time would allow the formation of a high amount of complexes between tumor endothelial cells and vector particles. Such high amount of complexes should enable a high transfection rate of tumor endothelial cells. In view of their pharmacokinetic behavior nonviral vectors seem to be more suitable for in vivo targeting tumor endothelial cells than viral vectors. Specific binding of nonviral vectors to tumor endothelial cells should be enhanced by multifunctional ligands and the transduction efficiency should be improved by cationic carriers. Effector genes should encode proteins potent enough to induce reactions which eliminate the tumor tissue. To be effective to that degree such proteins should induce self-amplifying antitumor reactions. Examples for proteins which have the potential to induce such self-amplifying tumor reactions are proteins endowed with antiangiogenic and antiproliferative activity, enzymes which convert prodrugs into drugs and possibly also proteins which induce embolization of tumor vessels. The pharmacological data for such examples are discussed in detail.
Collapse
Affiliation(s)
- H H Sedlacek
- Aventis Pharma Deutschland GmbH, Central Biotechnology, PO Box 1140, 35001, Marburg, Germany.
| |
Collapse
|
96
|
Hardy MP, Owczarek CM, Trajanovska S, Liu X, Kola I, Hertzog PJ. The soluble murine type I interferon receptor Ifnar-2 is present in serum, is independently regulated, and has both agonistic and antagonistic properties. Blood 2001; 97:473-82. [PMID: 11154225 DOI: 10.1182/blood.v97.2.473] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability to modify responses to type I interferons (IFNs) could alter processes such as hematopoiesis and immunity, which involve endogenous IFNs and responses to exogenous IFNs. The data presented here support a significant role for a recently identified soluble isoform of the murine type I IFN receptor, muIfnar-2a, as an efficient regulator of IFN responses. The messenger RNA (mRNA) transcript encoding muIfnar-2a is generally more abundant than that encoding the transmembrane isoform, muIfnar-2c. Furthermore, the ratio of muIfnar-2a:2c transcripts varied from more than 10:1 in the liver and other organs to less than 1:1 in bone-marrow macrophages, indicating independent regulation of the 2 transcripts encoding receptor isoforms and suggesting that the soluble muIfnar-2a levels are biologically relevant in some organs. Western blot analysis showed that soluble muIfnar-2 was present at high levels in murine serum and other biologic fluids and bound type I IFN. Recombinant muIfnar-2a competitively inhibited the activity of both IFNalpha and beta in reporter assays using the L929 cell line and in antiproliferative and antiviral assays using primary cells. Surprisingly, using primary thymocytes from Ifnar-2(-/-) mice, recombinant muIfnar-2a formed a complex with IFN alpha or beta and muIfnar-1 at the cell surface and transmitted an antiproliferative signal. These data indicate potential dual actions of soluble muIfnar-2 and imply that a signal can be transduced through the Ifnar-1 chain of the receptor complex in the absence of the cytoplasmic domain of Ifnar-2. Therefore, our results suggest that soluble Ifnar-2 is an important regulator of endogenous and systemically administered type I IFN.
Collapse
Affiliation(s)
- M P Hardy
- Center for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
97
|
YAMAGUCHI H, NAGAOKA K, MATSUDA F, XU N, CHRISTENSON RK, IMAKAWA K, SAKAI S. Regulation of Interferon-.TAU. Gene Expression and the Maternal Recognition of Pregnancy. J Reprod Dev 2001. [DOI: 10.1262/jrd.47.69] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hirohito YAMAGUCHI
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
- H. Lee Moffitt Cancer Center, University of South Florida
| | - Kentaro NAGAOKA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Fuko MATSUDA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Ningchun XU
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | | | - Kazuhiko IMAKAWA
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| | - Senkiti SAKAI
- Laboratory of Animal Breeding, Faculty of Agriculture, The University of Tokyo
| |
Collapse
|
98
|
Piehler J, Roisman LC, Schreiber G. New structural and functional aspects of the type I interferon-receptor interaction revealed by comprehensive mutational analysis of the binding interface. J Biol Chem 2000; 275:40425-33. [PMID: 10984492 DOI: 10.1074/jbc.m006854200] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type I interferons bind to two cell surface receptors, ifnar1 and ifnar2, as the first step in the activation of several signal transduction pathways that elicit an anti-viral state and an anti-proliferative response. Here, we quantitatively mapped the complete binding region of ifnar2 on interferon (IFN)alpha2 by 35 individual mutations to alanine and isosteric residues. Of the six "hot-spot" residues identified (Leu-30, Arg-33, Arg-144, Ala-145, Met-148, and Arg-149), four are located on the E-helix, which is located at the center of the binding site flanked by residues on the A-helix and the AB-loop. The contribution of residues of the D-helix, which have been previously implicated in binding, proved to be marginal for the interaction with the extracellular domain of ifnar2. Interestingly, the ifnar2 binding site overlaps the largest continuous hydrophobic patch on IFNalpha2. Thus, hydrophobic interactions seem to play a significant role stabilizing this interaction, with the charged residues contributing toward the rapid association of the complex. Relating the anti-viral and anti-proliferative activity of the various interferon mutants with their affinity toward ifnar2 results in linear function over the whole range of affinities investigated, suggesting that ifnar2 binding is the rate-determining step in cellular activation. Dose-time analysis of the anti-viral response revealed that shortening the incubation time of low-level activation cannot be compensated by higher IFN doses. Considering the strict dependence of the cellular response on affinity, these results suggest that for maintaining transcription of IFN-responsive genes over a longer time period, low but continuous signaling through the IFN receptor is essential.
Collapse
Affiliation(s)
- J Piehler
- Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
99
|
Novick D, Nabioullin RR, Ragsdale W, McKenna S, Weiser W, Garone L, Burkins C, Kim SH, Rubinstein M, Tepper MA, Arulanandam AR. The neutralization of type I IFN biologic actions by anti-IFNAR-2 monoclonal antibodies is not entirely due to inhibition of Jak-Stat tyrosine phosphorylation. J Interferon Cytokine Res 2000; 20:971-82. [PMID: 11096454 DOI: 10.1089/10799900050198417] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A panel of monoclonal antibodies (mAb) derived against human interferon-alpha/beta receptor-2 (IFNAR-2) was evaluated for their ability to antagonize the biologic effects of type 1 interferons (IFN-alpha1, IFN-alpha2a, and IFN-beta). Anti-IFNAR-2 mAb 117.7, 35.9, 53.2, and 51.44 neutralized type I IFN-mediated antiviral, antiproliferative, and major histocompatibility complex (MHC) class I upregulation functions. However, only mAb 51.44 neutralized IFN-alpha2a and IFN-beta-mediated natural killer (NK) cell cytotoxicity. In BIAcore and cell binding studies, only mAb 51.44 and 234.28 inhibited IFN-alpha2a and IFN-beta binding to its receptor. The receptor blockade by mAb 51.44 and 234.28 resulted in the inhibition of IFN-alpha2a and IFN-beta-induced tyrosine phosphorylation of Jak1, Tyk2, Stat1/2/3, and IFNAR-1/2 and inhibition of IFN-stimulated gene factor 3 (ISGF3) formation. mAb 117.7, 35.9, and 53.2, although antagonists of IFN's biologic activities, did not block the binding of IFN-alpha/beta to its receptor. The 117.7 mAb, representative of this class of receptor nonblocking mAb, induced hyper-tyrosine phosphorylation of IFNAR-2 in the presence of IFN-alpha/beta but did not inhibit IFN-alpha/beta-induced Jak-Stat tyrosine phosphorylation and ISGF3 complex formation. These results show that the neutralization of type I IFN biologic actions by anti-IFNAR-2 mAb cannot be entirely explained by inhibition of Jak-Stat tyrosine phosphorylation.
Collapse
Affiliation(s)
- D Novick
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Schlender J, Bossert B, Buchholz U, Conzelmann KK. Bovine respiratory syncytial virus nonstructural proteins NS1 and NS2 cooperatively antagonize alpha/beta interferon-induced antiviral response. J Virol 2000; 74:8234-42. [PMID: 10954520 PMCID: PMC116331 DOI: 10.1128/jvi.74.18.8234-8242.2000] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The functions of bovine respiratory syncytial virus (BRSV) nonstructural proteins NS1 and NS2 were studied by generation and analysis of recombinant BRSV carrying single and double gene deletions. Whereas in MDBK cells the lack of either or both NS genes resulted in a 5,000- to 10,000-fold reduction of virus titers, in Vero cells a moderate (10-fold) reduction was observed. Interestingly, cell culture supernatants from infected MDBK cells were able to restrain the growth of NS deletion mutants in Vero cells, suggesting the involvement of NS proteins in escape from cytokine-mediated host cell responses. The responsible factors in MDBK supernatants were identified as type I interferons by neutralization of the inhibitory effect with antibodies blocking the alpha interferon (IFN-alpha) receptor. Treatment of cells with recombinant universal IFN-alpha A/D or IFN-beta revealed severe inhibition of single and double deletion mutants, whereas growth of full-length BRSV was not greatly affected. Surprisingly, all NS deletion mutants were equally repressed, indicating an obligatory cooperation of NS1 and NS2 in antagonizing IFN-mediated antiviral mechanisms. To verify this finding, we generated recombinant rabies virus (rRV) expressing either NS1 or NS2 and determined their IFN sensitivity. In cells coinfected with NS1- and NS2-expressing rRVs, virus replication was resistant to doses of IFN which caused a 1,000-fold reduction of replication in cells infected with wild-type RV or with each of the NS-expressing rRVs alone. Thus, BRSV NS proteins have the potential to cooperatively protect an unrelated virus from IFN-alpha/beta mediated antiviral responses. Interestingly, BRSV NS proteins provided a more pronounced resistance to IFN in the bovine cell line MDBK than in cell lines of other origins, suggesting adaptation to host-specific antiviral responses. The findings described have a major impact on the design of live recombinant BRSV and HRSV vaccines.
Collapse
Affiliation(s)
- J Schlender
- Max von Pettenkofer Institute & Gene Center, Ludwig-Maximilians-University Munich, D-81377 Munich, Germany
| | | | | | | |
Collapse
|