51
|
Li Y, Shen M, Stockton ME, Zhao X. Hippocampal deficits in neurodevelopmental disorders. Neurobiol Learn Mem 2018; 165:106945. [PMID: 30321651 DOI: 10.1016/j.nlm.2018.10.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders result from impaired development or maturation of the central nervous system. Both genetic and environmental factors can contribute to the pathogenesis of these disorders; however, the exact causes are frequently complex and unclear. Individuals with neurodevelopmental disorders may have deficits with diverse manifestations, including challenges with sensory function, motor function, learning, memory, executive function, emotion, anxiety, and social ability. Although these functions are mediated by multiple brain regions, many of them are dependent on the hippocampus. Extensive research supports important roles of the mammalian hippocampus in learning and cognition. In addition, with its high levels of activity-dependent synaptic plasticity and lifelong neurogenesis, the hippocampus is sensitive to experience and exposure and susceptible to disease and injury. In this review, we first summarize hippocampal deficits seen in several human neurodevelopmental disorders, and then discuss hippocampal impairment including hippocampus-dependent behavioral deficits found in animal models of these neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yue Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Michael E Stockton
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
52
|
Moine H, Vitale N. Of local translation control and lipid signaling in neurons. Adv Biol Regul 2018; 71:194-205. [PMID: 30262213 DOI: 10.1016/j.jbior.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022]
Abstract
Fine-tuned regulation of new proteins synthesis is key to the fast adaptation of cells to their changing environment and their response to external cues. Protein synthesis regulation is particularly refined and important in the case of highly polarized cells like neurons where translation occurs in the subcellular dendritic compartment to produce long-lasting changes that enable the formation, strengthening and weakening of inter-neuronal connection, constituting synaptic plasticity. The changes in local synaptic proteome of neurons underlie several aspects of synaptic plasticity and new protein synthesis is necessary for long-term memory formation. Details of how neuronal translation is locally controlled only start to be unraveled. A generally accepted view is that mRNAs are transported in a repressed state and are translated locally upon externally cued triggering signaling cascades that derepress or activate translation machinery at specific sites. Some important yet poorly considered intermediates in these cascades of events are signaling lipids such as diacylglycerol and its balancing partner phosphatidic acid. A link between these signaling lipids and the most common inherited cause of intellectual disability, Fragile X syndrome, is emphasizing the important role of these secondary messages in synaptically controlled translation.
Collapse
Affiliation(s)
- Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France; Université de Strasbourg, 67084, Strasbourg, France.
| | - Nicolas Vitale
- Université de Strasbourg, 67084, Strasbourg, France; Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, 67084, Strasbourg, France
| |
Collapse
|
53
|
Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity. Brain Res 2018; 1694:55-62. [DOI: 10.1016/j.brainres.2018.04.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/28/2018] [Accepted: 04/24/2018] [Indexed: 01/14/2023]
|
54
|
Patzlaff NE, Shen M, Zhao X. Regulation of Adult Neurogenesis by the Fragile X Family of RNA Binding Proteins. Brain Plast 2018; 3:205-223. [PMID: 30151344 PMCID: PMC6091053 DOI: 10.3233/bpl-170061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The fragile X mental retardation protein (FMRP) has an important role in neural development. Functional loss of FMRP in humans leads to fragile X syndrome, and it is the most common monogenetic contributor to intellectual disability and autism. FMRP is part of a larger family of RNA-binding proteins known as FXRs, which also includes fragile X related protein 1 (FXR1P) and fragile X related protein 2 (FXR2P). Despite the similarities of the family members, the functions of FXR1P and FXR2P in human diseases remain unclear. Although most studies focus on FMRP's role in mature neurons, all three FXRs regulate adult neurogenesis. Extensive studies have demonstrated important roles of adult neurogenesis in neuroplasticity, learning, and cognition. Impaired adult neurogenesis is implicated in neuropsychiatric disorders, neurodegenerative diseases, and neurodevelopmental disorders. Interventions aimed at regulating adult neurogenesis are thus being evaluated as potential therapeutic strategies. Here, we review and discuss the functions of FXRs in adult neurogenesis and their known similarities and differences. Understanding the overlapping regulatory functions of FXRs in adult neurogenesis can give us insights into the adult brain and fragile X syndrome.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
55
|
Qiu CW, Liu ZY, Hou K, Liu SY, Hu YX, Zhang L, Zhang FL, Lv KY, Kang Q, Hu WY, Ma N, Jiao Y, Bai WJ, Xiao ZC. Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Exp Neurol 2018; 309:44-53. [PMID: 30048716 DOI: 10.1016/j.expneurol.2018.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/16/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022]
Abstract
Neurogenesis correlates closely with the recovery of neural function after brain ischemia but the critical proteins and signaling pathways involved remain unclear. The phosphatase WIP1 has been shown to regulate neurogenesis in models of aging. However, it is not known if WIP1 affects neurogenesis and functional recovery after brain ischemia. To explore these questions, we performed permanent middle cerebral artery occlusion (MCAO) in mice and performed BrdU labeling, neurobehavioral testing, western blotting, and immunofluorescence staining. We found that ischemia induced WIP1 expression in the area bordering the injury. Compared to wild-type mice, the knockout of the Wip1 gene inhibited neurological functional recovery, reduced the expression of doublecortin, and inactivated the Wnt/β-Catenin signaling pathway in cerebral ischemia in mice. Pharmacological activation of the Wnt/β-Catenin signaling pathway compensated for the Wip1 knockout-induced deficit in neuroblast formation in animals with MCAO. These findings indicate that WIP1 is essential for neurogenesis after brain injury by activating the Wnt/β-Catenin signaling pathway.
Collapse
Affiliation(s)
- Cai-Wei Qiu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China.
| | - Zong-Yao Liu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Kun Hou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Shu-Yi Liu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Yue-Xin Hu
- Experiment Enter for Medical Science Research, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Ling Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Feng-Lan Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Ke-Ying Lv
- School of Basic Medical Sciences, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Qiang Kang
- Department of Hepatobiliary Surgery, The second Affiliated Hospital, Kunming Medical University, Kunming City 650106, Yunnan, China
| | - Wei-Yan Hu
- School of Pharmaceutical Science, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Na Ma
- School of Basic Medical Sciences, Kunming Medical University, Kunming City 650500, Yunnan, China
| | - Yang Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China
| | - Wen-Jin Bai
- Faculty of Education and Management, Yunnan Normal University, Kunming City 650500, Yunnan, China
| | - Zhi-Cheng Xiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming city 650500, Yunnan, China; Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia.
| |
Collapse
|
56
|
Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun 2018; 9:2494. [PMID: 29950602 PMCID: PMC6021376 DOI: 10.1038/s41467-018-04869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited intellectual disability, resulting from a loss of fragile X mental retardation protein (FMRP). Patients with FXS suffer lifelong cognitive disabilities, but the function of FMRP in the adult brain and the mechanism underlying age-related cognitive decline in FXS is not fully understood. Here, we report that a loss of FMRP results in increased protein synthesis of histone acetyltransferase EP300 and ubiquitination-mediated degradation of histone deacetylase HDAC1 in adult hippocampal neural stem cells (NSCs). Consequently, FMRP-deficient NSCs exhibit elevated histone acetylation and age-related NSC depletion, leading to cognitive impairment in mature adult mice. Reducing histone acetylation rescues both neurogenesis and cognitive deficits in mature adult FMRP-deficient mice. Our work reveals a role for FMRP and histone acetylation in cognition and presents a potential novel therapeutic strategy for treating adult FXS patients. Loss of fragile X mental retardation protein (FMRP) leads to fragile X syndrome, associated with cognitive dysfunction. Here the authors show that mice lacking FMRP show reduced hippocampal neurogenesis and cognitive deficits, which can be rescued by reducing histone acetylation.
Collapse
|
57
|
Dahlhaus R. Of Men and Mice: Modeling the Fragile X Syndrome. Front Mol Neurosci 2018; 11:41. [PMID: 29599705 PMCID: PMC5862809 DOI: 10.3389/fnmol.2018.00041] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The Fragile X Syndrome (FXS) is one of the most common forms of inherited intellectual disability in all human societies. Caused by the transcriptional silencing of a single gene, the fragile x mental retardation gene FMR1, FXS is characterized by a variety of symptoms, which range from mental disabilities to autism and epilepsy. More than 20 years ago, a first animal model was described, the Fmr1 knock-out mouse. Several other models have been developed since then, including conditional knock-out mice, knock-out rats, a zebrafish and a drosophila model. Using these model systems, various targets for potential pharmaceutical treatments have been identified and many treatments have been shown to be efficient in preclinical studies. However, all attempts to turn these findings into a therapy for patients have failed thus far. In this review, I will discuss underlying difficulties and address potential alternatives for our future research.
Collapse
Affiliation(s)
- Regina Dahlhaus
- Institute for Biochemistry, Emil-Fischer Centre, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
58
|
Grossberg S, Kishnan D. Neural Dynamics of Autistic Repetitive Behaviors and Fragile X Syndrome: Basal Ganglia Movement Gating and mGluR-Modulated Adaptively Timed Learning. Front Psychol 2018; 9:269. [PMID: 29593596 PMCID: PMC5859312 DOI: 10.3389/fpsyg.2018.00269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
This article develops the iSTART neural model that proposes how specific imbalances in cognitive, emotional, timing, and motor processes that involve brain regions like prefrontal cortex, temporal cortex, amygdala, hypothalamus, hippocampus, and cerebellum may interact together to cause behavioral symptoms of autism. These imbalances include underaroused emotional depression in the amygdala/hypothalamus, learning of hyperspecific recognition categories that help to cause narrowly focused attention in temporal and prefrontal cortices, and breakdowns of adaptively timed motivated attention and motor circuits in the hippocampus and cerebellum. The article expands the model's explanatory range by, first, explaining recent data about Fragile X syndrome (FXS), mGluR, and trace conditioning; and, second, by explaining distinct causes of stereotyped behaviors in individuals with autism. Some of these stereotyped behaviors, such as an insistence on sameness and circumscribed interests, may result from imbalances in the cognitive and emotional circuits that iSTART models. These behaviors may be ameliorated by operant conditioning methods. Other stereotyped behaviors, such as repetitive motor behaviors, may result from imbalances in how the direct and indirect pathways of the basal ganglia open or close movement gates, respectively. These repetitive behaviors may be ameliorated by drugs that augment D2 dopamine receptor responses or reduce D1 dopamine receptor responses. The article also notes the ubiquitous role of gating by basal ganglia loops in regulating all the functions that iSTART models.
Collapse
Affiliation(s)
- Stephen Grossberg
- Center for Adaptive Systems, Graduate Program in Cognitive and Neural Systems, Departments of Mathematics & Statistics, Psychological & Brain Sciences, and Biomedical Engineering, Boston University, Boston, MA, United States
| | - Devika Kishnan
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| |
Collapse
|
59
|
Xing Z, Zeng M, Hu H, Zhang H, Hao Z, Long Y, Chen S, Su H, Yuan Z, Xu M, Chen J. Fragile X mental retardation protein promotes astrocytoma proliferation via the MEK/ERK signaling pathway. Oncotarget 2018; 7:75394-75406. [PMID: 27683117 PMCID: PMC5342749 DOI: 10.18632/oncotarget.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
Objective To examine the association between fragile X mental retardation protein (FMRP) expression and astrocytoma characteristics. Methods Pathologic grade and expressions of glial fibrillary acidic protein (GFAP), Ki67 (proliferation marker), and FMRP were determined in astrocytoma specimens from 74 patients. Kaplan-Meier survival analysis was undertaken. Pathologic grade and protein levels of FMRP were determined in 24 additional patients with astrocytoma and 6 controls (cerebral trauma). In cultured U251 and U87 cell lines, the effects of FMRP knock-down on cell proliferation, AKT/mTOR/GSK-3β and MEK/ERK signaling were studied. The effects of FMRP knock-down on the volumes and weights of U251 cell-derived orthotopic tumors in mice were investigated. Results In patients, FMRP expression was increased in grade IV (5.1-fold, P<0.01) and grade III (3.2-fold, P<0.05) astrocytoma, compared with controls. FMRP and Ki67 expressions were positively correlated (R2=0.877, P<0.001). Up-regulation of FMRP was associated with poorer survival among patients with FMRP integrated optical density >30 (P<0.01). In astrocytoma cell lines, FMRP knock-down slowed proliferation (P<0.05), inhibited total MEK levels P<0.05, and reduced phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204) (P<0.05). In mice with orthotopic tumors, FMRP knock-down decreased FMRP and Ki67 expressions, and reduced tumor volume and weight (36.3% or 61.5% on day 15, both P<0.01). Also, phosphorylation of MEK (Ser217/221) and ERK (Thr202/Tyr204), and total MEK in xenografts were decreased in sh-FMRP xenografts compared with non-transfected ones (all P<0.05). Conclusion Enhanced FMRP expression in astrocytoma may promote proliferation through activation of MEK/ERK signaling.
Collapse
Affiliation(s)
- Zhou Xing
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Minling Zeng
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Huixian Hu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hui Zhang
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhuofang Hao
- Department of Pathology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Yuesheng Long
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Shengqiang Chen
- Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Hang Su
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Zhongmin Yuan
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| | - Meng Xu
- Department of Oncology, The First Affiliated Hospital, Jinan University, Guangzhou 510632, People's Republic of China
| | - Jingqi Chen
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China.,Department of Medical Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, People's Republic of China
| |
Collapse
|
60
|
Nguyen T, Fan T, George SR, Perreault ML. Disparate Effects of Lithium and a GSK-3 Inhibitor on Neuronal Oscillatory Activity in Prefrontal Cortex and Hippocampus. Front Aging Neurosci 2018; 9:434. [PMID: 29375364 PMCID: PMC5770585 DOI: 10.3389/fnagi.2017.00434] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK-3) plays a critical role in cognitive dysfunction associated with Alzheimer’s disease (AD), yet the mechanism by which GSK-3 alters cognitive processes in other disorders, such as schizophrenia, remains unknown. In the present study, we demonstrated a role for GSK-3 in the direct regulation of neuronal oscillations in hippocampus (HIP) and prelimbic cortex (PL). A comparison of the GSK-3 inhibitors SB 216763 and lithium demonstrated disparate effects of the drugs on spatial memory and neural oscillatory activity in HIP and PL. SB 216763 administration improved spatial memory whereas lithium treatment had no effect. Analysis of neuronal local field potentials in anesthetized animals revealed that whereas both repeated SB 216763 (2.5 mg/kg) and lithium (100 mg/kg) induced a theta frequency spike in HIP at approximately 10 Hz, only SB 216763 treatment induced an overall increase in theta power (4–12 Hz) compared to vehicle. Acute administration of either drug suppressed slow (32–59 Hz) and fast (61–100 Hz) gamma power. In PL, both drugs induced an increase in theta power. Repeated SB 216763 increased HIP–PL coherence across all frequencies except delta, whereas lithium selectively suppressed delta coherence. These findings demonstrate that GSK-3 plays a direct role in the regulation of theta oscillations in regions critically involved in cognition, and highlight a potential mechanism by which GSK-3 may contribute to cognitive decline in disorders of cognitive dysfunction.
Collapse
Affiliation(s)
- Tuan Nguyen
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa L Perreault
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
61
|
Li Y, Stockton ME, Bhuiyan I, Eisinger BE, Gao Y, Miller JL, Bhattacharyya A, Zhao X. MDM2 inhibition rescues neurogenic and cognitive deficits in a mouse model of fragile X syndrome. Sci Transl Med 2017; 8:336ra61. [PMID: 27122614 DOI: 10.1126/scitranslmed.aad9370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Fragile X syndrome, the most common form of inherited intellectual disability, is caused by loss of the fragile X mental retardation protein (FMRP). However, the mechanism remains unclear, and effective treatment is lacking. We show that loss of FMRP leads to activation of adult mouse neural stem cells (NSCs) and a subsequent reduction in the production of neurons. We identified the ubiquitin ligase mouse double minute 2 homolog (MDM2) as a target of FMRP. FMRP regulates Mdm2 mRNA stability, and loss of FMRP resulted in elevated MDM2 mRNA and protein. Further, we found that increased MDM2 expression led to reduced P53 expression in adult mouse NSCs, leading to alterations in NSC proliferation and differentiation. Treatment with Nutlin-3, a small molecule undergoing clinical trials for treating cancer, specifically inhibited the interaction of MDM2 with P53, and rescued neurogenic and cognitive deficits in FMRP-deficient mice. Our data reveal a potential regulatory role for FMRP in the balance between adult NSC activation and quiescence, and identify a potential new treatment for fragile X syndrome.
Collapse
Affiliation(s)
- Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Ismat Bhuiyan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Brian E Eisinger
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica L Miller
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA. Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
62
|
Munshi K, Pawlowski K, Gonzalez-Heydrich J, Picker JD. Review of Salient Investigational Drugs for the Treatment of Fragile X Syndrome. J Child Adolesc Psychopharmacol 2017; 27:850-863. [PMID: 28475355 DOI: 10.1089/cap.2016.0200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability, in addition to being the commonest diagnosable cause of autism. The identification of the biochemical mechanism underlying this disorder has provided amenable targets for therapy. This review aims to provide an overview of investigational drug therapies for FXS. METHODS The authors carried out a search of clinical and preclinical trials for FXS in PubMed and on the U.S. National Institutes of Health index of clinical trials ( www.clinicaltrials.gov ). We limited our review to Phase II trials or more preliminary and reviewed the associated publications for these studies, complemented by a review of the literature on PubMed. RESULTS The review of the preclinical, Phase I, and Phase II trials of agents with therapeutic potential in FXS revolves around an understanding of the putative pathways in the pathogenesis of FXS. While there is significant overlap between some of these pathways, the agents can be categorized as modulators of the metabotropic glutamate receptor system, GABAergic agents, and miscellaneous modulators affecting other pathways. CONCLUSION As trials involving agents targeting different aspects of the molecular biology proceed, common themes have emerged. With the great hope came great disappointment as the initial trials failed to demonstrate sufficient significance. In particular, the differences in outcome between the animal models and humans have highlighted the unique challenges of carrying out trials in these cognitively and behaviorally challenged individuals, as well as a dearth of clinically relevant outcome measures for use in medication trials. However, in reviewing and reframing the studies of the last decade, many important lessons have been learned, which will ultimately have a greater impact on therapeutic research in the field of developmental delay as a whole.
Collapse
Affiliation(s)
- Kaizad Munshi
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Katherine Pawlowski
- 3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts.,4 Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital , Boston, Massachusetts
| | - Joseph Gonzalez-Heydrich
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts
| | - Jonathan D Picker
- 1 Department of Psychiatry, Boston Children's Hospital , Boston, Massachusetts.,2 Harvard Medical School , Boston, Massachusetts.,3 Division of Genetics and Genomics, Boston Children's Hospital , Boston, Massachusetts
| |
Collapse
|
63
|
Abstract
The role of DNA methylation in brain development is an intense area of research because the brain has particularly high levels of CpG and mutations in many of the proteins involved in the establishment, maintenance, interpretation, and removal of DNA methylation impact brain development and/or function. These include DNA methyltransferase (DNMT), Ten-Eleven Translocation (TET), and Methyl-CpG binding proteins (MBPs). Recent advances in sequencing breadth and depth as well the detection of different forms of methylation have greatly expanded our understanding of the diversity of DNA methylation in the brain. The contributions of DNA methylation and associated proteins to embryonic and adult neurogenesis will be examined. Particular attention will be given to the impact on adult hippocampal neurogenesis (AHN), which is a key mechanism contributing to brain plasticity, learning, memory and mood regulation. DNA methylation influences multiple aspects of neurogenesis from stem cell maintenance and proliferation, fate specification, neuronal differentiation and maturation, and synaptogenesis. In addition, DNA methylation during neurogenesis has been shown to be responsive to many extrinsic signals, both under normal conditions and during disease and injury. Finally, crosstalk between DNA methylation, Methyl-DNA binding domain (MBD) proteins such as MeCP2 and MBD1 and histone modifying complexes is used as an example to illustrate the extensive interconnection between these epigenetic regulatory systems.
Collapse
Affiliation(s)
- Emily M Jobe
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Xinyu Zhao
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
64
|
Lacivita E, Perrone R, Margari L, Leopoldo M. Targets for Drug Therapy for Autism Spectrum Disorder: Challenges and Future Directions. J Med Chem 2017; 60:9114-9141. [PMID: 29039668 DOI: 10.1021/acs.jmedchem.7b00965] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by persistent deficits in social communication and interaction and restricted, repetitive patterns of behavior, interests, and activities. Various factors are involved in the etiopathogenesis of ASD, including genetic factors, environmental toxins and stressors, impaired immune responses, mitochondrial dysfunction, and neuroinflammation. The heterogeneity in the phenotype among ASD patients and the complex etiology of the condition have long impeded the advancement of the development of pharmacological therapies. In the recent years, the integration of findings from mouse models to human genetics resulted in considerable progress toward the understanding of ASD pathophysiology. Currently, strategies to treat core symptoms of ASD are directed to correct synaptic dysfunctions, abnormalities in central oxytocin, vasopressin, and serotonin neurotransmission, and neuroinflammation. Here, we present a survey of the studies that have suggested molecular targets for drug development for ASD and the state-of-the-art of medicinal chemistry efforts in related areas.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Roberto Perrone
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| | - Lucia Margari
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Unità di Neuropsichiatria Infantile, Università degli Studi di Bari Aldo Moro , Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Marcello Leopoldo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro , via Orabona 4, 70125, Bari, Italy
| |
Collapse
|
65
|
Cunningham LA, Newville J, Li L, Tapia P, Allan AM, Valenzuela CF. Prenatal Alcohol Exposure Leads to Enhanced Serine 9 Phosphorylation of Glycogen Synthase Kinase-3β (GSK-3β) in the Hippocampal Dentate Gyrus of Adult Mouse. Alcohol Clin Exp Res 2017; 41:1907-1916. [PMID: 28865114 DOI: 10.1111/acer.13489] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/25/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of this study was to evaluate the expression and serine 9 phosphorylation of glycogen synthase kinase (GSK-3β) within the adult hippocampal dentate gyrus (DG) in a preclinical mouse model of fetal alcohol spectrum disorders. GSK-3β is a multifunctional kinase that modulates many hippocampal processes affected by gestational alcohol, including synaptic plasticity and adult neurogenesis. GSK-3β is a constitutively active kinase that is negatively regulated by phosphorylation at the serine 9 residue. METHODS We utilized a well-characterized limited access "drinking-in-the-dark" paradigm of prenatal alcohol exposure (PAE) and measured p(Ser9)GSK-3β and total GSK-3β within adult DG by Western blot analysis. In addition, we evaluated the expression pattern of both p(Ser9)GSK-3β and total GSK-3β within the adult hippocampal dentate of PAE and control mice using high-resolution confocal microscopy. RESULTS Our findings demonstrate a marked 2.0-fold elevation of p(Ser9)GSK-3β in PAE mice, concomitant with a more moderate 36% increase in total GSK-3β. This resulted in an approximate 63% increase in the p(Ser9)GSK-3β/GSK-3β ratio. Immunostaining revealed robust GSK-3β expression within Cornu Ammonis (CA) pyramidal neurons, hilar mossy cells, and a subset of GABAergic interneurons, with low levels of expression within hippocampal progenitors and dentate granule cells. CONCLUSIONS These findings suggest that PAE may lead to a long-term disruption of GSK-3β signaling within the DG, and implicate mossy cells, GABAergic interneurons, and CA primary neurons as major targets of this dysregulation.
Collapse
Affiliation(s)
- Lee Anna Cunningham
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jessie Newville
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Lu Li
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Phillip Tapia
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Andrea M Allan
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| | - C Fernando Valenzuela
- Department of Neurosciences, (LAC, JN, LL, PT, AMA, CFV), University of New Mexico Health Sciences Center, Albuquerque, NM
| |
Collapse
|
66
|
Abstract
Fragile X syndrome (FXS) is the leading inherited form of intellectual disability and autism spectrum disorder, and patients can present with severe behavioural alterations, including hyperactivity, impulsivity and anxiety, in addition to poor language development and seizures. FXS is a trinucleotide repeat disorder, in which >200 repeats of the CGG motif in FMR1 leads to silencing of the gene and the consequent loss of its product, fragile X mental retardation 1 protein (FMRP). FMRP has a central role in gene expression and regulates the translation of potentially hundreds of mRNAs, many of which are involved in the development and maintenance of neuronal synaptic connections. Indeed, disturbances in neuroplasticity is a key finding in FXS animal models, and an imbalance in inhibitory and excitatory neuronal circuits is believed to underlie many of the clinical manifestations of this disorder. Our knowledge of the proteins that are regulated by FMRP is rapidly growing, and this has led to the identification of multiple targets for therapeutic intervention, some of which have already moved into clinical trials or clinical practice.
Collapse
|
67
|
Methyl-CpG-Binding Protein MBD1 Regulates Neuronal Lineage Commitment through Maintaining Adult Neural Stem Cell Identity. J Neurosci 2017; 37:523-536. [PMID: 28100736 DOI: 10.1523/jneurosci.1075-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 01/09/2023] Open
Abstract
Methyl-CpG-binding domain 1 (MBD1) belongs to a family of methyl-CpG-binding proteins that are epigenetic "readers" linking DNA methylation to transcriptional regulation. MBD1 is expressed in neural stem cells residing in the dentate gyrus of the adult hippocampus (aNSCs) and MBD1 deficiency leads to reduced neuronal differentiation, impaired neurogenesis, learning deficits, and autism-like behaviors in mice; however, the precise function of MBD1 in aNSCs remains unexplored. Here, we show that MBD1 is important for maintaining the integrity and stemness of NSCs, which is critical for their ability to generate neurons. MBD1 deficiency leads to the accumulation of undifferentiated NSCs and impaired transition into the neuronal lineage. Transcriptome analysis of neural stem and progenitor cells isolated directly from the dentate gyrus of MBD1 mutant (KO) and WT mice showed that gene sets related to cell differentiation, particularly astrocyte lineage genes, were upregulated in KO cells. We further demonstrated that, in NSCs, MBD1 binds and represses directly specific genes associated with differentiation. Our results suggest that MBD1 maintains the multipotency of NSCs by restraining the onset of differentiation genes and that untimely expression of these genes in MBD1-deficient stem cells may interfere with normal cell lineage commitment and cause the accumulation of undifferentiated cells. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation contributes to adult neurogenesis and the potential impact of its dysregulation. SIGNIFICANCE STATEMENT Adult neural stem cells (aNSCs) in the hippocampus self-renew and generate neurons throughout life. We show that methyl-CpG-binding domain 1 (MBD1), a DNA methylation "reader," is important for maintaining the integrity of NSCs, which is critical for their neurogenic potency. Our data reveal a novel role for MBD1 in stem cell maintenance and provide insight into how epigenetic regulation preserves the multipotency of stem cells for subsequent differentiation.
Collapse
|
68
|
Hennig KM, Fass DM, Zhao WN, Sheridan SD, Fu T, Erdin S, Stortchevoi A, Lucente D, Cody JD, Sweetser D, Gusella JF, Talkowski ME, Haggarty SJ. WNT/β-Catenin Pathway and Epigenetic Mechanisms Regulate the Pitt-Hopkins Syndrome and Schizophrenia Risk Gene TCF4. MOLECULAR NEUROPSYCHIATRY 2017; 3:53-71. [PMID: 28879201 DOI: 10.1159/000475666] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Genetic variation within the transcription factor TCF4 locus can cause the intellectual disability and developmental disorder Pitt-Hopkins syndrome (PTHS), whereas single-nucleotide polymorphisms within noncoding regions are associated with schizophrenia. These genetic findings position TCF4 as a link between transcription and cognition; however, the neurobiology of TCF4 remains poorly understood. Here, we quantitated multiple distinct TCF4 transcript levels in human induced pluripotent stem cell-derived neural progenitors and differentiated neurons, and PTHS patient fibroblasts. We identify two classes of pharmacological treatments that regulate TCF4 expression: WNT pathway activation and inhibition of class I histone deacetylases. In PTHS fibroblasts, both of these perturbations upregulate a subset of TCF4 transcripts. Finally, using chromatin immunoprecipitation sequencing in conjunction with genome-wide transcriptome analysis, we identified TCF4 target genes that may mediate the effect of TCF4 loss on neuroplasticity. Our studies identify new pharmacological assays, tools, and targets for the development of therapeutics for cognitive disorders.
Collapse
Affiliation(s)
- Krista M Hennig
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA
| | - Wen-Ning Zhao
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven D Sheridan
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Ting Fu
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexei Stortchevoi
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jannine D Cody
- Chromosome 18 Clinical Research Center, Department of Pediatrics, University of Texas Health Sciences Center, San Antonio, Texas, USA.,The Chromosome 18 Registry and Research Society, San Antonio, Texas, USA
| | - David Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Divisions of Pediatric Hematology/Oncology and Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts, USA.,Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
69
|
Poquérusse J, Luikart BW. A Neurodevelopmental Perspective for Autism-Associated Gene Function. OBM NEUROBIOLOGY 2017; 1:004. [PMID: 35445171 PMCID: PMC9017685 DOI: 10.21926/obm.neurobiol.1702004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Large-scale genetic sequencing studies have identified a wealth of genes in which mutations are associated with autism spectrum disorder (ASD). Understanding the biological function of these genes sheds light onto the neurodevelopmental basis of ASD. To this end, we defined functional categories representing brain development - (1) Cell Division and Survival, (2) Cell Migration and Differentiation, (3) Neuronal Morphological Elaboration, (4) Development and Regulation of Cellular Excitability, and (5) Synapse Formation and Function - and place 100 high confidence ASD-associated genes yielding at least 50 published PubMed articles into these categories based on keyword searches. We compare the categorization of ASD genes to genes associated with developmental delay (DD) and systematically review the published literature on the function of these genes. We find evidence that ASD-associated genes have important functions that span the neurodevelopmental continuum. Further, examining the temporal expression pattern of these genes using the BrainSpan Atlas of the Developing Human Brain supports their function across development. Thus, our analyses and review of literature on ASD gene function support a model whereby differences in brain development - from very early stages of macroarchitectural patterning to late stages of activity-dependent sculpting of synaptic connectivity - may lead to ASD. It will be important to keep investigating potential points of mechanistic convergence which could explain a common pathophysiological basis of ASD behind this disparate array of genes.
Collapse
|
70
|
Delineating the Common Biological Pathways Perturbed by ASD's Genetic Etiology: Lessons from Network-Based Studies. Int J Mol Sci 2017; 18:ijms18040828. [PMID: 28420080 PMCID: PMC5412412 DOI: 10.3390/ijms18040828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/26/2022] Open
Abstract
In recent decades it has become clear that Autism Spectrum Disorder (ASD) possesses a diverse and heterogeneous genetic etiology. Aberrations in hundreds of genes have been associated with ASD so far, which include both rare and common variations. While one may expect that these genes converge on specific common molecular pathways, which drive the development of the core ASD characteristics, the task of elucidating these common molecular pathways has been proven to be challenging. Several studies have combined genetic analysis with bioinformatical techniques to uncover molecular mechanisms that are specifically targeted by autism-associated genetic aberrations. Recently, several analysis have suggested that particular signaling mechanisms, including the Wnt and Ca2+/Calmodulin-signaling pathways are often targeted by autism-associated mutations. In this review, we discuss several studies that determine specific molecular pathways affected by autism-associated mutations, and then discuss more in-depth into the biological roles of a few of these pathways, and how they may be involved in the development of ASD. Considering that these pathways may be targeted by specific pharmacological intervention, they may prove to be important therapeutic targets for the treatment of ASD.
Collapse
|
71
|
Patzlaff NE, Nemec KM, Malone SG, Li Y, Zhao X. Fragile X related protein 1 (FXR1P) regulates proliferation of adult neural stem cells. Hum Mol Genet 2017; 26:1340-1352. [PMID: 28204491 PMCID: PMC6075589 DOI: 10.1093/hmg/ddx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
Fragile X related protein 1 (FXR1P) is a member of the fragile X family of RNA-binding proteins, which includes FMRP and FXR2P. Both FMRP and FXR2P regulate neurogenesis, a process affected in a number of neurological and neuropsychiatric disorders, including fragile X syndrome. Although FXR1P has been implicated in various developmental processes and neuropsychiatric diseases, its role in neurodevelopment is not well understood. The goal of the present study was to elucidate the function of FXR1P in adult neurogenesis. We used an inducible mouse model that allows us to investigate how FXR1P deficiency in adult neural stem cells (aNSCs) affects proliferation and neuronal differentiation. Deletion of FXR1 in aNSCs resulted in fewer adult-born cells in the dentate gyrus (DG) overall, reducing populations across different stages of neurogenesis, including radial glia-like cells, intermediate progenitors, neuroblasts, immature neurons and neurons. We hypothesized that this reduction in new cell numbers resulted from impaired proliferation, which we confirmed both in vivo and in vitro. We discovered that FXR1P-deficient aNSCs have altered expression of a select number of cell-cycle genes, and we identified the mRNA of cyclin-dependent kinase inhibitor 1A (Cdkn1a, p21) as a direct target of FXR1P. Restoration of p21 mRNA to wild-type levels rescued the proliferation deficit in cells lacking FXR1P, demonstrating that p21 is a mediator of FXR1P in aNSCs. These results indicate that FXR1P plays an important role in regulating aNSC self-renewal and maintenance in the adult brain, which may have implications for a number of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natalie E. Patzlaff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kelsey M. Nemec
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sydney G. Malone
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yue Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Molecular and Cellular Pharmacology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
72
|
Scharkowski F, Frotscher M, Lutz D, Korte M, Michaelsen-Preusse K. Altered Connectivity and Synapse Maturation of the Hippocampal Mossy Fiber Pathway in a Mouse Model of the Fragile X Syndrome. Cereb Cortex 2017; 28:852-867. [DOI: 10.1093/cercor/bhw408] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Affiliation(s)
- F Scharkowski
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
| | - Michael Frotscher
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - David Lutz
- ZMNH, Institute for Structural Neurobiology, D-20251 Hamburg, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Centre for Infection Research, AG NIND, 38124 Braunschweig, Germany
| | | |
Collapse
|
73
|
Kwan V, Unda BK, Singh KK. Wnt signaling networks in autism spectrum disorder and intellectual disability. J Neurodev Disord 2016; 8:45. [PMID: 27980692 PMCID: PMC5137220 DOI: 10.1186/s11689-016-9176-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Background Genetic factors play a major role in the risk for neurodevelopmental disorders such as autism spectrum disorders (ASDs) and intellectual disability (ID). The underlying genetic factors have become better understood in recent years due to advancements in next generation sequencing. These studies have uncovered a vast number of genes that are impacted by different types of mutations (e.g., de novo, missense, truncation, copy number variations). Abstract Given the large volume of genetic data, analyzing each gene on its own is not a feasible approach and will take years to complete, let alone attempt to use the information to develop novel therapeutics. To make sense of independent genomic data, one approach is to determine whether multiple risk genes function in common signaling pathways that identify signaling “hubs” where risk genes converge. This approach has led to multiple pathways being implicated, such as synaptic signaling, chromatin remodeling, alternative splicing, and protein translation, among many others. In this review, we analyze recent and historical evidence indicating that multiple risk genes, including genes denoted as high-confidence and likely causal, are part of the Wingless (Wnt signaling) pathway. In the brain, Wnt signaling is an evolutionarily conserved pathway that plays an instrumental role in developing neural circuits and adult brain function. Conclusions We will also review evidence that pharmacological therapies and genetic mouse models further identify abnormal Wnt signaling, particularly at the synapse, as being disrupted in ASDs and contributing to disease pathology.
Collapse
Affiliation(s)
- Vickie Kwan
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| | - Brianna K Unda
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| | - Karun K Singh
- Department of Biochemistry and Biomedical Sciences, Stem Cell and Cancer Research Institute, McMaster University, Hamilton, Ontario L8S 4K1 Canada
| |
Collapse
|
74
|
Jones BW, Deem J, Younts TJ, Weisenhaus M, Sanford CA, Slack MC, Chin J, Nachmanson D, McKennon A, Castillo PE, McKnight GS. Targeted deletion of AKAP7 in dentate granule cells impairs spatial discrimination. eLife 2016; 5. [PMID: 27911261 PMCID: PMC5135391 DOI: 10.7554/elife.20695] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/23/2016] [Indexed: 01/26/2023] Open
Abstract
Protein Kinase A (PKA) mediates synaptic plasticity and is widely implicated in learning and memory. The hippocampal dentate gyrus (DG) is thought to be responsible for processing and encoding distinct contextual associations in response to highly similar inputs. The mossy fiber (MF) axons of the dentate granule cells convey strong excitatory drive to CA3 pyramidal neurons and express presynaptic, PKA-dependent forms of plasticity. Here, we demonstrate an essential role for the PKA anchoring protein, AKAP7, in mouse MF axons and terminals. Genetic ablation of AKAP7 specifically from dentate granule cells results in disruption of MF-CA3 LTP directly initiated by cAMP, and the AKAP7 mutant mice are selectively deficient in pattern separation behaviors. Our results suggest that the AKAP7/PKA complex in the MF projections plays an essential role in synaptic plasticity and contextual memory formation. DOI:http://dx.doi.org/10.7554/eLife.20695.001
Collapse
Affiliation(s)
- Brian W Jones
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jennifer Deem
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Thomas J Younts
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - Michael Weisenhaus
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Christina A Sanford
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Margaret C Slack
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Jenesa Chin
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Daniela Nachmanson
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Alex McKennon
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| | - Pablo E Castillo
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, United States
| | - G Stanley McKnight
- Department of Pharmacology, University of Washington School of Medicine, Seattle, United States
| |
Collapse
|
75
|
Palomo V, Martinez A. Glycogen synthase kinase 3 (GSK-3) inhibitors: a patent update (2014-2015). Expert Opin Ther Pat 2016; 27:657-666. [PMID: 27828716 DOI: 10.1080/13543776.2017.1259412] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Glycogen synthase kinase (GSK-3) is a serine/threonine kinase that phosphorylates more than one hundred different sequences within proteins in a variety of different pathways. It is a key component of a remarkably large number of cellular processes and diseases. Imbalance of GSK-3 activity is involved in various prevalent pathological diseases, such as diabetes, neurodegenerative diseases and cancer. Understanding its role in different disorders has been central in the last several decades and there has been a significantly large development of GSK-3 inhibitors, some of which, show promising results for the treatment of these devastating diseases. Areas covered: This review covers patent literature on GSK-3 inhibitors and their applications published and/or granted between 2014 and 2015. Expert opinion: GSK-3 inhibitors have gained a prominent role in regenerative medicine based in their ability to modulate stem cells. Moreover, some allosteric modulators of GSK-3 emerge as safe compounds for chronic treatments.
Collapse
Affiliation(s)
- Valle Palomo
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| | - Ana Martinez
- a Centro de Investigaciones Biologicas-CSIC , Translational Medicinal and Biological Chemistry Laboratory , Madrid , Spain
| |
Collapse
|
76
|
Bostrom C, Yau SY, Majaess N, Vetrici M, Gil-Mohapel J, Christie BR. Hippocampal dysfunction and cognitive impairment in Fragile-X Syndrome. Neurosci Biobehav Rev 2016; 68:563-574. [DOI: 10.1016/j.neubiorev.2016.06.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023]
|
77
|
Telias M, Mayshar Y, Amit A, Ben-Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev 2016; 24:2353-65. [PMID: 26393806 DOI: 10.1089/scd.2015.0220] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited cognitive impairment. It is caused by developmental inactivation of the FMR1 gene and the absence of its encoded protein FMRP, which plays pivotal roles in brain development and function. In FXS embryos with full FMR1 mutation, FMRP is expressed during early embryogenesis and is gradually downregulated at the third trimester of pregnancy. FX-human embryonic stem cells (FX-hESCs), derived from FX human blastocysts, demonstrate the same pattern of developmentally regulated FMR1 inactivation when subjected to in vitro neural differentiation (IVND). In this study, we used this in vitro human platform to explore the molecular mechanisms downstream to FMRP in the context of early human embryonic neurogenesis. Our results show a novel role for the SOX superfamily of transcription factors, specifically for SOX2 and SOX9, which could explain the reduced and delayed neurogenesis observed in FX cells. In addition, we assess in this study the "GSK3β theory of FXS" for the first time in a human-based model. We found no evidence for a pathological increase in GSK3β protein levels upon cellular loss of FMRP, in contrast to what was found in the brain of Fmr1 knockout mice. Our study adds novel data on potential downstream targets of FMRP and highlights the importance of the FX-hESC IVND system.
Collapse
Affiliation(s)
- Michael Telias
- 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .,2 Department of Cell and Developmental Biology Sackler Medical School, Tel Aviv University , Tel Aviv, Israel
| | - Yoav Mayshar
- 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel
| | - Ami Amit
- 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel
| | - Dalit Ben-Yosef
- 1 The Wolfe PGD-SC Lab, Racine IVF Unit, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center , Tel Aviv, Israel .,2 Department of Cell and Developmental Biology Sackler Medical School, Tel Aviv University , Tel Aviv, Israel
| |
Collapse
|
78
|
Li M, Zhao H, Ananiev GE, Musser MT, Ness KH, Maglaque DL, Saha K, Bhattacharyya A, Zhao X. Establishment of Reporter Lines for Detecting Fragile X Mental Retardation (FMR1) Gene Reactivation in Human Neural Cells. Stem Cells 2016; 35:158-169. [PMID: 27422057 DOI: 10.1002/stem.2463] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 01/22/2023]
Abstract
Human patient-derived induced pluripotent stem cells (hiPSCs) provide unique opportunities for disease modeling and drug development. However, adapting hiPSCs or their differentiated progenies to high throughput assays for phenotyping or drug screening has been challenging. Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and a major genetic cause of autism. FXS is caused by mutational trinucleotide expansion in the FMR1 gene leading to hypermethylation and gene silencing. One potential therapeutic strategy is to reactivate the silenced FMR1 gene, which has been attempted using both candidate chemicals and cell-based screening. However, molecules that effectively reactivate the silenced FMR1 gene are yet to be identified; therefore, a high throughput unbiased screen is needed. Here we demonstrate the creation of a robust FMR1-Nluc reporter hiPSC line by knocking in a Nano luciferase (Nluc) gene into the endogenous human FMR1 gene using the CRISPR/Cas9 genome editing method. We confirmed that luciferase activities faithfully report FMR1 gene expression levels and showed that neural progenitor cells derived from this line could be optimized for high throughput screening. The FMR1-Nluc reporter line is a good resource for drug screening as well as for testing potential genetic reactivation strategies. In addition, our data provide valuable information for the generation of knockin human iPSC reporter lines for disease modeling, drug screening, and mechanistic studies. Stem Cells 2017;35:158-169.
Collapse
Affiliation(s)
- Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Huashan Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gene E Ananiev
- Small Molecule Screening Facility, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michael T Musser
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kathryn H Ness
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dianne L Maglaque
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
79
|
Hsieh J, Zhao X. Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018911. [PMID: 27143699 DOI: 10.1101/cshperspect.a018911] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular basis of adult neurogenesis is neural stem cells residing in restricted areas of the adult brain. These cells self-renew and are multipotent. The maintenance of "stemness" and commitment to differentiation are tightly controlled by intricate molecular networks. Epigenetic mechanisms, including chromatin remodeling, DNA methylation, and noncoding RNAs (ncRNAs), have profound regulatory roles in mammalian gene expression. Significant advances have been made regarding the dynamic roles of epigenetic modulation and function. It has become evident that epigenetic regulators are key players in neural-stem-cell self-renewal, fate specification, and final maturation of new neurons, therefore, adult neurogenesis. Altered epigenetic regulation can result in a number of neurological and neurodevelopmental disorders. Here, we review recent discoveries that advance our knowledge in epigenetic regulation of mammalian neural stem cells and neurogenesis. Insights from studies of epigenetic gene regulation in neurogenesis may lead to new therapies for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Xinyu Zhao
- Department of Neuroscience and Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
80
|
Sun MK, Hongpaisan J, Alkon DL. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice. J Pharmacol Exp Ther 2016; 357:300-10. [PMID: 26941170 DOI: 10.1124/jpet.115.231100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Jarin Hongpaisan
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| | - Daniel L Alkon
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia
| |
Collapse
|
81
|
Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci 2016; 73:104-15. [PMID: 26826498 DOI: 10.1016/j.mcn.2016.01.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Compelling clinical, social, and economic reasons exist to innovate in the process of drug discovery for neuropsychiatric disorders. The use of patient-specific, induced pluripotent stem cells (iPSCs) now affords the ability to generate neuronal cell-based models that recapitulate key aspects of human disease. In the context of neuropsychiatric disorders, where access to physiologically active and relevant cell types of the central nervous system for research is extremely limiting, iPSC-derived in vitro culture of human neurons and glial cells is transformative. Potential applications relevant to early stage drug discovery, include support of quantitative biochemistry, functional genomics, proteomics, and perhaps most notably, high-throughput and high-content chemical screening. While many phenotypes in human iPSC-derived culture systems may prove adaptable to screening formats, addressing the question of which in vitro phenotypes are ultimately relevant to disease pathophysiology and therefore more likely to yield effective pharmacological agents that are disease-modifying treatments requires careful consideration. Here, we review recent examples of studies of neuropsychiatric disorders using human stem cell models where cellular phenotypes linked to disease and functional assays have been reported. We also highlight technical advances using genome-editing technologies in iPSCs to support drug discovery efforts, including the interpretation of the functional significance of rare genetic variants of unknown significance and for the purpose of creating cell type- and pathway-selective functional reporter assays. Additionally, we evaluate the potential of in vitro stem cell models to investigate early events of disease pathogenesis, in an effort to understand the underlying molecular mechanism, including the basis of selective cell-type vulnerability, and the potential to create new cell-based diagnostics to aid in the classification of patients and subsequent selection for clinical trials. A number of key challenges remain, including the scaling of iPSC models to larger cohorts and integration with rich clinicopathological information and translation of phenotypes. Still, the overall use of iPSC-based human cell models with functional cellular and biochemical assays holds promise for supporting the discovery of next-generation neuropharmacological agents for the treatment and ultimately prevention of a range of severe mental illnesses.
Collapse
|
82
|
Synaptic Wnt/GSK3β Signaling Hub in Autism. Neural Plast 2016; 2016:9603751. [PMID: 26881141 PMCID: PMC4736967 DOI: 10.1155/2016/9603751] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/29/2022] Open
Abstract
Hundreds of genes have been associated with autism spectrum disorders (ASDs) and the interaction of weak and de novo variants derive from distinct autistic phenotypes thus making up the “spectrum.” The convergence of these variants in networks of genes associated with synaptic function warrants the study of cell signaling pathways involved in the regulation of the synapse. The Wnt/β-catenin signaling pathway plays a central role in the development and regulation of the central nervous system and several genes belonging to the cascade have been genetically associated with ASDs. In the present paper, we review basic information regarding the role of Wnt/β-catenin signaling in excitatory/inhibitory balance (E/I balance) through the regulation of pre- and postsynaptic compartments. Furthermore, we integrate information supporting the role of the glycogen synthase kinase 3β (GSK3β) in the onset/development of ASDs through direct modulation of Wnt/β-catenin signaling. Finally, given GSK3β activity as key modulator of synaptic plasticity, we explore the potential of this kinase as a therapeutic target for ASD.
Collapse
|
83
|
Weisz ED, Monyak RE, Jongens TA. Deciphering discord: How Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts. Exp Neurol 2015; 274:14-24. [PMID: 26026973 PMCID: PMC12047081 DOI: 10.1016/j.expneurol.2015.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of intellectual impairment as well as the leading monogenetic cause of autism. In addition to its canonical definition as a neurodevelopmental disease, recent findings in the clinic suggest that FXS is a systemic disorder that is characterized by a variety of heterogeneous phenotypes. Efforts to study FXS pathogenesis have been aided by the development and characterization of animal models of the disease. Research efforts in Drosophila melanogaster have revealed key insights into the mechanistic underpinnings of FXS. While much remains unknown, it is increasingly apparent that FXS involves a myriad of spatially and temporally specific alterations in cellular function. Consequently, the literature is filled with numerous discordant findings. Researchers and clinicians alike must be cognizant of this dissonance, as it will likely be important for the design of preclinical studies to assess the efficacy of therapeutic strategies to improve the lives of FXS patients.
Collapse
Affiliation(s)
- Eliana D Weisz
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Rachel E Monyak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
84
|
Bhattacharyya A, Zhao X. Human pluripotent stem cell models of Fragile X syndrome. Mol Cell Neurosci 2015; 73:43-51. [PMID: 26640241 DOI: 10.1016/j.mcn.2015.11.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/03/2015] [Accepted: 11/25/2015] [Indexed: 01/18/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disability and autism. The causal mutation in FXS is a trinucleotide CGG repeat expansion in the FMR1 gene that leads to human specific epigenetic silencing and loss of Fragile X Mental Retardation Protein (FMRP) expression. Human pluripotent stem cells (PSCs), including human embryonic stem cells (ESCs) and particularly induced PSCs (iPSCs), offer a model system to reveal cellular and molecular events underlying human neuronal development and function in FXS. Human FXS PSCs have been established and have provided insight into the epigenetic silencing of the FMR1 gene as well as aspects of neuronal development.
Collapse
Affiliation(s)
- Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
85
|
Chen HJ, Shen YC, Shiao YJ, Liou KT, Hsu WH, Hsieh PH, Lee CY, Chen YR, Lin YL. Multiplex Brain Proteomic Analysis Revealed the Molecular Therapeutic Effects of Buyang Huanwu Decoction on Cerebral Ischemic Stroke Mice. PLoS One 2015; 10:e0140823. [PMID: 26492191 PMCID: PMC4619651 DOI: 10.1371/journal.pone.0140823] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Stroke is the second-leading cause of death worldwide, and tissue plasminogen activator (TPA) is the only drug used for a limited group of stroke patients in the acute phase. Buyang Huanwu Decoction (BHD), a traditional Chinese medicine prescription, has long been used for improving neurological functional recovery in stroke. In this study, we characterized the therapeutic effect of TPA and BHD in a cerebral ischemia/reperfusion (CIR) injury mouse model using multiplex proteomics approach. After the iTRAQ-based proteomics analysis, 1310 proteins were identified from the mouse brain with <1% false discovery rate. Among them, 877 quantitative proteins, 10.26% (90/877), 1.71% (15/877), and 2.62% (23/877) of the proteins was significantly changed in the CIR, BHD treatment, and TPA treatment, respectively. Functional categorization analysis showed that BHD treatment preserved the integrity of the blood–brain barrier (BBB) (Alb, Fga, and Trf), suppressed excitotoxicity (Grm5, Gnai, and Gdi), and enhanced energy metabolism (Bdh), thereby revealing its multiple effects on ischemic stroke mice. Moreover, the neurogenesis marker doublecortin was upregulated, and the activity of glycogen synthase kinase 3 (GSK-3) and Tau was inhibited, which represented the neuroprotective effects. However, TPA treatment deteriorated BBB breakdown. This study highlights the potential of BHD in clinical applications for ischemic stroke.
Collapse
Affiliation(s)
- Hong-Jhang Chen
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Young-Ji Shiao
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Kuo-Tong Liou
- Department of Chinese Martial Arts and Graduate Institute of Sport Coaching Science, Chinese Culture University, Taipei, Taiwan
| | - Wei-Hsiang Hsu
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Pei-Hsuan Hsieh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chi-Ying Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (YLL); (YRC)
| | - Yun-Lian Lin
- National Research Institute of Chinese Medicine, Taipei, Taiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
- * E-mail: (YLL); (YRC)
| |
Collapse
|
86
|
Richter JD, Bassell GJ, Klann E. Dysregulation and restoration of translational homeostasis in fragile X syndrome. Nat Rev Neurosci 2015; 16:595-605. [PMID: 26350240 DOI: 10.1038/nrn4001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fragile X syndrome (FXS), the most-frequently inherited form of intellectual disability and the most-prevalent single-gene cause of autism, results from a lack of fragile X mental retardation protein (FMRP), an RNA-binding protein that acts, in most cases, to repress translation. Multiple pharmacological and genetic manipulations that target receptors, scaffolding proteins, kinases and translational control proteins can rescue neuronal morphology, synaptic function and behavioural phenotypes in FXS model mice, presumably by reducing excessive neuronal translation to normal levels. Such rescue strategies might also be explored in the future to identify the mRNAs that are critical for FXS pathophysiology.
Collapse
Affiliation(s)
- Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01545, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York City, New York 10003, USA
| |
Collapse
|
87
|
Positive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis. Proc Natl Acad Sci U S A 2015; 112:E4995-5004. [PMID: 26305964 DOI: 10.1073/pnas.1513780112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differentiation of neural stem/progenitor cells (NSCs) in the adult subventricular zone by stabilizing the mRNA of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1), a critical transcriptional regulator in neurodevelopment. We find that SATB1 deficiency impairs the neuronal differentiation of NSCs, whereas SATB1 overexpression rescues the neuronal differentiation phenotypes resulting from HuD deficiency. Interestingly, we also discover that SATB1 is a transcriptional activator of HuD during NSC neuronal differentiation. In addition, we demonstrate that NeuroD1, a neuronal master regulator, is a direct downstream target of SATB1. Therefore, HuD and SATB1 form a positive regulatory loop that enhances NeuroD1 transcription and subsequent neuronal differentiation. Our results here reveal a novel positive feedback network between an RNA-binding protein and a transcription factor that plays critical regulatory roles in neurogenesis.
Collapse
|
88
|
Sastre A, Campillo NE, Gil C, Martinez A. Therapeutic approaches for the future treatment of Fragile X. Curr Opin Behav Sci 2015. [DOI: 10.1016/j.cobeha.2015.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
89
|
Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M, Bartesaghi R, Ciani E. Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis 2015; 82:298-310. [PMID: 26143616 DOI: 10.1016/j.nbd.2015.06.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in a rare neurodevelopmental disorder characterized by early-onset seizures, severe developmental delay, intellectual disability and Rett syndrome-like features. CDKL5 is highly expressed in the brain during early postnatal stages, suggesting its importance for brain maturation. Using a newly-generated Cdkl5 knockout (Cdkl5 -/Y) mouse, we recently found that loss of Cdkl5 impairs postnatal hippocampal development with a reduction in neuronal precursor survival and maturation. These defects were accompanied by increased activity of the glycogen synthase kinase 3β (GSK3β) a crucial inhibitory regulator of many neurodevelopmental processes. The goal of the current study was to establish whether inhibition of GSK3β corrects hippocampal developmental defects due to Cdkl5 loss. We found that treatment with the GSK3β inhibitor SB216763 restored neuronal precursor survival, dendritic maturation, connectivity and hippocampus-dependent learning and memory in the Cdkl5 -/Y mouse. Importantly, these effects were retained one month after treatment cessation. At present, there are no therapeutic strategies to improve the neurological defects of subjects with CDKL5 disorder. Current results point at GSK3β inhibitors as potential therapeutic tools for the improvement of abnormal brain development in CDKL5 disorder.
Collapse
Affiliation(s)
- Claudia Fuchs
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Clinical Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Rocchina Viggiano
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Marianna De Franceschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta San Donato 2, 40126 Bologna, Italy.
| |
Collapse
|
90
|
Gross C, Hoffmann A, Bassell GJ, Berry-Kravis EM. Therapeutic Strategies in Fragile X Syndrome: From Bench to Bedside and Back. Neurotherapeutics 2015; 12:584-608. [PMID: 25986746 PMCID: PMC4489963 DOI: 10.1007/s13311-015-0355-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Fragile X syndrome (FXS), an inherited intellectual disability often associated with autism, is caused by the loss of expression of the fragile X mental retardation protein. Tremendous progress in basic, preclinical, and translational clinical research has elucidated a variety of molecular-, cellular-, and system-level defects in FXS. This has led to the development of several promising therapeutic strategies, some of which have been tested in larger-scale controlled clinical trials. Here, we will summarize recent advances in understanding molecular functions of fragile X mental retardation protein beyond the well-known role as an mRNA-binding protein, and will describe current developments and emerging limitations in the use of the FXS mouse model as a preclinical tool to identify therapeutic targets. We will review the results of recent clinical trials conducted in FXS that were based on some of the preclinical findings, and discuss how the observed outcomes and obstacles will inform future therapy development in FXS and other autism spectrum disorders.
Collapse
Affiliation(s)
- Christina Gross
- />Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Anne Hoffmann
- />Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612 USA
| | - Gary J. Bassell
- />Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Elizabeth M. Berry-Kravis
- />Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
91
|
Chew B, Ryu JR, Ng T, Ma D, Dasgupta A, Neo SH, Zhao J, Zhong Z, Bichler Z, Sajikumar S, Goh ELK. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci 2015; 9:158. [PMID: 26157370 PMCID: PMC4477161 DOI: 10.3389/fnbeh.2015.00158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/01/2015] [Indexed: 11/13/2022] Open
Abstract
Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory.
Collapse
Affiliation(s)
- Benjamin Chew
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jae Ryun Ryu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Teclise Ng
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Dongliang Ma
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sin Hui Neo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Jing Zhao
- Regenerative Medicine DPU, GlaxoSmithKline (China) R&D Co., Ltd. Shanghai, China
| | - Zhong Zhong
- Regenerative Medicine DPU, GlaxoSmithKline (China) R&D Co., Ltd. Shanghai, China
| | - Zoë Bichler
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Behavioural Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; KK Research Center, KK Women's and Children's Hospital Singapore, Singapore
| |
Collapse
|
92
|
Integrin-linked Kinase is Essential for Environmental Enrichment Enhanced Hippocampal Neurogenesis and Memory. Sci Rep 2015; 5:11456. [PMID: 26095336 PMCID: PMC4476098 DOI: 10.1038/srep11456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 01/28/2023] Open
Abstract
Environment enrichment (EE) has a variety of effects on brain structure and function. Brain-derived neurotrophic factor (BDNF) is essential for EE-induced hippocampal neurogenesis and memory enhancement. However, the intracellular pathway downstream of BDNF to modulate EE effects is poorly understood. Here we show that integrin-linked kinase (ILK) levels are elevated upon EE stimuli in a BDNF-dependent manner. Using ILK-shRNA (siILK) lentivirus, we demonstrate that knockdown of ILK impairs EE-promoted hippocampal neurogenesis and memory by increasing glycogen synthase kinase-3β (GSK3β) activity. Finally, overexpressing ILK in the hippocampus could rescue the neurogenesis and memory deficits in BDNF(+/-) mice. These results indicate that ILK is indispensable for BDNF-mediated hippocampal neurogenesis and memory enhancement upon EE stimuli via regulating GSK3β activity. This is a new insight of the precise mechanism in EE-enhanced memory processes and ILK is a potentially important therapeutic target that merits further study.
Collapse
|
93
|
Guo W, Polich ED, Su J, Gao Y, Christopher DM, Allan AM, Wang M, Wang F, Wang G, Zhao X. Fragile X Proteins FMRP and FXR2P Control Synaptic GluA1 Expression and Neuronal Maturation via Distinct Mechanisms. Cell Rep 2015; 11:1651-66. [PMID: 26051932 DOI: 10.1016/j.celrep.2015.05.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 02/18/2015] [Accepted: 05/07/2015] [Indexed: 01/01/2023] Open
Abstract
Fragile X mental retardation protein (FMRP) and its autosomal paralog FXR2P are selective neuronal RNA-binding proteins, and mice that lack either protein exhibit cognitive deficits. Although double-mutant mice display more severe learning deficits than single mutants, the molecular mechanism behind this remains unknown. In the present study, we discovered that FXR2P (also known as FXR2) is important for neuronal dendritic development. FMRP and FXR2P additively promote the maturation of new neurons by regulating a common target, the AMPA receptor GluA1, but they do so via distinct mechanisms: FXR2P binds and stabilizes GluA1 mRNA and enhances subsequent protein expression, whereas FMRP promotes GluA1 membrane delivery. Our findings unveil important roles for FXR2P and GluA1 in neuronal development, uncover a regulatory mechanism of GluA1, and reveal a functional convergence between fragile X proteins in neuronal development.
Collapse
Affiliation(s)
- Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Eric D Polich
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Juan Su
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Devin M Christopher
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico, Albuquerque, NM 87131, USA
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feifei Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA
| | - Guangfu Wang
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
94
|
Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:800-8. [PMID: 25999519 DOI: 10.5966/sctm.2014-0278] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. SIGNIFICANCE In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Manju Swaroop
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Noel Southall
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wenwei Huang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Zheng
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
95
|
Pardo M, King MK, Perez-Costas E, Melendez-Ferro M, Martinez A, Beurel E, Jope RS. Impairments in cognition and neural precursor cell proliferation in mice expressing constitutively active glycogen synthase kinase-3. Front Behav Neurosci 2015; 9:55. [PMID: 25788881 PMCID: PMC4349180 DOI: 10.3389/fnbeh.2015.00055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/13/2015] [Indexed: 01/09/2023] Open
Abstract
Brain glycogen synthase kinase-3 (GSK3) is hyperactive in several neurological conditions that involve impairments in both cognition and neurogenesis. This raises the hypotheses that hyperactive GSK3 may directly contribute to impaired cognition, and that this may be related to deficiencies in neural precursor cells (NPC). To study the effects of hyperactive GSK3 in the absence of disease influences, we compared adult hippocampal NPC proliferation and performance in three cognitive tasks in male and female wild-type (WT) mice and GSK3 knockin mice, which express constitutively active GSK3. NPC proliferation was ~40% deficient in both male and female GSK3 knockin mice compared with WT mice. Environmental enrichment (EE) increased NPC proliferation in male, but not female, GSK3 knockin mice and WT mice. Male and female GSK3 knockin mice exhibited impairments in novel object recognition, temporal order memory, and coordinate spatial processing compared with gender-matched WT mice. EE restored impaired novel object recognition and temporal ordering in both sexes of GSK3 knockin mice, indicating that this repair was not dependent on NPC proliferation, which was not increased by EE in female GSK3 knockin mice. Acute 1 h pretreatment with the GSK3 inhibitor TDZD-8 also improved novel object recognition and temporal ordering in male and female GSK3 knockin mice. These findings demonstrate that hyperactive GSK3 is sufficient to impair adult hippocampal NPC proliferation and to impair performance in three cognitive tasks in both male and female mice, but these changes in NPC proliferation do not directly regulate novel object recognition and temporal ordering tasks.
Collapse
Affiliation(s)
- Marta Pardo
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Margaret K King
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Emma Perez-Costas
- Department of Psychiatry, University of Alabama at Birmingham Birmingham, AL, USA
| | | | - Ana Martinez
- Centro de Investigaciones Biologicas-CSIC Madrid, Spain
| | - Eleonore Beurel
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Richard S Jope
- Departments of Psychiatry and Behavioral Sciences and Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami Miami, FL, USA
| |
Collapse
|
96
|
Wang H, Pati S, Pozzo-Miller L, Doering LC. Targeted pharmacological treatment of autism spectrum disorders: fragile X and Rett syndromes. Front Cell Neurosci 2015; 9:55. [PMID: 25767435 PMCID: PMC4341567 DOI: 10.3389/fncel.2015.00055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 02/05/2015] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorders (ASDs) are genetically and clinically heterogeneous and lack effective medications to treat their core symptoms. Studies of syndromic ASDs caused by single gene mutations have provided insights into the pathophysiology of autism. Fragile X and Rett syndromes belong to the syndromic ASDs in which preclinical studies have identified rational targets for drug therapies focused on correcting underlying neural dysfunction. These preclinical discoveries are increasingly translating into exciting human clinical trials. Since there are significant molecular and neurobiological overlaps among ASDs, targeted treatments developed for fragile X and Rett syndromes may be helpful for autism of different etiologies. Here, we review the targeted pharmacological treatment of fragile X and Rett syndromes and discuss related issues in both preclinical studies and clinical trials of potential therapies for the diseases.
Collapse
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto, 1 King's College Circle Toronto, ON, Canada
| | - Sandipan Pati
- Department of Neurology, Epilepsy Division, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham Birmingham, AL, USA
| | - Laurie C Doering
- Faculty of Health Sciences, Department of Pathology and Molecular Medicine, McMaster University Hamilton, ON, Canada
| |
Collapse
|
97
|
Wang H. Fragile X mental retardation protein: from autism to neurodegenerative disease. Front Cell Neurosci 2015; 9:43. [PMID: 25729352 PMCID: PMC4325920 DOI: 10.3389/fncel.2015.00043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/28/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hansen Wang
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| |
Collapse
|
98
|
Koga K, Liu MG, Qiu S, Song Q, O'Den G, Chen T, Zhuo M. Impaired presynaptic long-term potentiation in the anterior cingulate cortex of Fmr1 knock-out mice. J Neurosci 2015; 35:2033-43. [PMID: 25653361 PMCID: PMC6705363 DOI: 10.1523/jneurosci.2644-14.2015] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 11/24/2014] [Accepted: 12/18/2014] [Indexed: 01/08/2023] Open
Abstract
Fragile X syndrome is a common inherited form of mental impairment. Fragile X mental retardation protein (FMRP) plays important roles in the regulation of synaptic protein synthesis, and loss of FMRP leads to deficits in learning-related synaptic plasticity and behavioral disability. Previous studies mostly focus on postsynaptic long-term potentiation (LTP) in Fmr1 knock-out (KO) mice. Here, we investigate the role of FMRP in presynaptic LTP (pre-LTP) in the adult mouse anterior cingulate cortex (ACC). Low-frequency stimulation induced LTP in layer II/III pyramidal neurons under the voltage-clamp mode. Paired-pulse ratio, which is a parameter for presynaptic changes, was decreased after the low-frequency stimulation in Fmr1 wild-type (WT) mice. Cingulate pre-LTP was abolished in Fmr1 KO mice. We also used a 64-electrode array system for field EPSP recording and found that the combination of low-frequency stimulation paired with a GluK1-containing kainate receptor agonist induced NMDA receptor-independent and metabotropic glutamate receptor-dependent pre-LTP in the WT mice. This potentiation was blocked in Fmr1 KO mice. Biochemical experiments showed that Fmr1 KO mice displayed altered translocation of protein kinase A subunits in the ACC. Our results demonstrate that FMRP plays an important role in pre-LTP in the adult mouse ACC, and loss of this pre-LTP may explain some of the behavioral deficits in Fmr1 KO mice.
Collapse
Affiliation(s)
- Kohei Koga
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Ming-Gang Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Department of Anatomy and Histology and Embryology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, and
| | - Shuang Qiu
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Qian Song
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Gerile O'Den
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Tao Chen
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China, Department of Anatomy and KK Leung Brain Research Center, Fourth Military Medical University, Xi'an, Shanxi 710032, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Toronto, Ontario, M5S 1A8, Canada, Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China,
| |
Collapse
|
99
|
O'Leary O, Nolan Y. Glycogen synthase kinase-3 as a therapeutic target for cognitive dysfunction in neuropsychiatric disorders. CNS Drugs 2015; 29:1-15. [PMID: 25380674 DOI: 10.1007/s40263-014-0213-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) is involved in a broad range of cellular processes including cell proliferation, apoptosis and inflammation. It is now also increasingly acknowledged as having a role to play in cognitive-related processes such as neurogenesis, synaptic plasticity and neural cell survival. Cognitive impairment represents a major debilitating feature of many neurodegenerative and psychiatric disorders, including Alzheimer's disease, mood disorders, schizophrenia and fragile X syndrome, as well as being a result of traumatic brain injury or cranial irradiation. Accordingly, GSK-3 has been identified as an important therapeutic target for cognitive impairment, and recent preclinical studies have yielded important evidence demonstrating that GSK-3 inhibitors may be useful therapeutic interventions for restoring cognitive function in some of these brain disorders. The current review summarises the role of GSK-3 as a regulator of cognitive-dependent functions, examines current preclinical and clinical evidence of the potential of GSK-3 inhibitors as therapeutic agents for cognitive impairments in neuropsychiatric disorders, and offers some insight into the current obstacles that are impeding the clinical use of selective GSK-3 inhibitors in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Olivia O'Leary
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Room 4.10, Cork, Ireland
| | | |
Collapse
|
100
|
Costa V, Lugert S, Jagasia R. Role of adult hippocampal neurogenesis in cognition in physiology and disease: pharmacological targets and biomarkers. Handb Exp Pharmacol 2015; 228:99-155. [PMID: 25977081 DOI: 10.1007/978-3-319-16522-6_4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Adult hippocampal neurogenesis is a remarkable form of brain structural plasticity by which new functional neurons are generated from adult neural stem cells/precursors. Although the precise role of this process remains elusive, adult hippocampal neurogenesis is important for learning and memory and it is affected in disease conditions associated with cognitive impairment, depression, and anxiety. Immature neurons in the adult brain exhibit an enhanced structural and synaptic plasticity during their maturation representing a unique population of neurons to mediate specific hippocampal function. Compelling preclinical evidence suggests that hippocampal neurogenesis is modulated by a broad range of physiological stimuli which are relevant in cognitive and emotional states. Moreover, multiple pharmacological interventions targeting cognition modulate adult hippocampal neurogenesis. In addition, recent genetic approaches have shown that promoting neurogenesis can positively modulate cognition associated with both physiology and disease. Thus the discovery of signaling pathways that enhance adult neurogenesis may lead to therapeutic strategies for improving memory loss due to aging or disease. This chapter endeavors to review the literature in the field, with particular focus on (1) the role of hippocampal neurogenesis in cognition in physiology and disease; (2) extrinsic and intrinsic signals that modulate hippocampal neurogenesis with a focus on pharmacological targets; and (3) efforts toward novel strategies pharmacologically targeting neurogenesis and identification of biomarkers of human neurogenesis.
Collapse
Affiliation(s)
- Veronica Costa
- Roche Pharmaceutical Research and Early Development, Neuroscience Ophthalmology and Rare Diseases (NORD), Roche Innovation Center Basel, 124 Grenzacherstrasse, 4070, Basel, Switzerland
| | | | | |
Collapse
|