51
|
Carpp LN, Ciufo LF, Shanks SG, Boyd A, Bryant NJ. The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes. ACTA ACUST UNITED AC 2006; 173:927-36. [PMID: 16769821 PMCID: PMC3215948 DOI: 10.1083/jcb.200512024] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sec1p/Munc18 (SM) proteins are essential for SNARE-mediated membrane trafficking. The formulation of unifying hypotheses for the function of the SM protein family has been hampered by the observation that two of its members bind their cognate syntaxins (Sxs) in strikingly different ways. The SM protein Vps45p binds its Sx Tlg2p in a manner analogous to that captured by the Sly1p–Sed5p crystal structure, whereby the NH2-terminal peptide of the Sx inserts into a hydrophobic pocket on the outer face of domain I of the SM protein. In this study, we report that although this mode of interaction is critical for the binding of Vps45p to Tlg2p, the SM protein also binds Tlg2p-containing SNARE complexes via a second mode that involves neither the NH2 terminus of Tlg2p nor the region of Vps45p that facilitates this interaction. Our findings point to the possibility that SM proteins interact with their cognate SNARE proteins through distinct mechanisms at different stages in the SNARE assembly/disassembly cycle.
Collapse
Affiliation(s)
- Lindsay N Carpp
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
52
|
Kakimoto M, Kobayashi A, Fukuda R, Ono Y, Ono Y, Ohta A, Yoshimura E. Genome-wide screening of aluminum tolerance in Saccharomyces cerevisiae. Biometals 2006; 18:467-74. [PMID: 16333747 DOI: 10.1007/s10534-005-4663-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2004] [Accepted: 03/29/2005] [Indexed: 11/27/2022]
Abstract
Genome-wide screening has identified 37 Al-tolerance genes in Saccharomyces cerevisiae. These genes can be roughly categorised into three groups on the basis of function, i.e., genes related to vesicle transport processes, signal transduction pathways, and protein mannosylation. The largest group is composed of genes related to vesicle transport processes; severe Al sensitivity was found in yeast strains lacking these genes. The retrograde transport of endosome-derived vesicles back to the Golgi apparatus is an important factor in determining the Al tolerance of the vesicle transport system. The PKC1-MAPK cascade signalling pathway is important in the Al tolerance of signal transduction. The lack of the gene implicated in this process leads to weakened cell wall architecture, rendering the yeast Al-sensitive. Alternatively, Al might attack the cell wall and/or plasma membrane, and, as signalling is prevented in cells devoid of the genes related to signalling processes, the cells may be unable to alleviate the damage. The genes for protein mannosylation are also associated with Al tolerance, demonstrating the importance of cell wall architecture. These genes are involved in cell integrity processes.
Collapse
Affiliation(s)
- Masayuki Kakimoto
- Department of Applied Biological Chemistry, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
53
|
Wagner MC, Molnar EE, Molitoris BA, Goebl MG. Loss of the homotypic fusion and vacuole protein sorting or golgi-associated retrograde protein vesicle tethering complexes results in gentamicin sensitivity in the yeast Saccharomyces cerevisiae. Antimicrob Agents Chemother 2006; 50:587-95. [PMID: 16436714 PMCID: PMC1366904 DOI: 10.1128/aac.50.2.587-595.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gentamicin continues to be a primary antibiotic against gram-negative infections. Unfortunately, associated nephro- and ototoxicity limit its use. Our previous mammalian studies showed that gentamicin is trafficked to the endoplasmic reticulum in a retrograde manner and subsequently released into the cytosol. To better dissect the mechanism through which gentamicin induces toxicity, we have chosen to study its toxicity using the simple eukaryote Saccharomyces cerevisiae. A recent screen of the yeast deletion library identified multiple gentamicin-sensitive strains, many of which participate in intracellular trafficking. Our approach was to evaluate gentamicin sensitivity under logarithmic growth conditions. By quantifying growth inhibition in the presence of gentamicin, we determined that several of the sensitive strains were part of the Golgi-associated retrograde protein (GARP) and homotypic fusion and vacuole protein sorting (HOPS) complexes. Further evaluation of their other components showed that the deletion of any GARP member resulted in gentamicin-hypersensitive strains, while the deletion of other HOPS members resulted in less gentamicin sensitivity. Other genes whose deletion resulted in gentamicin hypersensitivity included ZUO1, SAC1, and NHX1. Finally, we utilized a Texas Red gentamicin conjugate to characterize gentamicin uptake and localization in both gentamicin-sensitive and -insensitive strains. These studies were consistent with our mammalian studies, suggesting that gentamicin toxicity in yeast results from alterations to intracellular trafficking pathways. The identification of genes whose absence results in gentamicin toxicity will help target specific pathways and mechanisms that contribute to gentamicin toxicity.
Collapse
Affiliation(s)
- Mark C Wagner
- Department of Medicine, Division of Nephrology, and the Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
54
|
Castillo-Flores A, Weinberger A, Robinson M, Gerst JE. Mso1 Is a Novel Component of the Yeast Exocytic SNARE Complex. J Biol Chem 2005; 280:34033-41. [PMID: 16087665 DOI: 10.1074/jbc.m507142200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast exocytic SNARE complex consists of one molecule each of the Sso1/2 target SNAREs, Snc1/2 vesicular SNAREs, and the Sec9 target SNARE, which form a fusion complex that is conserved in evolution. Another protein, Sec1, binds to the SNARE complex to facilitate assembly. We show that Mso1, a Sec1-interacting protein, also binds to the SNARE complex and plays a role in mediating Sec1 functions. Like Sec1, Mso1 bound to SNAREs in cells containing SNARE complexes (i.e. wild-type, sec1-1, and sec18-1 cells), but not in cells in which complex formation is inhibited (i.e. sec4-8 cells). Nevertheless, Mso1 remained associated with Sec1 even in sec4-8 cells, indicating that they act as a pair. Mso1 localized primarily to the plasma membrane of the bud when SNARE complex formation was not impaired but was mostly in the cytoplasm when assembly was prevented. Genetic studies suggest that Mso1 enhances Sec1 function while attenuating Sec4 GTPase function. This dual action may impart temporal regulation between Sec4 turnoff and Sec1-mediated SNARE assembly. Notably, a small region at the C terminus of Mso1 is conserved in the mammalian Munc13/Mint proteins and is necessary for proper membrane localization. Overexpression of Mso1 lacking this domain (Mso1-(1-193)) inhibited the growth of cells bearing an attenuated Sec4 GTPase. These results suggest that Mso1 is a component of the exocytic SNARE complex and a possible ortholog of the Munc13/Mint proteins.
Collapse
|
55
|
Toonen RFG, de Vries KJ, Zalm R, Südhof TC, Verhage M. Munc18-1 stabilizes syntaxin 1, but is not essential for syntaxin 1 targeting and SNARE complex formation. J Neurochem 2005; 93:1393-400. [PMID: 15935055 DOI: 10.1111/j.1471-4159.2005.03128.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Munc18-1, a member of the Sec1/Munc18 (SM) protein family, is essential for synaptic vesicle exocytosis. Munc18-1 binds tightly to the SNARE protein syntaxin 1, but the physiological significance and functional role of this interaction remain unclear. Here we show that syntaxin 1 levels are reduced by 70% in munc18-1 knockout mice. Pulse-chase analysis in transfected HEK293 cells revealed that Munc18-1 directly promotes the stability of syntaxin 1, consistent with a chaperone function. However, the residual syntaxin 1 in munc18-1 knockout mice is still correctly targeted to synapses and efficiently forms SDS-resistant SNARE complexes, demonstrating that Munc18-1 is not required for syntaxin 1 function as such. These data demonstrate that the Munc18-1 interaction with syntaxin 1 is physiologically important, but does not represent a classical chaperone-substrate relationship. Instead, the presence of SNARE complexes in the absence of membrane fusion in munc18-1 knockout mice indicates that Munc18-1 either controls the spatially correct assembly of core complexes for SNARE-dependent fusion, or acts as a direct component of the fusion machinery itself.
Collapse
Affiliation(s)
- Ruud F G Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | | |
Collapse
|
56
|
Bowers K, Stevens TH. Protein transport from the late Golgi to the vacuole in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:438-54. [PMID: 15913810 DOI: 10.1016/j.bbamcr.2005.04.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Revised: 04/15/2005] [Accepted: 04/19/2005] [Indexed: 10/25/2022]
Abstract
The late Golgi compartment is a major protein sorting station in the cell. Secreted proteins, cell surface proteins, and proteins destined for endosomes or lysosomes must be sorted from one another at this compartment and targeted to their correct destinations. The molecular details of protein trafficking pathways from the late Golgi to the endosomal system are becoming increasingly well understood due in part to information obtained by genetic analysis of yeast. It is now clear that proteins identified in yeast have functional homologues (orthologues) in higher organisms. We will review the molecular mechanisms of protein targeting from the late Golgi to endosomes and to the vacuole (the equivalent of the mammalian lysosome) of the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Katherine Bowers
- Cambridge Institute for Medical Research and Department of Clinical, Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2XY, UK
| | | |
Collapse
|
57
|
Rickman C, Davletov B. Arachidonic Acid Allows SNARE Complex Formation in the Presence of Munc18. ACTA ACUST UNITED AC 2005; 12:545-53. [PMID: 15911375 DOI: 10.1016/j.chembiol.2005.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 02/21/2005] [Accepted: 03/09/2005] [Indexed: 11/25/2022]
Abstract
SNARE complex formation underlies intracellular membrane fusion in eukaryotic organisms; however, the factors regulating the SNARE assembly are not well understood. The neuronal SNARE complex is composed of synaptobrevin2, SNAP-25, and syntaxin1, the latter being under tight control by the cytosolic protein Munc18. We found that the inhibition of syntaxin1 by Munc18 both in nerve terminals and in defined in vitro reactions can be overcome by specific detergents. This serendipitous finding led us to screen biologically relevant fatty acids, revealing that unsaturated arachidonic and linolenic acids can stimulate Munc18-regulated SNARE complex formation in a direct manner. The direct effect of arachidonic acid on the syntaxin1/Munc18 complex suggests a mechanism for the activation of the SNARE assembly pathway and provides a lead for the further investigation of fatty acids that may regulate SNARE-mediated membrane fusion in eukaryotes.
Collapse
Affiliation(s)
- Colin Rickman
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | |
Collapse
|
58
|
Kanda H, Tamori Y, Shinoda H, Yoshikawa M, Sakaue M, Udagawa J, Otani H, Tashiro F, Miyazaki JI, Kasuga M. Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest 2005; 115:291-301. [PMID: 15690082 PMCID: PMC546422 DOI: 10.1172/jci22681] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 11/23/2004] [Indexed: 11/17/2022] Open
Abstract
Insulin-stimulated glucose uptake in adipocytes is mediated by translocation of vesicles containing the glucose transporter GLUT4 from intracellular storage sites to the cell periphery and the subsequent fusion of these vesicles with the plasma membrane, resulting in the externalization of GLUT4. Fusion of the GLUT4-containing vesicles with the plasma membrane is mediated by a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex consisting of vesicle-associated membrane protein 2 (VAMP2), 23-kDa synaptosomal-associated protein (SNAP23), and syntaxin4. We have now generated mouse embryos deficient in the syntaxin4 binding protein Munc18c and show that the insulin-induced appearance of GLUT4 at the cell surface is enhanced in adipocytes derived from these Munc18c-/- mice compared with that in Munc18c+/+ cells. Wortmannin, an inhibitor of PI3K, inhibited insulin-stimulated GLUT4 externalization, without affecting GLUT4 translocation to the cell periphery, in Munc18c+/+ adipocytes, but it did not affect GLUT4 externalization in Munc18c-/- cells. Phosphatidylinositol 3-phosphate, which induced GLUT4 translocation to the cell periphery without externalization in Munc18c+/+ cells, elicited GLUT4 externalization in Munc18c-/- cells. These findings demonstrate that Munc18c inhibits insulin-stimulated externalization of GLUT4 in a wortmannin-sensitive manner, and they suggest that disruption of the interaction between syntaxin4 and Munc18c in adipocytes might result in enhancement of insulin-stimulated GLUT4 externalization.
Collapse
Affiliation(s)
- Hajime Kanda
- Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Araç D, Dulubova I, Pei J, Huryeva I, Grishin NV, Rizo J. Three-dimensional Structure of the rSly1 N-terminal Domain Reveals a Conformational Change Induced by Binding to Syntaxin 5. J Mol Biol 2005; 346:589-601. [PMID: 15670607 DOI: 10.1016/j.jmb.2004.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2004] [Revised: 12/01/2004] [Accepted: 12/01/2004] [Indexed: 11/18/2022]
Abstract
Sec1/Mun18-like (SM) proteins and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play central roles in intracellular membrane fusion. Diverse modes of interaction between SM proteins and SNAREs from the syntaxin family have been described. However, the observation that the N-terminal domains of Sly1 and Vps45, the SM proteins involved in traffic at the endoplasmic reticulum, the Golgi, the trans-Golgi network and the endosomes, bind to similar N-terminal sequences of their cognate syntaxins suggested a unifying theme for SM protein/SNARE interactions in most internal membrane compartments. To further understand this mechanism of SM protein/SNARE coupling, we have elucidated the structure in solution of the isolated N-terminal domain of rat Sly1 (rSly1N) and analyzed its complex with an N-terminal peptide of rat syntaxin 5 by NMR spectroscopy. Comparison with the crystal structure of a complex between Sly1p and Sed5p, their yeast homologues, shows that syntaxin 5 binding requires a striking conformational change involving a two-residue shift in the register of the C-terminal beta-strand of rSly1N. This conformational change is likely to induce a significant alteration in the overall shape of full-length rSly1 and may be critical for its function. Sequence analyses indicate that this conformational change is conserved in the Sly1 family but not in other SM proteins, and that the four families represented by the four SM proteins found in yeast (Sec1p, Sly1p, Vps45p and Vps33p) diverged early in evolution. These results suggest that there are marked distinctions between the mechanisms of action of each of the four families of SM proteins, which may have arisen from different regulatory requirements of traffic in their corresponding membrane compartments.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
60
|
Ciufo LF, Barclay JW, Burgoyne RD, Morgan A. Munc18-1 regulates early and late stages of exocytosis via syntaxin-independent protein interactions. Mol Biol Cell 2004; 16:470-82. [PMID: 15563604 PMCID: PMC545880 DOI: 10.1091/mbc.e04-08-0685] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Sec1/Munc18 (SM) proteins are involved in various intracellular membrane trafficking steps. Many SM proteins bind to appropriate syntaxin homologues involved in these steps, suggesting that SM proteins function as syntaxin chaperones. Organisms with mutations in SM genes, however, exhibit defects in either early (docking) or late (fusion) stages of exocytosis, implying that SM proteins may have multiple functions. To gain insight into the role of SM proteins, we introduced mutations modeled on those identified in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae into mammalian Munc18-1. As expected, several mutants exhibited reduced binding to syntaxin1A. However, three mutants displayed wild-type syntaxin binding affinities, indicating syntaxin-independent defects. Expression of these mutants in chromaffin cells either increased the rate and extent of exocytosis or altered the kinetics of individual release events. This latter effect was associated with a reduced Mint binding affinity in one mutant, implying a potential mechanism for the observed alteration in release kinetics. Furthermore, this phenotype persisted when the mutation was combined with a second mutation that greatly reduced syntaxin binding affinity. These results clarify the data on the function of SM proteins in mutant organisms and indicate that Munc18-1 controls multiple stages of exocytosis via both syntaxin-dependent and -independent protein interactions.
Collapse
Affiliation(s)
- Leonora F Ciufo
- The Physiological Laboratory, School of Biomedical Sciences, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | | | | | | |
Collapse
|
61
|
Leguia M, Wessel GM. Selective expression of a sec1/munc18 member in sea urchin eggs and embryos. Gene Expr Patterns 2004; 4:645-57. [PMID: 15465487 DOI: 10.1016/j.modgep.2004.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2004] [Revised: 03/29/2004] [Accepted: 04/16/2004] [Indexed: 10/26/2022]
Abstract
Regulated secretion is mediated by SNAREs (soluble NSF attachment receptors) and their regulators and effectors, which include the SM (sec1/munc18) family of proteins. Homologs of the SNAREs have been identified in sea urchins, associated with cortical granule exocytosis at fertilization, with membranes of the cleavage furrow, and in secretory cells later in development. To contribute to the understanding of regulated secretion in sea urchins we have cloned the single SM protein homolog from two species of sea urchin, Lytechinus variegatus and Strongylocentrotus purpuratus. In oocytes and eggs, we find that it localizes to the plasma membrane and the cortical region of the egg, consistent with a role in one of the steps leading to cortical granule exocytosis. The protein is also expressed throughout development, enriched in membranes of the cleavage furrow in early embryos, and in cells of the gut in advanced embryos. Furthermore, we find that sec1/munc18 co-localizes with its cognate binding partner syntaxin. Finally, our biochemical analysis shows that the protein associates with rab3 in high molecular weight complexes, suggesting that the exocytotic machinery functions as a multi-protein subunit to mediate regulated secretion in sea urchins. These results will be instrumental in the future to functionally test the SNARE regulators associated with multiple membrane fusion events.
Collapse
Affiliation(s)
- Mariana Leguia
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 69 Brown Street, Providence, RI 02912, USA
| | | |
Collapse
|
62
|
Hu SH, Gee CL, Latham CF, Rowlinson SW, Rova U, Jones A, Halliday JA, Bryant NJ, James DE, Martin JL. Recombinant expression of Munc18c in a baculovirus system and interaction with syntaxin4. Protein Expr Purif 2004; 31:305-10. [PMID: 14550652 DOI: 10.1016/s1046-5928(03)00197-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two protein families that are critical for vesicle transport are the Syntaxin and Munc18/Sec1 families of proteins. These two molecules form a high affinity complex and play an essential role in vesicle docking and fusion. Munc18c was expressed as an N-terminally His-tagged fusion protein from recombinant baculovirus in Sf9 insect cells. His-tagged Munc18c was purified to homogeneity using both cobalt-chelating affinity chromatography and gel filtration chromatography. With this simple two-step protocol, 3.5 mg of purified Munc18c was obtained from a 1L culture. Further, the N-terminal His-tag could be removed by thrombin cleavage while the tagged protein was bound to metal affinity resin. Recombinant Munc18c produced in this way is functional, in that it forms a stable complex with the SNARE interacting partner, syntaxin4. Thus we have developed a method for producing and purifying large amounts of functional Munc18c--both tagged and detagged--from a baculovirus expression system. We have also developed a method to purify the Munc18c:syntaxin4 complex. These methods will be employed for future functional and structural studies.
Collapse
Affiliation(s)
- Shu-Hong Hu
- Centre for Drug Design and Development and Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, Queensland Bioscience Precinct, Carmody Road, Brisbane, Qld 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abel ED, Graveleau C, Betuing S, Pham M, Reay PA, Kandror V, Kupriyanova T, Xu Z, Kandror KV. Regulation of insulin-responsive aminopeptidase expression and targeting in the insulin-responsive vesicle compartment of glucose transporter isoform 4-deficient cardiomyocytes. Mol Endocrinol 2004; 18:2491-501. [PMID: 15231875 DOI: 10.1210/me.2004-0175] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In adipocytes and cardiac or skeletal muscle, glucose transporter isoform 4 (GLUT4) is targeted to insulin-responsive intracellular membrane vesicles (IRVs) that contain several membrane proteins, including insulin-responsive aminopeptidase (IRAP) that completely colocalizes with GLUT4 in basal and insulin-treated cells. Cardiac GLUT4 content is reduced by 65-85% in IRAP knockout mice, suggesting that IRAP may regulate the targeting or degradation of GLUT4. To determine whether GLUT4 is required for maintenance of IRAP content within IRVs, we studied the expression and cellular localization of IRAP and other GLUT4 vesicle-associated proteins, in hearts of mice with cardiac-specific deletion of GLUT4 (G4H-/-). In G4H-/- hearts, IRAP content was reduced by 60%, but the expression of other vesicle-associated proteins, namely cellugyrin, IGF-II/mannose-6-phosphate, and transferrin receptors, secretory carrier-associated membrane proteins and vesicle-associated membrane protein were unchanged. Using sucrose gradient centrifugation and cell surface biotinylation, we found that IRAP content in 50-80S vesicles where GLUT4 vesicles normally sediment was markedly depleted in G4H-/- hearts, and the remaining IRAP was found in the heavy membrane fraction. Although insulin caused a discernible increase in cell surface IRAP content of G4H-/- cardiomyocytes, cell surface IRAP remained 70% lower than insulin-stimulated controls. Immunoabsorption of intracellular vesicles with anticellugyrin antibodies revealed that IRAP content was reduced by 70% in both cellugyrin-positive and cellugyrin-negative vesicles. Endosomal recycling, as measured by transferrin receptor recycling was normal. Thus, GLUT4 and IRAP content of early endosome-derived sorting vesicles and of IRVs are coordinately regulated, and both proteins are required for maintenance of key constituents of these compartments in cardiac muscle cells in vivo.
Collapse
Affiliation(s)
- E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, Program in Human Molecular Biology and Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Graham ME, Barclay JW, Burgoyne RD. Syntaxin/Munc18 interactions in the late events during vesicle fusion and release in exocytosis. J Biol Chem 2004; 279:32751-60. [PMID: 15175344 DOI: 10.1074/jbc.m400827200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SNARE proteins, syntaxin, SNAP-25, and VAMP, form part of the core machinery for membrane fusion during regulated exocytosis. Additional proteins are required to account for the speed, spatial restriction, and tight control of exocytosis and a key role is played by members of the Sec1/Munc18 family of proteins that have been implicated either in vesicle docking or fusion itself through their interactions with the corresponding syntaxin. Using amperometry to assay the kinetics of single vesicle fusion/release events in adrenal chromaffin cells, the effect of expression of syntaxin 1A mutants was examined. Overexpression of wild-type syntaxin or its cytoplasmic domain had no effect on the kinetics of release during single exocytotic events although the cytoplasmic domain reduced the frequency of exocytosis. In contrast, expression of either an open syntaxin 1A or the I233A mutant resulted in increased quantal size and a slowing of the kinetics of release. The wild-type and mutant syntaxins were overexpressed to a similar extent and the only common defect shown by the syntaxin 1A mutants was reduced binding to Munc18-1. These results are consistent with a role for Munc18-1 in controlling the late stages of exocytosis by binding to and limiting the availability of syntaxin in its open conformation. Modification of the Munc18-1/syntaxin 1A interaction would therefore be a key mechanism for the regulation of quantal size.
Collapse
Affiliation(s)
- Margaret E Graham
- Physiological Laboratory, University of Liverpool, Crown Street, Liverpool L69 3BX, United Kingdom
| | | | | |
Collapse
|
65
|
Subramanian S, Woolford CA, Jones EW. The Sec1/Munc18 protein, Vps33p, functions at the endosome and the vacuole of Saccharomyces cerevisiae. Mol Biol Cell 2004; 15:2593-605. [PMID: 15047864 PMCID: PMC420085 DOI: 10.1091/mbc.e03-10-0767] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Sec1/Munc18 (SM) family of proteins is thought to impart compartmental specificity to vesicle fusion reactions. Here we report characterization of Vps33p, an SM family member previously thought to act exclusively at the vacuolar membrane with the vacuolar syntaxin Vam3p. Vacuolar morphology of vps33Delta cells resembles that of cells lacking both Vam3p and the endosomal syntaxin Pep12p, suggesting that Vps33p may function with these syntaxins at the vacuole and the endosome. Consistent with this, vps33 mutants secrete the Golgi precursor form of the vacuolar hydrolase CPY into the medium. We also demonstrate that Vps33p acts at other steps, for vps33 mutants show severe defects in endocytosis at the late endosome. At the endosome, Vps33p and other class C members exist as a complex with Vps8p, a protein previously known to act in transport between the late Golgi and the endosome. Vps33p also interacts with Pep12p, a known interactor of the SM protein Vps45p. High copy PEP7/VAC1 suppresses vacuolar morphology defects of vps33 mutants. These findings demonstrate that Vps33p functions at multiple trafficking steps and is not limited to action at the vacuolar membrane. This is the first report demonstrating the involvement of a single syntaxin with two SM proteins at the same organelle.
Collapse
Affiliation(s)
- Shoba Subramanian
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
66
|
Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Rogozin IB, Smirnov S, Sorokin AV, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004; 5:R7. [PMID: 14759257 PMCID: PMC395751 DOI: 10.1186/gb-2004-5-2-r7] [Citation(s) in RCA: 727] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 12/01/2003] [Accepted: 12/04/2003] [Indexed: 11/10/2022] Open
Abstract
We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs from seven eukaryotic genomes. The analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. Background Sequencing the genomes of multiple, taxonomically diverse eukaryotes enables in-depth comparative-genomic analysis which is expected to help in reconstructing ancestral eukaryotic genomes and major events in eukaryotic evolution and in making functional predictions for currently uncharacterized conserved genes. Results We examined functional and evolutionary patterns in the recently constructed set of 5,873 clusters of predicted orthologs (eukaryotic orthologous groups or KOGs) from seven eukaryotic genomes: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Encephalitozoon cuniculi. Conservation of KOGs through the phyletic range of eukaryotes strongly correlates with their functions and with the effect of gene knockout on the organism's viability. The approximately 40% of KOGs that are represented in six or seven species are enriched in proteins responsible for housekeeping functions, particularly translation and RNA processing. These conserved KOGs are often essential for survival and might approximate the minimal set of essential eukaryotic genes. The 131 single-member, pan-eukaryotic KOGs we identified were examined in detail. For around 20 that remained uncharacterized, functions were predicted by in-depth sequence analysis and examination of genomic context. Nearly all these proteins are subunits of known or predicted multiprotein complexes, in agreement with the balance hypothesis of evolution of gene copy number. Other KOGs show a variety of phyletic patterns, which points to major contributions of lineage-specific gene loss and the 'invention' of genes new to eukaryotic evolution. Examination of the sets of KOGs lost in individual lineages reveals co-elimination of functionally connected genes. Parsimonious scenarios of eukaryotic genome evolution and gene sets for ancestral eukaryotic forms were reconstructed. The gene set of the last common ancestor of the crown group consists of 3,413 KOGs and largely includes proteins involved in genome replication and expression, and central metabolism. Only 44% of the KOGs, mostly from the reconstructed gene set of the last common ancestor of the crown group, have detectable homologs in prokaryotes; the remainder apparently evolved via duplication with divergence and invention of new genes. Conclusions The KOG analysis reveals a conserved core of largely essential eukaryotic genes as well as major diversification and innovation associated with evolution of eukaryotic genomes. The results provide quantitative support for major trends of eukaryotic evolution noticed previously at the qualitative level and a basis for detailed reconstruction of evolution of eukaryotic genomes and biology of ancestral forms.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Abstract
Trafficking of cargo molecules through the secretory pathway relies on packaging and delivery of membrane vesicles. These vesicles, laden with cargo, carry integral membrane proteins that can determine with which target membrane the vesicle might productively fuse. The membrane fusion process is highly conserved in all eukaryotes and the central components driving membrane fusion events involved in vesicle delivery to target membranes are a set of integral membrane proteins called SNAREs. The yeast Saccharomyces cerevisiae has served as an extremely useful model for characterizing components of membrane fusion through genetics, biochemistry and bioinformatics, and it is now likely that the complete set of SNAREs is at hand. Here, we present the details from the searches for SNAREs, summarize the domain structures of the complete set, review what is known about localization of SNAREs to discrete membranes, and highlight some of the surprises that have come from the search.
Collapse
Affiliation(s)
- Lena Burri
- Russell Grimwade School of Biochemistry & Molecular Biology, University of Melbourne, Parkville 3010, Australia
| | | |
Collapse
|
68
|
Abstract
The SNARE superfamily has become, since its discovery approximately a decade ago, the most intensively studied element of the protein machinery involved in intracellular trafficking. Intracellular membrane fusion in eukaryotes requires SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins that form complexes bridging the two membranes. Although common themes have emerged from structural and functional studies of SNAREs and other components of the eukaryotic membrane fusion machinery, there is still much to learn about how the assembly and activity of this machinery is choreographed in living cells.
Collapse
Affiliation(s)
- Daniel Ungar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
69
|
Williams AL, Ehm S, Jacobson NC, Xu D, Hay JC. rsly1 binding to syntaxin 5 is required for endoplasmic reticulum-to-Golgi transport but does not promote SNARE motif accessibility. Mol Biol Cell 2003; 15:162-75. [PMID: 14565970 PMCID: PMC307537 DOI: 10.1091/mbc.e03-07-0535] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although some of the principles of N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) function are well understood, remarkably little detail is known about sec1/munc18 (SM) protein function and its relationship to SNAREs. Popular models of SM protein function hold that these proteins promote or maintain an open and/or monomeric pool of syntaxin molecules available for SNARE complex formation. To address the functional relationship of the mammalian endoplasmic reticulum/Golgi SM protein rsly1 and its SNARE binding partner syntaxin 5, we produced a conformation-specific monoclonal antibody that binds only the available, but not the cis-SNARE-complexed nor intramolecularly closed form of syntaxin 5. Immunostaining experiments demonstrated that syntaxin 5 SNARE motif availability is nonuniformly distributed and focally regulated. In vitro endoplasmic reticulum-to-Golgi transport assays revealed that rsly1 was acutely required for transport, and that binding to syntaxin 5 was absolutely required for its function. Finally, manipulation of rsly1-syntaxin 5 interactions in vivo revealed that they had remarkably little impact on the pool of available syntaxin 5 SNARE motif. Our results argue that although rsly1 does not seem to regulate the availability of syntaxin 5, its function is intimately associated with syntaxin binding, perhaps promoting a later step in SNARE complex formation or function.
Collapse
Affiliation(s)
- Antionette L Williams
- University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | |
Collapse
|
70
|
Weimer RM, Richmond JE, Davis WS, Hadwiger G, Nonet ML, Jorgensen EM. Defects in synaptic vesicle docking in unc-18 mutants. Nat Neurosci 2003; 6:1023-30. [PMID: 12973353 PMCID: PMC3874415 DOI: 10.1038/nn1118] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 07/15/2003] [Indexed: 11/08/2022]
Abstract
Sec1-related proteins function in most, if not all, membrane trafficking pathways in eukaryotic cells. The Sec1-related protein required in neurons for synaptic vesicle exocytosis is UNC-18. Several models for UNC-18 function during vesicle exocytosis are under consideration. We have tested these models by characterizing unc-18 mutants of the nematode Caenorhabditis elegans. In the absence of UNC-18, the size of the readily releasable pool is severely reduced. Our results show that the near absence of fusion-competent vesicles is not caused by a reduction in syntaxin levels, by a mislocalization of syntaxin, by a defect in fusion or by a failure to open syntaxin during priming. Rather, we found a reduction of docked vesicles at the active zone in unc-18 mutants, suggesting that UNC-18 functions, directly or indirectly, as a facilitator of vesicle docking.
Collapse
Affiliation(s)
- Robby M Weimer
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, Utah 84112-0840, USA
| | | | | | | | | | | |
Collapse
|
71
|
Affiliation(s)
- Robby M Weimer
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | | |
Collapse
|
72
|
Widberg CH, Bryant NJ, Girotti M, Rea S, James DE. Tomosyn interacts with the t-SNAREs syntaxin4 and SNAP23 and plays a role in insulin-stimulated GLUT4 translocation. J Biol Chem 2003; 278:35093-101. [PMID: 12832401 DOI: 10.1074/jbc.m304261200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sec1p-like/Munc18 (SM) protein Munc18a binds to the neuronal t-SNARE Syntaxin1A and inhibits SNARE complex assembly. Tomosyn, a cytosolic Syntaxin1A-binding protein, is thought to regulate the interaction between Syntaxin1A and Munc18a, thus acting as a positive regulator of SNARE assembly. In the present study we have investigated the interaction between b-Tomosyn and the adipocyte SNARE complex involving Syntaxin4/SNAP23/VAMP-2 and the SM protein Munc18c, in vitro, and the potential involvement of Tomosyn in regulating the translocation of GLUT4 containing vesicles, in vivo. Tomosyn formed a high affinity ternary complex with Syntaxin4 and SNAP23 that was competitively inhibited by VAMP-2. Using a yeast two-hybrid assay we demonstrate that the VAMP-2-like domain in Tomosyn facilitates the interaction with Syntaxin4. Overexpression of Tomosyn in 3T3-L1 adipocytes inhibited the translocation of green fluorescent protein-GLUT4 to the plasma membrane. The SM protein Munc18c was shown to interact with the Syntaxin4 monomer, Syntaxin4 containing SNARE complexes, and the Syntaxin4/Tomosyn complex. These data suggest that Tomosyn and Munc18c operate at a similar stage of the Syntaxin4 SNARE assembly cycle, which likely primes Syntaxin4 for entry into the ternary SNARE complex.
Collapse
Affiliation(s)
- Charlotte H Widberg
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, 2010 Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
73
|
van Vliet C, Thomas EC, Merino-Trigo A, Teasdale RD, Gleeson PA. Intracellular sorting and transport of proteins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2003; 83:1-45. [PMID: 12757749 DOI: 10.1016/s0079-6107(03)00019-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The secretory and endocytic pathways of eukaryotic organelles consist of multiple compartments, each with a unique set of proteins and lipids. Specific transport mechanisms are required to direct molecules to defined locations and to ensure that the identity, and hence function, of individual compartments are maintained. The localisation of proteins to specific membranes is complex and involves multiple interactions. The recent dramatic advances in understanding the molecular mechanisms of membrane transport has been due to the application of a multi-disciplinary approach, integrating membrane biology, genetics, imaging, protein and lipid biochemistry and structural biology. The aim of this review is to summarise the general principles of protein sorting in the secretory and endocytic pathways and to highlight the dynamic nature of these processes. The molecular mechanisms involved in this transport along the secretory and endocytic pathways are discussed along with the signals responsible for targeting proteins to different intracellular locations.
Collapse
Affiliation(s)
- Catherine van Vliet
- The Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Victoria 3010, Melbourne, Australia
| | | | | | | | | |
Collapse
|
74
|
Pombo I, Rivera J, Blank U. Munc18-2/syntaxin3 complexes are spatially separated from syntaxin3-containing SNARE complexes. FEBS Lett 2003; 550:144-8. [PMID: 12935901 DOI: 10.1016/s0014-5793(03)00864-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exocytosis of mast cell granules requires a vesicular- and plasma membrane-associated fusion machinery. We examined the distribution of SNARE membrane fusion and Munc18 accessory proteins in lipid rafts of RBL mast cells. SNAREs were found either excluded (syntaxin2), equally distributed between raft and non-raft fractions (syntaxin4, VAMP-8, VAMP-2), or selectively enriched in rafts (syntaxin3, SNAP-23). Syntaxin4-binding Munc18-3 was absent, whereas small amounts of the syntaxin3-interacting partner Munc18-2 consistently distributed into rafts. Cognate SNARE complexes of syntaxin3 with SNAP-23 and VAMP-8 were enriched in rafts, whereas Munc18-2/syntaxin3 complexes were excluded. This demonstrates a spatial separation between these two types of complexes and suggests that Munc18-2 acts in a step different from SNARE complex formation and fusion.
Collapse
Affiliation(s)
- Isabel Pombo
- Unité d'Immuno-Allergie, Institut Pasteur, Paris, France
| | | | | |
Collapse
|
75
|
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) are membrane-associated proteins that participate in the fusion of internal membranes in eukaryotic cells. SNAREs comprise three distinct and well-conserved families of molecules that act directly as membrane fusogens or, at the least, as elements that bring membranes into close apposition and allow for subsequent fusion events to occur. While the molecular events leading to fusion are still under debate, it is clear that a number of additional factors are required to bring about SNARE-mediated membrane fusion in vivo. Many of these factors, which collectively can be called SNARE regulators (e.g. Sec1/Munc18, synaptotagmin, GATE-16, LMA1, Munc13/UNC-13, synaptophysin, tomosyn, Vsm1, etc.), bind directly to SNAREs and are involved in the regulation of SNARE assembly as well as the ability of SNAREs to participate in trafficking events. In addition, recent studies have suggested a role for posttranslational modification (e.g., phosphorylation) in the regulation of SNARE functions. In this review the possible role of SNARE regulators in SNARE assembly and the involvement of SNARE phosphorylation in the regulation of intracellular membrane trafficking will be discussed.
Collapse
Affiliation(s)
- Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
76
|
Dietrich LEP, Boeddinghaus C, LaGrassa TJ, Ungermann C. Control of eukaryotic membrane fusion by N-terminal domains of SNARE proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:111-9. [PMID: 12914952 DOI: 10.1016/s0167-4889(03)00094-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SNARE proteins function at the center of membrane fusion reactions by forming complexes with each other via their coiled-coil domains. Several SNAREs have N-terminal domains (NTDs) that precede the coiled-coil domain and have critical functions in regulating the fusion cascade. This review will highlight recent findings on NTDs of syntaxins, the longin domain of VAMP proteins and SNAP-23/25 homologues in yeast. Biochemical and genetic experiments as well as the resolution of several NMR and crystal structures of SNARE NTDs shed light on their diverse function.
Collapse
Affiliation(s)
- Lars E P Dietrich
- Biochemie Zentrum Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| | | | | | | |
Collapse
|
77
|
Marash M, Gerst JE. Phosphorylation of the autoinhibitory domain of the Sso t-SNAREs promotes binding of the Vsm1 SNARE regulator in yeast. Mol Biol Cell 2003; 14:3114-25. [PMID: 12925750 PMCID: PMC181554 DOI: 10.1091/mbc.e02-12-0804] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have shown that protein kinase A phosphorylation of t-SNAREs inhibits SNARE assembly and suppresses endo- and exocytosis in yeast. Herein, we show that protein kinase A phosphorylation of the Sso exocytic t-SNAREs promotes the binding of Vsm1, a potential SNARE regulator identified previously in our laboratory. Phosphorylation of Sso increases its affinity for Vsm1 by more than fivefold in vitro and both phosphorylated Sso1, as well as Sso1 bearing an aspartate substitution at position 79, interact tightly with Vsm1. Vsm1 binding is dependent upon the NH2-terminal autoinhibitory domain of Sso, and constitutively "open" forms of the t-SNARE show a reduction in Vsm1 binding in vivo. The substitution of serine-79 in Sso1 with an alanine residue or the treatment of yeast with C2-ceramide, which results in the dephosphorylation of serine-79, both inhibit Vsm1 binding in vivo. Importantly, Vsm1 binding to Sso seems to preclude Sso binding to its partner t-SNARE, Sec9, and vice versa. This is consistent with the idea that Vsm1 is an inhibitor of SNARE assembly in yeast. Thus, one way by which phosphorylation inhibits SNARE assembly could be by regulating the association of inhibitory factors that control the ability of t-SNAREs to form complexes in vivo.
Collapse
Affiliation(s)
- Michael Marash
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
78
|
Abstract
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.
Collapse
Affiliation(s)
- Thomas H Söllner
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 519, New York, NY 10021, USA.
| |
Collapse
|
79
|
Schlaepfer IR, Pulawa LK, Ferreira LDMCB, James DE, Capell WH, Eckel RH. Increased expression of the SNARE accessory protein Munc18c in lipid-mediated insulin resistance. J Lipid Res 2003; 44:1174-81. [PMID: 12700337 DOI: 10.1194/jlr.m300003-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Collapse
Affiliation(s)
- Isabel R Schlaepfer
- Department of Medicine, Division of Endocrinology, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Membrane fusion is a fundamental biochemical reaction and the final step in all vesicular trafficking events. It is crucial for the transfer of proteins and lipids between different compartments and for exo- and endocytic traffic of signaling molecules and receptors. It leads to the reconstruction of organelles such as the Golgi or the nuclear envelope, which decay into fragments during mitosis. Hence, controlled membrane fusion reactions are indispensible for the compartmental organization of eukaryotic cells; for their communication with the environment via hormones, neurotransmitters, growth factors, and receptors; and for the integration of cells into multicellular organisms. Intracellular pathogenic bacteria, such as Mycobacteria or Salmonellae, have developed means to control fusion reactions in their host cells. They persist in phagosomes whose fusion with lysosomes they actively suppress-a means to ensure survival inside host cells. The past decade has witnessed rapid progress in the elucidation of parts of the molecular machinery involved in these membrane fusion reactions. Whereas some elements of the fusion apparatus are remarkably similar in several compartments, there is an equally striking divergence of others. The purpose of this review is to highlight common features of different fusion reactions and the concepts that emerged from them but also to stress the differences and challenge parts of the current hypotheses. This review covers only the endoplasmic fusion reactions mentioned above, i.e., reactions initiated by contacts of membranes with their cytoplasmic faces. Ectoplasmic fusion events, which depend on an initial contact of the fusion partners via the membrane surfaces exposed to the surrounding medium are not discussed, nor are topics such as the entry of enveloped viruses, formation of syncytia, gamete fusion, or vesicle scission (a fusion reaction that leads to the fission of, e.g., transport vesicles).
Collapse
Affiliation(s)
- Andreas Mayer
- Friedrich-Miescher-Laboratorium der Max-Planck-Gesellschaft, Spemannstr. 37-39, 72076 Tübingen, Germany.
| |
Collapse
|
81
|
Bryant NJ, James DE. The Sec1p/Munc18 (SM) protein, Vps45p, cycles on and off membranes during vesicle transport. J Cell Biol 2003; 161:691-6. [PMID: 12756236 PMCID: PMC2199362 DOI: 10.1083/jcb.200212078] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Protein phosphatase 1 (PP1, Glc7p) functions in the final stage of SNARE-mediated vesicle transport between docking and fusion. During this process, trans-SNARE complexes, formed between molecules in opposing membranes, convert to cis-complexes, with all participants in the same lipid bilayer. Here, we show that glc7 mutant cells accumulate SNARE complexes. These complexes are clearly different from those found in either wild-type or sec18-1 cells as the Sec1p/Munc18 (SM) protein Vps45p does not bind to them. Given that PP1 controls fusion, the SNARE complexes that accumulate in glc7 mutants likely represent trans-SNARE complexes. Vps45p dissociates from the membrane in the absence of PP1 activity, but rapidly reassociates after its reactivation. These data reveal that SM proteins cycle on and off membranes in a stage-specific manner during the vesicle transport reaction, and suggest that protein phosphorylation plays a key role in the regulation of this cycle.
Collapse
Affiliation(s)
- Nia J Bryant
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia 2010.
| | | |
Collapse
|
82
|
Abstract
Regulated exocytosis of secretory granules or dense-core granules has been examined in many well-characterized cell types including neurons, neuroendocrine, endocrine, exocrine, and hemopoietic cells and also in other less well-studied cell types. Secretory granule exocytosis occurs through mechanisms with many aspects in common with synaptic vesicle exocytosis and most likely uses the same basic protein components. Despite the widespread expression and conservation of a core exocytotic machinery, many variations occur in the control of secretory granule exocytosis that are related to the specialized physiological role of particular cell types. In this review we describe the wide range of cell types in which regulated secretory granule exocytosis occurs and assess the evidence for the expression of the conserved fusion machinery in these cells. The signals that trigger and regulate exocytosis are reviewed. Aspects of the control of exocytosis that are specific for secretory granules compared with synaptic vesicles or for particular cell types are described and compared to define the range of accessory control mechanisms that exert their effects on the core exocytotic machinery.
Collapse
Affiliation(s)
- Robert D Burgoyne
- The Physiological Laboratory, University of Liverpool, United Kingdom.
| | | |
Collapse
|
83
|
Abstract
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.
Collapse
Affiliation(s)
- Ruud F G Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (VUA), De Boelelaan 1087, The Netherlands
| | | |
Collapse
|
84
|
Abstract
Membrane fusion, one of the most fundamental processes in life, occurs when two separate lipid membranes merge into a single continuous bilayer. Fusion reactions share common features, but are catalyzed by diverse proteins. These proteins mediate the initial recognition of the membranes that are destined for fusion and pull the membranes close together to destabilize the lipid/water interface and to initiate mixing of the lipids. A single fusion protein may do everything or assemblies of protein complexes may be required for intracellular fusion reactions to guarantee rigorous regulation in space and time. Cellular fusion machines are adapted to fit the needs of different reactions but operate by similar principles in order to achieve merging of the bilayers.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | | | | |
Collapse
|
85
|
Kosodo Y, Noda Y, Adachi H, Yoda K. Cooperation of Sly1/SM-family protein and sec18/NSF of Saccharomyces cerevisiae in disassembly of cis-SNARE membrane-protein complexes. Biosci Biotechnol Biochem 2003; 67:448-50. [PMID: 12729020 DOI: 10.1271/bbb.67.448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Assembly and disassembly of the SNARE membrane-protein complexes plays a key role in vesicular trafficking. The SM-family Slyl protein binds to the tSNARE Sed5 protein and stimulates its assembly into a trans-SNARE complex. Disassembly of the resulting cis-SNARE complex containing Sed5 was retarded in a temperature-sensitive yeast mutant of Slyl protein with a defect in binding to Sed5. A temperature-sensitive mutation (sec18-1) of Sec18/NSF disassembly ATPase showed synthetic lethality with the sly1(ts) mutation. These results suggest that Slyl and Sec18 proteins work cooperatively and that the binding of Slyl to Sed5 stimulates the disassembly of the cis-SNARE complex by Sec18 ATPase.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Department of Biotechnology, University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
86
|
Martin-Verdeaux S, Pombo I, Iannascoli B, Roa M, Varin-Blank N, Rivera J, Blank U. Evidence of a role for Munc18-2 and microtubules in mast cell granule exocytosis. J Cell Sci 2003; 116:325-34. [PMID: 12482918 DOI: 10.1242/jcs.00216] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Compound exocytosis of inflammatory mediators from mast cells requires SNARE and a series of accessory proteins. However, the molecular steps that regulate secretory granule movement and membrane fusion as well as the role of the cytoskeleton are still poorly understood. Here, we report on our investigation of the role of syntaxin-binding Munc18 isoforms and the microtubule network in this process. We found that mast cells express Munc18-2, which interacts with target SNAREs syntaxin 2 or 3, as well as Munc18-3, which interacts with syntaxin 4. Munc18-2 was localised to secretory granules, whereas Munc18-3 was found on the plasma membrane. Increased expression of Munc18-2 and derived peptides containing an interfering effector loop inhibited IgE-triggered exocytosis, while increased expression of Munc18-3 showed no effect. Munc18-2 localisation on granules is polarised; however, upon stimulation Munc18-2 redistributed into forming lamellipodia and persisted on granules that were aligned along microtubules, but was excluded from F-actin ruffles. Disruption of the microtubule network with nocodazole provoked Munc18-2 redistribution and affected mediator release. These findings suggest a role for Munc18-2 and the microtubule network in the regulation of secretory granule dynamics in mast cells.
Collapse
|
87
|
Dulubova I, Yamaguchi T, Arac D, Li H, Huryeva I, Min SW, Rizo J, Sudhof TC. Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci U S A 2003; 100:32-7. [PMID: 12506202 PMCID: PMC140874 DOI: 10.1073/pnas.232701299] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2002] [Indexed: 11/18/2022] Open
Abstract
Sec1Munc18-like (SM) proteins functionally interact with soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) in membrane fusion, but the mechanisms of these interactions differ. In vertebrates, SM proteins that mediate exocytosis (Munc18-1, 18-2, and 18c) bind to the closed conformation of syntaxins 1-4, which requires the N-terminal H(abc) domains and SNARE motifs of these syntaxins. In contrast, SM proteins that mediate Golgi and endoplasmic reticulum fusion (Sly1 and Vps45) bind only to short N-terminal sequences of syntaxins 5, 16, or 18, independently of their H(abc) domains and SNARE motifs. We now show that Munc18-1, Sly1, and Vps45 interact with cognate syntaxins via similar, autonomously folded N-terminal domains, but the syntaxin 5-binding surface of the Sly1 N-terminal domain is opposite to the syntaxin 1-binding surface of the Munc18-1 N-terminal domain. In transfected cells, the N-terminal domain of Sly1 specifically disrupts the structure of the Golgi complex, supporting the notion that the interaction of Sly1 with syntaxin 5 is essential for fusion. These data, together with previous results, suggest that a relatively small N-terminal domain of SM proteins is dedicated to mechanistically distinct interactions with SNAREs, leaving the remaining large parts of SM proteins free to execute their as yet unknown function as effector domains.
Collapse
Affiliation(s)
- Irina Dulubova
- Department of Biochemistry, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Bracher A, Weissenhorn W. Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p. EMBO J 2002; 21:6114-24. [PMID: 12426383 PMCID: PMC137200 DOI: 10.1093/emboj/cdf608] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Accepted: 09/24/2002] [Indexed: 11/14/2022] Open
Abstract
Cytosolic Sec1/munc18-like proteins (SM proteins) are recruited to membrane fusion sites by interaction with syntaxin-type SNARE proteins, constituting indispensable positive regulators of intracellular membrane fusion. Here we present the crystal structure of the yeast SM protein Sly1p in complex with a short N-terminal peptide derived from the Golgi-resident syntaxin Sed5p. Sly1p folds, similarly to neuronal Sec1, into a three-domain arch-shaped assembly, and Sed5p interacts in a helical conformation predominantly with domain I of Sly1p on the opposite site of the nSec1/syntaxin-1-binding site. Sequence conservation of the major interactions suggests that homologues of Sly1p as well as the paralogous Vps45p group bind their respective syntaxins in the same way. Furthermore, we present indirect evidence that nSec1 might be able to contact syntaxin 1 in a similar fashion. The observed Sly1p-Sed5p interaction mode therefore indicates how SM proteins can stay associated with the assembling fusion machinery in order to participate in late fusion steps.
Collapse
Affiliation(s)
- Andreas Bracher
- European Molecular Biology Laboratory, 6 rue Jules Horowitz, 38042 Grenoble, France.
| | | |
Collapse
|
89
|
Macaulay SL, Grusovin J, Stoichevska V, Ryan JM, Castelli LA, Ward CW. Cellular munc18c levels can modulate glucose transport rate and GLUT4 translocation in 3T3L1 cells. FEBS Lett 2002; 528:154-60. [PMID: 12297296 DOI: 10.1016/s0014-5793(02)03279-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Munc18c has been shown to bind syntaxin 4 and to play a role in GLUT4 translocation and glucose transport, although this role is as yet poorly defined. In the present study, the effects of modulating the available level of munc18c on glucose transport and GLUT4 translocation were examined. Over-expression of munc18c in 3T3L1 adipocytes inhibited insulin-stimulated glucose transport by approximately 50%. Basal glucose transport rates were also decreased by approximately 25%. In contrast, microinjection of a munc18c polyclonal antibody stimulated GLUT4 translocation by approximately 60% over basal levels without affecting insulin-stimulated GLUT4 levels. Microinjection of a control antibody had no effect. These data are consistent with the likelihood that antibody microinjection sequesters munc18c enabling translocation/fusion of GLUT4 vesicles. Mutagenesis of a potential proline-directed kinase phosphorylation site in munc18c, T569, that in previous studies of its neuronal counterpart munc18a caused its dissociation from its complex with syntaxin 1a, had no effect on munc18c's association with syntaxin 4 or its inhibition of glucose transport, indicative that phosphorylation of this residue is not important for insulin regulation of glucose transport. The over-expression and microinjection sequestration data support an inhibitory role for munc18c on translocation/fusion of GLUT4 vesicles. They further show that altering the level of available munc18c in 3T3L1 cells can modulate glucose transport rates, indicating its potential as a target for therapeutics in diabetes.
Collapse
Affiliation(s)
- S Lance Macaulay
- CSIRO Health Sciences and Nutrition, 343 Royal Parade, Parkville, Vic. 3052, Australia.
| | | | | | | | | | | |
Collapse
|
90
|
Kosodo Y, Noda Y, Adachi H, Yoda K. Binding of Sly1 to Sed5 enhances formation of the yeast early Golgi SNARE complex. J Cell Sci 2002; 115:3683-91. [PMID: 12186954 DOI: 10.1242/jcs.00027] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
SLY1 is an essential gene for vesicular transport between the ER and the early Golgi apparatus in Saccharomyces cerevisiae. It encodes a hydrophilic Sec1/Munc18 family protein that binds to the t-SNAREs. The amount of Sly1 protein that coprecipitated with the t-SNARE Sed5 was much reduced in a temperature-sensitive sly1(ts) mutant yeast compared with the wildtype. The mutant Sly1(ts) protein was shown to have a reduced binding activity to Sed5. In the wildtype, a detectable amount of Sly1 was found in the complex between Sed5 and the v-SNARE Bet1. In vitro formation of this complex on different membranes in yeast lysate was enhanced by the addition of recombinant Sly1. These results indicate that binding of Sly1 to Sed5 enhances trans-SNARE complex formation.
Collapse
Affiliation(s)
- Yoichi Kosodo
- Department of Biotechnology, the University of Tokyo, Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | | | | | | |
Collapse
|
91
|
Affiliation(s)
- Josep Rizo
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA.
| | | |
Collapse
|
92
|
Dulubova I, Yamaguchi T, Gao Y, Min SW, Huryeva I, Südhof TC, Rizo J. How Tlg2p/syntaxin 16 'snares' Vps45. EMBO J 2002; 21:3620-31. [PMID: 12110575 PMCID: PMC126126 DOI: 10.1093/emboj/cdf381] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Soluble N-ethylmaleimide sensitive factor-attachment protein receptors (SNAREs) and Sec1p/Munc18-homologs (SM proteins) play key roles in intracellular membrane fusion. The SNAREs form tight four-helix bundles (core complexes) that bring the membranes together, but it is unclear how this activity is coupled to SM protein function. Studies of the yeast trans-Golgi network (TGN)/endosomal SNARE complex, which includes the syntaxin-like SNARE Tlg2p, have suggested that its assembly requires activation by binding of the SM protein Vps45p to the cytoplasmic region of Tlg2p folded into a closed conformation. Nuclear magnetic resonance and biochemical experiments now show that Tlg2p and Pep12p, a late- endosomal syntaxin that interacts functionally but not directly with Vps45p, have a domain structure characteristic of syntaxins but do not adopt a closed conformation. Tlg2p binds tightly to Vps45p via a short N-terminal peptide motif that is absent in Pep12p. The Tlg2p/Vps45p binding mode is shared by the mammalian syntaxin 16, confirming that it is a Tlg2p homolog, and resembles the mode of interaction between the SM protein Sly1p and the syntaxins Ufe1p and Sed5p. Thus, this mechanism represents the most widespread mode of coupling between syntaxins and SM proteins.
Collapse
Affiliation(s)
| | - Tomohiro Yamaguchi
- Departments of Biochemistry and Pharmacology, and
Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Corresponding author e-mail:
| | | | - Sang-Won Min
- Departments of Biochemistry and Pharmacology, and
Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Corresponding author e-mail:
| | | | - Thomas C. Südhof
- Departments of Biochemistry and Pharmacology, and
Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Corresponding author e-mail:
| | - Josep Rizo
- Departments of Biochemistry and Pharmacology, and
Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA Corresponding author e-mail:
| |
Collapse
|
93
|
Misura KMS, Bock JB, Gonzalez LC, Scheller RH, Weis WI. Three-dimensional structure of the amino-terminal domain of syntaxin 6, a SNAP-25 C homolog. Proc Natl Acad Sci U S A 2002; 99:9184-9. [PMID: 12082176 PMCID: PMC123115 DOI: 10.1073/pnas.132274599] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2002] [Indexed: 11/18/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins are required for intracellular membrane fusion, and are differentially localized throughout the cell. SNAREs on vesicle and target membranes contain "SNARE motifs" which interact to form a four-helix bundle that contributes to the fusion of two membranes. SNARE motif sequences fall into four classes, homologous to the neuronal proteins syntaxin 1a, VAMP 2, and the N- and C-terminal SNARE motifs of SNAP-25 (S25N and S25C), and it is thought that one member from each class interacts to form a SNARE complex. Many SNAREs also feature N-terminal domains believed to function in regulating SNARE complex assembly or other aspects of vesicle transport. Syntaxin 6 is a SNARE found primarily in endosomal transport vesicles and whose SNARE motif shows significant homology to both syntaxin 1a and S25C. The crystal structure of the syntaxin 6 N-terminal domain reveals strong structural similarity with the N-terminal domains of syntaxin family members syntaxin 1a, Sso1p, and Vam3p, despite a very low level of sequence similarity. The syntaxin 6 SNARE motif can substitute for S25C in in vitro binding experiments, supporting the classification of syntaxin 6 as an S25C family member. Secondary structure prediction of SNARE proteins shows that the N-terminal domains of many syntaxin, S25N, and S25C family members are likely to be similar to one another, but are distinct from those of VAMP family members, indicating that syntaxin, S25N, and S25C SNAREs may have shared a common ancestor.
Collapse
Affiliation(s)
- Kira M S Misura
- Departments of Structural Biology and Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | | | | |
Collapse
|
94
|
Peng R, Gallwitz D. Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 2002; 157:645-55. [PMID: 11994317 PMCID: PMC2173853 DOI: 10.1083/jcb.200202006] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Fusion of transport vesicles with their target organelles involves specific membrane proteins, SNAREs, which form tight complexes bridging the membranes to be fused. Evidence from yeast and mammals indicates that Sec1 family proteins act as regulators of membrane fusion by binding to the target membrane SNAREs. In experiments with purified proteins, we now made the observation that the ER to Golgi core SNARE fusion complex could be assembled on syntaxin Sed5p tightly bound to the Sec1-related Sly1p. Sly1p also bound to preassembled SNARE complexes in vitro and was found to be part of a vesicular/target membrane SNARE complex immunoprecipitated from yeast cell lysates. This is in marked contrast to the exocytic SNARE assembly in neuronal cells where high affinity binding of N-Sec1/Munc-18 to syntaxin 1A precluded core SNARE fusion complex formation. We also found that the kinetics of SNARE complex formation in vitro with either Sly1p-bound or free Sed5p was not significantly different. Importantly, several presumably nonphysiological SNARE complexes easily generated with Sed5p did not form when the syntaxin was first bound to Sly1p. This indicates for the first time that a Sec1 family member contributes to the specificity of SNARE complex assembly.
Collapse
Affiliation(s)
- Renwang Peng
- Department of Molecular Genetics, Max Planck Institute for Biophysical Chemistry, D-37070 Göttingen, Germany
| | | |
Collapse
|
95
|
Fratti RA, Chua J, Deretic V. Cellubrevin alterations and Mycobacterium tuberculosis phagosome maturation arrest. J Biol Chem 2002; 277:17320-6. [PMID: 11825909 DOI: 10.1074/jbc.m200335200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intracellular trafficking processes controlling phagosomal maturation remain to be fully delineated. Mycobacterium tuberculosis var. bovis BCG, an organism that causes phagosomal maturation arrest, has emerged as a tool for dissection of critical phagosome biogenesis events. In this work, we report that cellubrevin, a v-SNARE functioning in endosomal recycling and implicated in endosomal interactions with post-Golgi compartments, plays a role in phagosomal maturation and that it is altered on mycobacterial phagosomes. Both mycobacterial phagosomes, which undergo maturation arrest, and model phagosomes containing latex beads, which follow the normal pathway of maturation into phagolysosomes, acquired cellubrevin. However, the mycobacterial and model phagosomes differed, as a discrete proteolytic degradation of this SNARE was detected on mycobacterial phagosomes. The observed cellubrevin alteration on mycobacterial phagosomes was not a passive event secondary to a maturation arrest at another checkpoint of the phagosome maturation pathway, since pharmacological inhibitors of phagosomal/endosomal pathways blocking phagosomal maturation did not cause cellubrevin degradation on model phagosomes. Cellubrevin status on phagosomes had consequences on phagosomal membrane and lumenal content trafficking, involving plasma membrane marker recycling and delivery of lysosomal enzymes. These results suggest that cellubrevin plays a role in phagosomal maturation and that it is a target for modification by mycobacteria or by infection-induced processes in the host cell.
Collapse
Affiliation(s)
- Rutilio A Fratti
- Department of Microbiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
96
|
Yamaguchi T, Dulubova I, Min SW, Chen X, Rizo J, Südhof TC. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev Cell 2002; 2:295-305. [PMID: 11879635 DOI: 10.1016/s1534-5807(02)00125-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sec1/munc18-like proteins (SM proteins) and SNARE complexes are probably universally required for membrane fusion. However, the molecular mechanism by which they interact has only been defined for synaptic vesicle fusion where munc18 binds to syntaxin in a closed conformation that is incompatible with SNARE complex assembly. We now show that Sly1, an SM protein involved in Golgi and ER fusion, binds to a short, evolutionarily conserved N-terminal peptide of Sed5p and Ufe1p in yeast and of syntaxins 5 and 18 in vertebrates. In these syntaxins, the Sly1 binding peptide is upstream of a separate, autonomously folded N-terminal domain. These data suggest a potentially general mechanism by which SM proteins could interact with peptides in target proteins independent of core complex assembly and suggest that munc18 binding to syntaxin is an exception.
Collapse
Affiliation(s)
- Tomohiro Yamaguchi
- Center for Basic Neuroscience, Department of Molecular Genetics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Paumet F, Brügger B, Parlati F, McNew JA, Söllner TH, Rothman JE. A t-SNARE of the endocytic pathway must be activated for fusion. J Cell Biol 2001; 155:961-8. [PMID: 11739407 PMCID: PMC2150898 DOI: 10.1083/jcb.200104092] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The t-SNARE in a late Golgi compartment (Tlg2p) syntaxin is required for endocytosis and localization of cycling proteins to the late Golgi compartment in yeast. We show here that Tlg2p assembles with two light chains, Tlg1p and Vti1p, to form a functional t-SNARE that mediates fusion, specifically with the v-SNAREs Snc1p and Snc2p. In vitro, this t-SNARE is inert, locked in a nonfunctional state, unless it is activated for fusion. Activation can be mediated by a peptide derived from the v-SNARE, which likely bypasses additional regulatory proteins in the cell. Locking t-SNAREs creates the potential for spatial and temporal regulation of fusion by signaling processes that unleash their fusion capacity.
Collapse
Affiliation(s)
- F Paumet
- Cellular Biochemistry and Biophysics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
99
|
Affiliation(s)
- J C Hay
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 830 N. University Avenue, Ann Arbor, Michigan, 48109-1048, USA.
| |
Collapse
|
100
|
Laage R, Ungermann C. The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion. Mol Biol Cell 2001; 12:3375-85. [PMID: 11694574 PMCID: PMC60262 DOI: 10.1091/mbc.12.11.3375] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homotypic fusion of yeast vacuoles requires a regulated sequence of events. During priming, Sec18p disassembles cis-SNARE complexes. The HOPS complex, which is initially associated with the cis-SNARE complex, then mediates tethering. Finally, SNAREs assemble into trans-complexes before the membranes fuse. The t-SNARE of the vacuole, Vam3p, plays a central role in the coordination of these processes. We deleted the N-terminal region of Vam3p to analyze the role of this domain in membrane fusion. The truncated protein (Vam3 Delta N) is sorted normally to the vacuole and is functional, because the vacuolar morphology is unaltered in this strain. However, in vitro vacuole fusion is strongly reduced due to the following reasons: Assembly, as well as disassembly of the cis-SNARE complex is more efficient on Vam3 Delta N vacuoles; however, the HOPS complex is not associated well with the Vam3 Delta N cis-complex. Thus, primed SNAREs from Vam3 Delta N vacuoles cannot participate efficiently in the reaction because trans-SNARE pairing is substantially reduced. We conclude that the N-terminus of Vam3p is required for coordination of priming and docking during homotypic vacuole fusion.
Collapse
Affiliation(s)
- R Laage
- University of Heidelberg, Biochemie Zentrum Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|