51
|
Nam S, Hong I, Baek MS. Physical activity and mortality in patients with dementia: 2009-2015 National Health Insurance Sharing Service data. PLoS One 2024; 19:e0301035. [PMID: 38748645 PMCID: PMC11095711 DOI: 10.1371/journal.pone.0301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/10/2024] [Indexed: 05/19/2024] Open
Abstract
The study aimed to investigate the survival rate of patients with dementia according to their level of physical activity and body mass index (BMI). A total of 5,789 patients with dementia were retrieved from the 2009-2015 National Health Insurance Sharing Service databases. Survival analysis was used to calculate the hazard ratio (HR) for physical activity and BMI. The study sample primarily comprised older adults (65-84 years old, 83.81%) and female (n = 3,865, 66.76%). Participants who engaged in physical activity had a lower mortality risk (HR = 0.91, p = 0.02). Compared to the underweight group, patients with dementia who had normal weight (HR = 0.86, p = 0.01), obesity (HR = 0.85, p = 0.03) and more than severe obesity (HR = 0.72, p = 0.02) demonstrated a lower mortality risk. This study emphasizes the significance of avoiding underweight and engaging in physical activity to reducing mortality risk in patients with dementia, highlighting the necessity for effective interventions.
Collapse
Affiliation(s)
- Sanghun Nam
- Department of Occupational Therapy, Graduate School, Yonsei University, Wonju, Republic of Korea
| | - Ickpyo Hong
- Department of Occupational Therapy, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea
| | - Min Seok Baek
- Department of Neurology, Wonju Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
52
|
Lawongsa K, Kengpanich S, Srisuwan P. Exploring the Multifactorial Landscape: Risk Factors for Dementia in a Tertiary Care Setting in Thailand. Cureus 2024; 16:e60195. [PMID: 38872675 PMCID: PMC11170239 DOI: 10.7759/cureus.60195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND Dementia poses a significant public health challenge worldwide, necessitating a deeper understanding of its risk factors to inform preventive strategies. METHOD This retrospective longitudinal study leveraged clinical data from a tertiary care database to investigate the risk factors associated with an incident dementia diagnosis. The study cohort comprised individuals aged 50 years and older. Key variables including age, income, comorbidities such as depressive disorder, osteoporosis, stroke, and metabolic conditions like type 2 diabetes and hypertension were analyzed by using Cox regression analysis. RESULT The study cohort included 127,016 adults 50 years and older. The results revealed that advancing age, with individuals aged 70-79 years having a hazard ratio (HR) of 3.9 (95% confidence interval (CI), 2.6-5.8), and those aged 80 years and above having an HR of 11.6 (95% CI, 7.7-17.3), lower income status (patients with no income or occupation had a notably higher risk of dementia diagnosis, with an HR of 2.0 (95% CI, 1.4-2.8)), depressive disorder (HR of 3.3 (95% CI, 3.3-3.7)), osteoporosis (HR of 1.2 (95% CI, 1.1-1.4)), and stroke (HR of 2.5 (95% CI, 2.3-2.7)) were significantly associated with an increased risk of incident dementia. However, no significant associations were observed for type 2 diabetes, hypertension, obesity, or underweight status managed in tertiary care. CONCLUSION The findings underscore the importance of considering a wide range of factors in understanding dementia risk and highlight the potential utility of routinely collected clinical data for comprehensive risk assessment. Further investigation into additional variables and multi-center studies may provide deeper insights into the complex interplay of risk factors contributing to dementia onset.
Collapse
|
53
|
Feng Z, Fang C, Ma Y, Chang J. Obesity-induced blood-brain barrier dysfunction: phenotypes and mechanisms. J Neuroinflammation 2024; 21:110. [PMID: 38678254 PMCID: PMC11056074 DOI: 10.1186/s12974-024-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
Obesity, a burgeoning global health issue, is increasingly recognized for its detrimental effects on the central nervous system, particularly concerning the integrity of the blood-brain barrier (BBB). This manuscript delves into the intricate relationship between obesity and BBB dysfunction, elucidating the underlying phenotypes and molecular mechanisms. We commence with an overview of the BBB's critical role in maintaining cerebral homeostasis and the pathological alterations induced by obesity. By employing a comprehensive literature review, we examine the structural and functional modifications of the BBB in the context of obesity, including increased permeability, altered transport mechanisms, and inflammatory responses. The manuscript highlights how obesity-induced systemic inflammation and metabolic dysregulation contribute to BBB disruption, thereby predisposing individuals to various neurological disorders. We further explore the potential pathways, such as oxidative stress and endothelial cell dysfunction, that mediate these changes. Our discussion culminates in the summary of current findings and the identification of knowledge gaps, paving the way for future research directions. This review underscores the significance of understanding BBB dysfunction in obesity, not only for its implications in neurodegenerative diseases but also for developing targeted therapeutic strategies to mitigate these effects.
Collapse
Affiliation(s)
- Ziying Feng
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yinzhong Ma
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| | - Junlei Chang
- Key Laboratory of Biomedical Imaging Science, Shenzhen Institute of Advanced Technology, System of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xueyuan Ave 1068, Nanshan, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
54
|
Firth W, Pye KR, Weightman Potter PG. Astrocytes at the intersection of ageing, obesity, and neurodegeneration. Clin Sci (Lond) 2024; 138:515-536. [PMID: 38652065 DOI: 10.1042/cs20230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Once considered passive cells of the central nervous system (CNS), glia are now known to actively maintain the CNS parenchyma; in recent years, the evidence for glial functions in CNS physiology and pathophysiology has only grown. Astrocytes, a heterogeneous group of glial cells, play key roles in regulating the metabolic and inflammatory landscape of the CNS and have emerged as potential therapeutic targets for a variety of disorders. This review will outline astrocyte functions in the CNS in healthy ageing, obesity, and neurodegeneration, with a focus on the inflammatory responses and mitochondrial function, and will address therapeutic outlooks.
Collapse
Affiliation(s)
- Wyn Firth
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, U.K
| | - Katherine R Pye
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| | - Paul G Weightman Potter
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, U.K
| |
Collapse
|
55
|
Pradeepkiran JA, Baig J, Islam MA, Kshirsagar S, Reddy PH. Amyloid-β and Phosphorylated Tau are the Key Biomarkers and Predictors of Alzheimer's Disease. Aging Dis 2024; 16:658-682. [PMID: 38739937 PMCID: PMC11964437 DOI: 10.14336/ad.2024.0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Alzheimer's disease (AD) is a age-related neurodegenerative disease and is a major public health concern both in Texas, US and Worldwide. This neurodegenerative disease is mainly characterized by amyloid-beta (Aβ) and phosphorylated Tau (p-Tau) accumulation in the brains of patients with AD and increasing evidence suggests that these are key biomarkers in AD. Both Aβ and p-tau can be detected through various imaging techniques (such as positron emission tomography, PET) and cerebrospinal fluid (CSF) analysis. The presence of these biomarkers in individuals, who are asymptomatic or have mild cognitive impairment can indicate an increased risk of developing AD in the future. Furthermore, the combination of Aβ and p-tau biomarkers is often used for more accurate diagnosis and prediction of AD progression. Along with AD being a neurodegenerative disease, it is associated with other chronic conditions such as cardiovascular disease, obesity, depression, and diabetes because studies have shown that these comorbid conditions make people more vulnerable to AD. In the first part of this review, we discuss that biofluid-based biomarkers such as Aβ, p-Tau in cerebrospinal fluid (CSF) and Aβ & p-Tau in plasma could be used as an alternative sensitive technique to diagnose AD. In the second part, we discuss the underlying molecular mechanisms of chronic conditions linked with AD and how they affect the patients in clinical care.
Collapse
Affiliation(s)
| | - Javaria Baig
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Md Ariful Islam
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - P. Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
56
|
Veneziani I, Grimaldi A, Marra A, Morini E, Culicetto L, Marino S, Quartarone A, Maresca G. Towards a Deeper Understanding: Utilizing Machine Learning to Investigate the Association between Obesity and Cognitive Decline-A Systematic Review. J Clin Med 2024; 13:2307. [PMID: 38673581 PMCID: PMC11051247 DOI: 10.3390/jcm13082307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Background/Objectives: Several studies have shown a relation between obesity and cognitive decline, highlighting a significant global health challenge. In recent years, artificial intelligence (AI) and machine learning (ML) have been integrated into clinical practice for analyzing datasets to identify new risk factors, build predictive models, and develop personalized interventions, thereby providing useful information to healthcare professionals. This systematic review aims to evaluate the potential of AI and ML techniques in addressing the relationship between obesity, its associated health consequences, and cognitive decline. Methods: Systematic searches were performed in PubMed, Cochrane, Web of Science, Scopus, Embase, and PsycInfo databases, which yielded eight studies. After reading the full text of the selected studies and applying predefined inclusion criteria, eight studies were included based on pertinence and relevance to the topic. Results: The findings underscore the utility of AI and ML in assessing risk and predicting cognitive decline in obese patients. Furthermore, these new technology models identified key risk factors and predictive biomarkers, paving the way for tailored prevention strategies and treatment plans. Conclusions: The early detection, prevention, and personalized interventions facilitated by these technologies can significantly reduce costs and time. Future research should assess ethical considerations, data privacy, and equitable access for all.
Collapse
Affiliation(s)
- Isabella Veneziani
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Alessandro Grimaldi
- Department of Nervous System and Behavioural Sciences, Psychology Section, University of Pavia, Piazza Botta, 11, 27100 Pavia, Italy (A.G.)
| | - Angela Marra
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Elisabetta Morini
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Laura Culicetto
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi “Bonino-Pulejo”, S.S. 113 Via Palermo C. da Casazza, 98124 Messina, Italy; (A.M.); (E.M.); (S.M.); (A.Q.); (G.M.)
| |
Collapse
|
57
|
Seifi N, Mottaghi Moghaddam Shahri A, Soltankhah Beydokhti L, Mohammadi-Bajgiran M, Tahaghoghi Oliyaee N, Rezaeifard H, A Ferns G, Esmaily H, Ghayour-Mobarhan M. Insulinemic potential of lifestyle is associated with depression and anxiety in adults: A large community-based study. J Affect Disord 2024; 351:527-533. [PMID: 38278331 DOI: 10.1016/j.jad.2024.01.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/14/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND We aimed to investigate the association between an empirical lifestyle index for hyperinsulinemia (ELIH), empirical lifestyle index for insulin resistance (ELIR), and depression and anxiety in an adult Iranian population. METHODS In this cross-sectional study, a total of 6450 participants, aged 35-65 years were recruited as part of the MASHAD cohort study. Dietary intakes were assessed using a validated food frequency questionnaire (FFQ). Depression and anxiety were screened using Beck Depression Inventory (BDI) and Beck Anxiety Inventory (BAI). ELIH and ELIR were calculated using dietary intake, body mass index, and physical activity information. Multivariable ordinal logistic regression models were applied to determine the association between ELIH, ELIR, and depression and anxiety severity. RESULTS In a fully adjusted model, participants with the highest ELIH quartile had a higher odds of more severe depression and anxiety compared to those in the lowest category (OR = 1.44; 95 % CI = 1.22-1.71 and OR = 1.62; 95 % CI = 1.37-1.25, respectively). Participants with the highest ELIR had higher odds of more severe depression and anxiety compared to those in the lowest category (OR = 1.22; 95 % CI = 1.04-1.43 and OR = 1.21; 95 % CI = 1.03-1.42, respectively). LIMITATIONS The assessment of dietary intake and mental health by questionnaires may increases the rate of misclassification. Due to the study's cross-sectional nature, causal relationships cannot be established. CONCLUSION There was a significant positive association between the hyperinsulinemia and insulin resistance potential of lifestyle and severity of depression and anxiety among Iranian adults.
Collapse
Affiliation(s)
- Najmeh Seifi
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ali Mottaghi Moghaddam Shahri
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leyli Soltankhah Beydokhti
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mohammadi-Bajgiran
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Narges Tahaghoghi Oliyaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Helia Rezaeifard
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex, UK.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
Chao YM, Wu HY, Yeh SH, Yang DI, Her LS, Wu YL. Glucosamine Enhancement of Learning and Memory Functions by Promoting Fibroblast Growth Factor 21 Production. Int J Mol Sci 2024; 25:4211. [PMID: 38673797 PMCID: PMC11050103 DOI: 10.3390/ijms25084211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a crucial role in metabolism and brain function. Glucosamine (GLN) has been recognized for its diverse beneficial effects. This study aimed to elucidate the modulation of FGF21 production by GLN and its impact on learning and memory functions. Using both in vivo and in vitro models, we investigated the effects of GLN on mice fed with a normal diet or high-fat diet and on mouse HT22 hippocampal cells, STHdhQ7/Q7 striatal cells, and rat primary cortical neurons challenged with GLN. Our results indicated that GLN promotes learning and memory functions in mice and upregulates FGF21 expression in the hippocampus, cortex, and striatum, as well as in HT22 cells, STHdhQ7/Q7 cells, and cortical neurons. In animals receiving GLN together with an FGF21 receptor FGFR1 inhibitor (PD173074), the GLN-enhanced learning and memory functions and induction of FGF21 production in the hippocampus were significantly attenuated. While exploring the underlying molecular mechanisms, the potential involvement of NF-κB, Akt, p38, JNK, PKA, and PPARα in HT22 and NF-κB, Akt, p38, and PPARα in STHdhQ7/Q7 were noted; GLN was able to mediate the activation of p65, Akt, p38, and CREB in HT22 and p65, Akt, and p38 in STHdhQ7/Q7 cells. Our accumulated findings suggest that GLN may increase learning and memory functions by inducing FGF21 production in the brain. This induction appears to be mediated, at least in part, through GLN's activation of the NF-κB, Akt, p38, and PKA/CREB pathways.
Collapse
Affiliation(s)
- Yu-Ming Chao
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| | - Hon-Yen Wu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sin-Huei Yeh
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| | - Ding-I Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Lu-Shiun Her
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan;
| | - Yuh-Lin Wu
- Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan; (Y.-M.C.); (S.-H.Y.)
| |
Collapse
|
59
|
Rojas-Criollo M, Novau-Ferré N, Gutierrez-Tordera L, Ettcheto M, Folch J, Papandreou C, Panisello L, Cano A, Mostafa H, Mateu-Fabregat J, Carrasco M, Camins A, Bulló M. Effects of a High-Fat Diet on Insulin-Related miRNAs in Plasma and Brain Tissue in APP Swe/PS1dE9 and Wild-Type C57BL/6J Mice. Nutrients 2024; 16:955. [PMID: 38612989 PMCID: PMC11013640 DOI: 10.3390/nu16070955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Insulin resistance (IR)-related miRNAs have been associated with the development and progression of Alzheimer's disease (AD). The dietary modulation of these miRNAs could become a potential strategy to manage AD. The aim of this study was to evaluate the effect of a high-fat diet (HFD), which aggravates AD-related pathogenic processes, on serum, cortex and hippocampus IR-related miRNA expression. C57BL/6J WT and APPSwe/PS1dE9 mice were fed either an HFD or a conventional diet till 6 months of age. The mice fed with the HFD showed a significant increase in body weight and worsening glucose and insulin metabolism. miR-19a-3p was found to be up-regulated in the cortex, hippocampus and serum of APP/PS1 mice and in the serum and hippocampus of WT mice fed with the HFD. miR-34a-5p and miR-146a-5p were up-regulated in the serum of both groups of mice after consuming the HFD. Serum miR-29c-3p was overexpressed after consuming the HFD, along with hippocampal miR-338-3p and miR-125b-5p, only in WT mice. The HFD modulated the expression of peripheral and brain miRNAs related to glucose and insulin metabolism, suggesting the potential role of these miRNAs not only as therapeutic targets of AD but also as peripheral biomarkers for monitoring AD.
Collapse
Affiliation(s)
- Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
- Ace Alzheimer Center Barcelona, Universitat Internacional de Catalunya, 08028 Barcelona, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Marina Carrasco
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (M.C.); (A.C.)
- Institute of Neuroscience, Universitat de Barcelona, 08034 Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Carlos III Health Institute, 28029 Madrid, Spain;
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; (M.R.-C.); (N.N.-F.); (L.G.-T.); (J.F.); (C.P.); (L.P.); (H.M.); (J.M.-F.)
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
- Center of Environmental, Food and Toxicological Technology—TecnATox, Rovira i Virgili University, 43201 Reus, Spain
- CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
60
|
Uchida K, Sugimoto T, Tange C, Nishita Y, Shimokata H, Saji N, Kuroda Y, Matsumoto N, Kishino Y, Ono R, Akisue T, Otsuka R, Sakurai T. Association between abdominal adiposity and cognitive decline in older adults: a 10-year community-based study. J Nutr Health Aging 2024; 28:100175. [PMID: 38308924 DOI: 10.1016/j.jnha.2024.100175] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
OBJECTIVES This study aimed to investigate the association between abdominal adiposity and change in cognitive function in community-dwelling older adults. DESIGN, SETTING, AND PARTICIPANTS This longitudinal study included older adults aged ≥60 years without cognitive impairment who participated in the National Institute for Longevity Sciences - Longitudinal Study of Aging. MEASUREMENTS Cognitive function was evaluated biennially using the Mini-Mental State Examination (MMSE) over 10 years. Waist circumference (WC) was measured at the naval level, and subcutaneous fat area (SFA) and visceral fat area (VFA) were assessed using baseline computed tomography scans. WC, SFA, and VFA areas were stratified into sex-adjusted tertiles. A linear mixed model was applied separately for men and women. RESULTS This study included 873 older adults. In men, the groups with the highest levels of WC, SFA, and VFA exhibited a greater decline in MMSE score than the groups with the lowest levels (β [95% confidence interval]: WC, -0.12 [-0.23 to -0.01]; SFA, -0.13 [-0.24 to -0.02]; VFA, -0.11 [-0.22 to -0.01]). In women, the group with the highest level of WC and SFA showed a greater decline in MMSE score than the group with the lowest level (WC, -0.12 [-0.25 to -0.01]; SFA, -0.18 [-0.30 to -0.06]), but VFA was not associated with cognitive decline. CONCLUSION Higher WC, SFA, and VFA in men and higher WC and SFA in women were identified as risk factors for cognitive decline in later life, suggesting that abdominal adiposity involved in cognitive decline may differ according to sex.
Collapse
Affiliation(s)
- Kazuaki Uchida
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Taiki Sugimoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Chikako Tange
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yukiko Nishita
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Hiroshi Shimokata
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Graduate School of Nutritional Sciences, Nagoya University of Arts and Sciences, Nisshin, Aichi 470-0196, Japan
| | - Naoki Saji
- Center for Comprehensive Care and Research on Memory Disorders, Hospital, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yujiro Kuroda
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Nanae Matsumoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Yoshinobu Kishino
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Cognitive and Behavioral Science, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-855, Japan
| | - Rei Ono
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Settsu, Osaka 566-0002, Japan; Department of Public Health, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Toshihiro Akisue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Hyogo 654-0142, Japan
| | - Rei Otsuka
- Department of Epidemiology of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan; Department of Cognitive and Behavioral Science, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-855, Japan; Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan.
| |
Collapse
|
61
|
Sindzingre L, Bouaziz-Amar E, Mouton-Liger F, Cognat E, Dumurgier J, Vrillon A, Paquet C, Lilamand M. The role of adiponectin in Alzheimer's disease: A translational review. J Nutr Health Aging 2024; 28:100166. [PMID: 38280832 DOI: 10.1016/j.jnha.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Abstract
Adiponectin is an adipokine playing a central role in the regulation of energy homeostasis, carbohydrate and lipid metabolism, as well as immunomodulation. The relationship between Alzheimer's disease (AD) and body composition has highlighted the bidirectional crosstalk between AD's pathophysiology and metabolic disorders. This review aimed to report the current state of knowledge about cellular and molecular mechanisms linking adiponectin and AD, in preclinical studies. Then, we reviewed human studies to assess the relationship between adiponectin levels and AD diagnosis. We also examined the risk of incident AD regarding the participants' baseline adiponectin level, as well as the relationship of adiponectin and cognitive decline in patients with AD. We conducted a systematic review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guideline, of studies published over the last decade on MEDLINE and Cochrane databases. Overall, we reviewed 34 original works about adiponectin in AD, including 11 preclinical studies, two both preclinical and human studies and 21 human studies. Preclinical studies brought convincing evidence for the neuroprotective role of adiponectin on several key mechanisms of AD. Human studies showed conflicting results regarding the relationship between AD and adiponectin levels, as well as regarding the cross-sectional association between cognitive function and adiponectin levels. Adiponectin did not appear as a predictor of incident AD, nor as a predictor of cognitive decline in patients with AD. Despite solid preclinical evidence suggesting the protective role of adiponectin in AD, inconsistent results in humans supports the need for further research.
Collapse
Affiliation(s)
- Louise Sindzingre
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France.
| | - Elodie Bouaziz-Amar
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Biochemistry Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Julien Dumurgier
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Agathe Vrillon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Cognitive Neurology Center, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Matthieu Lilamand
- Université Paris Cité, UMRS 1144, INSERM, Paris, France; Geriatrics Department, AP-HP. Nord, Site Lariboisière Fernand-Widal, Paris, France
| |
Collapse
|
62
|
Tao B, Tian P, Hao Z, Qi Z, Zhang J, Liu J, Liu J, Li M, Zhang Z, Zhang P. Bariatric Surgery Improves Cognition Function in the Patients with Obesity: A Meta-Analysis. Obes Surg 2024; 34:1004-1017. [PMID: 38342815 DOI: 10.1007/s11695-024-07086-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Obesity and related comorbidities have negative impacts on cognitive function. Weight loss seems to be associated with the improvement of cognitive function and the recovery of brain structure, but the underlying mechanism is not clear. This meta-analysis aimed to explore the status of cognitive function including memory, executive function, attention and language ability in patients with obesity, and to further investigate whether bariatric surgery can improve overall cognitive function in these patients. A total of 11 literatures with 728 subjects were included after retrieval and exclusion. The meta-analysis showed significant improvements in memory, attention and executive function scores after undergoing bariatric surgery in the patients with obesity. However, there was no significant improvement in language ability.
Collapse
Affiliation(s)
- Boyu Tao
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Peirong Tian
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Zhen Hao
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zitian Qi
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jingyu Zhang
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Jia Liu
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Jingli Liu
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Mengyi Li
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Zhongtao Zhang
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Peng Zhang
- Division of Metabolic and Bariatric Surgery, General Surgery Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Diseases, Beijing, 100050, China.
| |
Collapse
|
63
|
Ortlund E, Chen CY, Maner-Smith K, Khadka M, Ahn J, Gulbin X, Ivanova A, Dammer E, Seyfried N, Bennett D, Hajjar I. Integrative brain omics approach reveals key role for sn-1 lysophosphatidylethanolamine in Alzheimer's dementia. RESEARCH SQUARE 2024:rs.3.rs-3973736. [PMID: 38464293 PMCID: PMC10925467 DOI: 10.21203/rs.3.rs-3973736/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The biology of individual lipid species and their relevance in Alzheimer's disease (AD) remains incompletely understood. We utilized non-targeted mass spectrometry to examine brain lipids variations across 316 post-mortem brains from participants in the Religious Orders Study (ROS) or Rush Memory and Aging Project (MAP) cohorts classified as either control, asymptomatic AD (AAD), or symptomatic AD (SAD) and integrated the lipidomics data with untargeted proteomic characterization on the same individuals. Lipid enrichment analysis and analysis of variance identified significantly lower abundance of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC) species in SAD than controls or AAD. Lipid-protein co-expression network analyses revealed that lipid modules consisting of LPE and LPC exhibited a significant association to protein modules associated with MAPK/metabolism, post-synaptic density, and Cell-ECM interaction pathways and were associated with better antemortem cognition and with neuropathological changes seen in AD. Particularly, LPE 22:6 [sn-1] levels are significantly decreased across AD cases (SAD) and show the most influence on protein changes compared to other lysophospholipid species. LPE 22:6 may be a lipid signature for AD and could be leveraged as potential therapeutic or dietary targets for AD.
Collapse
|
64
|
Jones A, Ali MU, Kenny M, Mayhew A, Mokashi V, He H, Lin S, Yavari E, Paik K, Subramanian D, Dydynsky R, Aryal K, Correia RH, Dash D, Manis DR, O'Connell M, Liu-Ambrose T, Taler V, McMillan JM, Hogan DB, Kirkland S, Costa AP, Wolfson C, Raina P, Griffith L. Potentially Modifiable Risk Factors for Dementia and Mild Cognitive Impairment: An Umbrella Review and Meta-Analysis. Dement Geriatr Cogn Disord 2024; 53:91-106. [PMID: 38346414 DOI: 10.1159/000536643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/31/2024] [Indexed: 05/08/2024] Open
Abstract
INTRODUCTION The prevalence of mild and major neurocognitive disorders (NCDs), also referred to as mild cognitive impairment and dementia, is rising globally. The prevention of NCDs is a major global public health interest. We sought to synthesize the literature on potentially modifiable risk factors for NCDs. METHODS We conducted an umbrella review using a systematic search across multiple databases to identify relevant systematic reviews and meta-analyses. Eligible reviews examined potentially modifiable risk factors for mild or major NCDs. We used a random-effects multi-level meta-analytic approach to synthesize risk ratios for each risk factor while accounting for overlap in the reviews. We further examined risk factors for major NCD due to two common etiologies: Alzheimer's disease and vascular dementia. RESULTS A total of 45 reviews with 212 meta-analyses were synthesized. We identified fourteen broadly defined modifiable risk factors that were significantly associated with these disorders: alcohol consumption, body weight, depression, diabetes mellitus, diet, hypertension, less education, physical inactivity, sensory loss, sleep disturbance, smoking, social isolation, traumatic brain injury, and vitamin D deficiency. All 14 factors were associated with the risk of major NCD, and five were associated with mild NCD. We found considerably less research for vascular dementia and mild NCD. CONCLUSION Our review quantifies the risk associated with 14 potentially modifiable risk factors for mild and major NCDs, including several factors infrequently included in dementia action plans. Prevention strategies should consider approaches that reduce the incidence and severity of these risk factors through health promotion, identification, and early management.
Collapse
Affiliation(s)
- Aaron Jones
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
| | - Muhammad Usman Ali
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Meghan Kenny
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra Mayhew
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
- Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| | - Vishal Mokashi
- School of Life Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Henry He
- Michael G. DeGroote School of Medicine, Hamilton, Ontario, Canada
| | - Sabrina Lin
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ehsan Yavari
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Paik
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Robert Dydynsky
- Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Komal Aryal
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca H Correia
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Darly Dash
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Derek R Manis
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, USA
| | - Megan O'Connell
- Department of Psychology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Teresa Liu-Ambrose
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Aging SMART at Vancouver Coastal Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
| | - Vanessa Taler
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Jacqueline M McMillan
- Division of Geriatric Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David B Hogan
- Division of Geriatric Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Susan Kirkland
- Department of Community Health and Epidemiology and Division of Geriatric Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew P Costa
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
| | - Christina Wolfson
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health and Department of Medicine, McGill University, QC, Montreal, Canada
- Research Institute of the McGill University Health Centre, QC, Montreal, Canada
| | - Parminder Raina
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
- Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| | - Lauren Griffith
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
- Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| |
Collapse
|
65
|
Ahmed W, Muhammad T, Irshad CV. Interaction between depressive symptoms and obesity-related anthropometric measures on multimorbidity among community-dwelling older adults: evidence from India. BMC Public Health 2024; 24:402. [PMID: 38326765 PMCID: PMC10851490 DOI: 10.1186/s12889-024-17894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND This study aimed to examine the associations between depressive symptoms, body mass index (BMI), waist circumference, waist-hip ratio and multimorbidity among community-dwelling older adults. We also examine the interaction effects between depressive symptoms, BMI, waist circumference and waist-hip ratio on multimorbidity among older adults in India. METHODS A cross-sectional study was conducted, and the data were obtained from the Longitudinal Ageing Study in India (LASI) wave-1, with a sample of 31,464 older adults aged 60 years and above (men-15,098 and women-16,366). We used multinomial logistic regression to explore the independent associations between depressive symptoms, obesity-measures, and single and multimorbidity. We also estimated the interaction effects of depressive symptoms and obesity-measures on multimorbidity. RESULTS The prevalence of multimorbidity was higher among individuals with depressive symptoms (39.22%) than individuals with no depressive symptoms (29.94%). Adjusted models indicated that older adults with depressive symptoms had higher odds of single and multimorbidity [(AOR = 1.40, 95% CI: 1.17-1.68) and (AOR = 1.85, 95% CI: 1.58-2.16), respectively]. Similarly, in comparison to the normal BMI category, overweight and obese older adults were more likely to report single morbidity [(AOR = 1.62, 95% CI: 1.37-1.92 and (AOR = 2.14, 95% CI: 1.67-2.75), respectively] and multimorbidity [(AOR = 2.00, 95% CI: 1.72-2.33) and (AOR = 3.77, 95% CI: 2.94-4.82), respectively]. CONCLUSION The findings revealed that the presence of depressive symptoms, overweight or obesity, and high-risk anthropometric measures such as high-risk waist circumference and high-risk waist to hip ratio significantly increased the risk of morbidity among older adults in India. Thus, it is suggested to adopt an integrated public health policy approach to control depressive symptoms and high-risk body composition to strategically prepare against the elevated risk of multimorbidity among ageing populations.
Collapse
Affiliation(s)
- Waquar Ahmed
- Department of Health Systems Studies, Tata Institute of Social Sciences, Mumbai, India
| | - T Muhammad
- Pennsylvania State University, University Park, USA.
| | - C V Irshad
- School of Social Sciences and Languages, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
66
|
Lai AY, Almanza DLV, Ribeiro JA, Hill ME, Mandrozos M, Koletar MM, Stefanovic B, McLaurin J. Obesity Facilitates Sex-Specific Improvement In Cognition And Neuronal Function In A Rat Model Of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575200. [PMID: 38328066 PMCID: PMC10849478 DOI: 10.1101/2024.01.11.575200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Obesity reduces or increases the risk of developing Alzheimer's disease (AD) depending on whether it is assessed in mid-life or late-life. There is currently no consensus on the relationship between obesity and AD or the mechanism or their interaction. Here, we aim to differentiate the cause-and-effect relationship between obesity and AD in a controlled rat model of AD. We induced obesity in 9-month-old TgF344-AD rats, that is pathology-load wise similar to early symptomatic phase of human AD. To more accurately model human obesity, we fed both TgF344-AD and non-transgenic littermates a varied high-carbohydrate-high-fat diet consisting of human food for 3 months. Obesity increased overall glucose metabolism and slowed cognitive decline in TgF344-AD rats, specifically executive function, without affecting non-transgenic rats. Pathological analyses of prefrontal cortex and hippocampus showed that obesity in TgF344-AD rats produced varied effects, with increased density of myelin and oligodendrocytes, lowered density and activation of microglia that we propose contributes to the cognitive improvement. However, obesity also decreased neuronal density, and promoted deposition of amyloid-beta plaques and tau inclusions. After 6 months on the high-carbohydrate-high-fat diet, detrimental effects on density of neurons, amyloid-beta plaques, and tau inclusions persisted while the beneficial effects on myelin, microglia, and cognitive functions remained albeit with a lower effect size. By examining the effect of sex, we found that both beneficial and detrimental effects of obesity were stronger in female TgF344-AD rats indicating that obesity during early symptomatic phase of AD is protective in females.
Collapse
|
67
|
Xu X, Xu Y, Shi R. Association between obesity, physical activity, and cognitive decline in Chinese middle and old-aged adults: a mediation analysis. BMC Geriatr 2024; 24:54. [PMID: 38212676 PMCID: PMC10785530 DOI: 10.1186/s12877-024-04664-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Epidemiological evidence on obesity and cognitive decline in middle and old-aged individuals is controversial and the effect of physical activity in this chain is sparse and limited. This study aimed to characterize the association between obesity and cognitive decline and the mediating role of physical activity. METHODS Data from China Health and Retirement Longitudinal Study (CHARLS) were used, including 7,392 participants aged ≥ 45 years between 2011 and 2018. Cognitive function was assessed via episodic memory and mental status. The total score of cognitive function was the sum of the above two dimensions (0-31 points). The Group-based trajectory modeling (GBTM) was applied to identify the potential heterogeneity of longitudinal changes in cognitive function. Multivariable ordinal logistic regression was used to investigate associations between obesity and cognitive trajectories, taking body mass index (BMI) as the indicator of obesity. Mediation analysis was performed to examine the potential causal chain in which physical activity mediates the relationship between BMI and cognitive decline. RESULTS Of the 7,392 analyzed patients (mean [SD] age, 58.0 [8.5] years; 3,916 [53%] male), the median (interquartile range [IQR]) of BMI was 23.4 (21.1-26.0). Four trajectories were identified by the GBTM model, including the high stable (14.9%), the middle stable (46.0%), the middle decline (29.9%), and the low decline groups (9.2%). After controlling potential confounders, obesity was associated with the low decline groups compared with normal weight (adjusted OR 0.81; 95% CI, 0.70-0.94). Mediation analyses showed that only vigorous physical activity significantly explained 5.94% (95% CI, 0.29-11.60%) of the relationship between obesity and cognitive decline. Sensitivity analyses in different subgroups showed comparable results. CONCLUSION This study suggests that vigorous physical activity mediates less than 10% of the association between obesity and cognitive decline in middle and old-aged adults. Further studies are warranted to explore the potential factors related to the obesity paradox in the cognitive field.
Collapse
Affiliation(s)
- Xin Xu
- Operating Room, Department of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Xu
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruolin Shi
- Operating Room, Department of Nursing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
68
|
Zhang YS, Chang VW. Time Path of Weight Status Before and After Incident Dementia. J Aging Health 2024; 36:98-109. [PMID: 37140008 PMCID: PMC11346266 DOI: 10.1177/08982643231170711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Objectives: Identifying whether obesity is a risk factor for dementia is complicated by the possibility of weight change as dementia evolves. This article investigates an extended time path of body mass index (BMI) before and after incident dementia in a nationally representative sample. Methods: Using the Health and Retirement Study (2000-2016), we examine (1) the longitudinal relationship between BMI and incident dementia and (2) heterogeneity in the BMI trajectory by initial BMI level. Results: Weight loss begins at least one decade before incident dementia, then accelerates in the years immediately preceding dementia onset and continues after incident dementia. Those with higher levels of BMI at baseline experienced a much greater decline relative to those with a normal weight. Discussion: Our results help explain the contradicting findings in the literature regarding the relationship between obesity and dementia and highlight the need for using extended longitudinal data to understand dementia risk.
Collapse
Affiliation(s)
- Yuan S. Zhang
- Department of Sociomedical Sciences & Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia W. Chang
- Department of Social and Behavioral Sciences, School of Global Public Health, New York University, New York, NY, USA
- Department of Population Health, Grossman School of Medicine, New York University, New York, NY, USA
| |
Collapse
|
69
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
70
|
Bolotova NV, Filina NY, Cherednikova KA, Logacheva OA, Timofeeva SV, Nikolaeva NV, Novikova EP. [Application of modern methods for activation of brain functions in obese patients (literature review)]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2024; 101:54-61. [PMID: 39718959 DOI: 10.17116/kurort202410106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
The problem of rational activation of functions of the central nervous system of a human remains highly relevant. OBJECTIVE To analyze scientific data on the use of transcranial exposure method in obesity. RESULTS The literature review presents current data on the effectiveness of non-invasive hardware brain neurostimulation in obese patients. The results of studies by domestic and foreign authors on the use of techniques of transcranial magnetic stimulation, transcranial magnetotherapy, transcranial electrical stimulation and their combinations in the comprehensive treatment of obesity in patients of different ages are presented. The data of studies on changes in dynamics of clinical and laboratory indicators, change in eating behavior in patients with obesity and metabolic syndrome after the course application of transcranial therapy by means of hardware exposure of magnetic and/or electric fields on the central nervous system are described. CONCLUSION The use of transcranial techniques has a positive effect on all levels of dysregulation in patients with obesity, both central and peripheral.
Collapse
Affiliation(s)
- N V Bolotova
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - N Yu Filina
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - K A Cherednikova
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - O A Logacheva
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - S V Timofeeva
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - N V Nikolaeva
- University Clinical Hospital No. 1 named after S.R. Mirotvortsev of the Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - E P Novikova
- Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| |
Collapse
|
71
|
Grant WB. A Brief History of the Progress in Our Understanding of Genetics and Lifestyle, Especially Diet, in the Risk of Alzheimer's Disease. J Alzheimers Dis 2024; 100:S165-S178. [PMID: 39121130 PMCID: PMC11380269 DOI: 10.3233/jad-240658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
The two major determining factors for Alzheimer's disease (AD) are genetics and lifestyle. Alleles of the apolipoprotein E (APOE) gene play important roles in the development of late-onset AD, with APOEɛ4 increasing risk, APOEɛ3 being neutral, and APOEɛ2 reducing risk. Several modifiable lifestyle factors have been studied in terms of how they can modify the risk of AD. Among these factors are dietary pattern, nutritional supplements such as omega-3 fatty acids, and B vitamins, physical exercise, and obesity, and vitamin D. The Western diet increases risk of AD, while dietary patterns such as the Mediterranean and vegetarian/vegan diets reduce risk. Foods associated with reduced risk include coffee, fruits and vegetables, whole grains and legumes, and fish, while meat and ultraprocessed foods are associated with increased risk, especially when they lead to obesity. In multi-country ecological studies, the amount of meat in the national diet has the highest correlation with risk of AD. The history of research regarding dietary patterns on risk of AD is emphasized in this review. The risk of AD can be modified starting at least by mid-life. People with greater genetic risk for AD would benefit more by choosing lifestyle factors to reduce and/or delay incidence of AD.
Collapse
Affiliation(s)
- William B Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| |
Collapse
|
72
|
Roy A. Association Between Body Mass Index and Cognitive Function Among Older Adults in India: Findings from a Cross-Sectional Study. Exp Aging Res 2024; 50:102-116. [PMID: 36701477 DOI: 10.1080/0361073x.2023.2171686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The study aimed to explore the association between body mass index (BMI) and cognitive function among older adults in India. METHODS Cross-sectional data on 21,000 older adults aged 60 years and older from the first wave of the Longitudinal Ageing Study of India (LASI), conducted in India during 2017-18, were used. Bivariate analysis and multivariate linear regression models were applied. The cognition tests include memory, orientation, arithmetic function, executive function, and object naming. RESULTS The mean overall cognition score was 24.6 in the study population. Further, BMI status showed a significant and positive association with cognition. The association of underweight with poor cognition (β=-0.72; 95% CI = -0.89, -0.54) whereas overweight (β = 0.57; 95% CI = 0.39, 0.75) and obese (β = 0.97; 95% CI = 0.68, 1.26) with better cognition remained statistically significant after adjusting for sociodemographic, health-related behavior, and health covariates. The mean cognition score of female older adults was always lower than male older adults with normal BMI, irrespective of their BMI categories. CONCLUSIONS This study shows that an underweight BMI is associated with poor cognition in both male and female older adults. In the context of providing health care for older individuals, underweight individuals should be given more attention in India.
Collapse
Affiliation(s)
- Alok Roy
- Department of Geography, Krishnagar Govt. College, Krishnanagar, WB, India
| |
Collapse
|
73
|
Ruegsegger GN, Ekholm ER, Monroe CE, Rappaport CI, Huppert RD, Anton CR, Ferguson MJ. Glucose tolerance status associates with improvements in cognitive function following high-intensity exercise in adults with obesity. Physiol Behav 2023; 272:114389. [PMID: 37890604 DOI: 10.1016/j.physbeh.2023.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
PURPOSE Obesity, insulin resistance (IR), and proinflammatory cytokines associate with cognitive decline. Numerous studies document cognitive benefits of acute exercise bouts in lean individuals. However, how co-morbidities such as obesity and IR influence cognitive changes induced by acute exercise is unclear. We examined the effects of acute high-intensity aerobic exercise on cognitive function in age-matched and BMI-matched obese adults with normal glucose tolerance (NGT) or impaired glucose tolerance (IGT) and in lean, NGT adults. METHODS 49 adults (15 Lean, 18 Obese-NGT, 16 Obese-IGT) performed one session of high-intensity interval exercise (four cycles of 4-min at 75% Wmax with 3-min rest). Cognitive function testing and blood sampling were performed pre- and post-exercise. RESULTS Following exercise, measurements of executive function and working memory were improved in Lean and Obese-NGT (p < 0.05), but not Obese-IGT. Changes in cognitive function following exercise negatively correlated with 2-hr glucose during an OGTT after controlling for body weight and body composition (rp = -0.40, p = 0.007). Serum levels of inflammatory cytokines IL-6 and CRP remained increased 60-minutes post-exercise in Obese-IGT, but not in Lean or Obese-NGT, which positively associated with 2-hr glucose during an OGTT (p < 0.01) and negatively with changes in cognitive function following exercise (p < 0.01). Greater insulin levels in Obese-IGT post-exercise also negatively correlated with changes in cognitive function following exercise (p < 0.01). CONCLUSION Improvements in cognition following acute high-intensity exercise positively associate with glucose tolerance, independent of body weight and body composition. Further, poorer changes in cognitive performance following exercise associate with persistent peripheral inflammation.
Collapse
Affiliation(s)
- Gregory N Ruegsegger
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States.
| | - Emily R Ekholm
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| | - Chandler E Monroe
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| | - Chapin I Rappaport
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| | - Rocco D Huppert
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| | - Caleb R Anton
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| | - Mia J Ferguson
- Department of Health and Human Performance, University of Wisconsin-River Falls, A173 Falcon Center, 410 S. 3rd St., River Falls, WI, 54022, United States
| |
Collapse
|
74
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Alzheimer’s Gut Microbiome Project Consortium, Craft S, Kaddurah-Daouk R, Krumsiek J. A Modified Mediterranean Ketogenic Diet mitigates modifiable risk factors of Alzheimer's Disease: a serum and CSF-based metabolic analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298990. [PMID: 38076824 PMCID: PMC10705656 DOI: 10.1101/2023.11.27.23298990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, 7008 Tasmania, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA
| | | | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| |
Collapse
|
75
|
Ding H, Wang B, Hamel AP, Melkonyan M, Ang TFA, Alzheimer’s Disease Neuroimaging Initiative, Au R, Lin H. Prediction of Progression from Mild Cognitive Impairment to Alzheimer's disease with Longitudinal and Multimodal Data. FRONTIERS IN DEMENTIA 2023; 2:1271680. [PMID: 38895707 PMCID: PMC11185839 DOI: 10.3389/frdem.2023.1271680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Introduction Accurate prediction of the progression from mild cognitive impairment (MCI) to Alzheimer's disease (AD) within a certain time frame is crucial for appropriate therapeutic interventions. However, it is challenging to capture the dynamic changes in cognitive and functional abilities over time, resulting in limited predictive performance. Our study aimed to investigate whether incorporating longitudinal multimodal data with advanced analytical methods could improve the capability to predict the risk of progressing to AD. Methods This study included participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI), a large-scale multi-center longitudinal study. Three data modalities, including demographic variables, neuropsychological tests, and neuroimaging measures were considered. A Long Short-Term Memory (LSTM) model using data collected at five-time points (baseline, 6-month, 12-month, 18-month, and 24-month) was developed to predict the risk of progression from MCI to AD within two years from the index exam (the exam at 24-month). In contrast, a random forest model was developed to predict the risk of progression just based on the data collected at the index exam. Results The study included 347 participants with MCI at 24-month (age: mean 75, SD 7 years; 39.8% women) from ADNI, of whom 77 converted to AD over a 2-year follow-up period. The longitudinal LSTM model showed superior prediction performance of MCI-to-AD progression (AUC 0.93±0.06) compared to the random forest model (AUC 0.90±0.09). A similar pattern was also observed across different age groups. Discussion Our study suggests that the incorporation of longitudinal data can provide better predictive performance for 2-year MCI-to-AD progression risk than relying solely on cross-sectional data. Therefore, repeated or multiple times routine health surveillance of MCI patients are essential in the early detection and intervention of AD.
Collapse
Affiliation(s)
- Huitong Ding
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexander P Hamel
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mark Melkonyan
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ting F. A. Ang
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | | | - Rhoda Au
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Slone Epidemiology Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Departments of Neurology and Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
76
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
77
|
Machado-Fragua MD, Sabia S, Fayosse A, Hassen CB, van der Heide F, Kivimaki M, Singh-Manoux A. Is metabolic-healthy obesity associated with risk of dementia? An age-stratified analysis of the Whitehall II cohort study. BMC Med 2023; 21:436. [PMID: 37957712 PMCID: PMC10644649 DOI: 10.1186/s12916-023-03155-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Metabolically healthy obesity is hypothesized to be a benign condition but whether this is the case for dementia remains debated. We examined the role of age at assessment of metabolic-obesity phenotypes in associations with incident dementia. METHODS Obesity (body mass index ≥ 30 kg/m2) and poor metabolic health (≥ 2 of elevated serum triglycerides, low HDL-C, elevated blood pressure, and elevated serum fasting glucose) were used to define four metabolic-obesity phenotypes (metabolically healthy (MHNO) and unhealthy non-obesity (MUNO), metabolically healthy (MHO) and unhealthy obesity (MUO)) at < 60, 60 to < 70, and ≥ 70 years using 6 waves of data from the Whitehall II study and their associations with incident dementia was examined using Cox regression. RESULTS Analyses with exposures measured < 60, 60 to < 70, and ≥ 70 years involved 410 (5.8%), 379 (5.6%), and 262 (7.4%) incident dementia cases over a median follow-up of 20.8, 10.3, and 4.2 years respectively. In analyses of individual components, obesity before 60 years (HR 1.41, 95% CI: [1.08, 1.85]) but not at older ages was associated with dementia; unhealthy metabolic status when present < 60 years (HR 1.33, 95% CI: [1.08, 1.62]) and 60 to < 70 years (HR 1.32, 95% CI: [1.07, 1.62]) was associated with dementia. Compared to the metabolically healthy non-obesity group, the risk of dementia was higher in those with metabolically healthy obesity before 60 years (1.69; 95% CI: [1.16, 2.45]); this was not the case when metabolic-obesity phenotype was present at 60 to < 70 years or ≥ 70 years. Analyses at older ages were on smaller numbers due to death and drop-out but inverse probability weighting to account for missing data yielded similar results. CONCLUSIONS Individuals with metabolically healthy obesity before age 60 had a higher risk of incident dementia over a 27-year follow-up; the excess risk dissipates when metabolic health and obesity are measured after 70 years.
Collapse
Affiliation(s)
- Marcos D Machado-Fragua
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France.
| | - Séverine Sabia
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
- Faculty of Brain Sciences, University College London, London, UK
| | - Aurore Fayosse
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Céline Ben Hassen
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Frank van der Heide
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
| | - Mika Kivimaki
- Faculty of Brain Sciences, University College London, London, UK
| | - Archana Singh-Manoux
- Université Paris Cité, Inserm U1153, Epidemiology of Ageing and Neurodegenerative Diseases, Paris, France
- Faculty of Brain Sciences, University College London, London, UK
| |
Collapse
|
78
|
Haley AP, Clark AL, Duarte A. Lower Body Mass Index at Baseline Is Related to Steeper Cognitive Decline in the Alzheimer's Disease Neuroimaging Initiative Cohort. Psychosom Med 2023; 85:805-812. [PMID: 37594246 PMCID: PMC10662601 DOI: 10.1097/psy.0000000000001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Indexed: 08/19/2023]
Abstract
OBJECTIVE Midlife obesity is a risk factor for dementia, whereas obesity in older age may be protective of cognition, a phenomenon known as the "obesity paradox." The mechanisms underlying this phenomenon and the relationship between body mass index (BMI) and cognitive function over time remain unclear. METHODS In 1399 adults with and without mild cognitive impairment (median age 73.6 years) from the Alzheimer's Disease Neuroimaging Initiative, we modeled the effects of baseline BMI on within-person trajectories of cognitive decline using Latent Growth Curve Modeling. We also tested if the effects of BMI on cognitive decline are global or specific to memory, executive function, or language. RESULTS Higher baseline BMI was associated with better memory ( βBMI = 0.06, p < .05) and worse executive function ( βBMI = -0.05, p < .05) and not associated with language. Independent of baseline diagnosis, higher baseline BMI was associated with slower rate of decline in executive function, memory, and language ( βBMI = 0.13, 0.12, and 0.12, respectively; p < .01). Higher BMI was not associated with the intercept ( βBMI = 0.04, p = .059) or change ( βBMI = 0.04, p = .415) in a global cognitive factor. CONCLUSIONS We found that higher baseline BMI was associated with slower cognitive decline in participants with and without mild cognitive impairment diagnosis. Higher BMI in this context seems to be protective of cognitive function for people at risk for dementia. Our findings also support domain-specific effects of obesity on various cognitive functions rather than a final common pathway.
Collapse
|
79
|
Kim B, Kang Y, Mendelson FE, Hayes JM, Savelieff MG, Nagrath S, Feldman EL. Palmitate and glucose increase amyloid precursor protein in extracellular vesicles: Missing link between metabolic syndrome and Alzheimer's disease. J Extracell Vesicles 2023; 12:e12340. [PMID: 37898562 PMCID: PMC10613125 DOI: 10.1002/jev2.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 10/30/2023] Open
Abstract
The metabolic syndrome (MetS) and Alzheimer's disease share several pathological features, including insulin resistance, abnormal protein processing, mitochondrial dysfunction and elevated inflammation and oxidative stress. The MetS constitutes elevated fasting glucose, obesity, dyslipidaemia and hypertension and increases the risk of developing Alzheimer's disease, but the precise mechanism remains elusive. Insulin resistance, which develops from a diet rich in sugars and saturated fatty acids, such as palmitate, is shared by the MetS and Alzheimer's disease. Extracellular vesicles (EVs) are also a point of convergence, with altered dynamics in both the MetS and Alzheimer's disease. However, the role of palmitate- and glucose-induced insulin resistance in the brain and its potential link through EVs to Alzheimer's disease is unknown. We demonstrate that palmitate and high glucose induce insulin resistance and amyloid precursor protein phosphorylation in primary rat embryonic cortical neurons and human cortical stem cells. Palmitate also triggers insulin resistance in oligodendrocytes, the supportive glia of the brain. Palmitate and glucose enhance amyloid precursor protein secretion from cortical neurons via EVs, which induce tau phosphorylation when added to naïve neurons. Additionally, EVs from palmitate-treated oligodendrocytes enhance insulin resistance in recipient neurons. Overall, our findings suggest a novel theory underlying the increased risk of Alzheimer's disease in MetS mediated by EVs, which spread Alzheimer's pathology and insulin resistance.
Collapse
Affiliation(s)
- Bhumsoo Kim
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Yoon‐Tae Kang
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Faye E. Mendelson
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Sunitha Nagrath
- Department of Chemical Engineering and Biointerfaces InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
80
|
McWhinney SR, Abé C, Alda M, Benedetti F, Bøen E, del Mar Bonnin C, Borgers T, Brosch K, Canales-Rodríguez EJ, Cannon DM, Dannlowski U, Diaz-Zuluaga AM, Dietze LM, Elvsåshagen T, Eyler LT, Fullerton JM, Goikolea JM, Goltermann J, Grotegerd D, Haarman BCM, Hahn T, Howells FM, Ingvar M, Jahanshad N, Kircher TTJ, Krug A, Kuplicki RT, Landén M, Lemke H, Liberg B, Lopez-Jaramillo C, Malt UF, Martyn FM, Mazza E, McDonald C, McPhilemy G, Meier S, Meinert S, Meller T, Melloni EMT, Mitchell PB, Nabulsi L, Nenadic I, Opel N, Ophoff RA, Overs BJ, Pfarr JK, Pineda-Zapata JA, Pomarol-Clotet E, Raduà J, Repple J, Richter M, Ringwald KG, Roberts G, Ross A, Salvador R, Savitz J, Schmitt S, Schofield PR, Sim K, Stein DJ, Stein F, Temmingh HS, Thiel K, Thomopoulos SI, van Haren NEM, Vargas C, Vieta E, Vreeker A, Waltemate L, Yatham LN, Ching CRK, Andreassen OA, Thompson PM, Hajek T, for the ENIGMA Bipolar Disorder Working Group. Mega-analysis of association between obesity and cortical morphology in bipolar disorders: ENIGMA study in 2832 participants. Psychol Med 2023; 53:6743-6753. [PMID: 36846964 PMCID: PMC10600817 DOI: 10.1017/s0033291723000223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/05/2023] [Accepted: 01/19/2023] [Indexed: 02/28/2023]
Abstract
BACKGROUND Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.
Collapse
Affiliation(s)
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Francesco Benedetti
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Erlend Bøen
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Caterina del Mar Bonnin
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Tiana Borgers
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | | | - Dara M. Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ana M. Diaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | | | - Torbjørn Elvsåshagen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lisa T. Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific MIRECC, VA San Diego Healthcare, San Diego, CA, USA
| | - Janice M. Fullerton
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jose M. Goikolea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Janik Goltermann
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fleur M. Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Martin Ingvar
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tilo T. J. Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - Mikael Landén
- Department of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Lemke
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Benny Liberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Lopez-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Ulrik F. Malt
- Unit for Psychosomatics/CL Outpatient Clinic for Adults, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fiona M. Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Elena Mazza
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Sandra Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susanne Meinert
- Department of Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Elisa M. T. Melloni
- Vita-Salute San Raffaele University, Milan, Italy
- Division of Neuroscience, Psychiatry and Psychobiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Philip B. Mitchell
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Igor Nenadic
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
| | - Roel A. Ophoff
- UCLA Center for Neurobehavioral Genetics, Los Angeles, CA, USA
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Julian A. Pineda-Zapata
- Research Group, Instituto de Alta Tecnología Médica, Ayudas diagnósticas SURA, Medellin, Colombia
| | | | - Joaquim Raduà
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institute of Psychiartry, King's College Londen, London, UK
| | - Jonathan Repple
- Department of Psychiatry, University of Münster, Münster, Germany
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Maike Richter
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Kai G. Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Alex Ross
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
| | - Jonathan Savitz
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK, USA
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Peter R. Schofield
- Neuroscience Research Australia, Randwick, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dan J. Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Henk S. Temmingh
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katharina Thiel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Sophia I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Neeltje E. M. van Haren
- Department of Child and Adolescents Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cristian Vargas
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Annabel Vreeker
- Department of Child and Adolescents Psychiatry/Psychology, Erasmus MC Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Social and Behavioural Sciences Department of Psychology, Education & Child Studies Erasmus University, Rotterdam, The Netherlands
| | - Lena Waltemate
- Department of Psychiatry, University of Münster, Münster, Germany
| | | | - Christopher R. K. Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | | |
Collapse
|
81
|
Tashiro M, Yasuda N, Inoue M, Yamagishi K, Tsugane S, Sawada N. Body mass index, weight change in midlife, and dementia incidence: the Japan Public Health Center-based Prospective Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12507. [PMID: 38026757 PMCID: PMC10668007 DOI: 10.1002/dad2.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Insufficient evidence exists on the sex-specific associations of body mass index (BMI) and weight change through midlife with dementia incidence, especially in Asian populations. METHODS For 37,414 Japanese residents aged 40 to 59 years, BMIs at baseline (year 1990 or 1993) and 10-year follow-ups were obtained. Weight changes between baseline and 10-year follow-ups were determined. Disabling dementia incidence from 2006 to 2016 was ascertained using long-term care insurance (LTCI) certifications. Hazard ratios (HRs) were computed. RESULTS Increased dementia risk was observed with obesity at baseline and with underweight at 10-year follow-ups. Weight loss after baseline was at greater risk than weight gain. No sex difference was observed. DISCUSSION In both sexes, obesity in midlife increased the risk of developing dementia with increasing impacts of weight loss after midlife. A healthy body weight throughout adulthood is beneficial for dementia prevention. Highlights Obesity in midlife is a risk factor for incident dementia.Weight loss is a bigger risk factor than weight gain in later midlife.Association of BMI and weight change in midlife with dementia does not vary by sex.
Collapse
Affiliation(s)
- Miwa Tashiro
- Department of Public HealthKochi University Medical SchoolNankoku‐shiKochiJapan
| | - Nobufumi Yasuda
- Department of Public HealthKochi University Medical SchoolNankoku‐shiKochiJapan
| | - Manami Inoue
- Division of PreventionNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| | - Kazumasa Yamagishi
- Department of Public Health MedicineInstitute of Medicineand Health Services Research and Development CenterUniversity of TsukubaTsukuba‐shiIbarakiJapan
| | - Shoichiro Tsugane
- National Institute of Health and NutritionNational Institutes of Biomedical InnovationHealth and NutritionShinjyuku‐kuTokyoJapan
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| | - Norie Sawada
- Division of Cohort ResearchNational Cancer Center Institute for Cancer ControlChuou‐kuTokyoJapan
| |
Collapse
|
82
|
Loika Y, Loiko E, Culminskaya I, Kulminski AM. Exome-Wide Association Study Identified Clusters of Pleiotropic Genetic Associations with Alzheimer's Disease and Thirteen Cardiovascular Traits. Genes (Basel) 2023; 14:1834. [PMID: 37895183 PMCID: PMC10606283 DOI: 10.3390/genes14101834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) and cardiovascular traits might share underlying causes. We sought to identify clusters of cardiovascular traits that share genetic factors with AD. We conducted a univariate exome-wide association study and pair-wise pleiotropic analysis focused on AD and 16 cardiovascular traits-6 diseases and 10 cardio-metabolic risk factors-for 188,260 UK biobank participants. Our analysis pinpointed nine genetic markers in the APOE gene region and four loci mapped to the CDK11, OBP2B, TPM1, and SMARCA4 genes, which demonstrated associations with AD at p ≤ 5 × 10-4 and pleiotropic associations at p ≤ 5 × 10-8. Using hierarchical cluster analysis, we grouped the phenotypes from these pleiotropic associations into seven clusters. Lipids were divided into three clusters: low-density lipoprotein and total cholesterol, high-density lipoprotein cholesterol, and triglycerides. This split might differentiate the lipid-related mechanisms of AD. The clustering of body mass index (BMI) with weight but not height indicates that weight defines BMI-AD pleiotropy. The remaining two clusters included (i) coronary heart disease and myocardial infarction; and (ii) hypertension, diabetes mellitus (DM), systolic and diastolic blood pressure. We found that all AD protective alleles were associated with larger weight and higher DM risk. Three of the four (75%) clusters of traits, which were significantly correlated with AD, demonstrated antagonistic genetic heterogeneity, characterized by different directions of the genetic associations and trait correlations. Our findings suggest that shared genetic factors between AD and cardiovascular traits mostly affect them in an antagonistic manner.
Collapse
Affiliation(s)
- Yury Loika
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC 27708, USA; (E.L.); (I.C.); (A.M.K.)
| | | | | | | |
Collapse
|
83
|
Li N, Xue H, Li Y, Gao M, Yu M, An C, Wang C. Correlation of Obesity and Clinical Characteristics in Drug-Naive First-Episode Patients With Schizophrenia. Clin Neuropharmacol 2023; 46:186-191. [PMID: 37748001 DOI: 10.1097/wnf.0000000000000556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
OBJECTIVES This study was aimed at investigating the prevalence of obesity in drug-naive first-episode (DNFE) patients with schizophrenia and its association with metabolic parameters, psychopathological symptoms, and cognitive function. METHODS We collected general information on 411 DNFE schizophrenia patients and divided them into obese and nonobese groups according to body mass index (BMI). Glucolipid metabolic parameters of patients were collected. Positive and Negative Syndrome Scale was performed for assessing patients' psychopathological symptoms. Cognitive function was observed and evaluated in both groups. Pearson correlation analysis was applied to assess factors related to BMI, while we conducted multiple stepwise regression analysis for determining risk factors for obesity. RESULTS Obesity occurred in 60.34% of DNFE patients with schizophrenia, whereas the obese group had notably higher BMI value and waist-to-hip ratio than the nonobese group ( P < 0.05). Obese patients had markedly higher levels of blood glucose, insulin, apolipoprotein B, total triglycerides, low-density lipoprotein cholesterol, and total cholesterol versus nonobese patients ( P < 0.05). Besides, the disease severity and cognitive function were dramatically lower in the obese group. Results of multiple stepwise regression analysis demonstrated negative symptoms, low-density lipoprotein cholesterol, triglycerides, and blood glucose levels as the risk factors for comorbid obesity in DNFE patients with schizophrenia. CONCLUSIONS The detection rate of obesity was high in DNFE patients with schizophrenia, and there was an intrinsic association between obesity and glucolipid metabolism, clinical symptoms, and cognitive function among them. Our study will provide a theoretical foundation for the diagnosis of obesity in DNFE patients with schizophrenia and the development of effective early interventions.
Collapse
Affiliation(s)
- Na Li
- Department of Psychiatry, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
84
|
Shinohara M, Gheni G, Hitomi J, Bu G, Sato N. APOE genotypes modify the obesity paradox in dementia. J Neurol Neurosurg Psychiatry 2023; 94:670-680. [PMID: 37414536 PMCID: PMC10695687 DOI: 10.1136/jnnp-2022-331034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND While obesity in midlife is a risk factor for dementia, several studies suggested that obesity also protected against dementia, hence so-called obesity paradox. The current study aims to address the relationship between apolipoprotein E (APOE) genotype and obesity in dementia. METHODS Clinical and neuropathological records of the National Alzheimer's Coordinating Center (NACC) in the USA, which longitudinally followed approximately 20 000 subjects with different cognitive statues, APOE genotype and obesity states, were reviewed. RESULTS Obesity was associated with cognitive decline in early elderly cognitively normal individuals without APOE4, especially those with APOE2. Neuropathological analyses adjusted for dementia status showed that APOE2 carriers tended to have more microinfarcts and haemorrhages due to obesity. On the other hand, obesity was associated with a lower frequency of dementia and less cognitive impairment in individuals with mild cognitive impairment or dementia. Such trends were particularly strong in APOE4 carriers. Obesity was associated with fewer Alzheimer's pathologies in individuals with dementia. CONCLUSIONS Obesity may accelerate cognitive decline in middle to early elderly cognitive normal individuals without APOE4 likely by provoking vascular impairments. On the other hand, obesity may ease cognitive impairment in both individuals with dementia and individuals at the predementia stage, especially those with APOE4, through protecting against Alzheimer's pathologies. These results support that APOE genotype modifies the obesity paradox in dementia.
Collapse
Affiliation(s)
- Mitsuru Shinohara
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Aging Neurobiology, Osaka University, Suita, Osaka, Japan
| | - Ghupurjan Gheni
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Junichi Hitomi
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Naoyuki Sato
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Aging Neurobiology, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
85
|
Bjerkan J, Lancaster G, Meglič B, Kobal J, Crawford TJ, McClintock PVE, Stefanovska A. Aging affects the phase coherence between spontaneous oscillations in brain oxygenation and neural activity. Brain Res Bull 2023; 201:110704. [PMID: 37451471 DOI: 10.1016/j.brainresbull.2023.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The risk of neurodegenerative disorders increases with age, due to reduced vascular nutrition and impaired neural function. However, the interactions between cardiovascular dynamics and neural activity, and how these interactions evolve in healthy aging, are not well understood. Here, the interactions are studied by assessment of the phase coherence between spontaneous oscillations in cerebral oxygenation measured by fNIRS, the electrical activity of the brain measured by EEG, and cardiovascular functions extracted from ECG and respiration effort, all simultaneously recorded. Signals measured at rest in 21 younger participants (31.1 ± 6.9 years) and 24 older participants (64.9 ± 6.9 years) were analysed by wavelet transform, wavelet phase coherence and ridge extraction for frequencies between 0.007 and 4 Hz. Coherence between the neural and oxygenation oscillations at ∼ 0.1 Hz is significantly reduced in the older adults in 46/176 fNIRS-EEG probe combinations. This reduction in coherence cannot be accounted for in terms of reduced power, thus indicating that neurovascular interactions change with age. The approach presented promises a noninvasive means of evaluating the efficiency of the neurovascular unit in aging and disease.
Collapse
Affiliation(s)
- Juliane Bjerkan
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Gemma Lancaster
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom
| | - Bernard Meglič
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Jan Kobal
- University of Ljubljana Medical Centre, Department of Neurology, 1525, Ljubljana, Slovenia
| | - Trevor J Crawford
- Lancaster University, Department of Psychology, LA1 4YF, Lancaster, United Kingdom
| | | | - Aneta Stefanovska
- Lancaster University, Department of Physics, LA1 4YB, Lancaster, United Kingdom.
| |
Collapse
|
86
|
Hansen SB, Wang H. The shared role of cholesterol in neuronal and peripheral inflammation. Pharmacol Ther 2023; 249:108486. [PMID: 37390970 DOI: 10.1016/j.pharmthera.2023.108486] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
Neurodegeneration and its loss of cognitive function is associated with inflammation and an accumulation of lipids. In the periphery, cholesterol's uptake drives a major component of chronic inflammation. In this perspective, we describe the cellular and molecular roles of cholesterol in neuroinflammation and contrast them with those in the periphery. Incorporating shared mechanisms from the periphery, cholesterol emerges as a central signal originating in astrocytes and connecting inflammatory escalation in neurons and microglia. A cholesterol uptake pathway is proposed for neuroinflammation, and we speculate on the binding of cholesterol transport protein apolipoprotein E (apoE), including the Christchurch mutant (R136S), to cell surface receptors as a potential protective modality against uptake of astrocyte cholesterol and escalated neuroinflammation. Lastly, we discuss the molecular basis of cholesterol signaling through nanoscopic clustering and peripheral sources of cholesterol after opening of the blood brain barrier.
Collapse
Affiliation(s)
- Scott B Hansen
- Department of Molecular Medicine, UF Scripps, Jupiter, FL 33458, USA; Department of Neuroscience, UF Scripps, Jupiter, FL 33458, USA.
| | - Hao Wang
- The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
87
|
Khan MSH, Hefner M, Reddy A, Dhurandhar NV, Hegde V. E4orf1 improves adipose tissue-specific metabolic risk factors and indicators of cognition function in a mouse model of Alzheimer's disease. Nutr Diabetes 2023; 13:13. [PMID: 37573386 PMCID: PMC10423203 DOI: 10.1038/s41387-023-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/20/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023] Open
Abstract
OBJECTIVE Obesity, impaired glycemic control, and hepatic steatosis often coexist and are risk factors for developing dementia, and Alzheimer's disease (AD). We hypothesized that a therapeutic agent that improves glycemic control and steatosis may attenuate obesity-associated progression of dementia. We previously identified that adenoviral protein E4orf1 improves glycemic control and reduces hepatic steatosis despite obesity in mice. Here, we determined if this metabolic improvement by E4orf1 will ameliorate cognitive decline in a transgenic mouse model of AD. METHODS Fourteen- to twenty-month-old APP/PS1/E4orf1 and APP/PS1 (control) mice were fed a high-fat diet. Cognition was determined by Morris Water Maze (MWM). Systemic glycemic control and metabolic signaling changes in adipose tissue, liver, and brain were determined. RESULTS Compared to control, E4orf1 expression significantly improved glucose clearance, reduced endogenous insulin requirement and lowered body-fat, enhanced glucose and lipid metabolism in adipose tissue, and reduced de novo lipogenesis in the liver. In the brain, E4orf1 mice displayed significantly greater expression of genes involved in neurogenesis and amyloid-beta degradation and performed better in MWM testing. CONCLUSION This study opens-up the possibility of addressing glycemic control and steatosis for attenuating obesity-related cognitive decline. It also underscores the potential of E4orf1 for the purpose, which needs further investigations.
Collapse
Affiliation(s)
- Md Shahjalal Hossain Khan
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Marleigh Hefner
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Arubala Reddy
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Nikhil V Dhurandhar
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Vijay Hegde
- Obesity and Metabolic Health Laboratory, Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
88
|
Elias A, Padinjakara N, Lautenschlager NT. Effects of intermittent fasting on cognitive health and Alzheimer's disease. Nutr Rev 2023; 81:1225-1233. [PMID: 37043764 PMCID: PMC10413426 DOI: 10.1093/nutrit/nuad021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
OBJECTIVE Caloric restriction by intermittent fasting produces several metabolic changes, such as increased insulin sensitivity and use of ketone bodies as energy sources. In humans, intermittent fasting has been studied in hypertension, diabetes, and related conditions, but, to date, not as a strategy to reduce the risk of emergent dementia. In this scoping review, the relevance of intermittent fasting as a potential preventive intervention for Alzheimer's dementia is explored. BACKGROUND The beneficial effects of calorie restriction have been documented in animals and humans. Decreased oxidative stress damage and attenuated inflammatory responses are associated with intermittent fasting. These changes have a favorable impact on the vascular endothelium and stress-induced cellular adaptation. RESULTS Physiological alterations associated with fasting have profound implications for pathological mechanisms associated with dementias, particularly Alzheimer's disease. Compared with ad libitum feeding, caloric restriction in animals was associated with a reduction in β-amyloid accumulation, which is the cardinal pathological marker of Alzheimer's disease. Animal studies have demonstrated synaptic adaptations in the hippocampus and enhanced cognitive function after fasting, consistent with these theoretical frameworks. Furthermore, vascular dysfunction plays a crucial role in Alzheimer's disease pathology, and intermittent fasting promotes vascular health. CONCLUSIONS These observations lead to a hypothesis that intermittent fasting over the years will potentially reverse or delay the pathological process in Alzheimer's disease.
Collapse
Affiliation(s)
- Alby Elias
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| | - Noushad Padinjakara
- Department of Endocrinology and Metabolic Medicine, South Warwickshire University NHS Foundation Trust, Coventry, United Kingdom
| | - Nicola T Lautenschlager
- Academic Unit for Psychiatry of Old Age, Department of Psychiatry, The University of Melbourne, North-Western Mental Health, Melbourne Health, Victoria, Australia
| |
Collapse
|
89
|
Shi Y, Lin F, Li Y, Wang Y, Chen X, Meng F, Ye Q, Cai G. Association of pro-inflammatory diet with increased risk of all-cause dementia and Alzheimer's dementia: a prospective study of 166,377 UK Biobank participants. BMC Med 2023; 21:266. [PMID: 37480061 PMCID: PMC10362711 DOI: 10.1186/s12916-023-02940-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Increasing evidence suggests an association between pro-inflammatory diets and cognitive function. However, only a few studies based on small sample sizes have explored the association between pro-inflammatory diets and dementia using the dietary inflammatory index (DII). Additionally, the relationship between DII and different subtypes of dementia, such as Alzheimer's dementia and vascular dementia, remains largely unexplored. Given the changes in brain structure already observed in patients with dementia, we also investigated the association between DII and magnetic resonance imaging (MRI) measures of brain structure to provide some hints to elucidate the potential mechanisms between pro-inflammatory diet and cognitive decline. METHODS A total of 166,377 UK Biobank participants without dementia at baseline were analyzed. DII calculations were based on the information collected by the 24-h recall questionnaire. Brain structural anatomy and tissue-specific volumes were measured using brain MRI. Cox proportional hazards models, competing risk models, and restricted cubic spline were applied to assess the longitudinal associations. The generalized linear model was used to assess the association between DII and MRI measurements. RESULTS During a median follow-up time of 9.46 years, a total of 1372 participants developed dementia. The incidence of all-cause dementia increased by 4.6% for each additional unit of DII [hazard ratio (HR): 1.046]. Besides, DII displayed a "J-shaped" non-linear association with Alzheimer's dementia (Pnonlinear = 0.003). When DII was above 1.30, an increase in DII was significantly associated with an increased risk of Alzheimer's dementia (HR: 1.391, 95%CI: 1.085-1.784, P = 0.009). For brain MRI, the total volume of white matter hyperintensities increased with an increase in DII, whereas the volume of gray matter in the hippocampus decreased. CONCLUSIONS In this cohort study, higher DII was associated with a higher risk of all-cause dementia and Alzheimer's dementia. However, our findings suggested that the association with DII and vascular and frontotemporal dementia was not significant.
Collapse
Affiliation(s)
- Yisen Shi
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Fabin Lin
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Yueping Li
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Yingqing Wang
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Xiaochun Chen
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China
| | - Fangang Meng
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China.
| | - Qinyong Ye
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| | - Guoen Cai
- Department of Neurology, Center for Cognitive Neurology, Institute of Clinical Neurology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Institute of Geriatrics, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, 350001, China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350001, China.
| |
Collapse
|
90
|
Juul Rasmussen I, Frikke-Schmidt R. Modifiable cardiovascular risk factors and genetics for targeted prevention of dementia. Eur Heart J 2023; 44:2526-2543. [PMID: 37224508 PMCID: PMC10481783 DOI: 10.1093/eurheartj/ehad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/22/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Dementia is a major global challenge for health and social care in the 21st century. A third of individuals >65 years of age die with dementia, and worldwide incidence numbers are projected to be higher than 150 million by 2050. Dementia is, however, not an inevitable consequence of old age; 40% of dementia may theoretically be preventable. Alzheimer's disease (AD) accounts for approximately two-thirds of dementia cases and the major pathological hallmark of AD is accumulation of amyloid-β. Nevertheless, the exact pathological mechanisms of AD remain unknown. Cardiovascular disease and dementia share several risk factors and dementia often coexists with cerebrovascular disease. In a public health perspective, prevention is crucial, and it is suggested that a 10% reduction in prevalence of cardiovascular risk factors could prevent more than nine million dementia cases worldwide by 2050. Yet this assumes causality between cardiovascular risk factors and dementia and adherence to the interventions over decades for a large number of individuals. Using genome-wide association studies, the entire genome can be scanned for disease/trait associated loci in a hypothesis-free manner, and the compiled genetic information is not only useful for pinpointing novel pathogenic pathways but also for risk assessments. This enables identification of individuals at high risk, who likely will benefit the most from a targeted intervention. Further optimization of the risk stratification can be done by adding cardiovascular risk factors. Additional studies are, however, highly needed to elucidate dementia pathogenesis and potential shared causal risk factors between cardiovascular disease and dementia.
Collapse
Affiliation(s)
- Ida Juul Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
91
|
Song ZH, Liu J, Wang XF, Simó R, Zhang C, Zhou JB. Impact of ectopic fat on brain structure and cognitive function:A systematic review and meta-analysis from observational studies. Front Neuroendocrinol 2023:101082. [PMID: 37414372 DOI: 10.1016/j.yfrne.2023.101082] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Ectopic fat, defined as a specific organ or compartment with the accumulation of fat tissue surrounding organs, is highly associated with obesity which has been identified as a risk factor for cognitive impairment and dementia. However, the relationship between ectopic fat and changes in brain structure or cognition is yet to be elucidated. Here, we investigated the effects of ectopic fat on brain structure and cognitive function via systemic review and meta-analysis. A total of 22 studies were included, encompassing 1,003,593 participants-obtained from electronic databases up to July 9, 2022. We found ectopic that fat was associated with decreased total brain volume and increased lateral ventricle volume. In addition, ectopic was associated with decreased cognitive scores and negatively correlated with cognitive function. More specifically, dementia development was correlated with increased levels of visceral fat. Overall, our data suggest that increased ectopic fat is associated with prominent structural changes in the brain and cognitive decline, an effect driven mainly by increases in visceral fat, while subcutaneous fat may be protective. Our results suggest that patients with increased visceral fat are at risk of developing cognitive impairment and, therefore, represent a subset of population in whom appropriate and timely preventive measures could be implemented.
Collapse
Affiliation(s)
- Zhi-Hui Song
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jing Liu
- Department of Pharmacy, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, People's Republic of China
| | - Xiao-Feng Wang
- Department of Clinical Pharmacy, Xilingol Mongolian Hospital, Xilinhot, Inner Mongolia Autonomous Region, People's Republic of China
| | - Rafael Simó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM). Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Endocrinology and Nutrition Department. Hospital Universitari Vall d'Hebron. Diabetes and Metabolism Research Unit, Vall d'Hebron Institut de Recerca (VHIR). Universitat Autònoma de Barcelona. Passeig de la Vall d'Hebron, 119. 08035 Barcelona, Spain
| | - Chao Zhang
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Jian-Bo Zhou
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, People's Republic of China.
| |
Collapse
|
92
|
Hwang PH, Ang TFA, De Anda-Duran I, Liu X, Liu Y, Gurnani A, Mez J, Auerbach S, Joshi P, Yuan J, Devine S, Au R, Liu C. Examination of potentially modifiable dementia risk factors across the adult life course: The Framingham Heart Study. Alzheimers Dement 2023; 19:2975-2983. [PMID: 36656649 PMCID: PMC10354206 DOI: 10.1002/alz.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023]
Abstract
INTRODUCTION We examined for associations between potentially modifiable risk factors across the adult life course and incident dementia. METHODS Participants from the Framingham Heart Study were included (n = 4015). Potential modifiable risk factors included education, alcohol intake, smoking, body mass index (BMI), physical activity, social network, diabetes, and hypertension. Cox models were used to examine associations between each factor and incident dementia, stratified by early adult life (33-44 years), midlife (45-65 years), and late life (66-80 years). RESULTS Increased dementia risk was associated with diabetes (hazard ratio [HR] = 1.62; 95% confidence interval [CI] = 1.07-2.46) and physical inactivity (HR = 1.57; 95% CI = 1.12-2.20) in midlife, and with obesity (HR = 1.76; 95% CI = 1.08-2.87) in late life. Having multiple potential modifiable risk factors in midlife and late life was associated with greater risk. DISCUSSION Potentially modifiable risk factors individually have limited impact on dementia risk in this population across the adult life course, although in combination they may have a synergistic effect. HIGHLIGHTS Diabetes and physical inactivity in midlife is associated with increased dementia risk. Obesity in late life is associated with increased dementia risk. Having more potentially modifiable risk factors in midlife and late life is associated with greater dementia risk.
Collapse
Affiliation(s)
- Phillip H. Hwang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ting Fang Alvin Ang
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Slone Epidemiology Center, Boston, MA, USA
| | - Ileana De Anda-Duran
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Xue Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Yulin Liu
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Ashita Gurnani
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Jesse Mez
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Sanford Auerbach
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Prajakta Joshi
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of General Dentistry, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, USA
| | - Jing Yuan
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Sherral Devine
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Rhoda Au
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
- Slone Epidemiology Center, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Alzheimer’s Disease Research Center, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Chunyu Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| |
Collapse
|
93
|
Boccara E, Golan S, Beeri MS. The association between regional adiposity, cognitive function, and dementia-related brain changes: a systematic review. Front Med (Lausanne) 2023; 10:1160426. [PMID: 37457589 PMCID: PMC10349176 DOI: 10.3389/fmed.2023.1160426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Background Adiposity has been previously associated with cognitive impairment and Alzheimer's disease and related disorders (ADRD). Body mass index (BMI) is the most common measure of global adiposity, but inconsistent results were found since it is a global measurement. BMI does not represent regional fat distribution which differs between sexes, race, and age. Regional fat distribution may contribute differently to cognitive decline and Alzheimer's disease (AD)-related brain changes. Fat-specific targeted therapies could lead to personalized improvement of cognition. The goal of this systematic review is to explore whether regional fat depots, rather than central obesity, should be used to understand the mechanism underlying the association between adiposity and brain. Methods This systematic review included 33 studies in the English language, conducted in humans aged 18 years and over with assessment of regional adiposity, cognitive function, dementia, and brain measures. We included only studies that have assessed regional adiposity using imaging technics and excluded studies that were review articles, abstract only or letters to editor. Studies on children and adolescents, animal studies, and studies of patients with gastrointestinal diseases were excluded. PubMed, PsychInfo and web of science were used as electronic databases for literature search until November 2022. Results Based on the currently available literature, the findings suggest that different regional fat depots are likely associated with increased risk of cognitive impairment, brain changes and dementia, especially AD. However, different regional fat depots can have different cognitive outcomes and affect the brain differently. Visceral adipose tissue (VAT) was the most studied regional fat, along with liver fat through non-alcoholic fatty liver disease (NAFLD). Pancreatic fat was the least studied regional fat. Conclusion Regional adiposity, which is modifiable, may explain discrepancies in associations of global adiposity, brain, and cognition. Specific regional fat depots lead to abnormal secretion of adipose factors which in turn may penetrate the blood brain barrier leading to brain damage and to cognitive decline.
Collapse
Affiliation(s)
- Ethel Boccara
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
| | - Sapir Golan
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel HaShomer, Israel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
94
|
Seidel F, Fluiter K, Kleemann R, Worms N, van Nieuwkoop A, Caspers MPM, Grigoriadis N, Kiliaan AJ, Baas F, Michailidou I, Morrison MC. Ldlr-/-.Leiden mice develop neurodegeneration, age-dependent astrogliosis and obesity-induced changes in microglia immunophenotype which are partly reversed by complement component 5 neutralizing antibody. Front Cell Neurosci 2023; 17:1205261. [PMID: 37457817 PMCID: PMC10346859 DOI: 10.3389/fncel.2023.1205261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Obesity has been linked to vascular dysfunction, cognitive impairment and neurodegenerative diseases. However, experimental models that recapitulate brain pathology in relation to obesity and vascular dysfunction are still lacking. Methods In this study we performed the histological and histochemical characterization of brains from Ldlr-/-.Leiden mice, an established model for obesity and associated vascular disease. First, HFD-fed 18 week-old and 50 week-old Ldlr-/-.Leiden male mice were compared with age-matched C57BL/6J mice. We then assessed the effect of high-fat diet (HFD)-induced obesity on brain pathology in Ldlr-/-.Leiden mice and tested whether a treatment with an anti-complement component 5 antibody, a terminal complement pathway inhibitor recently shown to reduce vascular disease, can attenuate neurodegeneration and neuroinflammation. Histological analyses were complemented with Next Generation Sequencing (NGS) analyses of the hippocampus to unravel molecular pathways underlying brain histopathology. Results We show that chow-fed Ldlr-/-.Leiden mice have more severe neurodegeneration and show an age-dependent astrogliosis that is not observed in age-matched C57BL/6J controls. This was substantiated by pathway enrichment analysis using the NGS data which showed that oxidative phosphorylation, EIF2 signaling and mitochondrial dysfunction pathways, all associated with neurodegeneration, were significantly altered in the hippocampus of Ldlr-/-.Leiden mice compared with C57BL/6J controls. Obesity-inducing HFD-feeding did not aggravate neurodegeneration and astrogliosis in Ldlr-/-.Leiden mice. However, brains from HFD-fed Ldlr-/-.Leiden mice showed reduced IBA-1 immunoreactivity and increased CD68 immunoreactivity compared with chow-fed Ldlr-/-.Leiden mice, indicating alteration of microglial immunophenotype by HFD feeding. The systemic administration of an anti-C5 treatment partially restored the HFD effect on microglial immunophenotype. In addition, NGS data of hippocampi from Ldlr-/-.Leiden mice showed that HFD feeding affected multiple molecular pathways relative to chow-fed controls: HFD notably inactivated synaptogenesis and activated neuroinflammation pathways. The anti-C5 treatment restored the HFD-induced effect on molecular pathways to a large extent. Conclusion This study shows that the Ldlr-/-.Leiden mouse model is suitable to study brain histopathology and associated biological processes in a context of obesity and provides evidence of the potential therapeutic value of anti-complement therapy against obesity-induced neuroinflammation.
Collapse
Affiliation(s)
- Florine Seidel
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nicole Worms
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Anita van Nieuwkoop
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Martien P. M. Caspers
- Department of Microbiology and Systems Biology, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Preclinical Imaging Center (PRIME), Radboud Alzheimer Center, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Iliana Michailidou
- Laboratory of Experimental Neurology and Neuroimmunology and the Multiple Sclerosis Center, 2 Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Martine C. Morrison
- Department of Metabolic Health Research, Netherlands Organisation for Applied Scientific Research (TNO), Leiden, Netherlands
| |
Collapse
|
95
|
Crane B, Nichols E, Carlson M, Deal J, Gross A. Body Mass Index and Cognition: Associations Across
Mid- to Late Life and Gender Differences. J Gerontol A Biol Sci Med Sci 2023; 78:988-996. [PMID: 36638277 PMCID: PMC10235201 DOI: 10.1093/gerona/glad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Higher mid-life body mass index (BMI) is associated with lower late-life cognition. Associations between later-life BMI and cognition are less consistent; evidence suggests reverse causation may play a role. We aimed to characterize associations between BMI and cognition across a wide age range during mid- to late life (55-85 years) and examine whether associations vary by gender. METHODS We used data from the Health and Retirement Study (HRS) (N = 39,153) to examine the association between BMI and 3 cognitive outcomes: cognitive level, cognitive decline, and cognitive impairment. We used a series of linear regression, mixed effects regression, and logistic regression models, adjusting for potential confounders. RESULTS Higher BMI before age 65 (midlife) was associated with lower cognitive performance, faster rates of cognitive decline, and higher odds of cognitive impairment in late life. Averaging across analyses assessing associations between BMI measured before age 60 and late-life cognition, a 5-unit higher level of BMI was associated with a 0.26 point lower cognitive score. Beyond age 65, associations flipped, and higher BMI was associated with better late-life cognitive outcomes. Associations in both directions were stronger in women. Excluding those with BMI loss attenuated findings among women in older ages, supporting the reverse causation hypothesis. CONCLUSIONS In this sample, age 65 represented a critical turning point between mid- and late life for the association between BMI and cognition, which has important implications for recruitment strategies for studies focused on risk factors for late-life cognitive outcomes. Evidence of gender differences raises the need to further investigate plausible mechanisms.
Collapse
Affiliation(s)
- Breanna M Crane
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Emma Nichols
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Michelle C Carlson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alden L Gross
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
96
|
Intzandt B, Sanami S, Huck J, Villeneuve S, Bherer L, Gauthier CJ. Sex-specific relationships between obesity, physical activity, and gray and white matter volume in cognitively unimpaired older adults. GeroScience 2023; 45:1869-1888. [PMID: 36781598 PMCID: PMC10400512 DOI: 10.1007/s11357-023-00734-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Independently, obesity and physical activity (PA) influence cerebral structure in aging, yet their interaction has not been investigated. We examined sex differences in the relationships among PA, obesity, and cerebral structure in aging with 340 participants who completed magnetic resonance imaging (MRI) acquisition to quantify grey matter volume (GMV) and white matter volume (WMV). Height and weight were measured to calculate body mass index (BMI). A PA questionnaire was used to estimate weekly Metabolic Equivalents. The relationships between BMI, PA, and their interaction on GMV Regions of Interest (ROIs) and WMV ROIs were examined. Increased BMI was associated with higher GMV in females, an inverse U relationship was found between PA and GMV in females, and the interaction indicated that regardless of BMI greater PA was associated with enhanced GMV. Males demonstrated an inverse U shape between BMI and GMV, and in males with high PA and had normal weight demonstrated greater GMV than normal weight low PA revealed by the interaction. WMV ROIs had a linear relationship with moderate PA in females, whereas in males, increased BMI was associated with lower WMV as well as a positive relationship with moderate PA and WMV. Males and females have unique relationships among GMV, PA and BMI, suggesting sex-aggregated analyses may lead to biased or non-significant results. These results suggest higher BMI, and PA are associated with increased GMV in females, uniquely different from males, highlighting the importance of sex-disaggregated models. Future work should include other imaging parameters, such as perfusion, to identify if these differences co-occur in the same regions as GMV.
Collapse
Affiliation(s)
- Brittany Intzandt
- School of Graduate Studies, Concordia University, Montreal, H3G 1N1 Canada
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
| | - Safa Sanami
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Julia Huck
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
| | - Sylvia Villeneuve
- Douglas Mental Health University Institute, Montreal, H4H 1R3 Canada
- STOP-AD Centre, Montreal Canada, Montreal, H4H 1R3 Canada
- Department of Psychiatry, Faculty of Medicine, McGill University, H3A 1Y2 Montreal Canada, Montreal, Canada
| | - Louis Bherer
- Centre de Recherche de L’Institut Universitaire de Gériatrie de Montréal, Montréal, H3W 1W6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
| | - Claudine J. Gauthier
- PERFORM Centre, Concordia University, Montreal, H4B 1R6 Canada
- Centre de Recherche de L’Institut de Cardiologie de Montréal, Montréal, H1T 1N6 Canada
- Department of Physics, Concordia University, Montreal, H4B 1R6 Canada
- Département de Médecine, Université de Montréal, Montreal, H3T 1J4 Canada
- Department of Physics, Concordia University, Montreal, H3G 1M8 Canada
| |
Collapse
|
97
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
98
|
Valsdóttir V, Magnúsdóttir BB, Gylfason HF, Chang M, Aspelund T, Gudnason V, Launer LJ, Jónsdóttir MK. Exposure factors associated with dementia among older adults in Iceland: the AGES-Reykjavik study. GeroScience 2023:10.1007/s11357-023-00804-7. [PMID: 37160657 PMCID: PMC10400491 DOI: 10.1007/s11357-023-00804-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
The study aimed to assess whether factors related to cognitive performance were associated with the development of dementia. Additionally, the study aimed to establish whether cognitive performance at baseline or change in cognition between baseline and follow-up (five-year period) had a stronger association with whether an individual would fulfill a dementia criterion at follow-up. The data was collected from 2002 to 2011. Logistic regression was applied to the AGES-Reykjavik Study epidemiological data. The analysis, which builds upon previous data analyses of the same dataset, included 1,491 participants between the ages of 66 and 90. All those included were considered to have normal cognition at baseline; 8.2% (n = 123) of them fulfilled a dementia criterion at follow-up five years later. The study's results indicated that being high on cognitive reserve factors reduced the risk of developing dementia. Compared to other known dementia risk factors, cognitive reserve factors (education level, participation in leisure activities, and self-reported health) were more likely than others to have an association with dementia. Additionally, the study's findings showed that cognitive performance at baseline, rather than change in cognition between baseline and follow-up five years later, had a stronger association with dementia at the follow-up assessment. Together, these findings support the notion that promoting high cognitive reserve throughout the lifespan and reaching high cognitive performance is important in reducing dementia risk.
Collapse
Affiliation(s)
- Vaka Valsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102, Reykjavik, Iceland.
- RHLÖ - Icelandic Gerontological Research Center, Landspítali University Hospital, Reykjavik, Iceland.
| | - Brynja Björk Magnúsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102, Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Milan Chang
- RHLÖ - Icelandic Gerontological Research Center, Landspítali University Hospital, Reykjavik, Iceland
| | - Thor Aspelund
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Icelandic Heart Association, Kopavogur, Iceland
| | - Vilmundur Gudnason
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- The Icelandic Heart Association, Kopavogur, Iceland
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute On Aging, National Institutes of Health (NIH), Bethesda, MD, USA
| | - María K Jónsdóttir
- Department of Psychology, Reykjavik University, Menntavegur 1, 102, Reykjavik, Iceland
- Mental Health Services, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
99
|
Xu S, Ren Y, Liu R, Li Y, Hou T, Wang Y, Wang X, Wang L, Monastero R, Du Y, Cong L, Qiu C. Prevalence and Progression of Subjective Cognitive Decline Among Rural Chinese Older Adults: A Population-Based Study. J Alzheimers Dis 2023:JAD221280. [PMID: 37182880 DOI: 10.3233/jad-221280] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Few community-based studies have examined occurrence and progression of subjective cognitive decline (SCD). OBJECTIVE To investigate prevalence and progression of SCD among rural-dwelling Chinese elderly people. METHODS This cohort study included 2,488 cognitively unimpaired adults (age≥65 years) who were examined at baseline (2014-2015) and followed in 2018. Demographic, epidemiological, clinical, and neuropsychological data were collected via in-person interviews and clinical examinations following a structured questionnaire. At baseline, SCD was assessed using the self-rated Ascertain Dementia 8-item Questionnaire. At follow-up, Alzheimer's disease (AD) and vascular dementia (VaD) were clinically diagnosed following the international criteria. Data were analyzed using logistic regression models. RESULTS The prevalence of SCD was 40.07%. SCD at baseline was associated with the multivariable-adjusted odds ratio (OR) of 1.51 (95% confidence interval 1.10-2.07) for incident cognitive impairment, no dementia (CIND) and 3.11 (1.64-5.93) for incident AD. Among people with SCD at baseline, the multivariable-adjusted OR of incident CIND was 0.55(0.32-0.96) for hyperlipidemia; the multivariable-adjusted OR of incident AD was 1.21 (1.14-1.30) for older age, 0.32 (0.12-0.88) for high education, 2.60 (1.11-6.08) for carrying APOEɛ4 allele, and 0.34 (0.13-0.86) for high social support, whereas the multivariable-adjusted OR of incident VaD was 6.30 (1.71-23.18) for obesity. CONCLUSION SCD affects over 40% of rural-dwelling cognitively unimpaired older adults in China. SCD is associated with accelerated progression to CIND and AD. Older age, lack of school education, APOEɛ4 allele, and low social support are associated with an increased risk of progression from SCD to AD, whereas obesity is related to accelerated progression to VaD.
Collapse
Affiliation(s)
- Shan Xu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, The First Hospital of Tsinghua University, Beijing, P. R. China
| | - Yifei Ren
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Rui Liu
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Yuanjing Li
- Department of Neurobiology, Aging Research Center and Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Tingting Hou
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Xiang Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Lidan Wang
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
| | - Roberto Monastero
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P. R. China
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
- Shandong Provincial Clinical Research Center for Geriatric Neurological Diseases, Jinan, Shandong, P. R. China
| | - Chengxuan Qiu
- Department of Neurobiology, Aging Research Center and Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Department of Neurology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| |
Collapse
|
100
|
Ko Y, Kim HE, Park JY, Kim JJ, Cho J, Oh J. Relationship between body mass index and risk of delirium in an intensive care unit. Arch Gerontol Geriatr 2023; 108:104921. [PMID: 36603359 DOI: 10.1016/j.archger.2023.104921] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Delirium in the intensive care unit (ICU) is a common and critical condition that leads to poor prognosis in older patients, but the association between body mass index (BMI) and the incidence of delirium remains unclear. METHODS We retrospectively analyzed 5,622 patients admitted to the ICU of a tertiary referral hospital between 2013 and 2022. We collected sociodemographic data, vital signs, laboratory results, and delirium scale scores. We subdivided the patients into four categories: underweight (<18.5 kg/m2), normal weight (18.5-22.9 kg/m2), overweight (23-24.9 kg/m2), and obese (>25 kg/m2). The primary outcome was the incidence of delirium according to the BMI categories. We performed multivariable logistic regression analysis, adjusted for sex, age, past smoking and alcohol history, benzodiazepine use, and laboratory abnormalities. RESULTS Among the 5,622 patients in the ICU (mean age, 72.9 years; male, 60.1%; mean BMI, 24.2 kg/m2), the incidence of delirium was 19.0% (1,069 patients). The mean modified incidence of delirium was higher among underweight patients (odds ratio [OR]=1.51, confidence interval [CI]=1.07-2.12, p = 0.02) than among normal-weight patients. Overweight and obese status were not independently associated with delirium (OR=0.90, CI=0.70-1.17, p = 0.43; OR= 0.97; CI=0.77-1.21, p = 0.78, respectively). The area under the receiver-operating characteristic curve of the multivariable logistic regression model was 0.71 (95% CI=0.69-0.73). CONCLUSIONS Underweight status is an independent risk factor for delirium in the ICU. Additional caution is required when evaluating underweight patients for delirium. Obese or overweight status are not associated with delirium, providing evidence for the obesity paradox.
Collapse
Affiliation(s)
- Yujin Ko
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hesun Erin Kim
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jin Young Park
- Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; Department of Psychiatry, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin 16995, Korea
| | - Jae-Jin Kim
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jaehwa Cho
- Department of Pulmonary and Critical Care Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
| | - Jooyoung Oh
- Department of Psychiatry, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea; Institute of Behavioral Sciences in Medicine, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|