51
|
Optimization of recombinant maize CDKA;1 and CycD6;1 production in Escherichia coli by response surface methodology. Protein Expr Purif 2019; 165:105483. [PMID: 31479737 DOI: 10.1016/j.pep.2019.105483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
Abstract
The complex formed by the cyclin-dependent kinase A (CDKA) and cyclin D is responsible for the G1-S transition in the plant cell cycle. Maize (Zea mays L) CDKA; 1 and CycD6; 1 were cloned and expressed in E. coli. The present study describes the optimization of both proteins production using a statistical approach known as response surface methodology (RSM). The experimental design took into account the effects of four variables: optical density of the culture (OD600) before induction, isopropyl β-d-1-thiogalactopyranoside (IPTG) concentration, post-induction temperature, and post-induction time. For each protein, a 24 full factorial central composite rotary design for these four independent variables (at five levels each) was employed to fit a polynomial model; which indicated that 30 experiments were required for this procedure. An optimization of CDKA; 1 and CycD6; 1 production levels in the soluble fraction was achieved. Protein conformation and stability were studied by circular dichroism and fluorescence spectroscopy. Finally, in vitro Cyc-CDK complex formation and its kinase activity were confirmed.
Collapse
|
52
|
Huybrechts M, Cuypers A, Deckers J, Iven V, Vandionant S, Jozefczak M, Hendrix S. Cadmium and Plant Development: An Agony from Seed to Seed. Int J Mol Sci 2019; 20:ijms20163971. [PMID: 31443183 PMCID: PMC6718997 DOI: 10.3390/ijms20163971] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Anthropogenic pollution of agricultural soils with cadmium (Cd) should receive adequate attention as Cd accumulation in crops endangers human health. When Cd is present in the soil, plants are exposed to it throughout their entire life cycle. As it is a non-essential element, no specific Cd uptake mechanisms are present. Therefore, Cd enters the plant through transporters for essential elements and consequently disturbs plant growth and development. In this review, we will focus on the effects of Cd on the most important events of a plant's life cycle covering seed germination, the vegetative phase and the reproduction phase. Within the vegetative phase, the disturbance of the cell cycle by Cd is highlighted with special emphasis on endoreduplication, DNA damage and its relation to cell death. Furthermore, we will discuss the cell wall as an important structure in retaining Cd and the ability of plants to actively modify the cell wall to increase Cd tolerance. As Cd is known to affect concentrations of reactive oxygen species (ROS) and phytohormones, special emphasis is put on the involvement of these compounds in plant developmental processes. Lastly, possible future research areas are put forward and a general conclusion is drawn, revealing that Cd is agonizing for all stages of plant development.
Collapse
Affiliation(s)
- Michiel Huybrechts
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jana Deckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Verena Iven
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Stéphanie Vandionant
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Marijke Jozefczak
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium
| | - Sophie Hendrix
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, B-3590 Diepenbeek, Belgium.
| |
Collapse
|
53
|
Druege U, Hilo A, Pérez-Pérez JM, Klopotek Y, Acosta M, Shahinnia F, Zerche S, Franken P, Hajirezaei MR. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. ANNALS OF BOTANY 2019; 123:929-949. [PMID: 30759178 PMCID: PMC6589513 DOI: 10.1093/aob/mcy234] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 12/03/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Adventitious root (AR) formation in excised plant parts is a bottleneck for survival of isolated plant fragments. AR formation plays an important ecological role and is a critical process in cuttings for the clonal propagation of horticultural and forestry crops. Therefore, understanding the regulation of excision-induced AR formation is essential for sustainable and efficient utilization of plant genetic resources. SCOPE Recent studies of plant transcriptomes, proteomes and metabolomes, and the use of mutants and transgenic lines have significantly expanded our knowledge concerning excision-induced AR formation. Here, we integrate new findings regarding AR formation in the cuttings of diverse plant species. These findings support a new system-oriented concept that the phytohormone-controlled reprogramming and differentiation of particular responsive cells in the cutting base interacts with a co-ordinated reallocation of plant resources within the whole cutting to initiate and drive excision-induced AR formation. Master control by auxin involves diverse transcription factors and mechanically sensitive microtubules, and is further linked to ethylene, jasmonates, cytokinins and strigolactones. Hormone functions seem to involve epigenetic factors and cross-talk with metabolic signals, reflecting the nutrient status of the cutting. By affecting distinct physiological units in the cutting, environmental factors such as light, nitrogen and iron modify the implementation of the genetically controlled root developmental programme. CONCLUSION Despite advanced research in the last decade, important questions remain open for future investigations on excision-induced AR formation. These concern the distinct roles and interactions of certain molecular, hormonal and metabolic factors, as well as the functional equilibrium of the whole cutting in a complex environment. Starting from model plants, cell type- and phase-specific monitoring of controlling processes and modification of gene expression are promising methodologies that, however, need to be integrated into a coherent model of the whole system, before research findings can be translated to other crops.
Collapse
Affiliation(s)
- Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | | | - Yvonne Klopotek
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Manuel Acosta
- Universidad de Murcia, Facultad de Biología, Campus de Espinardo, Murcia, Spain
| | - Fahimeh Shahinnia
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| | - Siegfried Zerche
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Erfurt, Germany
| | - Mohammad R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research, OT Gatersleben, Stadt Seeland, Germany
| |
Collapse
|
54
|
Chiou WY, Kawamoto T, Himi E, Rikiishi K, Sugimoto M, Hayashi-Tsugane M, Tsugane K, Maekawa M. LARGE GRAIN Encodes a Putative RNA-Binding Protein that Regulates Spikelet Hull Length in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:503-515. [PMID: 30690508 DOI: 10.1093/pcp/pcz014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Grain size is a key determiner of grain weight, one of the yield components in rice (Oryza sativa). Therefore, to increase grain yield, it is important to elucidate the detailed mechanisms regulating grain size. The Large grain (Lgg) mutant, found in the nonautonomous DNA-based active rice transposon1 (nDart1)-tagged lines of Koshihikari, is caused by a truncated nDart1-3 and 355 bp deletion in the 5' untranslated region of LGG, which encodes a putative RNA-binding protein, through transposon display and cosegregation analysis between grain length and LGG genotype in F2 and F3. Clustered regularly interspaced short palindromic repeats/CRISPR-associated 9-mediated knockout and overexpression of LGG led to longer and shorter grains than wild type, respectively, showing that LGG regulates spikelet hull length. Expression of LGG was highest in the 0.6-mm-long young panicle and gradually decreased as the panicle elongated. LGG was also expressed in roots and leaves. These results show that LGG functions at the very early stage of panicle development. Longitudinal cell numbers of spikelet hulls of Lgg, knockout and overexpressed plants were significantly different from those of the wild type, suggesting that LGG might regulate longitudinal cell proliferation in the spikelet hull. RNA-Seq analysis of 1-mm-long young panicles from LGG knockout and overexpressing plants revealed that the expressions of many cell cycle-related genes were reduced in knockout plants relative to LGG-overexpressing plants and wild type, whereas some genes for cell proliferation were highly expressed in knockout plants. Taken together, these results suggest that LGG might be a regulator of cell cycle and cell division in the rice spikelet hull.
Collapse
Affiliation(s)
- Wan-Yi Chiou
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, School of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Eiko Himi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Kazuhide Rikiishi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Manabu Sugimoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Mika Hayashi-Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
| | - Kazuo Tsugane
- Department of Evolutionary Biology and Biodiversity, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology in the School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Masahiko Maekawa
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
55
|
Barrada A, Djendli M, Desnos T, Mercier R, Robaglia C, Montané MH, Menand B. A TOR-YAK1 signaling axis controls cell cycle, meristem activity and plant growth in Arabidopsis. Development 2019; 146:dev.171298. [PMID: 30705074 DOI: 10.1242/dev.171298] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/14/2019] [Indexed: 01/20/2023]
Abstract
TARGET OF RAPAMYCIN (TOR) is a conserved eukaryotic phosphatidylinositol-3-kinase-related kinase that plays a major role in regulating growth and metabolism in response to environment in plants. We performed a genetic screen for Arabidopsis ethylmethane sulfonate mutants resistant to the ATP-competitive TOR inhibitor AZD-8055 to identify new components of the plant TOR pathway. We found that loss-of-function mutants of the DYRK (dual specificity tyrosine phosphorylation regulated kinase)/YAK1 kinase are resistant to AZD-8055 and, reciprocally, that YAK1 overexpressors are hypersensitive to AZD-8055. Significantly, these phenotypes were conditional on TOR inhibition, positioning YAK1 activity downstream of TOR. We further show that the ATP-competitive DYRK1A inhibitor pINDY phenocopies YAK1 loss of function. Microscopy analysis revealed that YAK1 functions to repress meristem size and induce differentiation. We show that YAK1 represses cyclin expression in the different zones of the root meristem and that YAK1 is essential for TOR-dependent transcriptional regulation of the plant-specific SIAMESE-RELATED (SMR) cyclin-dependent kinase inhibitors in both meristematic and differentiating root cells. Thus, YAK1 is a major regulator of meristem activity and cell differentiation downstream of TOR.
Collapse
Affiliation(s)
- Adam Barrada
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Meriem Djendli
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, Laboratoire de Biologie du Développement des Plantes, Saint Paul-Lez-Durance, France F-13108
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Christophe Robaglia
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Marie-Hélène Montané
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| | - Benoît Menand
- Aix Marseille Université, CEA, CNRS, BIAM, Laboratoire de Génétique et Biophysique des Plantes, Marseille, France F-13009
| |
Collapse
|
56
|
Wu P, Peng M, Li Z, Yuan N, Hu Q, Foster CE, Saski C, Wu G, Sun D, Luo H. DRMY1, a Myb-Like Protein, Regulates Cell Expansion and Seed Production in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:285-302. [PMID: 30351427 DOI: 10.1093/pcp/pcy207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Plant organ development to a specific size and shape is controlled by cell proliferation and cell expansion. Here, we identify a novel Myb-like Arabidopsis gene, Development Related Myb-like1 (DRMY1), which controls cell expansion in both vegetative and reproductive organs. DRMY1 is strongly expressed in developing organs and its expression is reduced by ethylene while it is induced by ABA. DRMY1 has a Myb-like DNA-binding domain, which is predominantly localized in the nucleus and does not exhibit transcriptional activation activity. The loss-of-function T-DNA insertion mutant drmy1 shows reduced organ growth and cell expansion, which is associated with changes in the cell wall matrix polysaccharides. Interestingly, overexpression of DRMY1 in Arabidopsis does not lead to enhanced organ growth. Expression of genes involved in cell wall biosynthesis/remodeling, ribosome biogenesis and in ethylene and ABA signaling pathways is changed with the deficiency of DRMY1. Our results suggest that DRMY1 plays an essential role in organ development by regulating cell expansion either directly by affecting cell wall architecture and/or cytoplasmic growth or indirectly through the ethylene and/or ABA signaling pathways.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Mingsheng Peng
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Cliff E Foster
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Christopher Saski
- Clemson University Genomics Institute, Clemson University, Clemson, SC, USA
| | - Guohai Wu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
57
|
Li ZT, Janisiewicz WJ, Liu Z, Callahan AM, Evans BE, Jurick WM, Dardick C. Exposure in vitro to an Environmentally Isolated Strain TC09 of Cladosporium sphaerospermum Triggers Plant Growth Promotion, Early Flowering, and Fruit Yield Increase. FRONTIERS IN PLANT SCIENCE 2019; 9:1959. [PMID: 30774644 PMCID: PMC6367233 DOI: 10.3389/fpls.2018.01959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/17/2018] [Indexed: 05/23/2023]
Abstract
A growing number of bacteria and fungi have been found to promote plant growth through mutualistic interactions involving elements such as volatile organic compounds (VOCs). Here, we report the identification of an environmentally isolated strain of Cladosporium sphaerospermum (herein named TC09), that substantially enhances plant growth after exposure in vitro beyond what has previously been reported. When cultured on Murashige and Skoog (MS) medium under in vitro conditions, tobacco seedlings (Nicotiana tabacum) exposed to TC09 cultures for 20 days increased stem height and whole plant biomass up to 25- and 15-fold, respectively, over controls without exposure. TC09-mediated growth promotion required >5 g/L sucrose in the plant culture medium and was influenced by the duration of exposure ranging from one to 10 days, beyond which no differences were detected. When transplanted to soil under greenhouse conditions, TC09-exposed tobacco plants retained higher rates of growth. Comparative transcriptome analyses using tobacco seedlings exposed to TC09 for 10 days uncovered differentially expressed genes (DEGs) associated with diverse biological processes including cell expansion and cell cycle, photosynthesis, phytohormone homeostasis and defense responses. To test the potential efficacy of TC09-mediated growth promotion on agricultural productivity, pepper plants (Capsicum annuum L.) of two different varieties, Cayenne and Minisweet, were pre-exposed to TC09 and planted in the greenhouse to monitor growth, flowering, and fruit production. Results showed that treated pepper plants flowered 20 days earlier and yielded up to 213% more fruit than untreated controls. Altogether the data suggest that exposure of young plants to C. sphaerospermum produced VOCs may provide a useful tool to improve crop productivity.
Collapse
Affiliation(s)
- Zhijian T. Li
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Wojciech J. Janisiewicz
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Zongrang Liu
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Ann M. Callahan
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Breyn E. Evans
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| | - Wayne M. Jurick
- Food Quality Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture – Agricultural Research Service, Beltsville, MD, United States
| | - Chris Dardick
- Appalachian Fruit Research Station, United States Department of Agriculture – Agricultural Research Service, Kearneysville, WV, United States
| |
Collapse
|
58
|
Parrilla J, Gaillard C, Verbeke J, Maucourt M, Aleksandrov RA, Thibault F, Fleurat-Lessard P, Gibon Y, Rolin D, Atanassova R. Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio 2018; 8:784-798. [PMID: 29744293 PMCID: PMC5929931 DOI: 10.1002/2211-5463.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022] Open
Abstract
A novel biological model was created for the comparison of grapevine embryogenic cells (EC) and nonembryogenic cells (NEC) sharing a common genetic background but distinct phenotypes, when cultured on their respective most appropriate media. Cytological characterization, 1H-NMR analysis of intracellular metabolites, and glycolytic enzyme activities provided evidence for the marked metabolic differences between EC and NEC. The EC were characterized by a moderate and organized cell proliferation, coupled with a low flux through glycolysis, high capacity of phosphoenolpyruvate carboxylase and glucokinase, and high oxygen consumption. The NEC displayed strong anarchic growth, and their high rate of glycolysis due to the low energetic efficiency of the fermentative metabolism is confirmed by increased enolase capacity and low oxygen consumption.
Collapse
Affiliation(s)
- Jonathan Parrilla
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Cécile Gaillard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Jérémy Verbeke
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,GReD. UMR CNRS 6293 - INSERM U1103 Université Clermont-Auvergne CRBC Faculté de médecine Clermont-Ferrand France
| | - Mickaël Maucourt
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Radoslav A Aleksandrov
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France.,Institute of Molecular Biology Bulgarian Academy of Sciences Acad Sofia Bulgaria
| | - Florence Thibault
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Pierrette Fleurat-Lessard
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| | - Yves Gibon
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Dominique Rolin
- Laboratoire Biologie du Fruit et Pathologie UMR 1332 Institut National de la Recherche Agronomique Université de Bordeaux Villenave d'Ornon France.,Plateforme Métabolome du Centre de Génomique Fonctionnelle Bordeaux MetaboHUB Institut National de la Recherche Agronomique Villenave d'Ornon France
| | - Rossitza Atanassova
- Laboratoire EBI- Ecologie et Biologie des Interactions Équipe SEVE-Sucres et Échanges Végétaux-Environnement UMR 7267 Centre National de la Recherche Scientifique Université de Poitiers France
| |
Collapse
|
59
|
Chen L, Zhao Y, Xu S, Zhang Z, Xu Y, Zhang J, Chong K. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice. THE NEW PHYTOLOGIST 2018; 218:219-231. [PMID: 29364524 PMCID: PMC5873253 DOI: 10.1111/nph.14977] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/25/2017] [Indexed: 05/19/2023]
Abstract
Plants modify their development to adapt to their environment, protecting themselves from detrimental conditions such as chilling stress by triggering a variety of signaling pathways; however, little is known about how plants coordinate developmental patterns and stress responses at the molecular level. Here, we demonstrate that interacting transcription factors OsMADS57 and OsTB1 directly target the defense gene OsWRKY94 and the organogenesis gene D14 to trade off the functions controlling/moderating rice tolerance to cold. Overexpression of OsMADS57 maintains rice tiller growth under chilling stress. OsMADS57 binds directly to the promoter of OsWRKY94, activating its transcription for the cold stress response, while suppressing its activity under normal temperatures. In addition, OsWRKY94 was directly targeted and suppressed by OsTB1 under both normal and chilling temperatures. However, D14 transcription was directly promoted by OsMADS57 for suppressing tillering under the chilling treatment, whereas D14 was repressed for enhancing tillering under normal condition.We demonstrated that OsMADS57 and OsTB1 conversely affect rice chilling tolerance via targeting OsWRKY94. Our findings highlight a molecular genetic mechanism coordinating organogenesis and chilling tolerance in rice, which supports and extends recent work suggesting that chilling stress environments influence organ differentiation.
Collapse
Affiliation(s)
- Liping Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shujuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Zeyong Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Jingyu Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
- National Center for Plant Gene ResearchBeijing100093China
| |
Collapse
|
60
|
Higuchi K, Ono K, Araki S, Nakamura S, Uesugi T, Makishima T, Ikari A, Hanaoka T, Sue M. Elongation of barley roots in high-pH nutrient solution is supported by both cell proliferation and differentiation in the root apex. PLANT, CELL & ENVIRONMENT 2017; 40:1609-1617. [PMID: 28425570 DOI: 10.1111/pce.12969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 04/01/2017] [Accepted: 04/03/2017] [Indexed: 06/07/2023]
Abstract
Many crops grow well on neutral or weakly acidic soils. The ability of roots to elongate under high-external pH would be advantageous for the survival of plants on alkaline soil. We found that root elongation was promoted in some plant species in alkaline-nutrient solution. Barley, but not tomato, root growth was maintained in pH 8 nutrient solution. Fe and Mn were absorbed well from the pH 8 nutrient solution by both barley and tomato plants, suggesting that the different growth responses of these two species may not be caused by insolubilization of transition metals. The ability of intact barley and tomato plants to acidify external solution was comparable; in both species, this ability decreased in plants exposed to pH 8 nutrient solution for 1 w. Conversely, cell proliferation and elongation in barley root apices were facilitated at pH 8 as shown by microscopy and cell-cycle-related gene-expression data; this was not observed in tomato. We propose that barley adapts to alkaline stress by increasing root development.
Collapse
Affiliation(s)
- Kyoko Higuchi
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Kota Ono
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Satoru Araki
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Shogo Nakamura
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Tetsuya Uesugi
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Taira Makishima
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Atsushi Ikari
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Takahiro Hanaoka
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| | - Masayuki Sue
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
61
|
Novikova GV, Mur LAJ, Nosov AV, Fomenkov AA, Mironov KS, Mamaeva AS, Shilov ES, Rakitin VY, Hall MA. Nitric Oxide Has a Concentration-Dependent Effect on the Cell Cycle Acting via EIN2 in Arabidopsis thaliana Cultured Cells. Front Physiol 2017; 8:142. [PMID: 28344560 PMCID: PMC5344996 DOI: 10.3389/fphys.2017.00142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/23/2017] [Indexed: 11/13/2022] Open
Abstract
Ethylene is known to influence the cell cycle (CC) via poorly characterized roles whilst nitric oxide (NO) has well-established roles in the animal CC but analogous role(s) have not been reported for plants. As NO and ethylene signaling events often interact we examined their role in CC in cultured cells derived from Arabidopsis thaliana wild-type (Col-0) plants and from ethylene-insensitive mutant ein2-1 plants. Both NO and ethylene were produced mainly during the first 5 days of the sub-cultivation period corresponding to the period of active cell division. However, in ein2-1 cells, ethylene generation was significantly reduced while NO levels were increased. With application of a range of concentrations of the NO donor, sodium nitroprusside (SNP) (between 20 and 500 μM) ethylene production was significantly diminished in Col-0 but unchanged in ein2-1 cells. Flow cytometry assays showed that in Col-0 cells treatments with 5 and 10 μM SNP concentrations led to an increase in S-phase cell number indicating the stimulation of G1/S transition. However, at ≥20 μM SNP CC progression was restrained at G1/S transition. In the mutant ein2-1 strain, the index of S-phase cells was not altered at 5-10 μM SNP but decreased dramatically at higher SNP concentrations. Concomitantly, 5 μM SNP induced transcription of genes encoding CDKA;1 and CYCD3;1 in Col-0 cells whereas transcription of CDKs and CYCs were not significantly altered in ein2-1 cells at any SNP concentrations examined. Hence, it is appears that EIN2 is required for full responses at each SNP concentration. In ein2-1 cells, greater amounts of NO, reactive oxygen species, and the tyrosine-nitrating peroxynitrite radical were detected, possibly indicating NO-dependent post-translational protein modifications which could stop CC. Thus, we suggest that in Arabidopsis cultured cells NO affects CC progression as a concentration-dependent modulator with a dependency on EIN2 for both ethylene production and a NO/ethylene regulatory function.
Collapse
Affiliation(s)
- Galina V. Novikova
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Luis A. J. Mur
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Alexander V. Nosov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Artem A. Fomenkov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Kirill S. Mironov
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Anna S. Mamaeva
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Evgeny S. Shilov
- Department of Immunology, M.V. Lomonosov Moscow State UniversityMoscow, Russia
| | - Victor Y. Rakitin
- Laboratory of Intracellular Regulation, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of SciencesMoscow, Russia
| | - Michael A. Hall
- Molecular Plant Pathology Group, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
62
|
Yu QX, Ahammed GJ, Zhou YH, Shi K, Zhou J, Yu Y, Yu JQ, Xia XJ. Nitric oxide is involved in the oxytetracycline-induced suppression of root growth through inhibiting hydrogen peroxide accumulation in the root meristem. Sci Rep 2017; 7:43096. [PMID: 28220869 PMCID: PMC5318916 DOI: 10.1038/srep43096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 01/18/2017] [Indexed: 02/02/2023] Open
Abstract
Use of antibiotic-contaminated manure in crop production poses a severe threat to soil and plant health. However, few studies have studied the mechanism by which plant development is affected by antibiotics. Here, we used microscopy, flow cytometry, gene expression analysis and fluorescent dyes to study the effects of oxytetracycline (OTC), a widely used antibiotic in agriculture, on root meristem activity and the accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO) in the root tips of tomato seedlings. We found that OTC caused cell cycle arrest, decreased the size of root meristem and inhibited root growth. Interestingly, the inhibition of root growth by OTC was associated with a decline in H2O2 levels but an increase in NO levels in the root tips. Diphenyliodonium (DPI), an inhibitor of H2O2 production, showed similar effects on root growth as those of OTC. However, exogenous H2O2 partially reversed the effects on the cell cycle, meristem size and root growth. Importantly, cPTIO (the NO scavenger) and tungstate (an inhibitor of nitrate reductase) significantly increased H2O2 levels in the root tips and reversed the inhibition of root growth by OTC. Out results suggest that OTC-induced NO production inhibits H2O2 accumulation in the root tips, thus leading to cell cycle arrest and suppression of root growth.
Collapse
Affiliation(s)
- Qing-Xiang Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yan-Hong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide & Environmental Toxicology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Jing-Quan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Xiao-Jian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
63
|
Tamirisa S, Vudem DR, Khareedu VR. A Cyclin Dependent Kinase Regulatory Subunit (CKS) Gene of Pigeonpea Imparts Abiotic Stress Tolerance and Regulates Plant Growth and Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:165. [PMID: 28239388 PMCID: PMC5301084 DOI: 10.3389/fpls.2017.00165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/26/2017] [Indexed: 05/03/2023]
Abstract
Frequent climatic changes in conjunction with other extreme environmental factors are known to affect growth, development and productivity of diverse crop plants. Pigeonpea, a major grain legume of the semiarid tropics, endowed with an excellent deep-root system, is known as one of the important drought tolerant crop plants. Cyclin dependent kinases (CDKs) are core cell cycle regulators and play important role in different aspects of plant growth and development. The cyclin-dependent kinase regulatory subunit gene (CKS) was isolated from the cDNA library of pigeonpea plants subjected to drought stress. Pigeonpea CKS (CcCKS) gene expression was detected in both the root and leaf tissues of pigeonpea and was upregulated by polyethylene glycol (PEG), mannitol, NaCl and abscisic acid (ABA) treatments. The overexpression of CcCKS gene in Arabidopsis significantly enhanced tolerance of transgenics to drought and salt stresses as evidenced by different physiological parameters. Under stress conditions, transgenics showed higher biomass, decreased rate of water loss, decreased MDA levels, higher free proline contents, and glutathione levels. Moreover, under stress conditions transgenics exhibited lower stomatal conductance, lower transpiration, and higher photosynthetic rates. However, under normal conditions, CcCKS-transgenics displayed decreased plant growth rate, increased cell size and decreased stomatal number compared to those of wild-type plants. Real-time polymerase chain reaction revealed that CcCKS could regulate the expression of both ABA-dependent and ABA-independent genes associated with abiotic stress tolerance as well as plant growth and development. As such, the CcCKS seems promising and might serve as a potential candidate gene for enhancing the abiotic stress tolerance of crop plants.
Collapse
|
64
|
Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, van Loon JJWA, Herranz R, Carnero-Diaz E, Medina FJ. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:30-41. [PMID: 27792899 DOI: 10.1016/j.jplph.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/20/2023]
Abstract
Environmental gravity modulates plant growth and development, and these processes are influenced by the balance between cell proliferation and differentiation in meristems. Meristematic cells are characterized by the coordination between cell proliferation and cell growth, that is, by the accurate regulation of cell cycle progression and the optimal production of biomass for the viability of daughter cells after division. Thus, cell growth is correlated with the rate of ribosome biogenesis and protein synthesis. We investigated the effects of simulated microgravity on cellular functions of the root meristem in a sequential study. Seedlings were grown in a clinostat, a device producing simulated microgravity, for periods between 3 and 10days. In a complementary study, seedlings were grown in a Random Positioning Machine (RPM) and sampled sequentially after similar periods of growth. Under these conditions, the cell proliferation rate and the regulation of cell cycle progression showed significant alterations, accompanied by a reduction of cell growth. However, the overall size of the root meristem did not change. Analysis of cell cycle phases by flow cytometry showed changes in their proportion and duration, and the expression of the cyclin B1 gene, a marker of entry in mitosis, was decreased, indicating altered cell cycle regulation. With respect to cell growth, the rate of ribosome biogenesis was reduced under simulated microgravity, as shown by morphological and morphometric nucleolar changes and variations in the levels of the nucleolar protein nucleolin. Furthermore, in a nucleolin mutant characterized by disorganized nucleolar structure, the microgravity treatment intensified disorganization. These results show that, regardless of the simulated microgravity device used, a great disruption of meristematic competence was the first response to the environmental alteration detected at early developmental stages. However, longer periods of exposure to simulated microgravity do not produce an intensification of the cellular damages or a detectable developmental alteration in seedlings analyzed at further stages of their growth. This suggests that the secondary response to the gravity alteration is a process of adaptation, whose mechanism is still unknown, which eventually results in viable adult plants.
Collapse
Affiliation(s)
- Elodie Boucheron-Dubuisson
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Ana I Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Isabel Le Disquet
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Isabel Matía
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Julio Sáez-Vasquez
- Laboratoire Génome et Développement des Plantes, CNRS, UMR 5096, Université de Perpignan via Domitia, 66860 Perpignan, France.
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; ESA-ESTEC, TEC-MMG, Keplerlaan 1, NL-2200 AG, Noordwijk, The Netherlands.
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Eugénie Carnero-Diaz
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|
65
|
Ebel C, Hanin M. Maintenance of meristem activity under stress: is there an interplay of RSS1-like proteins with the RBR pathway? PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:167-170. [PMID: 26663822 DOI: 10.1111/plb.12424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Plants have acquired rapid responses to a constantly changing environment. These adaptive and protective responses are the result of a complex signalling network regulating different aspects, ranging from ion homeostasis to cell cycle control. It is well established that stress inhibits cell division, which negatively impacts plant growth and development and hence results in biomass decrease and yield loss. Therefore understanding the link between stress perception and cell cycle control would allow development of new crops with increased productivity when subjected to stress. However, studies on cell cycle control under stress have been limited to well-known regulators of the cell cycle such as cyclins and stress-related phytohormone integrators. The recent discovery of RSS1, a novel intrinsically unstructured protein of rice, opened up new insights into how stress perception can be connected with cell cycle control in meristematic zones. Whereas RSS1 is well conserved among other plant lineages, eudicots present proteins sharing little sequence homology with RSS1. Here, we discuss how RSS1-like proteins might also be functional in dicots, and possibly act through the retinoblastoma-related pathway to regulate both S-phase transition and cell fate in meristems.
Collapse
Affiliation(s)
- C Ebel
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
- Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| | - M Hanin
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, Sfax, Tunisia
- Institute of Biotechnology, University of Sfax, Sfax, Tunisia
| |
Collapse
|
66
|
Druege U, Franken P, Hajirezaei MR. Plant Hormone Homeostasis, Signaling, and Function during Adventitious Root Formation in Cuttings. FRONTIERS IN PLANT SCIENCE 2016; 7:381. [PMID: 27064322 PMCID: PMC4814496 DOI: 10.3389/fpls.2016.00381] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/13/2016] [Indexed: 04/14/2023]
Abstract
Adventitious root (AR) formation in cuttings is a multiphase developmental process, resulting from wounding at the cutting site and isolation from the resource and signal network of the whole plant. Though, promotive effects of auxins are widely used for clonal plant propagation, the regulation and function of plant hormones and their intricate signaling networks during AR formation in cuttings are poorly understood. In this focused review, we discuss our recent publications on the involvement of polar auxin transport (PAT) and transcriptional regulation of auxin and ethylene action during AR formation in petunia cuttings in a broad context. Integrating new findings on cuttings of other plant species and general models on plant hormone networks, a model on the regulation and function of auxin, ethylene, and jasmonate in AR formation of cuttings is presented. PAT and cutting off from the basipetal auxin drain are considered as initial principles generating early accumulation of IAA in the rooting zone. This is expected to trigger a self-regulatory process of auxin canalization and maximization to responding target cells, there inducing the program of AR formation. Regulation of auxin homeostasis via auxin influx and efflux carriers, GH3 proteins and peroxidases, of flavonoid metabolism, and of auxin signaling via AUX/IAA proteins, TOPLESS, ARFs, and SAUR-like proteins are postulated as key processes determining the different phases of AR formation. NO and H2O2 mediate auxin signaling via the cGMP and MAPK cascades. Transcription factors of the GRAS-, AP2/ERF-, and WOX-families link auxin signaling to cell fate specification. Cyclin-mediated governing of the cell cycle, modifications of sugar metabolism and microtubule and cell wall remodeling are considered as important implementation processes of auxin function. Induced by the initial wounding and other abiotic stress factors, up-regulation of ethylene biosynthesis, and signaling via ERFs and early accumulation of jasmonic acid stimulate AR formation, while both pathways are linked to auxin. Future research on the function of candidate genes should consider their tissue-specific role and regulation by environmental factors. Furthermore, the whole cutting should be regarded as a system of physiological units with diverse functions specifically responding to the environment and determining the rooting response.
Collapse
Affiliation(s)
- Uwe Druege
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
- *Correspondence:
| | - Philipp Franken
- Department Plant Propagation, Leibniz Institute of Vegetable and Ornamental CropsErfurt, Germany
| | - Mohammad R. Hajirezaei
- Department of Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
67
|
Pettkó-Szandtner A, Cserháti M, Barrôco RM, Hariharan S, Dudits D, Beemster GTS. Core cell cycle regulatory genes in rice and their expression profiles across the growth zone of the leaf. JOURNAL OF PLANT RESEARCH 2015; 128:953-74. [PMID: 26459328 DOI: 10.1007/s10265-015-0754-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 07/12/2015] [Indexed: 05/22/2023]
Abstract
Rice (Oryza sativa L.) as a model and crop plant with a sequenced genome offers an outstanding experimental system for discovering and functionally analyzing the major cell cycle control elements in a cereal species. In this study, we identified the core cell cycle genes in the rice genome through a hidden Markov model search and multiple alignments supported with the use of short protein sequence probes. In total we present 55 rice putative cell cycle genes with locus identity, chromosomal location, approximate chromosome position and EST accession number. These cell cycle genes include nine cyclin dependent-kinase (CDK) genes, 27 cyclin genes, one CKS gene, two RBR genes, nine E2F/DP/DEL genes, six KRP genes, and one WEE gene. We also provide characteristic protein sequence signatures encoded by CDK and cyclin gene variants. Promoter analysis by the FootPrinter program discovered several motifs in the regulatory region of the core cell cycle genes. As a first step towards functional characterization we performed transcript analysis by RT-PCR to determine gene specific variation in transcript levels along the rice leaves. The meristematic zone of the leaves where cells are actively dividing was identified based on kinematic analysis and flow cytometry. As expected, expression of the majority of cell cycle genes was exclusively associated with the meristematic region. However genes such as different D-type cyclins, DEL1, KRP1/3, and RBR2 were also expressed in leaf segments representing the transition zone in which cells start differentiation.
Collapse
Affiliation(s)
- A Pettkó-Szandtner
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary.
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium.
| | - M Cserháti
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
- Nebraska Medical Center, Omaha, NE, 68198-5145, USA
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - R M Barrôco
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- CropDesign N.V./BASF, Technologiepark 921C, 9052, Ghent, Zwijnaarde, Belgium
| | - S Hariharan
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
| | - D Dudits
- Biological Research Center, HAS, Temesvári krt 62, Szeged, 6726, Hungary
| | - G T S Beemster
- Plant Systems Biology, VIB, Technologiepark 927, 9052, Zwijnaarde, Belgium
- Department of Biology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
68
|
Centomani I, Sgobba A, D'Addabbo P, Dipierro N, Paradiso A, De Gara L, Dipierro S, Viggiano L, de Pinto MC. Involvement of DNA methylation in the control of cell growth during heat stress in tobacco BY-2 cells. PROTOPLASMA 2015; 252:1451-9. [PMID: 25712591 DOI: 10.1007/s00709-015-0772-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/26/2015] [Indexed: 05/24/2023]
Abstract
The alteration of growth patterns, through the adjustment of cell division and expansion, is a characteristic response of plants to environmental stress. In order to study this response in more depth, the effect of heat stress on growth was investigated in tobacco BY-2 cells. The results indicate that heat stress inhibited cell division, by slowing cell cycle progression. Cells were stopped in the pre-mitotic phases, as shown by the increased expression of CycD3-1 and by the decrease in the NtCycA13, NtCyc29 and CDKB1-1 transcripts. The decrease in cell length and the reduced expression of Nt-EXPA5 indicated that cell expansion was also inhibited. Since DNA methylation plays a key role in controlling gene expression, the possibility that the altered expression of genes involved in the control of cell growth, observed during heat stress, could be due to changes in the methylation state of their promoters was investigated. The results show that the altered expression of CycD3-1 and Nt-EXPA5 was consistent with changes in the methylation state of the upstream region of these genes. These results suggest that DNA methylation, controlling the expression of genes involved in plant development, contributes to growth alteration occurring in response to environmental changes.
Collapse
Affiliation(s)
- Isabella Centomani
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Alessandra Sgobba
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Pietro D'Addabbo
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Nunzio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa Paradiso
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Laura De Gara
- Centro Integrato di Ricerca, Università Campus Bio-Medico di Roma, via A. del Portillo 21, 00128, Rome, Italy
| | - Silvio Dipierro
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Luigi Viggiano
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Maria Concetta de Pinto
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy.
- Istituto di Bioscienze e Biorisorse, CNR, Via G. Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
69
|
Ortiz-Gutiérrez E, García-Cruz K, Azpeitia E, Castillo A, Sánchez MDLP, Álvarez-Buylla ER. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle. PLoS Comput Biol 2015; 11:e1004486. [PMID: 26340681 PMCID: PMC4560428 DOI: 10.1371/journal.pcbi.1004486] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. In multicellular organisms, cells undergo a cyclic behavior of DNA duplication and delivery of a copy to daughter cells during cell division. In each of the main cell-cycle (CC) stages different sets of proteins are active and genes are expressed. Understanding how such cycling cellular behavior emerges and is robustly maintained in the face of changing developmental and environmental conditions, remains a fundamental challenge of biology. The molecular components that cycle through DNA duplication and citokinesis are interconnected in a complex regulatory network. Several models of such network have been proposed, although the regulatory network that robustly recovers a limit-cycle steady state that resembles the behavior of CC molecular components has been recovered only in a few cases, and no comprehensive model exists for plants. In this paper we used the plant Arabidopsis thaliana, as a study system to propose a core regulatory network to recover a cyclic attractor that mimics the oscillatory behavior of the key CC components. Our analyses show that the proposed GRN model is robust to transient alterations, and is validated with the loss- and gain-of-function mutants of the CC components. The interactions proposed for Arabidopsis thaliana CC can inspire predictions for further uncovering regulatory motifs in the CC of other organisms including human.
Collapse
Affiliation(s)
- Elizabeth Ortiz-Gutiérrez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Karla García-Cruz
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Eugenio Azpeitia
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - Aaron Castillo
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| | - María de la Paz Sánchez
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México
| | - Elena R Álvarez-Buylla
- Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Exterior, Junto a Jardín Botánico Exterior, México, D.F. CP 04510, México; Centro de Ciencias de la Complejidad-C3, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, México, D.F. 04510, México
| |
Collapse
|
70
|
Okello RCO, Heuvelink E, de Visser PHB, Struik PC, Marcelis LFM. What drives fruit growth? FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:817-827. [PMID: 32480724 DOI: 10.1071/fp15060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 05/25/2015] [Indexed: 05/13/2023]
Abstract
Cell division, endoreduplication (an increase in nuclear DNA content without cell division) and cell expansion are important processes for growth. It is debatable whether organ growth is driven by all three cellular processes. Alternatively, all could be part of a dominant extracellular growth regulatory mechanism. Cell level processes have been studied extensively and a positive correlation between cell number and fruit size is commonly reported, although few positive correlations between cell size or ploidy level and fruit size have been found. Here, we discuss cell-level growth dynamics in fruits and ask what drives fruit growth and during which development stages. We argue that (1) the widely accepted positive correlation between cell number and fruit size does not imply a causal relationship; (2) fruit growth is regulated by both cell autonomous and noncell autonomous mechanisms as well as a global coordinator, the target of rapamycin; and (3) increases in fruit size follow the neocellular theory of growth.
Collapse
Affiliation(s)
- Robert C O Okello
- Wageningen University and Research Centre, Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - Ep Heuvelink
- Wageningen University and Research Centre, Horticulture and Product Physiology Group, PO Box 16, 6700 AA Wageningen, The Netherlands
| | - Pieter H B de Visser
- Wageningen University and Research Centre, Greenhouse Horticulture, PO Box 644, 6700 AP Wageningen, The Netherlands
| | - Paul C Struik
- Wageningen University and Research Centre, Centre for Crop Systems Analysis, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Leo F M Marcelis
- Wageningen University and Research Centre, Horticulture and Product Physiology Group, PO Box 16, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
71
|
Mahjoubi H, Ebel C, Hanin M. Molecular and functional characterization of the durum wheat TdRL1, a member of the conserved Poaceae RSS1-like family that exhibits features of intrinsically disordered proteins and confers stress tolerance in yeast. Funct Integr Genomics 2015; 15:717-28. [PMID: 26071212 DOI: 10.1007/s10142-015-0448-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 05/25/2015] [Accepted: 06/01/2015] [Indexed: 12/30/2022]
Abstract
Because of their fixed lifestyle, plants must acclimate to environmental changes by orchestrating several responses ranging from protective measures to growth control. Growth arrest is observed upon abiotic stress and can cause penalties to plant production. But, the molecular interface between stress perception and cell cycle control is poorly understood. The rice protein RSS1 is required at G1/S transition ensuring normal dividing activity of proliferative cells during salt stress. The role of RSS1 in meristem maintenance together with its flexible protein structure implies its key function as molecular integrator of stress signaling for cell cycle control. To study further the relevance of RSS1 and its related proteins in cereals, we isolated the durum wheat homolog, TdRL1, from Tunisian durum wheat varieties and extended our analyses to RSS1-like proteins from Poaceae. Our results show that the primary sequences of TdRL1 and the Graminae RSS1-like family members are highly conserved. In silico analyses predict that TdRL1 and other RSS1-like proteins share flexible 3-D structures and have features of intrinsically disordered/unstructured proteins (IDP). The disordered structure of TdRL1 is well illustrated by an electrophoretical mobility shift of the purified protein. Moreover, heterologous expression of TdRL1 in yeast improves its tolerance to salt and heat stresses strongly suggesting its involvement in abiotic stress tolerance mechanisms. Such finding adds new knowledge to our understanding of how IDPs may contribute as central molecular integrators of stress signaling into improving plant tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Habib Mahjoubi
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018, Sfax, Tunisia
| | - Chantal Ebel
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018, Sfax, Tunisia. .,Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia.
| | - Moez Hanin
- Laboratory of Plant Protection and Improvement, Center of Biotechnology of Sfax, BP1177, 3018, Sfax, Tunisia.,Institute of Biotechnology, University of Sfax, BP "1175", 3038, Sfax, Tunisia
| |
Collapse
|
72
|
Kobayashi K, Suzuki T, Iwata E, Nakamichi N, Suzuki T, Chen P, Ohtani M, Ishida T, Hosoya H, Müller S, Leviczky T, Pettkó-Szandtner A, Darula Z, Iwamoto A, Nomoto M, Tada Y, Higashiyama T, Demura T, Doonan JH, Hauser MT, Sugimoto K, Umeda M, Magyar Z, Bögre L, Ito M. Transcriptional repression by MYB3R proteins regulates plant organ growth. EMBO J 2015; 34:1992-2007. [PMID: 26069325 DOI: 10.15252/embj.201490899] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, temporal and spatial regulation of cell proliferation is central for generating organs with defined sizes and morphologies. For establishing and maintaining the post-mitotic quiescent state during cell differentiation, it is important to repress genes with mitotic functions. We found that three of the Arabidopsis MYB3R transcription factors synergistically maintain G2/M-specific genes repressed in post-mitotic cells and restrict the time window of mitotic gene expression in proliferating cells. The combined mutants of the three repressor-type MYB3R genes displayed long roots, enlarged leaves, embryos, and seeds. Genome-wide chromatin immunoprecipitation revealed that MYB3R3 binds to the promoters of G2/M-specific genes and to E2F target genes. MYB3R3 associates with the repressor-type E2F, E2FC, and the RETINOBLASTOMA RELATED proteins. In contrast, the activator MYB3R4 was in complex with E2FB in proliferating cells. With mass spectrometry and pairwise interaction assays, we identified some of the other conserved components of the multiprotein complexes, known as DREAM/dREAM in human and flies. In plants, these repressor complexes are important for periodic expression during cell cycle and to establish a post-mitotic quiescent state determining organ size.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Toshiya Suzuki
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| | - Eriko Iwata
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Norihito Nakamichi
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Takamasa Suzuki
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Poyu Chen
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takashi Ishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Hanako Hosoya
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Sabine Müller
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Tünde Leviczky
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | | | - Zsuzsanna Darula
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary
| | - Akitoshi Iwamoto
- Department of Biology, Tokyo Gakugei University, Koganei, Tokyo, Japan
| | - Mika Nomoto
- Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Yasuomi Tada
- Center for Gene Research, Division of Biological Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Tetsuya Higashiyama
- WPI Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, Japan Graduate School of Sciences, Nagoya University, Chikusa, Nagoya, Japan JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Chikusa, Nagoya, Japan
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - John H Doonan
- The National Plant Phenomics Centre, Aberystwyth University, Aberystwyth, UK
| | - Marie-Theres Hauser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan JST, CREST, Ikoma, Nara, Japan
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - László Bögre
- Royal Holloway, School of Biological Sciences, University of London, Egham, Surrey, UK
| | - Masaki Ito
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan JST, CREST, Chikusa, Nagoya, Japan
| |
Collapse
|
73
|
Hermann K, Klahre U, Venail J, Brandenburg A, Kuhlemeier C. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes. PLANTA 2015; 241:1241-1254. [PMID: 25656052 DOI: 10.1007/s00425-015-2251-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/19/2015] [Indexed: 05/29/2023]
Abstract
Switches between pollination syndromes have happened frequently during angiosperm evolution. Using QTL mapping and reciprocal introgressions, we show that changes in reproductive organ morphology have a simple genetic basis. In animal-pollinated plants, flowers have evolved to optimize pollination efficiency by different pollinator guilds and hence reproductive success. The two Petunia species, P. axillaris and P. exserta, display pollination syndromes adapted to moth or hummingbird pollination. For the floral traits color and scent, genetic loci of large phenotypic effect have been well documented. However, such large-effect loci may be typical for shifts in simple biochemical traits, whereas the evolution of morphological traits may involve multiple mutations of small phenotypic effect. Here, we performed a quantitative trait locus (QTL) analysis of floral morphology, followed by an in-depth study of pistil and stamen morphology and the introgression of individual QTL into reciprocal parental backgrounds. Two QTLs, on chromosomes II and V, are sufficient to explain the interspecific difference in pistil and stamen length. Since most of the difference in organ length is caused by differences in cell number, genes underlying these QTLs are likely to be involved in cell cycle regulation. Interestingly, conservation of the locus on chromosome II in a different P. axillaris subspecies suggests that the evolution of organ elongation was initiated on chromosome II in adaptation to different pollinators. We recently showed that QTLs for pistil and stamen length on chromosome II are tightly linked to QTLs for petal color and volatile emission. Linkage of multiple traits will enable major phenotypic change within a few generations in hybridizing populations. Thus, the genomic architecture of pollination syndromes in Petunia allows for rapid responses to changing pollinator availability.
Collapse
Affiliation(s)
- Katrin Hermann
- Institute of Plant Sciences, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
74
|
Smita S, Katiyar A, Chinnusamy V, Pandey DM, Bansal KC. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice. FRONTIERS IN PLANT SCIENCE 2015; 6:1157. [PMID: 26734052 PMCID: PMC4689866 DOI: 10.3389/fpls.2015.01157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 05/18/2023]
Abstract
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research InstituteNew Delhi, India
| | - Dev M. Pandey
- Department of Biotechnology, Birla Institute of TechnologyMesra, Ranchi, India
| | - Kailash C. Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research InstituteNew Delhi, India
- *Correspondence: Kailash C. Bansal
| |
Collapse
|
75
|
Hur YS, Um JH, Kim S, Kim K, Park HJ, Lim JS, Kim WY, Jun SE, Yoon EK, Lim J, Ohme-Takagi M, Kim D, Park J, Kim GT, Cheon CI. Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper protein, regulates leaf growth by promoting cell expansion and endoreduplication. THE NEW PHYTOLOGIST 2015; 205:316-28. [PMID: 25187356 DOI: 10.1111/nph.12998] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/21/2014] [Indexed: 05/07/2023]
Abstract
Arabidopsis thaliana homeobox 12 (ATHB12), a homeodomain-leucine zipper class I (HD-Zip I) gene, is highly expressed in leaves and stems, and induced by abiotic stresses, but its role in development remains obscure. To understand its function during plant development, we studied the effects of loss and gain of function. Expression of ATHB12 fused to the EAR-motif repression domain (SRDX) - P35 S ::ATHB12SRDX (A12SRDX) and PATHB 12 ::ATHB12SRDX - slowed both leaf and root growth, while the growth of ATHB12-overexpressing seedlings (A12OX) was accelerated. Microscopic examination revealed changes in the size and number of leaf cells. Ploidy was reduced in A12SRDX plants, accompanied by decreased cell expansion and increased cell numbers. By contrast, cell size was increased in A12OX plants, along with increased ploidy and elevated expression of cell cycle switch 52s (CCS52s), which are positive regulators of endoreduplication, indicating that ATHB12 promotes leaf cell expansion and endoreduplication. Overexpression of ATHB12 led to decreased phosphorylation of Arabidopsis thaliana ribosomal protein S6 (AtRPS6), a regulator of cell growth. In addition, induction of ATHB12 in the presence of cycloheximide increased the expression of several genes related to cell expansion, such as EXPANSIN A10 (EXPA10) and DWARF4 (DWF4). Our findings strongly suggest that ATHB12 acts as a positive regulator of endoreduplication and cell growth during leaf development.
Collapse
Affiliation(s)
- Yoon-Sun Hur
- Department of Biological Science, Sookmyung Women's University, Seoul, 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Vandenbrink JP, Kiss JZ, Herranz R, Medina FJ. Light and gravity signals synergize in modulating plant development. FRONTIERS IN PLANT SCIENCE 2014; 5:563. [PMID: 25389428 PMCID: PMC4211383 DOI: 10.3389/fpls.2014.00563] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/30/2014] [Indexed: 05/20/2023]
Abstract
Tropisms are growth-mediated plant movements that help plants to respond to changes in environmental stimuli. The availability of water and light, as well as the presence of a constant gravity vector, are all environmental stimuli that plants sense and respond to via directed growth movements (tropisms). The plant response to gravity (gravitropism) and the response to unidirectional light (phototropism) have long been shown to be interconnected growth phenomena. Here, we discuss the similarities in these two processes, as well as the known molecular mechanisms behind the tropistic responses. We also highlight research done in a microgravity environment in order to decouple two tropisms through experiments carried out in the absence of a significant unilateral gravity vector. In addition, alteration of gravity, especially the microgravity environment, and light irradiation produce important effects on meristematic cells, the undifferentiated, highly proliferating, totipotent cells which sustain plant development. Microgravity produces the disruption of meristematic competence, i.e., the decoupling of cell proliferation and cell growth, affecting the regulation of the cell cycle and ribosome biogenesis. Light irradiation, especially red light, mediated by phytochromes, has an activating effect on these processes. Phytohormones, particularly auxin, also are key mediators in these alterations. Upcoming experiments on the International Space Station will clarify some of the mechanisms and molecular players of the plant responses to these environmental signals involved in tropisms and the cell cycle.
Collapse
Affiliation(s)
| | - John Z. Kiss
- Department of Biology, University of Mississippi, UniversityMS, USA
| | - Raul Herranz
- Centro de Investigaciones Biológicas (CSIC), MadridSpain
| | | |
Collapse
|
77
|
Hao J, Chen S, Tu L, Hu H, Zhang X. GhH2A12, a replication-dependent histone H2A gene from Gossypium hirsutum, is negatively involved in the development of cotton fiber cells. PLANT CELL REPORTS 2014; 33:1711-1721. [PMID: 25001001 DOI: 10.1007/s00299-014-1649-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 06/03/2023]
Abstract
GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber development, and overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers. Histone H2A is a component of eukaryotic chromatin whose function has not been studied in cotton. We have isolated an H2A gene encoding 156 amino acids, named GhH2A12. Like other plant histone H2As, GhH2A12 contains a typical SPKK motif in the carboxy-terminal and a plant-unique peptide-binding A/T-rich DNA region, and it was localized to the nucleus. GhH2A12 was preferentially expressed at the initiation and early elongation stage of cotton fiber, from 0 to 5 days post anthesis and the transcript level declined rapidly when the fiber entered the fast elongation stage, suggesting that GhH2A12 was involved in fiber differentiation. Therefore, GhH2A12 overexpression and RNAi transgenic cotton lines were developed via Agrobacterium tumefaciens-mediated transformation. Overexpression of GhH2A12 caused retardation of fiber initiation and produced shorter fibers and lower lint percentages. Moreover, the overexpressors showed negative effects on seedling growth, and the leaf emergence was delayed compared to wild type. However, no significant change in the GhH2A12 suppression line was observed. Coupled with retardation of fiber initiation, upregulation of GhH2A12 downregulated the expression of genes involved in cell-cycle performance. These results suggest that GhH2A12 might regulate fiber differentiation via regulating the cell cycle-related genes.
Collapse
Affiliation(s)
- Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | |
Collapse
|
78
|
Campbell M, Suttle J, Douches DS, Buell CR. Treatment of potato tubers with the synthetic cytokinin 1-(α-ethylbenzyl)-3-nitroguanidine results in rapid termination of endodormancy and induction of transcripts associated with cell proliferation and growth. Funct Integr Genomics 2014; 14:789-99. [PMID: 25270889 DOI: 10.1007/s10142-014-0404-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/01/2022]
Abstract
Perennial plants undergo repression of meristematic activity in a process called dormancy. Dormancy is a complex metabolic process with implications for plant breeding and crop yield. Endodormancy, a specific subclass of dormancy, is characteristic of internal physiological mechanisms resulting in growth suppression. In this study, we examine transcriptional changes associated with the natural cessation of endodormancy in potato tuber meristems and in endodormant tubers treated with the cytokinin analog 1-(α-ethylbenzyl)-3-niroguanidine (NG), which terminates dormancy. RNA-sequencing was used to examine transcriptome changes between endodormant and non-dormant meristems from four different harvest years. A total of 35,091 transcripts were detected with 2132 differentially expressed between endodormant and non-dormant tuber meristems. Endodormant potato tubers were treated with the synthetic cytokinin NG and transcriptome changes analyzed using RNA-seq after 1, 4, and 7 days following NG exposure. A comparison of natural cessation of dormancy and NG-treated tubers demonstrated that by 4 days after NG exposure, potato meristems exhibited transcriptional profiles similar to the non-dormant state with elevated expression of multiple histones, a variety of cyclins, and other genes associated with proliferation and cellular replication. Three homologues encoding for CYCD3 exhibited elevated expression in both non-dormant and NG-treated potato tissues. These results suggest that NG terminates dormancy and induces expression cell cycle-associated transcripts within 4 days of treatment.
Collapse
Affiliation(s)
- Michael Campbell
- Penn State Erie, The Behrend College, School of Science, 4205 College Drive, Erie, PA, 16563, USA,
| | | | | | | |
Collapse
|
79
|
Kyo M, Nagano A, Yamaji N, Hashimoto Y. Timing of the G1/S transition in tobacco pollen vegetative cells as a primary step towards androgenesis in vitro. PLANT CELL REPORTS 2014; 33:1595-606. [PMID: 24917172 DOI: 10.1007/s00299-014-1640-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
KEY MESSAGE Mid-bicellular pollen vegetative cells in tobacco escape from G1 arrest and proceed to the G1/S transition towards androgenesis within 1 day under glutamine starvation conditions in vitro. In the Nicotiana tabacum pollen culture system, immature pollen grains at the mid-bicellular stage can mature in the presence of glutamine; however, if glutamine is absent, they deviate from their native cell fate in a few days. The glutamine-starved pollen grains cannot undergo maturation, even when supplied with glutamine later. Instead, they undergo cell division towards androgenesis slowly within 10 days in a medium containing appropriate nutrients. During the culture period, they ought to escape from G1 arrest to proceed into S phase as the primary step towards androgenesis. However, this event has not been experimentally confirmed. Here, we demonstrated that the pollen vegetative cells proceeded to the G1/S transition within approximately 15-36 h after the start of culture. These results were obtained by analyzing transgenic pollen possessing a fusion gene encoding nuclear-localizing GFP under the control of an E2F motif-containing promoter isolated from a gene encoding one of DNA replication licensing factors. Observations using a 5-ethynyl-2'-deoxyuridine DNA labeling and detection technique uncovered that the G1/S transition was soon followed by S phase. These hallmarks of vegetative cells undergoing dedifferentiation give us new insights into upstream events causing the G1/S transition and also provide a novel strategy to increase the frequency of the androgenic response in tobacco and other species, including recalcitrants.
Collapse
Affiliation(s)
- Masaharu Kyo
- Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki, Kagawa, 761-0795, Japan,
| | | | | | | |
Collapse
|
80
|
Hudik E, Yoshioka Y, Domenichini S, Bourge M, Soubigout-Taconnat L, Mazubert C, Yi D, Bujaldon S, Hayashi H, De Veylder L, Bergounioux C, Benhamed M, Raynaud C. Chloroplast dysfunction causes multiple defects in cell cycle progression in the Arabidopsis crumpled leaf mutant. PLANT PHYSIOLOGY 2014; 166:152-67. [PMID: 25037213 PMCID: PMC4149703 DOI: 10.1104/pp.114.242628] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.
Collapse
Affiliation(s)
- Elodie Hudik
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Yasushi Yoshioka
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Séverine Domenichini
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Mickaël Bourge
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Ludivine Soubigout-Taconnat
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Christelle Mazubert
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Dalong Yi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Sandrine Bujaldon
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Hiroyuki Hayashi
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Lieven De Veylder
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Catherine Bergounioux
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Moussa Benhamed
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| | - Cécile Raynaud
- Institut de Biologie des Plantes, Unité Mixte de Recherche 8618 Centre National de la Recherche Scientifique Université-Paris Sud, Laboratoire d'Excellence Saclay Plant Science, bât 630 91405 Orsay, France (E.H., S.D., C.M., C.B., M.Be., C.R.);Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan (Y.Y.);Fédération de Recherche de Gif FRC3115, Pôle de Biologie Cellulaire, 91198 Gif-sur-Yvette, France (M.Bo.);Unité de Recherche en Génomique Végétale, CP5708 Evry, France (L.S.-T.);Department of Plant Systems Biology, Vlaams Instituut voor Biotechnologie, B-9052 Ghent, Belgium (D.Y., L.D.V.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium (D.Y., L.D.V.);Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7141, Laboratoire de Physiologie Membranaire et Moléculaire du Chloroplaste, Institut de Biologie Physico-Chimique, 75005 Paris, France (S.B.);Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (H.H.); andDivision of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia (M.Be.)
| |
Collapse
|
81
|
Peng L, Skylar A, Chang PL, Bisova K, Wu X. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Dev Biol 2014; 393:160-70. [PMID: 24951878 DOI: 10.1016/j.ydbio.2014.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/31/2014] [Accepted: 06/11/2014] [Indexed: 11/15/2022]
Abstract
In higher plants, cell cycle activation in the meristems at germination is essential for the initiation of post-embryonic development. We previously identified the signaling pathways of homeobox transcription factor STIMPY and metabolic sugars as two interacting branches of the regulatory network that is responsible for activating meristematic tissue proliferation in Arabidopsis. In this study, we found that CYCP2;1 is both a direct target of STIMPY transcriptional activation and an early responder to sugar signals. Genetic and molecular studies show that CYCP2;1 physically interacts with three of the five mitotic CDKs in Arabidopsis, and is required for the G2 to M transition during meristem activation. Taken together, our results suggest that CYCP2;1 acts as a permissive control of cell cycle progression during seedling establishment by directly linking genetic control and nutritional cues with the activity of the core cell cycle machinery.
Collapse
Affiliation(s)
- Linda Peng
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter L Chang
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Katerina Bisova
- Laboratory of Cell Cycles of Algae, Centre Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Třeboň, Czech Republic
| | - Xuelin Wu
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
82
|
Blomme J, Inzé D, Gonzalez N. The cell-cycle interactome: a source of growth regulators? JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2715-30. [PMID: 24298000 DOI: 10.1093/jxb/ert388] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
When plants develop, cell proliferation and cell expansion are tightly controlled in order to generate organs with a determinate final size such as leaves. Several studies have demonstrated the importance of the cell proliferation phase for leaf growth, illustrating that cell-cycle regulation is crucial for correct leaf development. A large and complex set of interacting proteins that constitute the cell-cycle interactome controls the transition from one cell-cycle phase to another. Here, we review the current knowledge on cell-cycle regulators from this interactome affecting final leaf size when their expression is altered, mainly in Arabidopsis. In addition to the description of mutants of CYCLIN-DEPENDENT KINASES (CDKs), CYCLINS (CYCs), and their transcriptional and post-translational regulators, a phenotypic analysis of gain- and loss-of-function mutants for 27 genes encoding proteins that interact with cell-cycle proteins is presented. This compilation of information shows that when cell-cycle-related genes are mis-expressed, leaf growth is often altered and that, seemingly, three main trends appear to be crucial in the regulation of final organ size by cell-cycle-related genes: (i) cellular compensation; (ii) gene dosage; and (iii) correct transition through the G2/M phase by ANAPHASE PROMOTING COMPLEX/CYCLOSOME (APC/C) activation. In conclusion, this meta-analysis shows that the cell-cycle interactome is enriched in leaf growth regulators, and illustrates the potential to identify new leaf growth regulators among putative new cell-cycle regulators.
Collapse
Affiliation(s)
- Jonas Blomme
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Dirk Inzé
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Nathalie Gonzalez
- Department of Plant Systems Biology and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
83
|
Gutiérrez J, Maere S. Modeling the evolution of molecular systems from a mechanistic perspective. TRENDS IN PLANT SCIENCE 2014; 19:292-303. [PMID: 24709144 DOI: 10.1016/j.tplants.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 06/03/2023]
Abstract
Systems biology-inspired genotype-phenotype mapping models are increasingly being used to study the evolutionary properties of molecular biological systems, in particular the general emergent properties of evolving systems, such as modularity, robustness, and evolvability. However, the level of abstraction at which many of these models operate might not be sufficient to capture all relevant intricacies of biological evolution in sufficient detail. Here, we argue that in particular gene and genome duplications, both evolutionary mechanisms of potentially major importance for the evolution of molecular systems and of special relevance to plant evolution, are not adequately accounted for in most GPM modeling frameworks, and that more fine-grained mechanistic models may significantly advance understanding of how gen(om)e duplication impacts molecular systems evolution.
Collapse
Affiliation(s)
- Jayson Gutiérrez
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Steven Maere
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
| |
Collapse
|
84
|
Leduc N, Roman H, Barbier F, Péron T, Huché-Thélier L, Lothier J, Demotes-Mainard S, Sakr S. Light Signaling in Bud Outgrowth and Branching in Plants. PLANTS (BASEL, SWITZERLAND) 2014; 3:223-50. [PMID: 27135502 PMCID: PMC4844300 DOI: 10.3390/plants3020223] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
Abstract
Branching determines the final shape of plants, which influences adaptation, survival and the visual quality of many species. It is an intricate process that includes bud outgrowth and shoot extension, and these in turn respond to environmental cues and light conditions. Light is a powerful environmental factor that impacts multiple processes throughout plant life. The molecular basis of the perception and transduction of the light signal within buds is poorly understood and undoubtedly requires to be further unravelled. This review is based on current knowledge on bud outgrowth-related mechanisms and light-mediated regulation of many physiological processes. It provides an extensive, though not exhaustive, overview of the findings related to this field. In parallel, it points to issues to be addressed in the near future.
Collapse
Affiliation(s)
- Nathalie Leduc
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Hanaé Roman
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - François Barbier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Thomas Péron
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| | - Lydie Huché-Thélier
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Jérémy Lothier
- Université d’Angers, L’Université Nantes Angers Le Mans, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France; E-Mails: (H.R.); (J.L.)
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
| | - Sabine Demotes-Mainard
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- INRA, Unité Mixte de Recherche 1345 IRHS, Beaucouzé F-49070, France
| | - Soulaiman Sakr
- SFR 4207 Qualité et Santé du Végétal, Angers F-49000, France; E-Mails: (F.B.); (T.P.); (L.H.-T.); (S.D.-M.); (S.S.)
- Agrocampus-Ouest, Unité Mixte de Recherche 1345 IRHS, Angers F-49000, France
| |
Collapse
|
85
|
Meguro A, Sato Y. Salicylic acid antagonizes abscisic acid inhibition of shoot growth and cell cycle progression in rice. Sci Rep 2014; 4:4555. [PMID: 24686568 PMCID: PMC3971400 DOI: 10.1038/srep04555] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 03/14/2014] [Indexed: 11/23/2022] Open
Abstract
We analysed effects of abscisic acid (ABA, a negative regulatory hormone), alone and in combination with positive or neutral hormones, including salicylic acid (SA), on rice growth and expression of cell cycle-related genes. ABA significantly inhibited shoot growth and induced expression of OsKRP4, OsKRP5, and OsKRP6. A yeast two-hybrid assay showed that OsKRP4, OsKRP5, and OsKRP6 interacted with OsCDKA;1 and/or OsCDKA;2. When SA was simultaneously supplied with ABA, the antagonistic effect of SA completely blocked ABA inhibition. SA also blocked ABA inhibition of DNA replication and thymidine incorporation in the shoot apical meristem. These results suggest that ABA arrests cell cycle progression by inducing expression of OsKRP4, OsKRP5, and OsKRP6, which inhibit the G1/S transition, and that SA antagonizes ABA by blocking expression of OsKRP genes.
Collapse
Affiliation(s)
- Ayano Meguro
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| | - Yutaka Sato
- Crop Breeding Research Division, NARO Hokkaido Agricultural Research Center, Hitsujigaoka 1, Toyohira-ku, Sapporo 062-8555, Japan
| |
Collapse
|
86
|
Lastdrager J, Hanson J, Smeekens S. Sugar signals and the control of plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:799-807. [PMID: 24453229 DOI: 10.1093/jxb/ert474] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sugars have a central regulatory function in steering plant growth. This review focuses on information presented in the past 2 years on key players in sugar-mediated plant growth regulation, with emphasis on trehalose 6-phosphate, target of rapamycin kinase, and Snf1-related kinase 1 regulatory systems. The regulation of protein synthesis by sugars is fundamental to plant growth control, and recent advances in our understanding of the regulation of translation by sugars will be discussed.
Collapse
Affiliation(s)
- Jeroen Lastdrager
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
87
|
Breuer C, Braidwood L, Sugimoto K. Endocycling in the path of plant development. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:78-85. [PMID: 24507498 DOI: 10.1016/j.pbi.2013.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/12/2013] [Indexed: 05/29/2023]
Abstract
Genome duplication is a widespread phenomenon in many eukaryotes. In plants numeric changes of chromosome sets have tremendous impact on growth performance and yields, hence, are of high importance for agriculture. In contrast to polyploidisation in which the genome is duplicated throughout the entire organism and stably inherited by the offspring, endopolyploidy relies on endocycles in which cells multiply the genome in specific tissues and cell types. During the endocycle cells repeatedly replicate their DNA but skip mitosis, leading to genome duplication after each round. Endocycles are common in multicellular eukaryotes and are often involved in the regulation of cell and organ growth. In plants, changes in cellular ploidy have also been associated with other developmental processes as well as physiological interactions with the surrounding environment. Thus, endocycles play pivotal roles throughout the life cycle of many plant species.
Collapse
Affiliation(s)
- Christian Breuer
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Luke Braidwood
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
88
|
Tsukaya H. Comparative leaf development in angiosperms. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:103-9. [PMID: 24507501 DOI: 10.1016/j.pbi.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/16/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Recent accumulation of our knowledge on basic leaf development mechanisms in model angiosperm species has allowed us to pursue evolutionary development (evo/devo) studies of various kinds of leaf development. As a result, unexpected findings and clues have been unearthed aiding our understanding of the mechanisms involved in the diversity of leaf morphology, although the covered remain limited. In this review, we highlight recent findings of diversified leaf development in angiosperms.
Collapse
Affiliation(s)
- Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
89
|
Baldazzi V, Pinet A, Vercambre G, Bénard C, Biais B, Génard M. In-silico analysis of water and carbon relations under stress conditions. A multi-scale perspective centered on fruit. FRONTIERS IN PLANT SCIENCE 2013; 4:495. [PMID: 24367372 PMCID: PMC3856696 DOI: 10.3389/fpls.2013.00495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/18/2013] [Indexed: 05/19/2023]
Abstract
Fruit development, from its early stages, is the result of a complex network of interacting processes, on different scales. These include cell division, cell expansion but also nutrient transport from the plant, and exchanges with the environment. In the presence of nutrient limitation, in particular, the plant reacts as a whole, by modifying its architecture, metabolism, and reproductive strategy, determining the resources available for fruit development, which in turn affects the overall source-sink balance of the system. Here, we present an integrated model of tomato that explicitly accounts for early developmental changes (from cell division to harvest), and use it to investigate the impact of water deficit and carbon limitation on nutrient fluxes and fruit growth, in both dry and fresh mass. Variability in fruit response is analyzed on two different scales: among trusses at plant level, and within cell populations at fruit level. Results show that the effect of stress on individual cells strongly depends on their age, size, and uptake capabilities, and that the timing of stress application, together with the fruit position on the plant, is crucial in determining the final phenotypic outcome. Water deficit and carbon depletion impacted either source size, source activity, or sink strength with contrasted effects on fruit growth. An important prediction of the model is the major role of symplasmic transport of carbon in the early stage of fruit development, as a catalyst for cell and fruit growth.
Collapse
Affiliation(s)
- Valentina Baldazzi
- Institut National de la Recherche Agronomique, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Amélie Pinet
- Institut National de la Recherche Agronomique, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Gilles Vercambre
- Institut National de la Recherche Agronomique, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| | - Camille Bénard
- Institut National de la Recherche Agronomique, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
- Institut National de la Recherche Agronomique, UR 1332 Biologie du Fruit et PathologieVillenave d'Ornon, France
| | - Benoît Biais
- Institut National de la Recherche Agronomique, UR 1332 Biologie du Fruit et PathologieVillenave d'Ornon, France
| | - Michel Génard
- Institut National de la Recherche Agronomique, UR 1115 Plantes et Systèmes de Culture HorticolesAvignon, France
| |
Collapse
|
90
|
Lee E, Liu X, Eglit Y, Sack F. FOUR LIPS and MYB88 conditionally restrict the G1/S transition during stomatal formation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5207-19. [PMID: 24123248 PMCID: PMC3830495 DOI: 10.1093/jxb/ert313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Consistent with their valve-like function in shoot-atmosphere gas exchange, guard cells are smaller than other epidermal cells and usually harbour 2C DNA levels in diploid plants. The paralogous Arabidopsis R2R3 MYB transcription factors, FOUR LIPS and MYB88, ensure that stomata contain just two guard cells by restricting mitosis. The loss of both FLP and MYB88 function in flp myb88 double mutants induces repeated mitotic divisions that lead to the formation of clusters of stomata in direct contact. By contrast, CYCLIN DEPENDENT KINASE B1 function is required for the symmetric division that precedes stomatal maturation. It was found that blocking mitosis by chemically disrupting microtubules or by the combined loss of FLP/MYB88 and CDKB1 function, causes single (undivided) guard cells (sGCs) to enlarge and attain mean DNA levels of up to 10C. The loss of both FLP and CDKB1 function also dramatically increased plastid number, led to the formation of multiple nuclei in GCs, altered GC and stomatal shape, and disrupted the fate of lineage-specific stem cells. Thus, in addition to respectively restricting and promoting symmetric divisions, FLP and CDKB1 together also conditionally restrict the G1/S transition and chloroplast and nuclear number, and normally maintain fate and developmental progression throughout the stomatal cell lineage.
Collapse
Affiliation(s)
- EunKyoung Lee
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Xuguang Liu
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- * These authors contributed equally to the article
| | - Yana Eglit
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- Present address: Department of Biology, Life Science Centre, 1355 Oxford Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Fred Sack
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, Canada
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
91
|
Osaka M, Matsuda T, Sakazono S, Masuko-Suzuki H, Maeda S, Sewaki M, Sone M, Takahashi H, Nakazono M, Iwano M, Takayama S, Shimizu KK, Yano K, Lim YP, Suzuki G, Suwabe K, Watanabe M. Cell type-specific transcriptome of Brassicaceae stigmatic papilla cells from a combination of laser microdissection and RNA sequencing. PLANT & CELL PHYSIOLOGY 2013; 54:1894-906. [PMID: 24058146 PMCID: PMC3814185 DOI: 10.1093/pcp/pct133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollination is an early and critical step in plant reproduction, leading to successful fertilization. It consists of many sequential processes, including adhesion of pollen grains onto the surface of stigmatic papilla cells, foot formation to strengthen pollen-stigma interaction, pollen hydration and germination, and pollen tube elongation and penetration. We have focused on an examination of the expressed genes in papilla cells, to increase understanding of the molecular systems of pollination. From three representative species of Brassicaceae (Arabidopsis thaliana, A. halleri and Brassica rapa), stigmatic papilla cells were isolated precisely by laser microdissection, and cell type-specific gene expression in papilla cells was determined by RNA sequencing. As a result, 17,240, 19,260 and 21,026 unigenes were defined in papilla cells of A. thaliana, A. halleri and B. rapa, respectively, and, among these, 12,311 genes were common to all three species. Among the17,240 genes predicted in A. thaliana, one-third were papilla specific while approximately half of the genes were detected in all tissues examined. Bioinformatics analysis revealed that genes related to a wide range of reproduction and development functions are expressed in papilla cells, particularly metabolism, transcription and membrane-mediated information exchange. These results reflect the conserved features of general cellular function and also the specific reproductive role of papilla cells, highlighting a complex cellular system regulated by a diverse range of molecules in these cells. This study provides fundamental biological knowledge to dissect the molecular mechanisms of pollination in papilla cells and will shed light on our understanding of plant reproduction mechanisms.
Collapse
Affiliation(s)
- Masaaki Osaka
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- These authors contributed equally to this work
| | - Tomoki Matsuda
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
- These authors contributed equally to this work
| | - Satomi Sakazono
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | | | - Shunsuke Maeda
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Misato Sewaki
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
| | - Mikako Sone
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Seiji Takayama
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192 Japan
| | - Kentaro K. Shimizu
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Kentaro Yano
- Faculty of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara 582-8582, Japan
| | - Keita Suwabe
- Graduate School of Bioresources, Mie University, Tsu, 514-8507 Japan
- *Corresponding authors: Masao Watanabe, E-mail, ; Fax, +81-22-217-5683; Keita Suwabe, E-mail, ; Fax, +81-59-231-9540
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577 Japan
- *Corresponding authors: Masao Watanabe, E-mail, ; Fax, +81-22-217-5683; Keita Suwabe, E-mail, ; Fax, +81-59-231-9540
| |
Collapse
|
92
|
Nishihama R, Kohchi T. Evolutionary insights into photoregulation of the cell cycle in the green lineage. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:630-7. [PMID: 23978389 DOI: 10.1016/j.pbi.2013.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 05/18/2023]
Abstract
Plant growth depends solely on light energy, which drives photosynthesis. Thus, linking growth control to light signals during certain developmental events, such as seed or spore germination and organ formation, is a crucial feature that plants evolved to use energy efficiently. How light controls the cell cycle depends on growth habitats, body plans (unicellular vs. multicellular), and photosensors. For example, the photosensors mediating light signaling to promote cell division appear to differ between green algae and land plants. In this review, we focus on cell-cycle regulation by light and discuss the transition of its molecular mechanisms during evolution. Recent advances show that light-dependent cell-cycle control involves global changes in transcription of cell-cycle genes, and is mediated by auxin and cytokinin.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
93
|
Skylar A, Matsuwaka S, Wu X. ELONGATA3 is required for shoot meristem cell cycle progression in Arabidopsis thaliana seedlings. Dev Biol 2013; 382:436-45. [DOI: 10.1016/j.ydbio.2013.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/26/2022]
|
94
|
Ahkami AH, Melzer M, Ghaffari MR, Pollmann S, Ghorbani Javid M, Shahinnia F, Hajirezaei MR, Druege U. Distribution of indole-3-acetic acid in Petunia hybrida shoot tip cuttings and relationship between auxin transport, carbohydrate metabolism and adventitious root formation. PLANTA 2013; 238:499-517. [PMID: 23765266 PMCID: PMC3751230 DOI: 10.1007/s00425-013-1907-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/28/2013] [Indexed: 05/21/2023]
Abstract
To determine the contribution of polar auxin transport (PAT) to auxin accumulation and to adventitious root (AR) formation in the stem base of Petunia hybrida shoot tip cuttings, the level of indole-3-acetic acid (IAA) was monitored in non-treated cuttings and cuttings treated with the auxin transport blocker naphthylphthalamic acid (NPA) and was complemented with precise anatomical studies. The temporal course of carbohydrates, amino acids and activities of controlling enzymes was also investigated. Analysis of initial spatial IAA distribution in the cuttings revealed that approximately 40 and 10 % of the total IAA pool was present in the leaves and the stem base as rooting zone, respectively. A negative correlation existed between leaf size and IAA concentration. After excision of cuttings, IAA showed an early increase in the stem base with two peaks at 2 and 24 h post excision and, thereafter, a decline to low levels. This was mirrored by the expression pattern of the auxin-responsive GH3 gene. NPA treatment completely suppressed the 24-h peak of IAA and severely inhibited root formation. It also reduced activities of cell wall and vacuolar invertases in the early phase of AR formation and inhibited the rise of activities of glucose-6-phosphate dehydrogenase and phosphofructokinase during later stages. We propose a model in which spontaneous AR formation in Petunia cuttings is dependent on PAT and on the resulting 24-h peak of IAA in the rooting zone, where it induces early cellular events and also stimulates sink establishment. Subsequent root development stimulates glycolysis and the pentose phosphate pathway.
Collapse
Affiliation(s)
- Amir H. Ahkami
- Institute of Biological Chemistry (IBC), Washington State University, Pullman, WA 99164-6340 USA
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, 06466 Seeland, Germany
| | - Mohammad R. Ghaffari
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, 06466 Seeland, Germany
| | - Stephan Pollmann
- Parque Científico y Tecnológico de la U.P.M, Centro de Biotecnología y Genómica de Plantas U.P.M.-I.N.I.A, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Majid Ghorbani Javid
- Department of Agronomy and Plant Breeding Sciences, College of Abureihan, University of Tehran, Tehran, Iran
| | - Fahimeh Shahinnia
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Hartley Grove Urrbrae, Adelaide, 5064 Australia
| | - Mohammad R. Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, Gatersleben, 06466 Seeland, Germany
| | - Uwe Druege
- Leibniz Institute of Vegetable and Ornamental Crops Großbeeren/Erfurt e.V. (IGZ), Kuehnhaeuser Str. 101, 99090 Erfurt, Germany
| |
Collapse
|
95
|
Wendrich JR, Weijers D. The Arabidopsis embryo as a miniature morphogenesis model. THE NEW PHYTOLOGIST 2013; 199:14-25. [PMID: 23590679 DOI: 10.1111/nph.12267] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/12/2013] [Indexed: 05/06/2023]
Abstract
Four basic ingredients of morphogenesis, oriented cell division and expansion, cell-cell communication and cell fate specification allow plant cells to develop into a wide variety of organismal architectures. A central question in plant biology is how these cellular processes are regulated and orchestrated. Here, we present the advantages of the early Arabidopsis embryo as a model for studying the control of morphogenesis. All ingredients of morphogenesis converge during embryogenesis, and the highly predictable nature of embryo development offers unprecedented opportunities for understanding their regulation in time and space. In this review we describe the morphogenetic principles underlying embryo patterning and discuss recent advances in their regulation. Morphogenesis is under tight transcriptional control and most genes that were identified as important regulators of embryo patterning encode transcription factors or components of signaling pathways. There exists, therefore, a large gap between the transcriptional control of embryo morphogenesis and the cellular execution. We describe the first such connections, and propose future directions that should help bridge this gap and generate comprehensive understanding of the control of morphogenesis.
Collapse
Affiliation(s)
- Jos R Wendrich
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA, Wageningen, the Netherlands
| |
Collapse
|
96
|
Yang CQ, Liu YZ, An JC, Li S, Jin LF, Zhou GF, Wei QJ, Yan HQ, Wang NN, Fu LN, Liu X, Hu XM, Yan TS, Peng SA. Digital gene expression analysis of corky split vein caused by boron deficiency in 'Newhall' Navel Orange (Citrus sinensis Osbeck) for selecting differentially expressed genes related to vascular hypertrophy. PLoS One 2013; 8:e65737. [PMID: 23755275 PMCID: PMC3673917 DOI: 10.1371/journal.pone.0065737] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/26/2013] [Indexed: 01/01/2023] Open
Abstract
Corky split vein caused by boron (B) deficiency in 'Newhall' Navel Orange was studied in the present research. The boron-deficient citrus exhibited a symptom of corky split vein in mature leaves. Morphologic and anatomical surveys at four representative phases of corky split veins showed that the symptom was the result of vascular hypertrophy. Digital gene expression (DGE) analysis was performed based on the Illumina HiSeq™ 2000 platform, which was applied to analyze the gene expression profilings of corky split veins at four morphologic phases. Over 5.3 million clean reads per library were successfully mapped to the reference database and more than 22897 mapped genes per library were simultaneously obtained. Analysis of the differentially expressed genes (DEGs) revealed that the expressions of genes associated with cytokinin signal transduction, cell division, vascular development, lignin biosynthesis and photosynthesis in corky split veins were all affected. The expressions of WOL and ARR12 involved in the cytokinin signal transduction pathway were up-regulated at 1(st) phase of corky split vein development. Furthermore, the expressions of some cell cycle genes, CYCs and CDKB, and vascular development genes, WOX4 and VND7, were up-regulated at the following 2(nd) and 3(rd) phases. These findings indicated that the cytokinin signal transduction pathway may play a role in initiating symptom observed in our study.
Collapse
Affiliation(s)
- Cheng-Quan Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Yong-Zhong Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Ji-Cui An
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Shuang Li
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Long-Fei Jin
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Gao-Feng Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Qing-Jiang Wei
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Hui-Qing Yan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Nan-Nan Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Li-Na Fu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Xiao Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Xiao-Mei Hu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Ting-Shuai Yan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| | - Shu-Ang Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, China
| |
Collapse
|
97
|
Hisanaga T, Ferjani A, Horiguchi G, Ishikawa N, Fujikura U, Kubo M, Demura T, Fukuda H, Ishida T, Sugimoto K, Tsukaya H. The ATM-dependent DNA damage response acts as an upstream trigger for compensation in the fas1 mutation during Arabidopsis leaf development. PLANT PHYSIOLOGY 2013; 162:831-41. [PMID: 23616603 PMCID: PMC3668073 DOI: 10.1104/pp.113.216796] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/23/2013] [Indexed: 05/18/2023]
Abstract
During leaf development, a decrease in cell number often triggers an increase in cell size. This phenomenon, called compensation, suggests that some system coordinates cell proliferation and cell expansion, but how this is mediated at the molecular level is still unclear. The fugu2 mutants in Arabidopsis (Arabidopsis thaliana) exhibit typical compensation phenotypes. Here, we report that the FUGU2 gene encodes FASCIATA1 (FAS1), the p150 subunit of Chromatin Assembly Factor1. To uncover how the fas1 mutation induces compensation, we performed microarray analyses and found that many genes involved in the DNA damage response are up-regulated in fas1. Our genetic analysis further showed that activation of the DNA damage response and the accompanying decrease of cell number in fas1 depend on ATAXIA TELANGIECTASIA MUTATED (ATM) but not on ATM AND RAD3 RELATED. Kinematic analysis suggested that the delay in the cell cycle leads to a decrease in cell number in fas1 and that loss of ATM partially restores this phenotype. Consistently, both cell size phenotypes and high ploidy phenotypes of fas1 are also suppressed by atm, supporting that the ATM-dependent DNA damage response leads to these phenotypes. Altogether, these data suggest that the ATM-dependent DNA damage response acts as an upstream trigger in fas1 to delay the cell cycle and promote entry into the endocycle, resulting in compensated cell expansion.
Collapse
|
98
|
Wen B, Nieuwland J, Murray JAH. The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1135-44. [PMID: 23440171 PMCID: PMC3580825 DOI: 10.1093/jxb/ert009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The coordination of plant cell division and expansion controls plant morphogenesis, development, and growth. Cyclin-dependent kinases (CDKs) are not only key regulators of cell division but also play an important role in cell differentiation. In plants, CDK activity is modulated by the binding of INHIBITOR OF CDK/KIP-RELATED PROTEIN (ICK/KRP). Previously, ICK2/KRP2 has been shown to mediate auxin responses in lateral root initiation. Here are analysed the roles of all ICK/KRP genes in root growth. Analysis of ick/krp null-mutants revealed that only ick3/krp5 was affected in primary root growth. ICK3/KRP5 is strongly expressed in the root apical meristem (RAM), with lower expression in the expansion zone. ick3/krp5 roots grow more slowly than wildtype controls, and this results not from reduction of division in the proliferative region of the RAM but rather reduced expansion as cells exit the meristem. This leads to shorter final cell lengths in different tissues of the ick3/krp5 mutant root, particularly the epidermal non-hair cells, and this reduction in cell size correlates with reduced endoreduplication. Loss of ICK3/KRP5 also leads to delayed germination and in the mature embryo ICK3/KRP5 is specifically expressed in the transition zone between root and hypocotyl. Cells in the transition zone were smaller in the ick3/krp5 mutant, despite the absence of endoreduplication in the embryo suggesting a direct effect of ICK3/KRP5 on cell growth. It is concluded that ICK3/KRP5 is a positive regulator of both cell growth and endoreduplication.
Collapse
Affiliation(s)
- Bo Wen
- Present address: Shanxi Agricultural University, Taigu, Shanxi, 030801, PR China
| | | | | |
Collapse
|
99
|
Matsunaga S, Katagiri Y, Nagashima Y, Sugiyama T, Hasegawa J, Hayashi K, Sakamoto T. New insights into the dynamics of plant cell nuclei and chromosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:253-301. [PMID: 23890384 DOI: 10.1016/b978-0-12-407695-2.00006-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant lamin-like protein NMCP/AtLINC and orthologues of the SUN-KASH complex across the nuclear envelope (NE) show the universality of nuclear structure in eukaryotes. However, depletion of components in the connection complex of the NE in plants does not induce severe defects, unlike in animals. Appearance of the Rabl configuration is not dependent on genome size in plant species. Topoisomerase II and condensin II are not essential for plant chromosome condensation. Plant endoreduplication shares several common characteristics with animals, including involvement of cyclin-dependent kinases and E2F transcription factors. Recent finding regarding endomitosis regulator GIG1 shed light on the suppression mechanism of endomitosis in plants. The robustness of plants, compared with animals, is reflected in their genome redundancy. Spatiotemporal functional analyses using chromophore-assisted light inactivation, super-resolution microscopy, and 4D (3D plus time) imaging will reveal new insights into plant nuclear and chromosomal dynamics.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | |
Collapse
|
100
|
Motose H, Takatani S, Ikeda T, Takahashi T. NIMA-related kinases regulate directional cell growth and organ development through microtubule function in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2012; 7:1552-5. [PMID: 23072999 PMCID: PMC3578891 DOI: 10.4161/psb.22412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NIMA-related kinase 6 (NEK6) regulates cellular expansion and morphogenesis through microtubule organizaiton in Arabidopsis thaliana. Loss-of-function mutations in NEK6 (nek6/ibo1) cause ectopic outgrowth and microtubule disorganization in epidermal cells. We recently found that NEK6 forms homodimers and heterodimers with NEK4 and NEK5 to destabilize cortical microtubules possibly by direct binding to microtubules and the β-tubulin phosphorylation. Here, we identified a new allele of NEK6 and further analyzed the morphological phenotypes of nek6/ibo1 mutants, along with alleles of nek4 and nek5 mutants. Phenotypic analysis demonstrated that NEK6 is required for the directional growth of roots and hypocotyls, petiole elongation, cell file formation, and trichome morphogenesis. In addition, nek4, nek5, and nek6/ibo1 mutants were hypersensitive to microtubule inhibitors such as propyzamide and taxol. These results suggest that plant NEKs function in directional cell growth and organ development through the regulation of microtubule organization.
Collapse
Affiliation(s)
- Hiroyasu Motose
- Division of Biological Sciences, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan.
| | | | | | | |
Collapse
|