51
|
Kang H. Hypocholesterolemic Effect ofGinkgo BilobaSeeds Extract from High Fat Diet Mice. ACTA ACUST UNITED AC 2017. [DOI: 10.15616/bsl.2017.23.2.138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyun Kang
- Department of Medical Laboratory Science, College of Health Science, Dankook University, Cheonan-si, Chungnam 31116, Korea
| |
Collapse
|
52
|
Ulla A, Alam MA, Sikder B, Sumi FA, Rahman MM, Habib ZF, Mohammed MK, Subhan N, Hossain H, Reza HM. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats. Altern Ther Health Med 2017; 17:289. [PMID: 28578702 PMCID: PMC5455177 DOI: 10.1186/s12906-017-1799-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 05/19/2017] [Indexed: 12/20/2022]
Abstract
Background Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Method Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Results Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Conclusion Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin resistance and dyslipidemia probably by increasing lipid metabolism in liver of HCHF diet fed rats.
Collapse
|
53
|
Shin JH, Jung JH. Non-alcoholic fatty liver disease and flavonoids: Current perspectives. Clin Res Hepatol Gastroenterol 2017; 41:17-24. [PMID: 27545758 DOI: 10.1016/j.clinre.2016.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/21/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an accumulation of fat in the liver despite a low level of alcohol intake, with signs of hepatomegaly. Although in the past, NAFLD was predominantly viewed as an aspect of metabolic syndrome, it is now considered that it should be classified as an independent condition similar to obesity, diabetes, and hypertension. Therefore, new treatment strategies, not based on correcting insulin resistance, are needed for NAFLD. This work analyzes methods of prevention, therapeutic approaches, and mechanisms involved in NAFLD, focusing on the use of flavonoids (epigallocatechin-3-gallate, resveratrol, anthocyanins, and isoflavones) with high antioxidant capacity. In addition, the mechanisms of cholesterol accumulation in the liver are identified as potential avenues for entirely new approaches to NAFLD treatment, contrasting the well-known relation between neutral fat and NAFLD.
Collapse
Affiliation(s)
- Jung Hee Shin
- Department of Food & Nutrition, Joongbu University, 201 Daehak-ro, Chubu-myeon, Geumsan-gun, Chungcheongnam-Do, Republic of Korea.
| | - Ji Hye Jung
- Institute for Clinical Nutrition, Inje University, Mareunnae-ro 9, Jung-gu, Seoul, Republic of Korea.
| |
Collapse
|
54
|
Ward RE, Benninghoff AD, Healy BJ, Li M, Vagu B, Hintze KJ. Consumption of the total Western diet differentially affects the response to green tea in rodent models of chronic disease compared to the AIN93G diet. Mol Nutr Food Res 2017; 61. [PMID: 27921383 DOI: 10.1002/mnfr.201600720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
SCOPE In pre-clinical studies investigating bioactive components, the efficacy of the bioactive is likely influenced by the basal diet provided to rodents. In this study, we hypothesized that a model bioactive, green tea extract (GTE), would have different effects on colon carcinogenesis, body composition, and lipid metabolism in mice fed a basal diet formulated to promote animal health and growth (AIN93G) as compared to a Western diet that emulates typical American intakes of micro- and macronutrients, the total Western diet (TWD). METHODS AND RESULTS Mice were fed either AIN93G or TWD, with or without GTE added to drinking water for 18 weeks. Aberrant crypt foci (ACF) in azoxymethane-initiated mice was nearly three times greater in mice fed TWD compared to AIN93G. Consumption of GTE suppressed ACF development only in mice fed the TWD. Similarly, supplementation with GTE suppressed weight gain and fasted glucose only in mice fed TWD, while GTE suppressed fat mass in mice fed either diet. Irrespective of diet, GTE supplementation increased cecum weight and decreased cecal SCFA concentration. CONCLUSION Collectively, these observations indicate that the TWD influences the bioactivity of GTE in rodent models of obesity, metabolism, and carcinogenesis.
Collapse
Affiliation(s)
- Robert E Ward
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, USA.,USTAR Applied Nutrition Research, Utah State University, Logan, UT, USA
| | - Abby D Benninghoff
- USTAR Applied Nutrition Research, Utah State University, Logan, UT, USA.,Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA.,School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Brett J Healy
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, USA
| | - Minghao Li
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, USA
| | - Bharath Vagu
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, USA
| | - Korry J Hintze
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, Logan, UT, USA.,USTAR Applied Nutrition Research, Utah State University, Logan, UT, USA
| |
Collapse
|
55
|
Li J, Sapper TN, Mah E, Moller MV, Kim JB, Chitchumroonchokchai C, McDonald JD, Bruno RS. Green tea extract treatment reduces NFκB activation in mice with diet-induced nonalcoholic steatohepatitis by lowering TNFR1 and TLR4 expression and ligand availability. J Nutr Biochem 2016; 41:34-41. [PMID: 28038359 DOI: 10.1016/j.jnutbio.2016.12.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/10/2016] [Accepted: 12/15/2016] [Indexed: 12/12/2022]
Abstract
NFκB-mediated inflammation contributes to liver injury during nonalcoholic steatohepatitis (NASH). We hypothesized that antiinflammatory activities of green tea extract (GTE) during NASH would lower tumor necrosis factor receptor-1 (TNFR1)- and Toll-like receptor-4 (TLR4)-mediated NFκB activation. Male C57BL6/J mice (6 weeks old) were fed a low-fat (LF) or high-fat (HF) diet for 12 weeks to induce NASH. They were then randomized to continue on these diets supplemented with 0 or 2% GTE (n=10/group) for an additional 8 weeks prior to evaluating NASH, NFκB inflammation and TNFR1 and TLR4 receptor complexes and their respective ligands, TNFα and endotoxin. HF feeding increased (P<.05) serum alanine aminotransferase (ALT) activity and histological evidence of NASH compared with LF controls. HF-mediated increases in NFκB p65 phosphorylation were also accompanied by increased serum TNFα and endotoxin concentrations, mRNA expression of hepatic TNFR1 and TLR4 and MyD88 protein levels. GTE in LF mice had no effect (P>.05) on liver histology or inflammatory responses. However, GTE in HF mice decreased biochemical and histological parameters of NASH and lowered hepatic p65 phosphorylation in association with decreased serum TNFα, mRNA expression of TNFR1 and TLR4 and MyD88 protein. GTE in HF-fed mice also lowered serum endotoxin and up-regulated mRNA expression of duodenal occludin and zonula occluden-1 and ileal occludin and claudin-1 that were otherwise lowered in expression by HF feeding. These data suggest that dietary GTE treatment reduces hepatic inflammation in NASH by decreasing proinflammatory signaling through TNFR1 and TLR4 that otherwise increases NFκB activation and liver injury.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA; Biofortis, Inc., Addison, IL 60101, USA
| | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua B Kim
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | | | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
56
|
Murillo AG, Aguilar D, Norris GH, DiMarco DM, Missimer A, Hu S, Smyth JA, Gannon S, Blesso CN, Luo Y, Fernandez ML. Compared with Powdered Lutein, a Lutein Nanoemulsion Increases Plasma and Liver Lutein, Protects against Hepatic Steatosis, and Affects Lipoprotein Metabolism in Guinea Pigs. J Nutr 2016; 146:1961-1969. [PMID: 27581580 DOI: 10.3945/jn.116.235374] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/01/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND It is not clear how oil-in-water nanoemulsions of lutein may affect bioavailability and consequently alter lipoprotein metabolism, oxidative stress, and inflammation. OBJECTIVE The bioavailability as well as effects of a powdered lutein (PL) and an oil-in-water lutein nanoemulsion (NANO; particle size: 254.2 nm; polydispersity index: 0.29; and ζ-potential: -65 mV) on metabolic variables in liver, plasma, and adipose tissue in a guinea pig model of hepatic steatosis were evaluated. METHODS Twenty-four 2-mo-old male Hartley guinea pigs, weighing 200-300 g (n = 8/group), were fed diets containing 0.25 g cholesterol/100 g to induce liver injury for the duration of the study. They were allocated to control (0 mg lutein), PL (3.5 mg/d), or NANO (3.5 mg/d) groups. After 6 wk, plasma, liver, and adipose tissue were collected for determination of lutein, plasma lipids, tissue cholesterol, and inflammatory cytokines. RESULTS The NANO group had 2-fold higher concentrations of lutein in plasma (P < 0.001) and 1.6-fold higher concentrations in liver (P < 0.001) than did the PL group, indicating greater bioavailability of this carotenoid. The NANO group also had 24% lower hepatic steatosis scores (P < 0.05), 31% lower hepatic cholesterol accumulation (P < 0.05), and 64% lower plasma alanine aminotransferase (P < 0.05) than did the control group. Hepatic oxidized LDL was 55% lower in both the PL and NANO groups than in the control group (P < 0.05). In plasma, the NANO group had 2-fold higher concentrations of LDL and HDL cholesterol as well as a 2-fold higher number of VLDL, LDL, and HDL particles than did the other 2 groups as evaluated by nuclear magnetic resonance. Furthermore, the NANO group had 15% higher concentrations of free cholesterol in adipose tissue, resulting in higher concentrations of inflammatory markers, than did the other 2 groups. CONCLUSIONS These results indicate that, although this lutein nanoemulsion exerted protective effects against hepatic steatosis, plasma lipoproteins and adipose tissue cholesterol were increased. These data suggest that the metabolic effects of this particular nanoemulsion might not be protective in all tissues in guinea pigs.
Collapse
Affiliation(s)
| | - David Aguilar
- Department of Athletic Training and Nutrition, Weber State University, Ogden, UT; and
| | | | | | | | - Siqi Hu
- Departments of Nutritional Sciences and
| | - Joan A Smyth
- Pathobiology and Veterinary Science, University of Connecticut, Storrs, CT
| | | | | | | | | |
Collapse
|
57
|
Luo T, Miranda-Garcia O, Adamson A, Hamilton-Reeves J, Sullivan DK, Kinchen JM, Shay NF. Consumption of Walnuts in Combination with Other Whole Foods Produces Physiologic, Metabolic, and Gene Expression Changes in Obese C57BL/6J High-Fat-Fed Male Mice. J Nutr 2016; 146:1641-50. [PMID: 27489005 DOI: 10.3945/jn.116.234419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/05/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although a reductionist approach has sought to understand the roles of individual nutrients and biochemicals in foods, it has become apparent that there can be differences when studying food components in isolation or within the natural matrix of a whole food. OBJECTIVE The objective of this study was to determine the ability of whole-food intake to modulate the development of obesity and other metabolic dysfunction in mice fed a high-fat (HF), Western-style obesogenic diet. To test the hypothesis that an n-3 (ω-3) polyunsaturated fatty acid-rich food could synergize with other, largely polyphenol-rich foods by producing greater reductions in metabolic disease conditions, the intake of English walnuts was evaluated in combination with 9 other whole foods. METHODS Eight-week-old male C57Bl/6J mice were fed low-fat (LF; 10% fat) and HF control diets, along with an HF diet with 8.6% (wt:wt) added walnuts for 9 wk. The HF control diet contained 46% fat with added sucrose (10.9%, wt:wt) and cholesterol (1%, wt:wt); the added sucrose and cholesterol were not present in the LF diet. Other groups were provided the walnut diet with a second whole food-raspberries, apples, cranberries, tart cherries, broccoli sprouts, olive oil, soy protein, or green tea. All of the energy-containing whole foods were added at an energy level equivalent to 1.5 servings/d. Body weights, food intake, and glucose tolerance were determined. Postmortem, serum lipids and inflammatory markers, hepatic fat, gene expression, and the relative concentrations of 594 biochemicals were measured. RESULTS The addition of walnuts with either raspberries, apples, or green tea reduced glucose area under the curve compared with the HF diet alone (-93%, -64%, and -54%, respectively, P < 0.05). Compared with HF-fed mice, mice fed walnuts with either broccoli sprouts or green tea (-49% and -61%, respectively, P < 0.05) had reduced hepatic fat concentrations. There were differences in global gene expression patterns related to whole-food content, with many examples of differences in LF- and HF-fed mice, HF- and walnut-fed mice, and mice fed walnuts and walnuts plus other foods. The mean ± SEM increase in relative hepatic concentrations of the n-3 fatty acids α-linolenic acid, eicosapentanoic acid, and docosapentanoic acid in all walnut-fed groups was 124% ± 13%, 159% ± 11%, and 114% ± 10%, respectively (P < 0.0001), compared with LF- and HF-fed mice not consuming walnuts. CONCLUSIONS In obese male mice, walnut consumption with an HF Western-style diet caused changes in hepatic fat concentrations, gene expression patterns, and fatty acid concentrations. The addition of a second whole food in combination with walnuts produced other changes in metabolite concentrations and gene expression patterns and other physiologic markers. Importantly, these substantial changes occurred in mice fed typical amounts of intake, representing only 1.5 servings each food/d.
Collapse
Affiliation(s)
- Ting Luo
- Food Science and Technology, Oregon State University, Corvallis, OR
| | | | - Allysa Adamson
- Food Science and Technology, Oregon State University, Corvallis, OR
| | - Jill Hamilton-Reeves
- Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS; and
| | - Debra K Sullivan
- Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS; and
| | | | - Neil F Shay
- Food Science and Technology, Oregon State University, Corvallis, OR;
| |
Collapse
|
58
|
Dal S, Sigrist S. The Protective Effect of Antioxidants Consumption on Diabetes and Vascular Complications. Diseases 2016; 4:E24. [PMID: 28933404 PMCID: PMC5456287 DOI: 10.3390/diseases4030024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/14/2022] Open
Abstract
Obesity and diabetes is generally accompanied by a chronic state of oxidative stress, disequilibrium in the redox balance, implicated in the development and progression of complications such as micro- and macro-angiopathies. Disorders in the inner layer of blood vessels, the endothelium, play an early and critical role in the development of these complications. Blunted endothelium-dependent relaxation and/or contractions are quietly associated to oxidative stress. Thus, preserving endothelial function and oxidative stress seems to be an optimization strategy in the prevention of vascular complications associated with diabetes. Diet is a major lifestyle factor that can greatly influence the incidence and the progression of type 2 diabetes and cardiovascular complications. The notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health and longevity is now attained greater prominence. Some dietary and lifestyle modifications associated to antioxidative supply could be an effective prophylactic means to fight against oxidative stress in diabesity and complications. A significant benefit of phytochemicals (polyphenols in wine, grape, teas), vitamins (ascorbate, tocopherol), minerals (selenium, magnesium), and fruits and vegetables in foods is thought to be capable of scavenging free radicals, lowering the incidence of chronic diseases. In this review, we discuss the role of oxidative stress in diabetes and complications, highlight the endothelial dysfunction, and examine the impact of antioxidant foods, plants, fruits, and vegetables, currently used medication with antioxidant properties, in relation to the development and progression of diabetes and cardiovascular complications.
Collapse
Affiliation(s)
- Stéphanie Dal
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| | - Séverine Sigrist
- DIATHEC EA 7294 UMR Centre Européen d'Etude du Diabète (CeeD), Université de Strasbourg (UdS), boulevard René Leriche, Strasbourg 67200, France.
| |
Collapse
|
59
|
A Fomitopsis pinicola Jeseng Formulation Has an Antiobesity Effect and Protects against Hepatic Steatosis in Mice with High-Fat Diet-Induced Obesity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7312472. [PMID: 27200103 PMCID: PMC4855004 DOI: 10.1155/2016/7312472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/23/2016] [Accepted: 03/31/2016] [Indexed: 11/17/2022]
Abstract
This study investigated the antiobesity effect of an extract of the Fomitopsis pinicola Jeseng-containing formulation (FAVA), which is a combination of four natural components: Fomitopsis pinicola Jeseng; Acanthopanax senticosus; Viscum album coloratum; and Allium tuberosum. High-fat diet- (HFD-) fed male C57BL/6J mice were treated with FAVA (200 mg/kg/day) for 12 weeks to monitor the antiobesity effect and amelioration of nonalcoholic fatty liver diseases (NAFLD). Body and white adipose tissue (WAT) weights were reduced in FAVA-treated mice, and a histological examination showed an amelioration of fatty liver in FAVA-treated mice without decreasing food consumption. Additionally, FAVA reduced serum lipid profiles, leptin, and insulin levels compared with the HFD control group. The FAVA extract suppressed lipogenic mRNA expression levels from WAT concomitantly with the cholesterol biosynthesis level in the liver. These results demonstrate the inhibitory effects of FAVA on obesity and NAFLD in the diet-induced obese (DIO) mouse model. Therefore, FAVA may be an effective therapeutic candidate for treating obesity and fatty liver caused by a high-fat diet.
Collapse
|
60
|
Li J, Sapper TN, Mah E, Rudraiah S, Schill KE, Chitchumroonchokchai C, Moller MV, McDonald JD, Rohrer PR, Manautou JE, Bruno RS. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFκB pro- inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Mol Nutr Food Res 2016; 60:858-70. [PMID: 26679056 DOI: 10.1002/mnfr.201500814] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
SCOPE Green tea extract (GTE) reduces liver steatosis and inflammation during nonalcoholic steatohepatitis (NASH). We hypothesized GTE would mitigate NASH in a nuclear factor erythroid-2-related-factor-2 (Nrf2)-dependent manner in a high fat (HF) induced model. METHODS AND RESULTS Nrf2-null and wild-type (WT) mice were fed an HF diet containing 0 or 2% GTE for eight weeks prior to assessing parameters of NASH. Compared to WT mice, Nrf2-null mice had increased serum alanine aminotransferase, hepatic triglyceride, expression of free fatty acid uptake and lipogenic genes, malondialdehyde and NFκB phosphorylation and expression of pro-inflammatory genes. In WT mice, GTE increased Nrf2 and NADPH:quinone oxidoreductase-1 mRNA, and lowered hepatic steatosis, lipid uptake and lipogenic gene expression, malondialdehyde, and NFκB-dependent inflammation. In Nrf2-null mice, GTE lowered NFκB phosphorylation and TNF-α and MCP1 mRNA to levels observed in WT mice fed GTE whereas hepatic triglyceride and lipogenic genes were lowered only to those of WT mice fed no GTE. Malondialdehyde was lowered in Nrf2-null mice fed GTE, but not to levels of WT mice, and without improving the hepatic antioxidants α-tocopherol, ascorbic acid and uric acid. CONCLUSION Nrf2 deficiency exacerbates NASH whereas anti-inflammatory and hypolipidemic activities of GTE likely occur largely independent of Nrf2 signaling.
Collapse
Affiliation(s)
- Jinhui Li
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Teryn N Sapper
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Eunice Mah
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA.,Biofortis, Inc, Addison, IL, USA
| | - Swetha Rudraiah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Kevin E Schill
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | | | - Meredith V Moller
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Joshua D McDonald
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| | - Philip R Rohrer
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
61
|
Pezeshki A, Safi S, Feizi A, Askari G, Karami F. The Effect of Green Tea Extract Supplementation on Liver Enzymes in Patients with Nonalcoholic Fatty Liver Disease. Int J Prev Med 2016; 7:28. [PMID: 26955458 PMCID: PMC4763469 DOI: 10.4103/2008-7802.173051] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 07/25/2015] [Indexed: 02/06/2023] Open
Abstract
Background: Green tea is one of the most popular beverages in the world. It is believed to have beneficial effects in the prevention and treatment of many diseases, one of which is nonalcoholic fatty liver disease (NAFLD). The present study investigated the effects of consumption of green tea in NAFLD patients. Methods: This study was a double-blind, placebo-controlled, randomized clinical trial. Ultrasonography was used to diagnose fatty liver in patients with alanine aminotransferase (ALT) >31 mg/dl and 41 mg/dl and aspartate aminotransferase (AST) >31 mg/dl and 47 g/dl in women and men, respectively and without other hepatic diseases. A total of 80 participants (20–50 years) with NAFLD were randomly allocated into two groups to receive either green tea extract (GTE) supplement (500 mg GTE tablet per day) or placebo for 90 days. At baseline and at the end of the intervention weight, serum ALT, AST, and alkaline phosphatase (ALP) were measured in fasting state, and dietary data were collected at baseline and end of the study. Results: Green tea group showed significant reductions in ALT and AST levels after 12 weeks period (P < 0.001). The placebo group showed a reduction in ALT and AST levels at the end of the study, but it was no significant. ALP levels showed significant reductions in both groups after 12 weeks period (P < 0.001). Conclusions: According to the findings of this study, GTE supplementation decrease liver enzymes in patients with NAFLD. It can be claimed that GTE prescribed can be considered as a treatment to improve serum levels of liver enzymes in NAFLD patients.
Collapse
Affiliation(s)
- Ali Pezeshki
- Department of Community Nutrition, School of Nutrition and Food Sciences, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Nutrition and Food Sciences, Metabolic Liver Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sara Safi
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Awat Feizi
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Sciences, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Nutrition and Food Sciences, Metabolic Liver Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Karami
- School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
62
|
Rahayu P, Purwadi P, Radiati L, Manab A. Physico Chemical Properties of Whey Protein and Gelatine Biopolymer Using Tea Leaf Extract as Crosslink Materials. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE 2015. [DOI: 10.12944/crnfsj.3.3.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of this research was to extract tea leaf phenols using Microwave Assisted Extraction (MAE) method at 3 levels of microwave power (high, medium high and medium) and investigated the influence of physco chemical properties of whey protein and gelatine biopolymer using tea leaf extract as crosslink materials at different concentration (5%, 10% and 15% (v/v)). MAE method gave significantly effect on phenolic content. High level power of MAE gave higher phenolic content of tea leaves extracts. Tea leaves extracts as crosslinked agent of biopolymer gave highly significant effect on the stability of the emulsion, the emulsion activity and foaming power. SDS-PAGE protein profile showed increase molecular weight with the addition of tea leaf extract, it can be presumed presence crosslinked both on whey protein or gelatine.
Collapse
Affiliation(s)
- Premy Rahayu
- Department of Animal Food Technology, Faculty of Animal Husbandry, Brawijaya University, Malang, East Java, Indonesia
| | - Purwadi Purwadi
- Department of Animal Food Technology, Faculty of Animal Husbandry, Brawijaya University, Malang, East Java, Indonesia
| | - Lilik Radiati
- Department of Animal Food Technology, Faculty of Animal Husbandry, Brawijaya University, Malang, East Java, Indonesia
| | - Abdul Manab
- Department of Animal Food Technology, Faculty of Animal Husbandry, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
63
|
Green tea supplementation benefits body composition and improves bone properties in obese female rats fed with high-fat diet and caloric restricted diet. Nutr Res 2015; 35:1095-105. [PMID: 26525915 DOI: 10.1016/j.nutres.2015.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/15/2022]
Abstract
This study investigated the effects of green tea polyphenols (GTP) supplementation on body composition, bone properties, and serum markers in obese rats fed a high-fat diet (HFD) or a caloric restricted diet (CRD). Forty-eight female rats were fed an HFD ad libitum for 4 months, and then either continued on the HFD or the CRD with or without 0.5% GTP in water. Body composition, bone efficacy, and serum markers were measured. We hypothesized that GTP supplementation would improve body composition, mitigate bone loss, and restore bone microstructure in obese animals fed either HFD or CRD. CRD lowered percent fat mass; bone mass and trabecular number of tibia, femur and lumbar vertebrae; femoral strength; trabecular and cortical thickness of tibia; insulin-like growth factor-I and leptin. CRD also increased percent fat-free mass; trabecular separation of tibia and femur; eroded surface of tibia; bone formation rate and erosion rate at tibia shaft; and adiponectin. GTP supplementation increased femoral mass and strength (P = .026), trabecular thickness (P = .012) and number (P = .019), and cortical thickness of tibia (P < .001), and decreased trabecular separation (P = .021), formation rate (P < .001), and eroded surface (P < .001) at proximal tibia, and insulin-like growth factor-I and leptin. There were significant interactions (diet type × GTP) on osteoblast surface/bone surface, mineral apposition rate at periosteal and endocortical bones, periosteal bone formation rate, and trabecular thickness at femur and lumbar vertebrate (P < .05). This study demonstrates that GTP supplementation for 4 months benefited body composition and improved bone microstructure and strength in obese rats fed with HFD or HFD followed by CRD diet.
Collapse
|
64
|
Polyphenol-rich blackcurrant extract exerts hypocholesterolaemic and hypoglycaemic effects in mice fed a diet containing high fat and cholesterol. Br J Nutr 2015; 113:1697-703. [PMID: 25899149 DOI: 10.1017/s0007114515001105] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity is associated with an increased risk of metabolic abnormalities, such as hyperlipidaemia and hyperglycaemia. We investigated whether polyphenol-rich blackcurrant extract (BCE) can prevent high fat/high cholesterol (HF/HC) diet-induced metabolic disturbances in mice. Male C57BL/6J mice were fed a modified AIN-93M diet containing HF/HC (16% fat, 0·25% cholesterol, w/w) or the same diet supplemented with 0·1% BCE (w/w) for 12 weeks. There were no differences in total body weight and liver weight between groups. Plasma total cholesterol (TC) and glucose levels were significantly lower in BCE group than in controls, while plasma TAG levels were not significantly different. There was a decreasing trend in hepatic TAG levels, and histological evaluation of steatosis grade was markedly lower in the livers of mice fed BCE. Although the mRNA levels of major regulators of hepatic cholesterol metabolism, i.e. 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) and LDL receptor (LDLR), were not significantly altered by BCE supplementation, protein expression of mature sterol-regulatory element-binding protein and LDLR was significantly increased with no change in HMGR protein. The expression of proprotein convertase subtilisin/kexin type 9 that facilitates LDLR protein degradation, as well as one of its transcriptional regulators, i.e. hepatocyte nuclear factor 4α, was significantly decreased in the livers of mice fed BCE. Taken together, BCE supplementation decreased plasma TC and glucose, and inhibited liver steatosis, suggesting that this berry may be consumed to prevent metabolic dysfunctions induced by diets high in fat and cholesterol.
Collapse
|
65
|
Van De Wier B, Koek GH, Bast A, Haenen GRMM. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit Rev Food Sci Nutr 2015; 57:834-855. [DOI: 10.1080/10408398.2014.952399] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Seo DB, Jeong HW, Cho D, Lee BJ, Lee JH, Choi JY, Bae IH, Lee SJ. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J Med Food 2015; 18:549-56. [PMID: 25764354 DOI: 10.1089/jmf.2014.3265] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Obesity is caused by an imbalance between caloric intake and energy expenditure and accumulation of excess lipids in adipose tissues. Recent studies have demonstrated that green tea and its processed products (e.g., oolong and black tea) are introduced to exert beneficial effects on lipid metabolism. Here, we propose that fermented green tea (FGT) extract, as a novel processed green tea, exhibits antiobesity effects. FGT reduced body weight gain and fat mass without modifying food intake. mRNA expression levels of lipogenic and inflammatory genes were downregulated in white adipose tissue of FGT-administered mice. FGT treatment alleviated glucose intolerance and fatty liver symptoms, common complications of obesity. Notably, FGT restored the changes in gut microbiota composition (e.g., the Firmicutes/Bacteroidetes and Bacteroides/Prevotella ratios), which is reported to be closely related with the development of obesity and insulin resistance, induced by high-fat diets. Collectively, FGT improves obesity and its associated symptoms and modulates composition of gut microbiota; thus, it could be used as a novel dietary component to control obesity and related symptoms.
Collapse
Affiliation(s)
- Dae-Bang Seo
- 1 Department of Food Bioscience & Technology, College of Life Sciences & Biotechnology, Korea University , Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Chung MY, Mah E, Masterjohn C, Noh SK, Park HJ, Clark RM, Park YK, Lee JY, Bruno RS. Green Tea Lowers Hepatic COX-2 and Prostaglandin E2 in Rats with Dietary Fat-Induced Nonalcoholic Steatohepatitis. J Med Food 2014; 18:648-55. [PMID: 25453513 DOI: 10.1089/jmf.2014.0048] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Green tea extract (GTE) protects against nonalcoholic steatohepatitis (NASH) by decreasing hepatic steatosis and nuclear factor kappa B (NFκB) activation. We hypothesized that hypolipidemic and anti-inflammatory activities of GTE would protect against NASH by reducing cyclooxygenase-2 (COX-2), an NFκB-dependent enzyme, and prostaglandin E2 (PGE2) in a dietary fat-induced obese model. Male Wistar rats were fed a low-fat diet containing no GTE or a high-fat (HF) diet containing GTE at 0%, 1%, or 2% for 8 weeks. Insulin resistance and total hepatic fatty acids increased following HF feeding (P<.05) and these were normalized by GTE at 1-2%. GTE (1-2%) normalized hepatic malondialdehyde without affecting cytochrome P450 2E1 mRNA expression, which was otherwise increased by HF feeding. HF-mediated increases in hepatic COX-2 protein and activity as well as PGE2 concentrations were normalized by GTE (1-2%). COX-2 activity and PGE2 were correlated to each other, and to serum alanine aminotransferase (ALT) and hepatic NFκB-binding activity (P<.05; r=0.28-0.49). GTE attenuated HF-mediated increases in total hepatic n-6 and n-3, without affecting the n-6/n-3 ratio. GTE did not affect HF-mediated increases in n-6 in nonesterified fatty acid (NEFA) and phospholipid pools, whereas n-3 and n-6/n-3 in both pools were unaffected by GTE and HF feeding. GTE decreased total hepatic arachidonic acid without affecting HF-mediated increases in arachidonic acid in NEFA or phospholipid pools. Thus, GTE attenuates lipid peroxidation and PGE2 accumulation by decreasing COX-2 activity independent of arachidonic acid availability and supports an additional mechanism by which GTE protects against liver injury during NASH in an HF-feeding model.
Collapse
Affiliation(s)
- Min-Yu Chung
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.,2Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, South Korea
| | - Eunice Mah
- 3Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Christopher Masterjohn
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Sang K Noh
- 4Department of Food and Nutrition, Changwon National University, Changwon, South Korea
| | - Hea Jin Park
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.,5Department of Foods and Nutrition, University of Georgia, Athens, Georgia, USA
| | - Richard M Clark
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Young-Ki Park
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Ji-Young Lee
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Richard S Bruno
- 1Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut, USA.,3Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
68
|
Guo Y, Mah E, Bruno RS. Quercetin bioavailability is associated with inadequate plasma vitamin C status and greater plasma endotoxin in adults. Nutrition 2014; 30:1279-86. [DOI: 10.1016/j.nut.2014.03.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 12/15/2022]
|
69
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are an increasingly common chronic liver disease closely associated with diabetes and obesity that have reached epidemic proportions. Reports on the prevalence of NAFLD have suggested that 27-34% of the general population in the USA and 40-90% of the obese population worldwide have this disease. Increasing urbanisation rate and associated inappropriate lifestyle changes are not only the risk factors of diabetes, but also unmask genetic predisposition in various populations for the metabolic syndrome and its manifestations including NAFLD and NASH. Lifestyle modifications and balanced nutrition are among the foremost management strategies along with ursodeoxycholic acid, metformin, vitamin E and pentoxifylline. Although weight reduction associated with current therapeutic strategies has shown some promise, maintaining it in the long run is largely unsuccessful. With the safety of pharmacotherapy still being uncertain and can be started only after confirmation, other reasonable interventions such as nutrition hold promise in preventing disease progression. The role of dietary components including branched-chain amino acids, methionine, choline and folic acid is currently being evaluated in various clinical trials. Nutritional approaches sought to overcome the limitations of pharmacotherapy also include evaluating the effects of natural ingredients, such as silymarin and spirulina, on liver disease. Understanding the specific interaction between nutrients and dietary needs in NAFLD and maintaining this balance through either a diet or a nutritional product thus becomes extremely important in providing a more realistic and feasible alternative to treat NAFLD. A planned complete nutritional combination addressing specific needs and helping to prevent the progression of NAFLD is the need of the hour to avert people from ending up with complications.
Collapse
|
70
|
Novel insights of dietary polyphenols and obesity. J Nutr Biochem 2014; 25:1-18. [PMID: 24314860 DOI: 10.1016/j.jnutbio.2013.09.001] [Citation(s) in RCA: 647] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/15/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022]
Abstract
The prevalence of obesity has steadily increased over the past three decades both in the United States and worldwide. Recent studies have shown the role of dietary polyphenols in the prevention of obesity and obesity-related chronic diseases. Here, we evaluated the impact of commonly consumed polyphenols, including green tea catechins, especially epigallocatechin gallates, resveratrol and curcumin, on obesity and obesity-related inflammation. Cellular studies demonstrated that these dietary polyphenols reduce viability of adipocytes and proliferation of preadipocytes, suppress adipocyte differentiation and triglyceride accumulation, stimulate lipolysis and fatty acid β-oxidation, and reduce inflammation. Concomitantly, the polyphenols modulate signaling pathways including the adenosine-monophosphate-activated protein kinase, peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein α, peroxisome proliferator activator receptor gamma activator 1-alpha, sirtuin 1, sterol regulatory element binding protein-1c, uncoupling proteins 1 and 2, and nuclear factor-κB that regulate adipogenesis, antioxidant and anti-inflammatory responses. Animal studies strongly suggest that commonly consumed polyphenols described in this review have a pronounced effect on obesity as shown by lower body weight, fat mass and triglycerides through enhancing energy expenditure and fat utilization, and modulating glucose hemostasis. Limited human studies have been conducted in this area and are inconsistent about the antiobesity impact of dietary polyphenols probably due to the various study designs and lengths, variation among subjects (age, gender, ethnicity), chemical forms of the dietary polyphenols used and confounding factors such as other weight-reducing agents. Future randomized controlled trials are warranted to reconcile the discrepancies between preclinical efficacies and inconclusive clinic outcomes of these polyphenols.
Collapse
|
71
|
Herbal medicines for the treatment of nonalcoholic steatohepatitis: current scenario and future prospects. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:648308. [PMID: 24987431 PMCID: PMC4060323 DOI: 10.1155/2014/648308] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a multifactorial disease and has close correlations with other metabolic disorders. This makes its treatment difficult using a single pharmacological drug. Use of plant extract/decoction or polyherbal formulation to treat various liver diseases is very well mentioned in various traditional systems of medicine (Ayurveda, Japanese or traditional Chinese Medicine, and Kampo medicine). Medicinal herbs are known for their multifaceted implications and thus can form an effective treatment schedule against NASH. Till date, several plant extracts, polyherbal formulations, and phytochemicals have been evaluated for their possible therapeutic potential in preventing onset and progression of NASH in experimental models, but clinical studies using the same are sparse. Herbal extracts with antioxidants, antidiabetic, and antihyperlipidemic properties have been shown to ameliorate symptoms of NASH. This review article is a meticulous compilation of our current knowledge on the role of natural products in alleviating NASH and possible lacunae in research that needs to be addressed.
Collapse
|
72
|
Choi HN, Jang YH, Kim MJ, Seo MJ, Kang BW, Jeong YK, Kim JI. Cordyceps militaris alleviates non-alcoholic fatty liver disease in ob/ob mice. Nutr Res Pract 2014; 8:172-6. [PMID: 24741401 PMCID: PMC3988506 DOI: 10.4162/nrp.2014.8.2.172] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/03/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND/OBJECTIVES Non-alcoholic fatty liver disease (NAFLD) is becoming an important public health problem as metabolic syndrome and type 2 diabetes have become epidemic. In this study we investigated the protective effect of Cordyceps militaris (C. militaris) against NAFLD in an obese mouse model. MATERIALS/METHODS Four-week-old male ob/ob mice were fed an AIN-93G diet or a diet containing 1% C. militaris water extract for 10 weeks after 1 week of adaptation. Serum glucose, insulin, free fatty acid (FFA), alanine transaminase (ALT), and proinflammatory cytokines were measured. Hepatic levels of lipids, glutathione (GSH), and lipid peroxide were determined. RESULTS Consumption of C. militaris significantly decreased serum glucose, as well as homeostasis model assessment for insulin resistance (HOMA-IR), in ob/ob mice. In addition to lowering serum FFA levels, C. militaris also significantly decreased hepatic total lipids and triglyceride contents. Serum ALT activities and tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were reduced by C. militaris. Consumption of C. militaris increased hepatic GSH and reduced lipid peroxide levels. CONCLUSIONS These results indicate that C. militaris can exert protective effects against development of NAFLD, partly by reducing inflammatory cytokines and improving hepatic antioxidant status in ob/ob mice.
Collapse
Affiliation(s)
- Ha-Neul Choi
- Department of Smart Food and Drugs, School of Food and Life Science, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 621-749, Korea
| | - Yang-Hee Jang
- Department of Smart Food and Drugs, School of Food and Life Science, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 621-749, Korea
| | - Min-Joo Kim
- Laboratory of Nutritional Analysis, Hurom Co., Ltd., Gyeongnam 660-701, Korea
| | - Min Jeong Seo
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea. ; Medi-Farm Industrialization Research Center, Dong-A University, Busan 604-714, Korea
| | - Byoung Won Kang
- Medi-Farm Industrialization Research Center, Dong-A University, Busan 604-714, Korea
| | - Yong Kee Jeong
- Department of Biotechnology, Dong-A University, Busan 604-714, Korea. ; Medi-Farm Industrialization Research Center, Dong-A University, Busan 604-714, Korea
| | - Jung-In Kim
- Department of Smart Food and Drugs, School of Food and Life Science, Inje University, 197 Inje-ro, Gimhae, Gyeongnam 621-749, Korea
| |
Collapse
|
73
|
Wang Y, Yang M, Lee SG, Davis CG, Koo SI, Fernandez ML, Volek JS, Chun OK. Diets high in total antioxidant capacity improve risk biomarkers of cardiovascular disease: a 9-month observational study among overweight/obese postmenopausal women. Eur J Nutr 2013; 53:1363-9. [DOI: 10.1007/s00394-013-0637-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 11/30/2013] [Indexed: 01/26/2023]
|
74
|
Serviddio G, Bellanti F, Vendemiale G. Free radical biology for medicine: learning from nonalcoholic fatty liver disease. Free Radic Biol Med 2013; 65:952-968. [PMID: 23994574 DOI: 10.1016/j.freeradbiomed.2013.08.174] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species, when released under controlled conditions and limited amounts, contribute to cellular proliferation, senescence, and survival by acting as signaling intermediates. In past decades there has been an epidemic diffusion of nonalcoholic fatty liver disease (NAFLD) that represents the result of the impairment of lipid metabolism, redox imbalance, and insulin resistance in the liver. To date, most studies and reviews have been focused on the molecular mechanisms by which fatty liver progresses to steatohepatitis, but the processes leading toward the development of hepatic steatosis in NAFLD are not fully understood yet. Several nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) α/γ/δ, PPARγ coactivators 1α and 1β, sterol-regulatory element-binding proteins, AMP-activated protein kinase, liver-X-receptors, and farnesoid-X-receptor, play key roles in the regulation of lipid homeostasis during the pathogenesis of NAFLD. These nuclear receptors may act as redox sensors and may modulate various metabolic pathways in response to specific molecules that act as ligands. It is conceivable that a redox-dependent modulation of lipid metabolism, nuclear receptor-mediated, could cause the development of hepatic steatosis and insulin resistance. Thus, this network may represent a potential therapeutic target for the treatment and prevention of hepatic steatosis and its progression to steatohepatitis. This review summarizes the redox-dependent factors that contribute to metabolism alterations in fatty liver with a focus on the redox control of nuclear receptors in normal liver as well as in NAFLD.
Collapse
Affiliation(s)
- Gaetano Serviddio
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy.
| | - Francesco Bellanti
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Gianluigi Vendemiale
- C.U.R.E. Centre for Liver Disease Research and Treatment, Institute of Internal Medicine, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
75
|
Green tea diet decreases PCB 126-induced oxidative stress in mice by up-regulating antioxidant enzymes. J Nutr Biochem 2013; 25:126-35. [PMID: 24378064 DOI: 10.1016/j.jnutbio.2013.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/18/2022]
Abstract
Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the up-regulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low-fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited fivefold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both messenger RNA and protein analyses, and it was determined that many genes transcriptionally controlled by aryl hydrocarbon receptor and nuclear factor (erythroid-derived 2)-like 2 proteins were up-regulated in PCB-exposed mice fed the green tea-supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126, which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants.
Collapse
|
76
|
Ballard KD, Mah E, Guo Y, Pei R, Volek JS, Bruno RS. Low-fat milk ingestion prevents postprandial hyperglycemia-mediated impairments in vascular endothelial function in obese individuals with metabolic syndrome. J Nutr 2013; 143:1602-10. [PMID: 23966328 DOI: 10.3945/jn.113.179465] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Greater intakes of low-fat dairy foods are associated with a lower risk of cardiovascular disease. The objective of this study was to examine whether acute low-fat milk ingestion would limit postprandial impairments in vascular endothelial function by limiting oxidative stress responses that decrease nitric oxide (NO) bioavailability. A randomized, double-blind, cross-over study was conducted in adults with metabolic syndrome (MetS) who ingested low-fat milk (475 mL) or an isocaloric volume of rice milk after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose, malondialdehyde (MDA), arginine (ARG), and asymmetric dimethylarginine (ADMA) were assessed at 30-min intervals during the 3-h postprandial period. Participants' (n = 19) postprandial FMD responses were unaffected by low-fat milk but transiently decreased (P < 0.01) from 6.2 ± 0.8% (mean ± SEM) at baseline to 3.3 ± 0.7% at 30 min and 3.9 ± 0.6% at 60 min following rice milk consumption. Glucose and MDA increased to a greater extent in the rice milk trial (P < 0.001). The MDA area under the 3 h postprandial curve (AUC0-3 h) was correlated with glucose AUC0-3 h (r = 0.75; P < 0.01) and inversely related to FMD AUC0-3 h (r = -0.59; P < 0.01). ARG decreased following rice milk and increased with low-fat milk, whereas only rice milk increased ADMA:ARG. The ADMA:ARG AUC0-3 h was correlated with MDA AUC0-3 h (r = 0.55) and was inversely related to FMD AUC0-3 h (r = -0.52) (P < 0.05). These findings suggest that low-fat milk maintains vascular endothelial function in individuals with MetS by limiting postprandial hyperglycemia that otherwise increases lipid peroxidation and reduces NO bioavailability. This trial was registered at clinicaltrials.gov as NCT01411293.
Collapse
|
77
|
Masterjohn C, Park Y, Lee J, Noh SK, Koo SI, Bruno RS. Dietary fructose feeding increases adipose methylglyoxal accumulation in rats in association with low expression and activity of glyoxalase-2. Nutrients 2013; 5:3311-28. [PMID: 23966111 PMCID: PMC3775256 DOI: 10.3390/nu5083311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 07/05/2013] [Accepted: 08/12/2013] [Indexed: 11/29/2022] Open
Abstract
Methylglyoxal is a precursor to advanced glycation endproducts that may contribute to diabetes and its cardiovascular-related complications. Methylglyoxal is successively catabolized to d-lactate by glyoxalase-1 and glyoxalase-2. The objective of this study was to determine whether dietary fructose and green tea extract (GTE) differentially regulate methylglyoxal accumulation in liver and adipose, mediated by tissue-specific differences in the glyoxalase system. We fed six week old male Sprague-Dawley rats a low-fructose diet (10% w/w) or a high-fructose diet (60% w/w) containing no GTE or GTE at 0.5% or 1.0% for nine weeks. Fructose-fed rats had higher (P < 0.05) adipose methylglyoxal, but GTE had no effect. Plasma and hepatic methylglyoxal were unaffected by fructose and GTE. Fructose and GTE also had no effect on the expression or activity of glyoxalase-1 and glyoxalase-2 at liver or adipose. Regardless of diet, adipose glyoxalase-2 activity was 10.8-times lower (P < 0.05) than adipose glyoxalase-1 activity and 5.9-times lower than liver glyoxalase-2 activity. Adipose glyoxalase-2 activity was also inversely related to adipose methylglyoxal (r = −0.61; P < 0.05). These findings suggest that fructose-mediated adipose methylglyoxal accumulation is independent of GTE supplementation and that its preferential accumulation in adipose compared to liver is due to low constitutive expression of glyoxalase-2.
Collapse
Affiliation(s)
- Christopher Masterjohn
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
- Department of Comparative Biosciences, University of Illinois, Urbana, IL 61801, USA
| | - Youngki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Jiyoung Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Sang K. Noh
- Department of Food and Nutrition, Changwon National University, Changwon 641-773, Korea; E-Mail:
| | - Sung I. Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
| | - Richard S. Bruno
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA; E-Mails: (C.M.); (Y.P.); (J.L.); (S.I.K.)
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-614-292-5522; Fax: +1-614-292-4339
| |
Collapse
|
78
|
Roshdy E, Rajaratnam V, Maitra S, Sabry M, Allah ASA, Al-Hendy A. Treatment of symptomatic uterine fibroids with green tea extract: a pilot randomized controlled clinical study. Int J Womens Health 2013; 5:477-86. [PMID: 23950663 PMCID: PMC3742155 DOI: 10.2147/ijwh.s41021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background Uterine fibroids (UFs, also known as leiomyoma) affect 70% of reproductive-age women. Imposing a major burden on health-related quality-of-life (HRQL) of premenopausal women, UF is a public health concern. There are no effective medicinal treatment options currently available for women with symptomatic UF. Objectives To evaluate the efficacy and safety of green tea extract (epigallocatechin gallate [EGCG]) on UF burden and quality of life in women with symptomatic UF, in a double-blinded, placebo-controlled randomized clinical trial. Methods A total of 39 reproductive-age women (age 18–50 years, day 3 serum follicle-stimulating hormone <10 \U/mL) with symptomatic UF were recruited for this study. All subjects had at least one fibroid lesion 2 cm3 or larger, as confirmed by transvaginal ultrasonography. The subjects were randomized to oral daily treatment with either 800 mg of green tea extract (45% EGCG) or placebo (800 mg of brown rice) for 4 months, and UF volumes were measured at the end, also by transvaginal ultrasonography. The fibroid-specific symptom severity and HRQL of these UF patients were scored at each monthly visit, using the symptom severity and quality-of-life questionnaires. Student’s t-test was used to evaluate statistical significance of treatment effect between the two groups. Results Of the final 39 women recruited for the study, 33 were compliant and completed all five visits of the study. In the placebo group (n = 11), fibroid volume increased (24.3%) over the study period; however, patients randomized to green tea extract (n = 22, 800 mg/day) treatment showed significant reduction (32.6%, P = 0.0001) in total UF volume. In addition, EGCG treatment significantly reduced fibroid-specific symptom severity (32.4%, P = 0.0001) and induced significant improvement in HRQL (18.53%, P = 0.01) compared to the placebo group. Anemia also significantly improved by 0.7 g/dL (P = 0.02) in the EGCG treatment group, while average blood loss significantly decreased from 71 mL/month to 45 mL/month (P = 0.001). No adverse effects, endometrial hyperplasia, or other endometrial pathology were observed in either group. Conclusion EGCG shows promise as a safe and effective therapeutic agent for women with symptomatic UFs. Such a simple, inexpensive, and orally administered therapy can improve women’s health globally.
Collapse
Affiliation(s)
- Eman Roshdy
- Department of Public Health and Community Medicine, Sohag University, Sohag, Egypt
| | | | | | | | | | | |
Collapse
|
79
|
Kunces LJ, Cusack LK, Kupchak BR, Volk BM, Freidenreich DJ, Aristizabal JC, Saenz C, Pei R, Guo Y, Fernandez ML, Bruno RS, Maresh CM, Kraemer WJ, Pronczuk A, Hayes KC, Volek JS. Triglyceride Recrystallized Phytosterols in Fat-Free Milk Improve Lipoprotein Profiles More Than Unmodified Free Phytosterols in Hypercholesterolemic Men and Women. J Am Coll Nutr 2013; 32:234-42. [DOI: 10.1080/07315724.2013.816597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
80
|
Xiao J, Guo R, Fung ML, Liong EC, Tipoe GL. Therapeutic approaches to non-alcoholic fatty liver disease: past achievements and future challenges. Hepatobiliary Pancreat Dis Int 2013; 12:125-35. [PMID: 23558065 DOI: 10.1016/s1499-3872(13)60021-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver injury and mortality in Western countries and China. However, as to date, there is no direct and effective therapy for this disease. The aim of this review is to analyze the key progress and challenges of main current therapeutic approaches in NAFLD. DATA SOURCE We carried out a PubMed search of English-language articles relevant to NAFLD therapy. RESULTS There are two major therapeutic strategies for NAFLD treatment: (1) lifestyle interventions (including weight reduction, dietary modification and physical exercise) and (2) pharmaceutical therapies. Lifestyle interventions, particularly chronic and moderate intensity exercise, are the most effective and recognized clinical therapies for NAFLD. For pharmaceutical therapies, although their effects and mechanisms have been extensively investigated in laboratory studies, they still need further tests and investigations in clinical human trials. CONCLUSION Future advancement of NAFLD therapy should focus on the mechanistic studies on cell based and animal models and human clinical trials of exercise, as well as the combination of lifestyle intervention and pharmaceutical therapy specifically targeting main signaling pathways related to lipid metabolism, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jia Xiao
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
81
|
Masterjohn C, Mah E, Park Y, Pei R, Lee J, Manautou JE, Bruno RS. Acute glutathione depletion induces hepatic methylglyoxal accumulation by impairing its detoxification to D-lactate. Exp Biol Med (Maywood) 2013; 238:360-369. [PMID: 23760001 DOI: 10.1177/1535370213477987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025] Open
Abstract
Methylglyoxal (MGO) is a dicarbonyl that reacts with amino acids and nucleic acids to form advanced glycation endproducts, which may contribute to diabetes and its cardiovascular complications. MGO detoxification through the glyoxalase (GLO) pathway is glutathione (GSH)-dependent, but no studies have investigated whether acute depletion of GSH regulates MGO accumulation in vivo. We therefore administered a single intraperitoneal injection of the specific GSH biosynthesis inhibitor l-buthionine-(RS)-sulfoximine (BSO; 4 mmol/kg) or phosphate-buffered saline vehicle to six-week-old Sprague Dawley rats (n = 48) prior to sacrificing at 0, 6, 12 and 48 h (n = 6/time point/treatment). BSO had no effect (P > 0.05) on adipose or plasma MGO at any specific time points following treatment. In contrast, hepatic GSH was 68-71% lower (P < 0.05) at 6-12 h following BSO, and MGO was 27% higher at 12 h. At 12 h, hepatic d-lactate was 13% lower and GLO activity was 52% lower following BSO, which was fully restored by the exogenous addition of GSH. Hepatic GSH was inversely related to hepatic MGO (r = -0.81; P < 0.01) and positively correlated with hepatic GLO activity (r = 0.72; P < 0.01), whereas hepatic GLO activity was positively correlated with hepatic d-lactate (r = 0.63; P < 0.05). BSO had no effect on hepatic malondialdehyde or vitamin E. These findings demonstrate that GSH depletion in vivo increases hepatic MGO accumulation by impairing its GSH-dependent, GLO-mediated detoxification to d-lactate independent of oxidative stress.
Collapse
|
82
|
Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-kappa B pathways. Eur J Nutr 2013; 53:187-99. [PMID: 23515587 DOI: 10.1007/s00394-013-0516-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 03/06/2013] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the protective mechanisms of an 85 % pure extract of (-) epigallocatechin gallate (EGCG) in the development of fibrosis, oxidative stress and inflammation in a recently developed dietary-induced animal model of non-alcoholic fatty liver disease (NAFLD). METHODS Female Sprague-Dawley rats were fed with either normal rat diet or high-fat diet for 8 weeks to develop NAFLD. For both treatments, rats were treated with or without EGCG (50 mg/kg, i.p. injection, 3 times per week). At the end, blood and liver tissue samples were obtained for histology, molecular, and biochemical analyses. RESULTS Non-alcoholic fatty liver disease (NAFLD) rats showed significant amount of fatty infiltration, necrosis, fibrosis, and inflammation. This was accompanied by a significant expressional increase in markers for fibrosis, oxidative stress, and inflammation. TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways were also activated. Treatment with EGCG improved hepatic histology (decreased number of fatty score, necrosis, and inflammatory foci), reduced liver injury (from ~0.5 to ~0.3 of ALT/AST ratio), attenuated hepatic changes including fibrosis (reduction in Sirius Red and synaptophysin-positive stain) with down-regulation in the expressions of key pathological oxidative (e.g. nitrotyrosine formation) and pro-inflammatory markers (e.g. iNOS, COX-2, and TNF-α). EGCG treatment also counteracted the activity of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Treatment with EGCG did not affect the healthy rats. CONCLUSIONS Epigallocatechin gallate (EGCG) reduced the severity of liver injury in an experimental model of NAFLD associated with lower concentration of pro-fibrogenic, oxidative stress, and pro-inflammatory mediators partly through modulating the activities of TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways. Therefore, green tea polyphenols and EGCG are useful supplements in the prevention of NAFLD.
Collapse
|
83
|
Guo Y, Mah E, Davis CG, Jalili T, Ferruzzi MG, Chun OK, Bruno RS. Dietary fat increases quercetin bioavailability in overweight adults. Mol Nutr Food Res 2013; 57:896-905. [PMID: 23319447 DOI: 10.1002/mnfr.201200619] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/01/2012] [Accepted: 11/21/2012] [Indexed: 12/30/2022]
Abstract
SCOPE Epidemiologic evidence supports that dietary quercetin reduces cardiovascular disease (CVD) risk, but its oral bioavailability is paradoxically low. The aim of this study was to determine whether dietary fat would improve quercetin bioavailability in adults at high risk for CVD and to assess lipid-mediated micellarization of quercetin in vitro. METHODS AND RESULTS In a randomized, cross-over study, overweight/obese men and postmenopausal women (n = 4 M/5 F; 55.9 ± 2.1 years; 30.8 ± 1.4 kg/m(2) ) ingested 1095 mg of quercetin aglycone with a standardized breakfast that was fat-free (<0.5 g), low-fat (4.0 g), or high-fat (15.4 g). Plasma was obtained at timed intervals for 24 h to measure quercetin and its methylated metabolites isorhamnetin and tamarixetin. Compared to the fat-free trial, plasma quercetin maximum concentration (Cmax ), and area under curve (AUC0-24 h ) increased (p < 0.05) by 45 and 32%, respectively, during the high-fat trial. During the high-fat trial, isorhamnetin Cmax and AUC0-24 h also increased by 40 and 19%, respectively, whereas Cmax and AUC0-24 h of tamarixetin increased by 46 and 43%, respectively. Dietary fat dose-dependently increased micellarization efficiency of quercetin aglycone in vitro. CONCLUSION Dietary fat improves quercetin bioavailability by increasing its absorption, likely by enhancing its micellarization at the small intestine.
Collapse
Affiliation(s)
- Yi Guo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Fardet A, Chardigny JM. Plant-Based Foods as a Source of Lipotropes for Human Nutrition: A Survey of In Vivo Studies. Crit Rev Food Sci Nutr 2013; 53:535-90. [DOI: 10.1080/10408398.2010.549596] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
85
|
Wang Y, Yang M, Lee SG, Davis CG, Kenny A, Koo SI, Chun OK. Plasma total antioxidant capacity is associated with dietary intake and plasma level of antioxidants in postmenopausal women. J Nutr Biochem 2012; 23:1725-31. [DOI: 10.1016/j.jnutbio.2011.12.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 11/07/2011] [Accepted: 12/19/2011] [Indexed: 11/29/2022]
|
86
|
Durazzo M, Belci P, Collo A, Grisoglio E, Bo S. Focus on therapeutic strategies of nonalcoholic Fatty liver disease. Int J Hepatol 2012; 2012:464706. [PMID: 23209914 PMCID: PMC3502854 DOI: 10.1155/2012/464706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 10/17/2012] [Accepted: 10/17/2012] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world (it affects 30% of the general adult population). The NAFLD encompasses a histological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), defined by steatosis, hepatocellular damage, and lobular inflammation in individuals without significant alcohol consumption and negative viral, congenital, and autoimmune liver disease markers. Currently, NAFLD is considered an emerging epidemic in light of the dramatic increase in obesity rates. With the progressive nature of NASH and its rising prevalence there is a significant need for a specific and targeted treatments since to date there has not been any validated therapies for NAFLD other than weight loss, which is well known to have a poor long-term success rate. In recent years, visceral adipose tissue has taken an important role in NAFLD pathogenesis, and current therapeutic approaches aim at reducing visceral obesity and free fatty acid overflow to the liver. This paper is focused on the treatments used for NAFLD and the potential new therapy.
Collapse
Affiliation(s)
- Marilena Durazzo
- Department of Internal Medicine, University of Turin, 10127 Turin, Italy
| | - Paola Belci
- Department of Internal Medicine, University of Turin, 10127 Turin, Italy
| | - Alessandro Collo
- Department of Internal Medicine, University of Turin, 10127 Turin, Italy
| | - Enrica Grisoglio
- Department of Internal Medicine, University of Turin, 10127 Turin, Italy
| | - Simona Bo
- Department of Internal Medicine, University of Turin, 10127 Turin, Italy
| |
Collapse
|
87
|
Grove KA, Sae-tan S, Kennett MJ, Lambert JD. (-)-Epigallocatechin-3-gallate inhibits pancreatic lipase and reduces body weight gain in high fat-fed obese mice. Obesity (Silver Spring) 2012; 20:2311-3. [PMID: 21633405 DOI: 10.1038/oby.2011.139] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Tea (Camellia sinensis, Theaceae) has been shown to have obesity preventive effects in laboratory studies. We hypothesized that dietary epigallocatechin-3-gallate (EGCG) could reverse metabolic syndrome in high fat-fed obese C57bl/6J mice, and that these effects were related to inhibition of pancreatic lipase (PL). Following treatment with 0.32% EGCG for 6 weeks, a 44% decrease in body weight (BW) gain in high fat-fed, obese mice (P < 0.01) was observed compared to controls. EGCG treatment increased fecal lipid content by 29.4% (P < 0.05) compared to high fat-fed control, whereas in vitro, EGCG dose-dependently inhibited PL (IC(50) = 7.5 µmol/l) in a noncompetitive manner with respect to substrate concentration. (-)-Epicatechin-3-gallate exhibited similar inhibitory activity, whereas the nonester-containing (-)-epigallocatechin did not. In conclusion, EGCG supplementation reduced final BW and BW gain in obese mice, and some of these effects may be due to inhibition of PL by EGCG.
Collapse
Affiliation(s)
- Kimberly A Grove
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | |
Collapse
|
88
|
Wang Y, Yang M, Lee SG, Davis CG, Koo SI, Chun OK. Dietary Total Antioxidant Capacity Is Associated with Diet and Plasma Antioxidant Status in Healthy Young Adults. J Acad Nutr Diet 2012; 112:1626-35. [DOI: 10.1016/j.jand.2012.06.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 05/17/2012] [Indexed: 01/23/2023]
|
89
|
Teixeira LG, Lages PC, Jascolka TL, Aguilar EC, Soares FLP, Pereira SS, Beltrão NRM, Matoso RDO, Nascimento AMD, Castilho ROD, Leite JIA. White tea (Camellia sinensis) extract reduces oxidative stress and triacylglycerols in obese mice. FOOD SCIENCE AND TECHNOLOGY 2012. [DOI: 10.1590/s0101-20612012005000099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant), there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group) or the same diet supplemented with 0.5% white tea extract (Obese + WTE) for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5%) does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.
Collapse
|
90
|
Carvalhana S, Machado MV, Cortez-Pinto H. Improving dietary patterns in patients with nonalcoholic fatty liver disease. Curr Opin Clin Nutr Metab Care 2012; 15:468-73. [PMID: 22878240 DOI: 10.1097/mco.0b013e3283566614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the liver epidemic of our time. Diet strongly influences its development and should be a component of any treatment plan. It is crucial to standardize diet recommendations in an evidence-based manner. RECENT FINDINGS Calorie restriction per se seems beneficial regardless of macronutrients composition. However, fat consumption, mainly cholesterol and saturated fatty acids are particularly steatogenic. There is increasing evidence that fructose, mainly consumed as soft drinks, is highly deleterious to the liver. Controversial results regarding modest alcohol consumption, suggest that although alcohol should not be advised, it should not be strictly forbidden. Recent studies suggest beneficial effects of coffee and tea in NAFLD. SUMMARY Patients with NAFLD should have an individualized diet recommendation, in order to lose at least 7% of their weight if overweight, reducing caloric intake, mainly at cost of cholesterol and saturated fatty acids. Simple sugars should be avoided, and soft drinks discouraged.
Collapse
Affiliation(s)
- Sofia Carvalhana
- Departamento de Gastrenterologia, Unidade de Nutrição e Metabolismo, Hospital Santa Maria, Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisbon, Portugal
| | | | | |
Collapse
|
91
|
Non-alcoholic steatohepatitis: an overview including treatments with herbals as alternative therapeutics. J Appl Biomed 2012. [DOI: 10.2478/v10136-012-0008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
92
|
Shen CL, Cao JJ, Dagda RY, Chanjaplammootil S, Lu C, Chyu MC, Gao W, Wang JS, Yeh JK. Green tea polyphenols benefits body composition and improves bone quality in long-term high-fat diet-induced obese rats. Nutr Res 2012; 32:448-57. [PMID: 22749181 DOI: 10.1016/j.nutres.2012.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 04/28/2012] [Accepted: 05/02/2012] [Indexed: 12/11/2022]
Abstract
This study investigates the effects of green tea polyphenols (GTPs) on body composition and bone properties along with mechanisms in obese female rats. Thirty-six 3-month-old Sprague Dawley female rats were fed either a low-fat (LF) or a high-fat (HF) diet for 4 months. Animals in the LF diet group continued on an LF diet for additional 4 months, whereas those in the HF diet group were divided into 2 groups: with GTP (0.5%) or without in drinking water, in addition to an HF diet for another 4 months. Body composition, femur bone mass and strength, serum endocrine and proinflammatory cytokines, and liver glutathione peroxidase (GPX) protein expression were determined. We hypothesized that supplementation of GTP in drinking water would benefit body composition, enhance bone quality, and suppress obesity-related endocrines in HF diet-induced obese female rats and that such changes are related to an elevation of antioxidant capacity and a reduction of proinflammatory cytokine production. After 8 months, compared with the LF diet, the HF diet increased percentage of fat mass and serum insulin-like growth factor I and leptin levels; reduced percentage of fat-free mass, bone strength, and GPX protein expression; but had no effect on bone mineral density and serum adiponectin levels in the rats. Green tea polyphenol supplementation increased percentage of fat-free mass, bone mineral density and strength, and GPX protein expression and decreased percentage of fat mass, serum insulin-like growth factor I, leptin, adiponectin, and proinflammatory cytokines in the obese rats. This study shows that GTP supplementation benefited body composition and bone properties in obese rats possibly through enhancing antioxidant capacity and suppressing inflammation.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430-8115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Masterjohn C, Bruno RS. Therapeutic potential of green tea in nonalcoholic fatty liver disease. Nutr Rev 2012; 70:41-56. [PMID: 22221215 DOI: 10.1111/j.1753-4887.2011.00440.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a constellation of progressive liver disorders that are closely related to obesity, diabetes, and insulin resistance and may afflict over 70 million Americans. NAFLD may occur as relatively benign, nonprogressive liver steatosis, but in many individuals it may progress in severity to nonalcoholic steatohepatitis, fibrosis, cirrhosis, and liver failure or hepatocellular carcinoma. No validated treatments currently exist for NAFLD except for weight loss, which has a poor long-term success rate. Thus, dietary strategies that prevent the development of liver steatosis or its progression to nonalcoholic steatohepatitis are critically needed. Green tea is rich in polyphenolic catechins that have hypolipidemic, thermogenic, antioxidant, and anti-inflammatory activities that may mitigate the occurrence and progression of NAFLD. This review presents the experimental evidence demonstrating the hepatoprotective properties of green tea and its catechins and the proposed mechanisms by which these targeted dietary agents protect against NAFLD.
Collapse
|
94
|
Park HJ, Lee JY, Chung MY, Park YK, Bower AM, Koo SI, Giardina C, Bruno RS. Green tea extract suppresses NFκB activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis. J Nutr 2012; 142:57-63. [PMID: 22157544 DOI: 10.3945/jn.111.148544] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by oxidative stress and inflammatory responses that exacerbate liver injury. The objective of this study was to determine whether the antioxidant and antiinflammatory activities of green tea extract (GTE) would protect against NASH in a model of diet-induced obesity. Adult Wistar rats were fed a low-fat (LF) diet or high-fat (HF) diet containing no GTE or GTE at 1% or 2% (HF+2GTE) for 8 wk. The HF group had greater (P ≤ 0.05) serum alanine (ALT) and aspartate aminotransferases and hepatic lipids than the LF group. Both GTE groups had lower ALT and hepatic lipid than the HF group. In liver and epididymal adipose, the HF group had lower glutathione as well as greater mRNA and protein expression of TNFα and monocyte chemoattractant protein-1 (MCP-1) and NFκB binding activity than the LF group. Compared to the HF group, the HF+2GTE group had greater glutathione and lower protein and mRNA levels of inflammatory cytokines in both tissues. NFκB binding activities at liver and adipose were also lower, likely by inhibiting the phosphorylation of inhibitor of NFκB. NFκB binding activities in liver and adipose (P ≤ 0.05; r = 0.62 and 0.46, respectively) were correlated with ALT, and hepatic NFκB binding activity was inversely related to liver glutathione (r = -0.35). These results suggest that GTE-mediated improvements in glutathione status are associated with the inhibition of hepatic and adipose inflammatory responses mediated by NFκB, thereby protecting against NASH.
Collapse
Affiliation(s)
- Hea Jin Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Chen YK, Cheung C, Reuhl KR, Liu AB, Lee MJ, Lu YP, Yang CS. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Western-style diet-induced obesity and metabolic syndrome in mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11862-71. [PMID: 21932846 PMCID: PMC3243651 DOI: 10.1021/jf2029016] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The aim of this study was to investigate the effects of (-)-epigallocatechin-3-gallate (EGCG) on newly developed high-fat/Western-style diet-induced obesity and symptoms of metabolic syndrome. Male C57BL/6J mice were fed a high fat/Western-style (HFW; 60% energy as fat and lower levels of calcium, vitamin D(3), folic acid, choline bitartrate, and fiber) or HFW with EGCG (HFWE; HFW with 0.32% EGCG) diet for 17 wks. As a comparison, two other groups of mice fed a low-fat diet (LF; 10% energy as fat) and high-fat diet (HF; 60% energy as fat) were also included. The HFW group developed more body weight gain and severe symptoms of metabolic syndrome than the HF group. The EGCG treatment significantly reduced body weight gain associated with increased fecal lipids and decreased blood glucose and alanine aminotransferase (ALT) levels compared to those of the HFW group. Fatty liver incidence, liver damage, and liver triglyceride levels were also decreased by the EGCG treatment. Moreover, the EGCG treatment attenuated insulin resistance and levels of plasma cholesterol, monocyte chemoattractant protein-1 (MCP-1), C-reactive protein (CRP), interlukin-6 (IL-6), and granulocyte colony-stimulating factor (G-CSF). Our results demonstrate that the HFW diet produces more severe symptoms of metabolic syndrome than the HF diet and that the EGCG treatment can alleviate these symptoms and body fat accumulation. The beneficial effects of EGCG are associated with decreased lipid absorption and reduced levels of inflammatory cytokines.
Collapse
Affiliation(s)
- Yu-Kuo Chen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Connie Cheung
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Kenneth R. Reuhl
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Anna Ba Liu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Mao-Jung Lee
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Yao-Ping Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | - Chung S. Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
- Correspondence: Dr. Chung S. Yang, Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology and Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 164 Frelinghuysen Road, Piscataway, NJ 08854-8020, , Tel: 732-445-5360, Fax: 732-445-0687
| |
Collapse
|
96
|
Mah E, Noh SK, Ballard KD, Matos ME, Volek JS, Bruno RS. Postprandial hyperglycemia impairs vascular endothelial function in healthy men by inducing lipid peroxidation and increasing asymmetric dimethylarginine:arginine. J Nutr 2011; 141:1961-8. [PMID: 21940510 DOI: 10.3945/jn.111.144592] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Postprandial hyperglycemia induces vascular endothelial dysfunction (VED) and increases future cardiovascular disease risk. We hypothesized that postprandial hyperglycemia would decrease vascular function in healthy men by inducing oxidative stress and proinflammatory responses and increasing asymmetric dimethylarginine:arginine (ADMA:arginine), a biomarker that is predictive of reduced NO biosynthesis. In a randomized, cross-over design, healthy men (n = 16; 21.6 ± 0.8 y) ingested glucose or fructose (75 g) after an overnight fast. Brachial artery flow-mediated dilation (FMD), plasma glucose and insulin, antioxidants, malondialdehyde (MDA), inflammatory proteins, arginine, and ADMA were measured at regular intervals during the 3-h postprandial period. Baseline FMD did not differ between trials (P > 0.05). Postprandial FMD was reduced following the ingestion of glucose only. Postprandial MDA concentrations increased to a greater extent following the ingestion of glucose compared to fructose. Plasma arginine decreased and the ratio of ADMA:arginine increased to a greater extent following the ingestion of glucose. Inflammatory cytokines and cellular adhesion molecules were unaffected by the ingestion of either sugar. Postprandial AUC(0-3 h) for FMD and MDA were inversely related (r = -0.80; P < 0.05), suggesting that hyperglycemia-induced lipid peroxidation suppresses postprandial vascular function. Collectively, these findings suggest that postprandial hyperglycemia in healthy men reduces endothelium-dependent vasodilation by increasing lipid peroxidation independent of inflammation. Postprandial alterations in arginine and ADMA:arginine also suggest that acute hyperglycemia may induce VED by decreasing NO bioavailability through an oxidative stress-dependent mechanism. Additional work is warranted to define whether inhibiting lipid peroxidation and restoring arginine metabolism would mitigate hyperglycemia-mediated decreases in vascular function.
Collapse
Affiliation(s)
- Eunice Mah
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | | | | | | | | | | |
Collapse
|
97
|
de Moraes BB, Pasquini G, Aguiar O, Gollücke APB, Ihara SSM, Tenorio NM, Andersen ML, Catharino RR, Spadari-Bratfisch RC, Ribeiro DA. Protective effects of green tea against hepatic injury induced by high-cholesterol diet in rats: histopathological analysis, oxidative DNA damage and COX-2 expression. Hepatol Int 2011; 5:965-74. [DOI: 10.1007/s12072-011-9275-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 04/09/2011] [Indexed: 09/02/2023]
|
98
|
Mah E, Matos MD, Kawiecki D, Ballard K, Guo Y, Volek JS, Bruno RS. Vitamin C status is related to proinflammatory responses and impaired vascular endothelial function in healthy, college-aged lean and obese men. ACTA ACUST UNITED AC 2011; 111:737-43. [PMID: 21515122 DOI: 10.1016/j.jada.2011.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 11/16/2010] [Indexed: 12/21/2022]
Abstract
Vitamin C supplementation has been suggested to reduce cardiovascular disease risk. However, no studies have examined the relationship between vitamin C status and vascular dysfunction in lean and obese individuals in the absence of supplementation. We examined whether vascular function is interrelated with vitamin C status and inflammation in healthy, college-aged lean and obese men with no history of dietary supplementation. A cross-sectional study was conducted during winter 2008 in lean and obese men aged 21±3 years (n=8/group). Brachial artery flow-mediated dilation (FMD) was measured to determine vascular endothelial function. Plasma antioxidants (vitamin C, vitamin E, and thiols), inflammatory proteins (C-reactive protein [CRP], myeloperoxidase [MPO], and cytokines), and cellular adhesion molecules were measured. Participants also completed 3-day food records on the days preceding their vascular testing. Group differences were evaluated by t tests, and correlation coefficients were determined by linear regression. FMD was 21% lower (P<0.05) in obese men. They also had 51% lower vitamin C intakes and 38% lower plasma vitamin C concentrations. Obese men had greater plasma concentrations of CRP, MPO, inflammatory cytokines, and cellular adhesion molecules. Participants' CRP and MPO were each inversely related (P<0.05) to FMD (r=-0.528 and -0.625) and plasma vitamin C (r=-0.646 and -0.701). These data suggest that low vitamin C status is associated with proinflammatory responses and impaired vascular function in lean and obese men. Additional study is warranted to determine whether improving dietary vitamin C intakes from food attenuate vascular dysfunction.
Collapse
Affiliation(s)
- Eunice Mah
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Masterjohn C, Mah E, Guo Y, Koo SI, Bruno RS. γ-Tocopherol abolishes postprandial increases in plasma methylglyoxal following an oral dose of glucose in healthy, college-aged men. J Nutr Biochem 2011; 23:292-8. [PMID: 21543210 DOI: 10.1016/j.jnutbio.2010.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/03/2010] [Accepted: 12/09/2010] [Indexed: 01/26/2023]
Abstract
Postprandial hyperglycemia contributes to the risk of cardiovascular disease in part by increasing concentrations of the reactive dicarbonyl methylglyoxal (MGO), a byproduct of glucose metabolism. Oxidative stress increases MGO formation from glucose in vitro and decreases its glutathione-dependent detoxification to lactate. We hypothesized that the antioxidant γ-tocopherol, a form of vitamin E, would decrease hyperglycemia-mediated postprandial increases in plasma MGO in healthy, normoglycemic, college-aged men. Participants (n=12 men; 22.3±1.0 years; 29.3±2.4 kg/m(2)) received an oral dose of glucose (75 g) in the fasted state prior to and following 5-day ingestion of a vitamin E supplement enriched in γ-tocopherol (500 mg/day). γ-Tocopherol supplementation increased (P<.0001) plasma γ-tocopherol from 2.22±0.32 to 7.06±0.71 μmol/l. Baseline MGO concentrations and postprandial hyperglycemic responses were unaffected by γ-tocopherol supplementation (P>.05). Postprandial MGO concentrations increased in the absence of supplemental γ-tocopherol (P<.05), but not following γ-tocopherol supplementation (P>.05). Area under the curve for plasma MGO was significantly (P<.05) smaller with the supplementation of γ-tocopherol than without (area under the curve (0-180 min), -778±1010 vs. 2277±705). Plasma concentrations of γ-carboxyethyl-hydroxychroman, reduced glutathione and markers of total antioxidant capacity increased after supplementation, and these markers and plasma γ-tocopherol were inversely correlated with plasma MGO (r=-0.48 to -0.67, P<.05). These data suggest that short-term supplementation of γ-tocopherol abolishes the oral glucose-mediated increases in postprandial MGO through its direct and indirect antioxidant properties and may reduce hyperglycemia-mediated cardiovascular disease risk.
Collapse
Affiliation(s)
- Christopher Masterjohn
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
| | | | | | | | | |
Collapse
|
100
|
Chung MY, Park HJ, Manautou JE, Koo SI, Bruno RS. Green tea extract protects against nonalcoholic steatohepatitis in ob/ob mice by decreasing oxidative and nitrative stress responses induced by proinflammatory enzymes. J Nutr Biochem 2011; 23:361-7. [PMID: 21543212 DOI: 10.1016/j.jnutbio.2011.01.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 02/06/2023]
Abstract
Oxidative and nitrative stress responses resulting from inflammation exacerbate liver injury associated with nonalcoholic steatohepatitis (NASH) by inducing lipid peroxidation and protein nitration. The objective of this study was to investigate whether the anti-inflammatory properties of green tea extract (GTE) would protect against NASH by suppressing oxidative and nitrative damage mediated by proinflammatory enzymes. Obese mice (ob/ob) and their 5-week-old C57BL6 lean littermates were fed 0%, 0.5% or 1% GTE for 6 weeks (n=12-13 mice/group). In obese mice, hepatic lipid accumulation, inflammatory infiltrates and serum alanine aminotransferase activity were markedly increased, whereas these markers of hepatic steatosis, inflammation and injury were significantly reduced among obese mice fed GTE. GTE also normalized hepatic 4-hydroxynonenal and 3-nitro-tyrosine (N-Tyr) concentrations to those observed in lean controls. These oxidative and nitrative damage markers were correlated with alanine aminotransferase (P<.05; r=0.410-0.471). Improvements in oxidative and nitrative damage by GTE were also associated with lower hepatic nicotinamide adenine dinucleotide phosphate oxidase activity. Likewise, GTE reduced protein expression levels of hepatic myeloperoxidase and inducible nitric oxide synthase and decreased the concentrations of nitric oxide metabolites. Correlative relationships between nicotinamide adenine dinucleotide phosphate oxidase and hepatic 4-hydroxynonenal (r=0.364) as well as nitric oxide metabolites and N-Tyr (r=0.598) suggest that GTE mitigates lipid peroxidation and protein nitration by suppressing the generation of reactive oxygen and nitrogen species. Further study is warranted to determine whether GTE can be recommended as an effective dietary strategy to reduce the risk of obesity-triggered NASH.
Collapse
Affiliation(s)
- Min-Yu Chung
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | |
Collapse
|