51
|
de Vries J, de Vries S, Curtis BA, Zhou H, Penny S, Feussner K, Pinto DM, Steinert M, Cohen AM, von Schwartzenberg K, Archibald JM. Heat stress response in the closest algal relatives of land plants reveals conserved stress signaling circuits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1025-1048. [PMID: 32333477 DOI: 10.1111/tpj.14782] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 05/20/2023]
Abstract
All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes - and the eventual conquering of Earth's surface - is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygnematophyceae - the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectroscopy-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and - corroborating our metabolomic data - amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goldschmidtstr. 1, 37077, Goettingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, 37077, Goettingen, Germany
| | - Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Institute of Population Genetics, Heinrich-Heine University Duesseldorf, Universitätsstr. 1, 40225, Duesseldorf, Germany
| | - Bruce A Curtis
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
| | - Hong Zhou
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - Susanne Penny
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, 37077, Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), 37077, Goettingen, Germany
| | - Devanand M Pinto
- National Research Council, Human Health Therapeutics, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, NS, B3H 4R2, Canada
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Alejandro M Cohen
- Biological Spectrometry Core Facility, Life Sciences Research Institute, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Klaus von Schwartzenberg
- Microalgae and Zygnematophyceae Collection Hamburg (MZCH) and Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, Universität Hamburg, 22609, Hamburg, Germany
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada
- Canadian Institute for Advanced Research, 661 University Ave, Suite 505, Toronto, ON, M5G 1M1, Canada
| |
Collapse
|
52
|
Joo H, Lim CW, Lee SC. The pepper RING-type E3 ligase, CaATIR1, positively regulates abscisic acid signalling and drought response by modulating the stability of CaATBZ1. PLANT, CELL & ENVIRONMENT 2020; 43:1911-1924. [PMID: 32421865 DOI: 10.1111/pce.13789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/06/2020] [Accepted: 05/12/2020] [Indexed: 05/07/2023]
Abstract
Protein degradation by the ubiquitin/26S proteasome system is a critical process that modulates many eukaryotic cellular processes. E3 ligase usually modulates stress response by adjusting the stability of transcription factors. Previous studies have shown that a RING-type E3 ligase, CaASRF1, positively modulates abscisic acid (ABA) signalling and ABA-mediated drought response by modulating the stability of CaAIBZ1 and CaATBZ1. In this study, we conducted yeast two-hybrid (Y2H) screening with CaATBZ1 to isolate an additional modulator, identified as CaATIR1 (Capsicum annuum ATBZ1 Interacting RING finger protein 1). CaATIR1 has E3 ligase activity and promoted CaATBZ1 degradation using the 26S proteasome system. We investigated the loss-of and gain-of functions of this E3 ligase by using silencing pepper and overexpressing (OX) Arabidopsis plants, respectively. In response to ABA and drought treatments, CaATIR1-silenced pepper plants showed ABA insensitive and drought-sensitive phenotypes, while CaATIR1-OX plants showed the opposite phenotypes. Additionally, CaATBZ1-silencing rescued the ABA insensitive and drought-sensitive phenotypes of CaATIR1-silencing pepper plants. Taken together, these data demonstrate that the stability of CaATBZ1 mediated by CaATIR1 has a crucial role in drought stress signalling in pepper plants.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
53
|
Nabi RBS, Tayade R, Imran QM, Hussain A, Shahid M, Yun BW. Functional Insight of Nitric-Oxide Induced DUF Genes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1041. [PMID: 32765550 PMCID: PMC7378322 DOI: 10.3389/fpls.2020.01041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/24/2020] [Indexed: 05/30/2023]
Abstract
Advances in next-generation sequencing technologies facilitate the study of plant molecular functions in detail and with precision. Plant genome and proteome databases are continually being updated with large transcriptomic or genomic datasets. With the ever-increasing amount of sequencing data, several thousands of genes or proteins in public databases remain uncharacterized, and their domain functions are largely unknown. Such proteins contain domains of unknown function (DUF). In the present study, we identified 231 upregulated and 206 downregulated DUF genes from the available RNA-Seq-based transcriptome profiling datasets of Arabidopsis leaves exposed to a nitric oxide donor, S-nitroso-L-cysteine (CysNO). In addition, we performed extensive in silico and biological experiments to determine the potential functions of AtDUF569 and to elucidate its role in plant growth, development, and defense. We validated the expression pattern of the most upregulated and the most downregulated DUF genes from the transcriptomic data. In addition, a loss-of AtDUF569 function mutant was evaluated for growth, development, and defense against biotic and abiotic stresses. According to the results of the study, AtDUF569 negatively regulates biotic stress responses and differentially regulates plant growth under nitro-oxidative stress conditions.
Collapse
Affiliation(s)
- Rizwana Begum Syed Nabi
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang, South Korea
| | - Rupesh Tayade
- Laboratory of Plant Breeding, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Qari Muhammad Imran
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, Mardan, Pakistan
| | - Muhammad Shahid
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
54
|
Yu SG, Kim JH, Cho NH, Oh TR, Kim WT. Arabidopsis RING E3 ubiquitin ligase JUL1 participates in ABA-mediated microtubule depolymerization, stomatal closure, and tolerance response to drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:824-842. [PMID: 32314432 DOI: 10.1111/tpj.14775] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/28/2020] [Accepted: 03/31/2020] [Indexed: 05/20/2023]
Abstract
Ubiquitination is a critical post-translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T-DNA insertion mutant in the At5g10650 locus. Compared to wild-type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C-terminal C3HC4-type Really Interesting New Gene (RING) motif, which was essential for ABA-mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule-associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA-promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild-type levels of H2 O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2 O2 and calcium in the ABA-mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2 O2 , and calcium, which in turn resulted in ABA-hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild-type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA-mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.
Collapse
Affiliation(s)
- Seong Gwan Yu
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Na Hyun Cho
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology and Division of Life Science, Yonsei University, Seoul, 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Korea
| |
Collapse
|
55
|
Abdel-Hameed AAE, Prasad KVSK, Jiang Q, Reddy ASN. Salt-Induced Stability of SR1/CAMTA3 mRNA Is Mediated by Reactive Oxygen Species and Requires the 3' End of Its Open Reading Frame. PLANT & CELL PHYSIOLOGY 2020; 61:748-760. [PMID: 31917443 DOI: 10.1093/pcp/pcaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Soil salinity, a prevalent abiotic stress, causes enormous losses in global crop yields annually. Previous studies have shown that salt stress-induced reprogramming of gene expression contributes to the survival of plants under this stress. However, mechanisms regulating gene expression in response to salt stress at the posttranscriptional level are not well understood. In this study, we show that salt stress increases the level of Signal Responsive 1 (SR1) mRNA, a member of signal-responsive Ca2+/calmodulin-regulated transcription factors, by enhancing its stability. We present multiple lines of evidence indicating that reactive oxygen species generated by NADPH oxidase activity mediate salt-induced SR1 transcript stability. Using mutants impaired in either nonsense-mediated decay, XRN4 or mRNA decapping pathways, we show that neither the nonsense-mediated mRNA decay pathway, XRN4 nor the decapping of SR1 mRNA is required for its decay. We analyzed the salt-induced accumulation of eight truncated versions of the SR1 coding region (∼3 kb) in the sr1 mutant background. This analysis identified a 500-nt region at the 3' end of the SR1 coding region to be required for the salt-induced stability of SR1 mRNA. Potential mechanisms by which this region confers SR1 transcript stability in response to salt are discussed.
Collapse
Affiliation(s)
- Amira A E Abdel-Hameed
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Kasavajhala V S K Prasad
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| | - Qiyan Jiang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1878, USA
| |
Collapse
|
56
|
Wang L, Yao W, Wang Y. The grape ubiquitin ligase VpRH2 is a negative regulator in response to ABA treatment. PLANTA 2020; 251:88. [PMID: 32222837 DOI: 10.1007/s00425-020-03382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
Ubiquitin ligase VpRH2 is a negative regulator in the grape ABA pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter is inhibited by ABA treatment. In higher plants, ubiquitin ligases play key roles in various cellular processes. As in our previous study (Wang et al. in J Exp Bot 68:1669-1687, 2017), grape RING-H2-type ubiquitin ligase gene VpRH2 and its promoter was induced by powdery mildew and showed resistance to the disease. Diverse small-molecule hormones, like salicylic acid (SA), methyl jasmonate (MeJA) or abscisic acid (ABA), play pivotal roles in plant resistance. Here we found that VpRH2 expression could be induced by SA and MeJA treatment, but inhibited by ABA treatment. The promoter of VpRH2 revealed a similar variation trend under exogenous hormone treatments as the gene expression by GUS activity assay. By a series of deletion fragments, the promoter fragment of VpRH2-P656 to VpRH2-P513 was necessary in response to MeJA treatment, and the inhibition of ABA treatment to the VpRH2 promoter was independent of the ABRE motif. Over-expression of VpRH2 in Arabidopsis thaliana plants displayed ABA-insensitive phenotypes at the germination stage compared to wild type plants. In VpRH2 over-expressing Vitis vinifera cv. Thompson Seedless plants after ABA treatments, the expression of the ABA pathway related genes ABL1 and PYR1 showed a suppresive trend. Moreover, VpGRP2A (an VpRH2-interacting protein) also showed a suppresive trend in response to ABA treatment in VpRH2-overexpressing plants. Our results demonstrate that VpRH2 is a negative regulator in the grape ABA signal pathway by inhibiting ABL1, PYR1 and GRP2A expressions, and its promoter was also inhibited by ABA treatment.
Collapse
Affiliation(s)
- Lei Wang
- College of Horticulture, Northwest A and F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Wenkong Yao
- College of Horticulture, Northwest A and F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A and F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A and F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
57
|
An J, Wang X, Zhang X, Xu H, Bi S, You C, Hao Y. An apple MYB transcription factor regulates cold tolerance and anthocyanin accumulation and undergoes MIEL1-mediated degradation. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:337-353. [PMID: 31250952 PMCID: PMC6953192 DOI: 10.1111/pbi.13201] [Citation(s) in RCA: 199] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 05/02/2023]
Abstract
MYB transcription factors (TFs) have been demonstrated to play diverse roles in plant growth and development through interaction with basic helix-loop-helix (bHLH) TFs. MdbHLH33, an apple bHLH TF, has been identified as a positive regulator in cold tolerance and anthocyanin accumulation by activating the expressions of MdCBF2 and MdDFR. In the present study, a MYB TF MdMYB308L was found to also positively regulate cold tolerance and anthocyanin accumulation in apple. We found that MdMYB308L interacted with MdbHLH33 and enhanced its binding to the promoters of MdCBF2 and MdDFR. In addition, an apple RING E3 ubiquitin ligase MYB30-INTERACTING E3 LIGASE 1 (MdMIEL1) was identified to be an MdMYB308L-interacting protein and promoted the ubiquitination degradation of MdMYB308L, thus negatively regulated cold tolerance and anthocyanin accumulation in apple. These results suggest that MdMYB308L acts as a positive regulator in cold tolerance and anthocyanin accumulation in apple by interacting with MdbHLH33 and undergoes MdMIEL1-mediated protein degradation. The dynamic change in MYB-bHLH protein complex seems to play a key role in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Jian‐Ping An
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Fei Wang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Xiao‐Wei Zhang
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Hai‐Feng Xu
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Si‐Qi Bi
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Chun‐Xiang You
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| | - Yu‐Jin Hao
- State Key Laboratory of Crop BiologyShandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and EfficiencyCollege of Horticulture Science and EngineeringShandong Agricultural UniversityTai‐An, ShandongChina
| |
Collapse
|
58
|
Cloning and abiotic stress expression analysis of RING finger family protein gene SorRma1 from Solanum nigrum L. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00297-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
59
|
Baek W, Lim CW, Luan S, Lee SC. The RING finger E3 ligases PIR1 and PIR2 mediate PP2CA degradation to enhance abscisic acid response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:473-486. [PMID: 31436880 DOI: 10.1111/tpj.14507] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 05/27/2023]
Abstract
Recent work has established a core ABA signaling pathway in which A-type PP2C protein phosphatases act as central negative modulators. Although ABA signaling inhibits PP2C activity through ABA-receptor complex, it remains unknown if other mechanisms exist to modulate the level of PP2Cs. Here, we identified a RING domain ubiquitin E3 ligase, PIR1 (PP2CA interacting RING finger protein 1), that interacted with PP2CA. Of the two splicing isoforms, PIR1.2 was isolated from leaf tissue. The PIR1.2 exhibited E3 ligase activity and determined PP2CA stability in the presence of ABA. Consistent with the conclusion that PIR1 promotes ABA signaling by removing PP2CA, a negative modulator, the pir1 knockout mutant displayed an ABA-hyposensitive phenotype. We further showed that PIR2, the closest homologue of PIR1.2, also interacted with PP2CA. Although the pir2 knockout mutant did not display altered ABA response, the pir1-1/pir2 double mutant became more insensitive to ABA than the wild-type or pir1-1 and pir2 single mutants. Using a cell-free degradation assay, ABA promoted degradation of PP2CA, however, such degradation was delayed when incubated with protein extract prepared from the pir1-1/pir2 double mutant. Our data suggest that PIR1 and PIR2 positively modulate ABA signaling by targeting PP2CA for degradation.
Collapse
Affiliation(s)
- Woonhee Baek
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Chae Woo Lim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Sung Chul Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
60
|
Xu FQ, Xue HW. The ubiquitin-proteasome system in plant responses to environments. PLANT, CELL & ENVIRONMENT 2019; 42:2931-2944. [PMID: 31364170 DOI: 10.1111/pce.13633] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 05/12/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.
Collapse
Affiliation(s)
- Fa-Qing Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- Shanghai College of Life Science, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Hong-Wei Xue
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 200032, Shanghai, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
61
|
Yang L, Miao M, Lyu H, Cao X, Li J, Li Y, Li Z, Chang W. Genome-Wide Identification, Evolution, and Expression Analysis of RING Finger Gene Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20194864. [PMID: 31574992 PMCID: PMC6801689 DOI: 10.3390/ijms20194864] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/27/2019] [Accepted: 09/29/2019] [Indexed: 01/11/2023] Open
Abstract
RING domain proteins generally have E3 ubiquitin ligase activity and are involved in degrading their substrate proteins. The roles of these proteins in growth, development, and responses to different abiotic stresses have been described well in various plant species, but little is available on tomatoes. Here, we identified 474 RING domains in 469 potential proteins encoded in the tomato genome. These RING genes were found to be located in 12 chromosomes and could be divided into 51 and 11 groups according to the conserved motifs outside the RING domain and phylogenetic analysis, respectively. Segmental duplication could be the major driver in the expansion of the tomato RING gene family. Further comparative syntenic analysis suggested that there have been functional divergences of RING genes during plant evolution and most of the RING genes in various species are under negative selection. Expression profiles derived from a transcriptomic analysis showed that most tomato RING genes exhibited tissue-specific expression patterning. Further RT-qPCR validation showed that almost all genes were upregulated by salt treatment, which was consistent with the microarray results. This study provides the first comprehensive understanding of the RING gene family in the tomato genome. Our results pave the way for further investigation of the classification, evolution, and potential functions of the RING domain genes in tomato.
Collapse
Affiliation(s)
- Liang Yang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China.
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Mingjun Miao
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China.
| | - Hongjun Lyu
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
- Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Shandong Province Key Laboratory for Biology of Greenhouse Vegetables, Shandong Branch of National Improvement Center for Vegetables, Jinan 250100, China.
| | - Xue Cao
- College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ju Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China.
| | - Yuejian Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Zhi Li
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China.
| | - Wei Chang
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
- Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions, Ministry of Agriculture, Chengdu 610066, China.
| |
Collapse
|
62
|
Kim JH, Oh TR, Cho SK, Yang SW, Kim WT. Inverse Correlation Between MPSR1 E3 Ubiquitin Ligase and HSP90.1 Balances Cytoplasmic Protein Quality Control. PLANT PHYSIOLOGY 2019; 180:1230-1240. [PMID: 30890661 PMCID: PMC6548273 DOI: 10.1104/pp.18.01582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/10/2019] [Indexed: 05/04/2023]
Abstract
MISFOLDED PROTEIN SENSING RING1 (MPSR1) is a chaperone-independent E3 ubiquitin ligase that participates in protein quality control by eliminating misfolded proteins in Arabidopsis (Arabidopsis thaliana). Here, we report that in the early stages of proteotoxic stress, cellular levels of MPSR1 increased immediately, whereas levels of HEAT SHOCK PROTEIN90.1 (AtHSP90.1) were unaltered despite massively upregulated transcription. At this stage, the gene-silencing pathway mediated by microRNA 414 (miR414) suppressed AtHSP90.1 translation. By contrast, under prolonged stress, AtHSP90.1 was not suppressed, and instead competed with MPSR1 to act on misfolded proteins, promoting the destruction of MPSR1. Deficiency or excess of MPSR1 significantly abolished or intensified the suppression of AtHSP90.1, respectively. Similar to the MPSR1-overexpressing transgenic plants, the miR414-overexpressing plants showed an increased tolerance to proteotoxic stress as compared to the wild-type plants. Although the functional relationship between MPSR1 and miR414 remains unclear, both MPSR1 and miR414 demonstrated negative modulation of the expression of AtHSP90.1. The inverse correlation between MPSR1 and AtHSP90.1 via miR414 may adjust the set-point of the HSP90-mediated protein quality control process in response to increasing stress intensity in Arabidopsis.
Collapse
Affiliation(s)
- Jong Hum Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seok Keun Cho
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seong Wook Yang
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg DK-1871, Denmark
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
63
|
Li B, Liu Y, Cui XY, Fu JD, Zhou YB, Zheng WJ, Lan JH, Jin LG, Chen M, Ma YZ, Xu ZS, Min DH. Genome-Wide Characterization and Expression Analysis of Soybean TGA Transcription Factors Identified a Novel TGA Gene Involved in Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:549. [PMID: 31156656 PMCID: PMC6531876 DOI: 10.3389/fpls.2019.00549] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/10/2019] [Indexed: 05/19/2023]
Abstract
The TGA transcription factors, a subfamily of bZIP group D, play crucial roles in various biological processes, including the regulation of growth and development as well as responses to pathogens and abiotic stress. In this study, 27 TGA genes were identified in the soybean genome. The expression patterns of GmTGA genes showed that several GmTGA genes are differentially expressed under drought and salt stress conditions. Among them, GmTGA17 was strongly induced by both stress, which were verificated by the promoter-GUS fusion assay. GmTGA17 encodes a nuclear-localized protein with transcriptional activation activity. Heterologous and homologous overexpression of GmTGA17 enhanced tolerance to drought and salt stress in both transgeinc Arabidopsis plants and soybean hairy roots. However, RNAi hairy roots silenced for GmTGA17 exhibited an increased sensitivity to drought and salt stress. In response to drought or salt stress, transgenic Arabidopsis plants had an increased chlorophyll and proline contents, a higher ABA content, a decreased MDA content, a reduced water loss rate, and an altered expression of ABA- responsive marker genes compared with WT plants. In addition, transgenic Arabidopsis plants were more sensitive to ABA in stomatal closure. Similarly, measurement of physiological parameters showed an increase in chlorophyll and proline contents, with a decrease in MDA content in soybean seedlings with overexpression hairy roots after drought and salt stress treatments. The opposite results for each measurement were observed in RNAi lines. This study provides new insights for functional analysis of soybean TGA transcription factors in abiotic stress.
Collapse
Affiliation(s)
- Bo Li
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ying Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Xi-Yan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wei-Jun Zheng
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
| | - Jin-Hao Lan
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Long-Guo Jin
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| | - Dong-Hong Min
- College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, China
- *Correspondence: Zhao-Shi Xu, Dong-Hong Min,
| |
Collapse
|
64
|
Cui LH, Min HJ, Byun MY, Oh HG, Kim WT. OsDIRP1, a Putative RING E3 Ligase, Plays an Opposite Role in Drought and Cold Stress Responses as a Negative and Positive Factor, Respectively, in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1797. [PMID: 30568669 PMCID: PMC6290360 DOI: 10.3389/fpls.2018.01797] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 05/11/2023]
Abstract
As higher plants are sessile organisms, they are unable to move to more favorable places; thus, they have developed the ability to survive under potentially detrimental conditions. Ubiquitination is a crucial post-translational protein modification and participates in abiotic stress responses in higher plants. In this study, we identified and characterized OsDIRP1 (Oryza sativa Drought-Induced RING Protein 1), a nuclear-localized putative RING E3 ubiquitin (Ub) ligase in rice (Oryza sativa L.). OsDIRP1 expression was induced by drought, high salinity, and abscisic acid (ABA) treatment, but not by low temperature (4°C) stress, suggesting that OsDIRP1 is differentially regulated by different abiotic stresses. To investigate its possible role in abiotic stress responses, OsDIRP1-overexpressing transgenic rice plants (Ubi:OsDIRP1-sGFP) were generated, and their phenotypes were analyzed. The T4 Ubi:OsDIRP1-sGFP lines showed decreased tolerance to drought and salt stress as compared to wild-type rice plants. Moreover, Ubi:OsDIRP1-sGFP progeny were less sensitive to ABA than the wild-type during both germination and post-germination growth. In contrast, Ubi:OsDIRP1-sGFP plants exhibited markedly higher tolerance to prolonged cold (4°C) treatment. These results suggest that OsDIRP1 acts as a negative regulator during drought and salt stress, whereas it functions as a positive factor during the cold stress response in rice.
Collapse
Affiliation(s)
- Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Hye Jo Min
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Mi Young Byun
- Unit of Polar Genomics, Korea Polar Research Institute, Incheon, South Korea
| | - Hyeong Geun Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
- Institute of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| |
Collapse
|
65
|
Role of the Ubiquitin Proteasome System in Plant Response to Abiotic Stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 343:65-110. [PMID: 30712675 DOI: 10.1016/bs.ircmb.2018.05.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitination is a prevalent post-translation modification system that is involved in almost all aspects of eukaryotic biology. It involves the attachment of ubiquitin, a small, highly conserved protein to selected substrates. The most notable function of ubiquitin is the targeting of modified proteins to the multi-proteolytic 26S proteasome complex for degradation. The ubiquitin proteasome system (UPS) regulates the abundance of numerous enzymes, structural and regulatory proteins ensuring proper cellular function. Plants utilize the UPS to facilitate cellular changes required to respond to and tolerate adverse growth conditions. In this review, the regulatory role of the UPS in responses to abiotic stress is discussed, particularly the function of ubiquitin-dependent degradation in the suppression, activation and attenuation or termination of stress signaling.
Collapse
|
66
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018; 18:93. [PMID: 29801463 PMCID: PMC5970481 DOI: 10.1186/s12870-018-1306-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jin-dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048 China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081 China
| |
Collapse
|
67
|
Cui XY, Du YT, Fu JD, Yu TF, Wang CT, Chen M, Chen J, Ma YZ, Xu ZS. Wheat CBL-interacting protein kinase 23 positively regulates drought stress and ABA responses. BMC PLANT BIOLOGY 2018. [PMID: 29801463 DOI: 10.1186/s12870-018-1306-5research] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND The calcineurin B-like protein (CBL)-interacting protein kinase (CIPK) signaling pathway responds to various abiotic stresses in plants. RESULTS Wheat CIPK23, isolated from wheat drought transcriptome data set, was induced by multiple abiotic stresses, including drought, salt, and abscisic acid (ABA). Compared with wild-type plants, TaCIPK23-overexpression wheat and Arabidopsis showed an higher survival rate under drought conditions with enhanced germination rate, developed root system, increased accumulation of osmolytes, and reduced water loss rate. Over-expression of TaCIPK23 rendered transgenic plants ABA sensitivity, as evidenced by delayed seed germination and the induction of stomatal closure. Consistent with the ABA-sensitive phenotype, the expression level of drought- and ABA-responsive genes were increased under drought conditions in the transgenic plants. In addition, using yeast two-hybrid system, pull-down and bimolecular fluorescence complementation (BiFc) assays, TaCIPK23 was found to interact with TaCBL1 on the plasma membrane. CONCLUSIONS These results suggest that TaCIPK23 plays important roles in ABA and drought stress responses, and mediates crosstalk between the ABA signaling pathway and drought stress responses in wheat.
Collapse
Affiliation(s)
- Xiao-Yu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Tao Du
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Tao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| |
Collapse
|
68
|
Cho SK, Ryu MY, Kim JH, Hong JS, Oh TR, Kim WT, Yang SW. RING E3 ligases: key regulatory elements are involved in abiotic stress responses in plants. BMB Rep 2018; 50:393-400. [PMID: 28712388 PMCID: PMC5595168 DOI: 10.5483/bmbrep.2017.50.8.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
Plants are constantly exposed to a variety of abiotic stresses, such as drought, heat, cold, flood, and salinity. To survive under such unfavorable conditions, plants have evolutionarily developed their own resistant-mechanisms. For several decades, many studies have clarified specific stress response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants.
Collapse
Affiliation(s)
- Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Jeong Soo Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea; Section of Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
69
|
Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway. THE NEW PHYTOLOGIST 2018; 218:1106-1126. [PMID: 29168982 PMCID: PMC5947142 DOI: 10.1111/nph.14909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/23/2017] [Indexed: 05/04/2023]
Abstract
The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Lucy Gannon
- Plant Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Kirsty L. Hassall
- Computational and Analytical Sciences DepartmentRothamsted ResearchHarpendenAL5 2JQUK
| | - Michael J. Deery
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | - Daniel J. Gibbs
- School of BiosciencesUniversity of BirminghamEdgbastonB15 2TTUK
| | | | | | - Kathryn S. Lilley
- Cambridge Centre for ProteomicsDepartment of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridge, CB2 1QRUK
| | | |
Collapse
|
70
|
Park YC, Chapagain S, Jang CS. The microtubule-associated RING finger protein 1 (OsMAR1) acts as a negative regulator for salt-stress response through the regulation of OCPI2 (O. sativa chymotrypsin protease inhibitor 2). PLANTA 2018; 247:875-886. [PMID: 29260397 DOI: 10.1007/s00425-017-2834-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 12/15/2017] [Indexed: 05/02/2023]
Abstract
Our results suggest that a rice E3 ligase, OsMAR1, physically interacts with a cytosolic protein OCPI2 and may play an important role under salinity stress. Salt is an important abiotic stressor that negatively affects plant growth phases and alters development. Herein, we found that a rice gene, OsMAR1 (Oryza sativa microtubule-associated RING finger protein 1), encoding the RING E3 ligase was highly expressed in response to high salinity, water deficit, and ABA treatment. Fluorescence signals of its recombinant proteins were clearly associated with the microtubules in rice protoplasts. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) showed that OsMAR1 interacted with a cytosolic protein OCPI2 (O. sativa chymotrypsin protease inhibitor 2) and led to its degradation via the 26S proteasome. Heterogeneous overexpression of OsMAR1 in Arabidopsis showed retarded root growth compared with that of control plants, and then led to hypersensitivity phenotypes under high salinity stress. Taken together, OsMAR1 negatively regulates the salt-stress response via the regulation of the OCPI2 protein in rice.
Collapse
Affiliation(s)
- Yong Chan Park
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Sandeep Chapagain
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Lab, Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 200-713, Republic of Korea.
| |
Collapse
|
71
|
Wang Z, Tian X, Zhao Q, Liu Z, Li X, Ren Y, Tang J, Fang J, Xu Q, Bu Q. The E3 Ligase DROUGHT HYPERSENSITIVE Negatively Regulates Cuticular Wax Biosynthesis by Promoting the Degradation of Transcription Factor ROC4 in Rice. THE PLANT CELL 2018; 30:228-244. [PMID: 29237723 PMCID: PMC5810576 DOI: 10.1105/tpc.17.00823] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 05/17/2023]
Abstract
Cuticular wax plays crucial roles in protecting plants from environmental stresses, particularly drought stress. Many enzyme-encoding genes and transcription factors involved in wax biosynthesis have been identified, but the underlying posttranslational regulatory mechanisms are poorly understood. Here, we demonstrate that DROUGHT HYPERSENSITIVE (DHS), encoding a Really Interesting New Gene (RING)-type protein, is a critical regulator of wax biosynthesis in rice (Oryza sativa). The cuticular wax contents were significantly reduced in DHS overexpression plants but increased in dhs mutants compared with the wild type, which resulted in a response opposite that of drought stress. DHS exhibited E3 ubiquitin ligase activity and interacted with the homeodomain-leucine zipper IV protein ROC4. Analysis of ROC4 overexpression plants and roc4 mutants indicated that ROC4 positively regulates cuticular wax biosynthesis and the drought stress response. ROC4 is ubiquitinated in vivo and subjected to ubiquitin/26S proteasome-mediated degradation. ROC4 degradation was promoted by DHS but delayed in dhs mutants. ROC4 acts downstream of DHS, and Os-BDG is a direct downstream target of the DHS-ROC4 cascade. These results suggest a mechanism whereby DHS negatively regulates wax biosynthesis by promoting the degradation of ROC4, and they suggest that DHS and ROC4 are valuable targets for the engineering of drought-tolerant rice cultivars.
Collapse
Affiliation(s)
- Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingzhen Zhao
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Zhiqi Liu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Yuekun Ren
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Fang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Qijiang Xu
- School of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
72
|
Yeo BPH, Bhave M, Hwang SS. Effects of acute salt stress on modulation of gene expression in a Malaysian salt-tolerant indigenous rice variety, Bajong. JOURNAL OF PLANT RESEARCH 2018; 131:191-202. [PMID: 28921169 DOI: 10.1007/s10265-017-0977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
The small genome size of rice relative to wheat and barley, together with its salt sensitivity, make it an ideal candidate for studies of salt stress response. Transcriptomics has emerged as a powerful technique to study salinity responses in many crop species. By identifying a large number of differentially expressed genes (DEGs) simultaneously after the stress induction, it can provide crucial insight into the immediate responses towards the stressor. In this study, a Malaysian salt-tolerant indigenous rice variety named Bajong and one commercial rice variety named MR219 were investigated for their performance in plant growth and ion accumulation properties after salt stress treatment. Bajong was further investigated for the changes in leaf's transcriptome after 6 h of stress treatment using 100 mM NaCl. Based on the results obtained, Bajong is found to be significantly more salt tolerant than MR219, showing better growth and a lower sodium ion accumulation after the stress treatment. Additionally, Bajong was analysed by transcriptomic sequencing, generating a total of 130 millions reads. The reads were assembled into de novo transcriptome and each transcript was annotated using several pre-existing databases. The transcriptomes of control and salt-stressed samples were then compared, leading to the discovery of 4096 DEGs. Based on the functional annotation results obtained, the enrichment factor of each functional group in DEGs was calculated in relation to the total reads obtained. It was found that the group with the highest gene modulation was involved in the secondary metabolite biosynthesis of plants, with approximately 2.5% increase in relation to the total reads obtained. This suggests an extensive transcriptional reprogramming of the secondary metabolic pathways after stress induction, which could be directly responsible for the salt tolerance capability of Bajong.
Collapse
Affiliation(s)
- Brandon Pei Hui Yeo
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia
| | - Mrinal Bhave
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
| | - Siaw San Hwang
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Jalan Simpang Tiga, 93350, Kuching, Sarawak, Malaysia.
| |
Collapse
|
73
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
74
|
Zhang G, Zhang M, Zhao Z, Ren Y, Li Q, Wang W. Wheat TaPUB1 modulates plant drought stress resistance by improving antioxidant capability. Sci Rep 2017; 7:7549. [PMID: 28790447 PMCID: PMC5548723 DOI: 10.1038/s41598-017-08181-w] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/10/2017] [Indexed: 01/29/2023] Open
Abstract
E3 ligases play significant roles in plant stress tolerance by targeting specific substrate proteins for post-translational modification. In a previous study, we cloned TaPUB1 from Triticum aestivum L., which encodes a U-box E3 ligase. Real-time polymerase chain reaction revealed that the gene was up-regulated under drought stress. To investigate the function of TaPUB1 in the response of plants to drought, we generated transgenic Nicotiana benthamiana (N. benthamiana) plants constitutively expressing TaPUB1 under the CaMV35S promoter. Compared to wild type (WT), the transgenic plants had higher germination and seedling survival rates as well as higher photosynthetic rate and water retention, suggesting that the overexpression of TaPUB1 enhanced the drought tolerance of the TaPUB1 overexpressing (OE) plants. Moreover, less accumulation of reactive oxygen species (ROS) and stronger antioxidant capacity were detected in the OE plants than in the WT plants. To characterize the mechanisms involved, methyl viologen (MV) was used to induce oxidative stress conditions and we identified the functions of this gene in the plant tolerance to oxidative stress. Our results suggest that TaPUB1 positively modulates plant drought stress resistance potential by improving their antioxidant capacity.
Collapse
Affiliation(s)
- Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
- Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, P.R. China
| | - Zhongxian Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Yuanqing Ren
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Qinxue Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| |
Collapse
|
75
|
Oh TR, Kim JH, Cho SK, Ryu MY, Yang SW, Kim WT. AtAIRP2 E3 Ligase Affects ABA and High-Salinity Responses by Stimulating Its ATP1/SDIRIP1 Substrate Turnover. PLANT PHYSIOLOGY 2017; 174:2515-2531. [PMID: 28626006 PMCID: PMC5543955 DOI: 10.1104/pp.17.00467] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/13/2017] [Indexed: 05/20/2023]
Abstract
AtAIRP2 is a cytosolic RING-type E3 ubiquitin ligase that positively regulates an abscisic acid (ABA) response in Arabidopsis (Arabidopsis thaliana). Yeast two-hybrid screening using AtAIRP2 as bait identified ATP1 (AtAIRP2 Target Protein1) as a substrate of AtAIRP2. ATP1 was found to be identical to SDIRIP1, which was reported recently to be a negative factor in ABA signaling and a target protein of the RING E3 ligase SDIR1. Accordingly, ATP1 was renamed ATP1/SDIRIP1. A specific interaction between AtAIRP2 and ATP1/SDIRIP1 and ubiquitination of ATP1/SDIRIP1 by AtAIRP2 were demonstrated in vitro and in planta. The turnover of ATP1/SDIRIP1 was regulated by AtAIRP2 in cell-free degradation and protoplast cotransfection assays. The ABA-mediated germination assay of 35S:ATP1/SDIRIP1-RNAi/atairp2 double mutant progeny revealed that ATP1/SDIRIP1 acts downstream of AtAIRP2. AtAIRP2 and SDIR1 reciprocally complemented the ABA- and salt-insensitive germination phenotypes of sdir1 and atairp2 mutants, respectively, indicating their combinatory roles in seed germination. Subcellular localization and bimolecular fluorescence complementation experiments in the presence of MG132, a 26S proteasome inhibitor, showed that AtAIRP2 and ATP1/SDIRIP1 were colocalized to the cytosolic spherical body, which lies in close proximity to the nucleus, in tobacco (Nicotiana benthamiana) leaf cells. The 26S proteasome subunits RPN12a and RPT1 and the molecular chaperones HSP70 and HSP101 were colocalized to these discrete punctae-like structures. These results raised the possibility that AtAIRP2 and ATP1/SDIRIP1 interact in the cytosolic spherical compartment. Collectively, our data suggest that the down-regulation of ATP1/SDIRIP1 by AtAIRP2 and SDIR1 RING E3 ubiquitin ligases is critical for ABA and high-salinity responses during germination in Arabidopsis.
Collapse
Affiliation(s)
- Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Jong Hum Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Moon Young Ryu
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
76
|
Wang J, Yu H, Xiong G, Lu Z, Jiao Y, Meng X, Liu G, Chen X, Wang Y, Li J. Tissue-Specific Ubiquitination by IPA1 INTERACTING PROTEIN1 Modulates IPA1 Protein Levels to Regulate Plant Architecture in Rice. THE PLANT CELL 2017; 29:697-707. [PMID: 28298520 PMCID: PMC5435429 DOI: 10.1105/tpc.16.00879] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/21/2017] [Accepted: 03/09/2017] [Indexed: 05/02/2023]
Abstract
Plant architecture, a collection of genetically controlled agronomic traits, is one of the decisive factors that determine grain production. IDEAL PLANT ARCHITECTURE1 (IPA1) encodes a key transcription factor with pleiotropic effects on regulating plant architecture in rice (Oryza sativa), and IPA1 expression is controlled at the posttranscriptional level by microRNA156 and microRNA529. Here, we report the identification and characterization of IPA1 INTERACTING PROTEIN1 (IPI1), a RING-finger E3 ligase that can interact with IPA1 in the nucleus. IPI1 promotes the degradation of IPA1 in panicles, while it stabilizes IPA1 in shoot apexes. Consistent with these findings, the ipi1 loss-of-function mutants showed markedly altered plant architecture, including more tillers, enlarged panicles, and increased yield per plant. Moreover, IPI1 could ubiquitinate the IPA1-mediated complex with different polyubiquitin chains, adding K48-linked polyubiquitin chains in panicles and K63-linked polyubiquitin chains in the shoot apex. These results demonstrate that IPI1 affects plant architecture through precisely tuning IPA1 protein levels in different tissues in rice and provide new insight into the tissue-specific regulation of plant architecture and important genetic resources for molecular breeding.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Rice Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guosheng Xiong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zefu Lu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongqing Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiangbing Meng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuewei Chen
- Rice Research Institute, Sichuan Agricultural University, Sichuan 611130, China
| | - Yonghong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
77
|
Pepper CaREL1, a ubiquitin E3 ligase, regulates drought tolerance via the ABA-signalling pathway. Sci Rep 2017; 7:477. [PMID: 28352121 PMCID: PMC5428412 DOI: 10.1038/s41598-017-00490-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 11/26/2022] Open
Abstract
Drought stress conditions in soil or air hinder plant growth and development. Here, we report that the hot pepper (Capsicumannuum) RING type E3 Ligase 1 gene (CaREL1) is essential to the drought stress response. CaREL1 encodes a cytoplasmic- and nuclear-localized protein with E3 ligase activity. CaREL1 expression was induced by abscisic acid (ABA) and drought. CaREL1 contains a C3H2C3-type RING finger motif, which functions in ubiquitination of the target protein. We used CaREL1-silenced pepper plants and CaREL1-overexpressing (OX) transgenic Arabidopsis plants to evaluate the in vivo function of CaREL1 in response to drought stress and ABA treatment. CaREL1-silenced pepper plants displayed a drought-tolerant phenotype characterized by ABA hypersensitivity. In contrast, CaREL1-OX plants exhibited ABA hyposensitivity during the germination, seedling, and adult stages. In addition, plant growth was severely impaired under drought stress conditions, via a high level of transpirational water loss and decreased stomatal closure. Quantitative RT-PCR analyses revealed that ABA-related drought stress responsive genes were more weakly expressed in CaREL1-OX plants than in wild-type plants, indicating that CaREL1 functions in the drought stress response via the ABA-signalling pathway. Taken together, our results indicate that CaREL1 functions as a negative regulator of ABA-mediated drought stress tolerance.
Collapse
|
78
|
Genome-wide identification, evolution and expression analysis of RING finger protein genes in Brassica rapa. Sci Rep 2017; 7:40690. [PMID: 28094809 PMCID: PMC5240574 DOI: 10.1038/srep40690] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 12/08/2016] [Indexed: 12/31/2022] Open
Abstract
More and more RING finger genes were found to be implicated in various important biological processes. In the present study, a total of 731 RING domains in 715 predicted proteins were identified in Brassica rapa genome (AA, 2n = 20), which were further divided into eight types: RING-H2 (371), RING-HCa (215), RING-HCb (47), RING-v (44), RING-C2 (38), RING-D (10), RING-S/T (5) and RING-G (1). The 715 RING finger proteins were further classified into 51 groups according to the presence of additional domains. 700 RING finger protein genes were mapped to the 10 chromosomes of B. rapa with a range of 47 to 111 genes for each chromosome. 667 RING finger protein genes were expressed in at least one of the six tissues examined, indicating their involvement in various physiological and developmental processes in B. rapa. Hierarchical clustering analysis of RNA-seq data divided them into seven major groups, one of which includes 231 members preferentially expressed in leaf, and constitutes then a panel of gene candidates for studying the genetic and molecular mechanisms of leafy head traits in Brassica crops. Our results lay the foundation for further studies on the classification, evolution and putative functions of RING finger protein genes in Brassica species.
Collapse
|
79
|
Byun MY, Cui LH, Oh TK, Jung YJ, Lee A, Park KY, Kang BG, Kim WT. Homologous U-box E3 Ubiquitin Ligases OsPUB2 and OsPUB3 Are Involved in the Positive Regulation of Low Temperature Stress Response in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:16. [PMID: 28163713 PMCID: PMC5247461 DOI: 10.3389/fpls.2017.00016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
Rice U-box E3 Ub ligases (OsPUBs) are implicated in biotic stress responses. However, their cellular roles in response to abiotic stress are poorly understood. In this study, we performed functional analyses of two homologous OsPUB2 and OsPUB3 in response to cold stress (4°C). OsPUB2 was up-regulated by high salinity, drought, and cold, whereas OsPUB3 was constitutively expressed. A subcellular localization assay revealed that OsPUB2 and OsPUB3 were localized to the exocyst positive organelle (EXPO)-like punctate structures. OsPUB2 was also localized to the nuclei. OsPUB2 and OsPUB3 formed a hetero-dimeric complex as well as homo-dimers in yeast cells and in vitro. OsPUB2/OsPUB3 exhibited self-ubiquitination activities in vitro and were rapidly degraded in the cell-free extracts with apparent half-lives of 150-160 min. This rapid degradation of OsPUB2/OsPUB3 was delayed in the presence of the crude extracts of cold-treated seedlings (apparent half-lives of 200-280 min). Moreover, a hetero-dimeric form of OsPUB2/OsPUB3 was more stable than the homo-dimers. These results suggested that OsPUB2 and OsPUB3 function coordinately in response to cold stress. OsPUB2- and OsPUB3-overexpressing transgenic rice plants showed markedly better tolerance to cold stress than did the wild-type plants in terms of survival rates, chlorophyll content, ion leakage, and expression levels of cold stress-inducible marker genes. Taken together, these results suggested that the two homologous rice U-box E3 Ub ligases OsPUB2 and OsPUB3 are positive regulators of the response to cold stress.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Tae Kyung Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ye-Jin Jung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Andosung Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Bin Goo Kang
- ReSEAT Program, Korea Institute of Science and Technology Information Seoul, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| |
Collapse
|
80
|
Li Y, Fei X, Wu X, Deng X. Iron deficiency response gene Femu2 plays a positive role in protecting Chlamydomonas reinhardtii against salt stress. Biochim Biophys Acta Gen Subj 2017; 1861:3345-3354. [DOI: 10.1016/j.bbagen.2016.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
81
|
Chen S, Zhao H, Wang M, Li J, Wang Z, Wang F, Liu A, Ahammed GJ. Overexpression of E3 Ubiquitin Ligase Gene AdBiL Contributes to Resistance against Chilling Stress and Leaf Mold Disease in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1109. [PMID: 28713400 PMCID: PMC5492635 DOI: 10.3389/fpls.2017.01109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/08/2017] [Indexed: 05/11/2023]
Abstract
Ubiquitination is a common regulatory mechanism, playing a critical role in diverse cellular and developmental processes in eukaryotes. However, a few reports on the functional correlation between E3 ubiquitin ligases and reactive oxygen species (ROS) or reactive nitrogen species (RNS) metabolism in response to stress are currently available in plants. In the present study, the E3 ubiquitin ligase gene AdBiL (Adi3 Binding E3 Ligase) was introduced into tomato line Ailsa Craig via Agrobacterium-mediated method. Transgenic lines were confirmed for integration into the tomato genome using PCR. Transcription of AdBiL in various transgenic lines was determined using real-time PCR. Evaluation of stress tolerance showed that T1 generation of transgenic tomato lines showed only mild symptoms of chilling injury as evident by higher biomass accumulation and chlorophyll content than those of non-transformed plants. Compared with wild-type plants, the contents of AsA, AsA/DHA, GSH and the activity of GaILDH, γ-GCS and GSNOR were increased, while H2O2, [Formula: see text], MDA, NO, SNOs, and GSNO accumulations were significantly decreased in AdBiL overexpressing plants in response to chilling stress. Furthermore, transgenic tomato plants overexpressing AdBiL showed higher activities of enzymes such as G6PDH, 6PGDH, NADP-ICDH, and NADP-ME involved in pentose phosphate pathway (PPP). The transgenic tomato plants also exhibited an enhanced tolerance against the necrotrophic fungus Cladosporium fulvum. Tyrosine nitration protein was activated in the plants infected with leaf mold disease, while the inhibition could be recovered in AdBiL gene overexpressing lines. Taken together, our results revealed a possible physiological role of AdBiL in the activation of the key enzymes of AsA-GSH cycle, PPP and down-regulation of GSNO reductase, thereby reducing oxidative and nitrosative stress in plants. This study demonstrates an optimized transgenic strategy using AdBiL gene for crop improvement against biotic and abiotic stress factors.
Collapse
Affiliation(s)
- Shuangchen Chen
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | - Hongjiao Zhao
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Mengmeng Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Jidi Li
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Zhonghong Wang
- Department of Plant Science, Tibet Agriculture and Animal Husbandry CollegeLinzhi, China
| | - Fenghua Wang
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
| | - Airong Liu
- College of Forestry, Henan University of Science and TechnologyLuoyang, China
- *Correspondence: Shuangchen Chen, Airong Liu,
| | | |
Collapse
|
82
|
Yang W, Zhang W, Wang X. Post-translational control of ABA signalling: the roles of protein phosphorylation and ubiquitination. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:4-14. [PMID: 27767245 PMCID: PMC5253474 DOI: 10.1111/pbi.12652] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 05/05/2023]
Abstract
The plant phytohormone abscisic acid (ABA) plays significant roles in integrating environmental signals with embryogenesis, germination, seedling establishment, the floral transition and the adaptation of plants to stressful environments by modulating stomatal movement and stress-responsive gene expression. ABA signalling consists of ABA perception, signal transduction and ABA-induced responses. ABA receptors such as members of the PYR/PYL family, group A type 2C protein phosphatases (as negative regulators), SnRK2 protein kinases (as positive regulators), bZIP transcription factors and ion channels are key components of ABA signalling. Post-translational modifications, including dephosphorylation, phosphorylation and ubiquitination, play important roles in regulating ABA signalling. In this review, we focus on the roles of post-translational modifications in ABA signalling. The studies presented provide a detailed picture of the ABA signalling network.
Collapse
Affiliation(s)
- Wenqi Yang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Wei Zhang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Xiaoxue Wang
- Rice Research InstituteShenyang Agricultural UniversityShenyangChina
| |
Collapse
|
83
|
Seo DH, Ahn MY, Park KY, Kim EY, Kim WT. The N-Terminal UND Motif of the Arabidopsis U-Box E3 Ligase PUB18 Is Critical for the Negative Regulation of ABA-Mediated Stomatal Movement and Determines Its Ubiquitination Specificity for Exocyst Subunit Exo70B1. THE PLANT CELL 2016; 28:2952-2973. [PMID: 27956469 PMCID: PMC5240735 DOI: 10.1105/tpc.16.00347] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/18/2016] [Accepted: 12/09/2016] [Indexed: 05/20/2023]
Abstract
The Arabidopsis thaliana U-box E3 ligases PUB18/PUB19 and PUB22/PUB23 are negative regulators of drought stress responses. PUB18/PUB19 regulate the drought stress response in an abscisic acid (ABA)-dependent manner, whereas PUB22/PUB23 regulate this response in an ABA-independent manner. A major structural difference between PUB18/PUB19 and PUB22/PUB23 is the presence of the UND (U-box N-terminal domain). Here, we focused on elucidating the molecular mechanism that mediates the functional difference between PUB18 and PUB22 and found that the UNDPUB18 was critically involved in the negative regulation of ABA-mediated stomatal movements. Exo70B1, a subunit of the exocyst complex, was identified as a target of PUB18, whereas Exo70B2 was a substrate of PUB22. However, the ∆UND-PUB18 derivative failed to ubiquitinate Exo70B1, but ubiquitinated Exo70B2. By contrast, the UNDPUB18-PUB22 chimeric protein ubiquitinated Exo70B1 instead of Exo70B2, suggesting that the ubiquitination specificities of PUB18 and PUB22 to Exo70B1 and Exo70B2, respectively, are dependent on the presence or absence of the UNDPUB18 motif. The ABA-insensitive phenotypes of the pub18 pub19 exo70b1 triple mutant were reminiscent of those of exo70b1 rather than pub18 pub19, indicating that Exo70B1 functions downstream of PUB18. Overall, our results suggest that the UNDPUB18 motif is crucial for the negative regulation of ABA-dependent stomatal movement and for determination of its ubiquitination specificity to Exo70B1.
Collapse
Affiliation(s)
- Dong Hye Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Min Yong Ahn
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
84
|
Park C, Lim CW, Lee SC. The Pepper RING-Type E3 Ligase, CaAIP1, Functions as a Positive Regulator of Drought and High Salinity Stress Responses. PLANT & CELL PHYSIOLOGY 2016; 57:2202-2212. [PMID: 27503217 DOI: 10.1093/pcp/pcw139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/29/2016] [Indexed: 05/20/2023]
Abstract
Plant adaptive responses to osmotic stress are co-ordinated by restriction of growth and developmental processes and by molecular and physiological activities. The phytohormone ABA is the primary regulator that induces and responds to osmotic stress, and its sensitivity markedly influences osmotic stress tolerance levels. Several E3 ubiquitin ligases act as positive or negative regulators of ABA, thereby mediating sensitivity to osmotic stress in higher plants. Here, we report that the C3H2C3-type RING finger E3 ligase, CaAIP1, regulates osmotic stress responses via ABA-mediated signaling. CaAIP1 contains a RING finger motif, which functions during attachment of ubiquitins to the target proteins. Expression of CaAIP1 was induced by ABA, drought and NaCl treatments, suggesting its role in the osmotic stress response. CaAIP1-silenced pepper plants displayed a drought-sensitive phenotype characterized by a high level of transpirational water loss in the drought-treated leaves. CaAIP1-overexpressing (OX) plants exhibited increased sensitivity to ABA, but an NaCl- and mannitol-tolerant phenotype during seed germination and seedling growth. CaAIP1-OX plants further displayed enhanced tolerance to drought stress, characterized by low levels of transpirational water loss via increased stomatal closure and leaf temperature. Our data indicate that CaAIP1 is a positive regulator of the osmotic stress tolerance mechanism.
Collapse
Affiliation(s)
- Chanmi Park
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea
- These authors contributed equally to this work
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea
- These authors contributed equally to this work
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
85
|
Liu Y, Zhang X, Zhu S, Zhang H, Li Y, Zhang T, Sun J. Overexpression of GhSARP1 encoding a E3 ligase from cotton reduce the tolerance to salt in transgenic Arabidopsis. Biochem Biophys Res Commun 2016; 478:1491-6. [PMID: 27402266 DOI: 10.1016/j.bbrc.2016.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/17/2022]
Abstract
Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity. Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton.
Collapse
Affiliation(s)
- Yongchang Liu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Xinyu Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Shouhong Zhu
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Hao Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yanjun Li
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Tao Zhang
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Jie Sun
- College of Agriculture, The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China.
| |
Collapse
|
86
|
Du D, Gao X, Geng J, Li Q, Li L, Lv Q, Li X. Identification of Key Proteins and Networks Related to Grain Development in Wheat (Triticum aestivum L.) by Comparative Transcription and Proteomic Analysis of Allelic Variants in TaGW2-6A. FRONTIERS IN PLANT SCIENCE 2016; 7:922. [PMID: 27446152 PMCID: PMC4923154 DOI: 10.3389/fpls.2016.00922] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/10/2016] [Indexed: 05/24/2023]
Abstract
In wheat, coding region allelic variants of TaGW2-6A are closely associated with grain width and weight, but the genetic mechanisms involved remain unclear. Thus, to obtain insights into the key functions regulated by TaGW2-6A during wheat grain development, we performed transcriptional and proteomic analyses of TaGW2-6A allelic variants. The transcription results showed that the TaGW2-6A allelic variants differed significantly by several orders of magnitude. Each allelic variant of TaGW2-6A reached its first transcription peak at 6 days after anthesis (DAA), but the insertion type TaGW2-6A allelic variant reached its second peak earlier than the normal type, i.e., at 12 DAA rather than 20 DAA. In total, we identified 228 differentially accumulated protein spots representing 138 unique proteins by two-dimensional gel electrophoresis and tandem MALDI-TOF/TOF-MS in these three stages. Based on the results, we found some key proteins that are closely related to wheat grain development. The results of this analysis improve our understanding of the genetic mechanisms related to TaGW2-6A during wheat grain development as well as providing insights into the biological processes involved in seed formation.
Collapse
|
87
|
Li M, Li Y, Zhao J, Liu H, Jia S, Li J, Zhao H, Han S, Wang Y. GpDSR7, a Novel E3 Ubiquitin Ligase Gene in Grimmia pilifera Is Involved in Tolerance to Drought Stress in Arabidopsis. PLoS One 2016; 11:e0155455. [PMID: 27228205 PMCID: PMC4882056 DOI: 10.1371/journal.pone.0155455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/28/2016] [Indexed: 11/18/2022] Open
Abstract
The growth and development of plants under drought stress depends mainly on the expression levels of various genes and modification of proteins. To clarify the molecular mechanism of drought-tolerance of plants, suppression subtractive hybridisation cDNA libraries were screened to identify drought-stress-responsive unigenes in Grimmia pilifera, and a novel E3 ubiquitin ligase gene, GpDSR7, was identified among the 240 responsive unigenes. GpDSR7 expression was induced by various abiotic stresses, particularly by drought. GpDSR7 displayed E3 ubiquitin ligase activity in vitro and was exclusively localised on the ER membrane in Arabidopsis mesophyll protoplasts. GpDSR7-overexpressing transgenic Arabidopsis plants showed a high water content and survival ratio under drought stress. Moreover, the expression levels of some marker genes involved in drought stress were higher in the transgenic plants than in wild-type plants. These results suggest that GpDSR7, an E3 ubiquitin ligase, is involved in tolerance to drought stress at the protein modification level.
Collapse
Affiliation(s)
- Mengmeng Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yihao Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Junyi Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Hai Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shenghua Jia
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jie Li
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
88
|
Kim EY, Park KY, Seo YS, Kim WT. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses. PLANT PHYSIOLOGY 2016; 170:2494-510. [PMID: 26903535 PMCID: PMC4825120 DOI: 10.1104/pp.16.00165] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/18/2016] [Indexed: 05/19/2023]
Abstract
Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed.
Collapse
Affiliation(s)
- Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Young Sam Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
89
|
Yu F, Wu Y, Xie Q. Ubiquitin-Proteasome System in ABA Signaling: From Perception to Action. MOLECULAR PLANT 2016; 9:21-33. [PMID: 26455462 DOI: 10.1016/j.molp.2015.09.015] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 05/18/2023]
Abstract
Protein post-translational modification (PTM) by ubiquitination has been observed during many aspects of plant growth, development, and stress responses. The ubiquitin-proteasome system precisely regulates phytohormone signaling by affecting protein activity, localization, assembly, and interaction ability. Abscisic acid (ABA) is a major phytohormone, and plays important roles in plants under normal or stressed growth conditions. The ABA signaling pathway is composed of phosphatases, kinases, transcription factors, and membrane ion channels. It has been reported that multiple ABA signaling transducers are subjected to the regulations by ubiquitination. In particular, recent studies have identified different types of E3 ligases that mediate ubiquitination of ABA receptors in different cell compartments. This review focuses on modulation of these components by monoubiquitination or polyubiquitination that occurs in the plasma membrane, endomembranes, and from the cytosol to the nucleus; this implies the existence of retrograde and trafficking processes that are regulated by ubiquitination in ABA signaling. A number of single-unit E3 ligases, components of multi-subunit E3 ligases, E2s, and specific subunits of the 26S proteasome involved in ABA signal regulation are discussed. Dissecting the precise functions of ubiquitination in the ABA pathway may help us understand key factors in the signaling of other phytohormones regulated by ubiquitination and other types of PTMs.
Collapse
Affiliation(s)
- Feifei Yu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing 100101, P. R. China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
90
|
Yang L, Liu Q, Liu Z, Yang H, Wang J, Li X, Yang Y. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:67-80. [PMID: 25913143 DOI: 10.1111/jipb.12364] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/23/2015] [Indexed: 05/20/2023]
Abstract
Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
- The Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qiaohong Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hao Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
91
|
Gao Y, Li MY, Zhao J, Zhang YC, Xie QJ, Chen DH. Genome-wide analysis of RING finger proteins in the smallest free-living photosynthetic eukaryote Ostreococus tauri. Mar Genomics 2015; 26:51-61. [PMID: 26751716 DOI: 10.1016/j.margen.2015.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/21/2015] [Accepted: 12/22/2015] [Indexed: 11/19/2022]
Abstract
RING finger proteins and ubiquitination marks are widely involved in diverse aspects of growth and development, biological processes, and stress or environmental responses. As the smallest free-living photosynthetic eukaryote known so far, the green alga Ostreococus tauri has become an excellent model for investigating the origin of different gene families in the green lineage. Here, 65 RING domains in 65 predicted proteins were identified from O. tauri and on the basis of one or more substitutions at the metal ligand positions and spacing between them they were divided into eight canonical or modified types (RING-CH, -H2, -v, -C2, -C3HCHC2, -C2HC5, -C3GC3S, and -C2SHC4), in which the latter four were newly identified and might represent the intermediate states between RING domain and other similar domains, respectively. RING finger proteins were classified into eight classes based on the presence of additional domains, including RING-Only, -Plus, -C3H1, -PHD, -WD40, -PEX, -TM, and -DEXDc classes. These RING family genes usually lack introns and are distributed over 17 chromosomes. In addition, 29 RING-finger proteins in O. tauri share different degrees of homology with those in the model flowering plant Arabidopsis, indicating they might be necessary for the basic survival of free-living eukaryotes. Therefore, our results provide new insight into the general classification and evolutionary conservation of RING domain-containing proteins in O. tauri.
Collapse
Affiliation(s)
- Yan Gao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Ming-Yi Li
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Zhao
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Yan-Cui Zhang
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Qiu-Jiao Xie
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Hong Chen
- Key Laboratory of Education Department of Hunan Province on Plant Genetics and Molecular Biology, Hunan Agricultural University, Changsha 410128, China; College of Bioscience and Biotechnology, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
92
|
Byun MY, Cui LH, Kim WT. Suppression of OsKu80 results in defects in developmental growth and increased telomere length in rice (Oryza sativa L.). Biochem Biophys Res Commun 2015; 468:857-62. [PMID: 26590017 DOI: 10.1016/j.bbrc.2015.11.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
Abstract
The Ku70-Ku80 heterodimer plays a critical role in the maintenance of genomic stability in humans and yeasts. In this report, we identified and characterized OsKu80 in rice, a model monocot crop. OsKu80 forms a heterodimer with OsKu70 in yeast and plant cells, as demonstrated by yeast two-hybrid, in vivo co-immunoprecipitation, and bimolecular fluorescence complementation assays. RNAi-mediated knock-down T3 transgenic rice plants (Ubi:RNAi-OsKu80) displayed a retarded growth phenotype at the post-germination stage. In addition, the Ubi:RNAi-OsKu80 knock-down progeny exhibited noticeably increased telomere length as compared to wild-type rice. These results are discussed with the idea that OsKu80 plays a role in developmental growth and telomere length regulation in rice plants.
Collapse
Affiliation(s)
- Mi Young Byun
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Li Hua Cui
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|
93
|
Suh JY, Kim SJ, Oh TR, Cho SK, Yang SW, Kim WT. Arabidopsis Tóxicos en Levadura 78 (AtATL78) mediates ABA-dependent ROS signaling in response to drought stress. Biochem Biophys Res Commun 2015; 469:8-14. [PMID: 26612255 DOI: 10.1016/j.bbrc.2015.11.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 11/14/2015] [Indexed: 11/26/2022]
Abstract
Plants have developed a variety of complicated responses to cope with drought, one of the most challenging environmental stresses. As a quick response, plants rapidly inhibit stomatal opening under the control of abscisic acid (ABA) signaling pathway, in order to preserve water. Here, we report that Arabidopsis Tóxicos en Levadura (ATL), a RING-type E3 ubiquitin ligase, mediates the ABA-dependent stomatal closure. In contrast to wild-type plants, the stomatal closure was fully impaired in atatl78 mutant plants even in the presence of exogenous ABA and reactive oxygen species (ROS). Besides, under high concentrations of Ca(2+), a down-stream signaling molecule of ABA signaling pathway, atatl78 mutant plants successfully closed the pores. Furthermore, AtATL78 protein indirectly associated with catalases and the deficiency of AtATL78 led the reduction of catalase activity and H2O2, implying the function of AtATL78 in the modulation of ROS activity. Based on these results, we suggest that AtATL78 possibly plays a role in promoting ROS-mediated ABA signaling pathway during drought stress.
Collapse
Affiliation(s)
- Ji Yeon Suh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Soo Jin Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Tae Rin Oh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea; Section of Plant Biochemistry, Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Copenhagen, Denmark.
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea.
| |
Collapse
|
94
|
Lim SD, Jung CG, Park YC, Lee SC, Lee C, Lim CW, Kim DS, Jang CS. Molecular dissection of a rice microtubule-associated RING finger protein and its potential role in salt tolerance in Arabidopsis. PLANT MOLECULAR BIOLOGY 2015; 89:365-384. [PMID: 26358044 DOI: 10.1007/s11103-015-0375-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/02/2015] [Indexed: 06/05/2023]
Abstract
Although a number of RING E3 ligases in plants have been demonstrated to play key roles in a wide range of abiotic stresses, relatively few studies have detailed how RING E3 ligases exert their cellular actions. We describe Oryza sativa RING finger protein with microtubule-targeting domain 1 (OsRMT1), a functional RING E3 ligase that is likely involved in a salt tolerance mechanism. Functional characterization revealed that OsRMT1 undergoes homodimer formation and subsequently autoubiquitination-mediated protein degradation under normal conditions. By contrast, OsRMT1 is predominantly found in the nucleus and microtubules and its degradation is inhibited under salt stress. Domain dissection of OsRMT1 indicates that the N-terminal domain is required for microtubule targeting. Bimolecular fluorescence complementation analysis and degradation assay revealed that OsRMT1-interacted proteins localized in various organelles were degraded via the ubiquitin (Ub)/26S proteasome-dependent pathway. Interestingly, when OsRMT1 and its target proteins were co-expressed in N. benthamiana leaves, the protein-protein interactions appeared to take place mainly in the microtubules. Overexpression of OsRMT1 in Arabidopsis resulted in increased tolerance to salt stress. Our findings suggest that the abundance of microtubule-associated OsRMT1 is strictly regulated, and OsRMT1 may play a relevant role in salt stress response by modulating levels of its target proteins.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences Technology, Kangwon National University, Chuncheon, 200-713, Korea
| | - Chang Gyo Jung
- Department of Applied Plant Sciences Technology, Kangwon National University, Chuncheon, 200-713, Korea
| | - Yong Chan Park
- Department of Applied Plant Sciences Technology, Kangwon National University, Chuncheon, 200-713, Korea
| | - Sung Chul Lee
- School of Biological Sciences, Chung-Ang University, Seoul, 156-756, Korea
| | - Chanhui Lee
- Department of Plant Environmental New Resources, KyungHee University, Yongin, 446-701, Korea
| | - Chae Woo Lim
- School of Biological Sciences, Chung-Ang University, Seoul, 156-756, Korea
| | - Dong Sub Kim
- Adanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 580-185, Korea
| | - Cheol Seong Jang
- Department of Applied Plant Sciences Technology, Kangwon National University, Chuncheon, 200-713, Korea.
| |
Collapse
|
95
|
Ding S, Zhang B, Qin F. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. THE PLANT CELL 2015; 27:3228-44. [PMID: 26508764 PMCID: PMC4682294 DOI: 10.1105/tpc.15.00321] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1(T178A), a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1(T178D) phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation.
Collapse
Affiliation(s)
- Shuangcheng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
96
|
Kale SM, Jaganathan D, Ruperao P, Chen C, Punna R, Kudapa H, Thudi M, Roorkiwal M, Katta MA, Doddamani D, Garg V, Kishor PBK, Gaur PM, Nguyen HT, Batley J, Edwards D, Sutton T, Varshney RK. Prioritization of candidate genes in "QTL-hotspot" region for drought tolerance in chickpea (Cicer arietinum L.). Sci Rep 2015; 5:15296. [PMID: 26478518 PMCID: PMC4609953 DOI: 10.1038/srep15296] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/22/2015] [Indexed: 01/20/2023] Open
Abstract
A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea.
Collapse
Affiliation(s)
- Sandip M Kale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Deepa Jaganathan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India.,Osmania University, Department of Genetics, Hyderabad, 500007, India
| | - Pradeep Ruperao
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia.,University of Queensland, School of Agriculture and Food Science, Queensland, 4072, Australia
| | - Charles Chen
- Oklahoma State University, Department of Biochemistry and Molecular Biology, Stillwater, 74074, USA
| | - Ramu Punna
- Cornell University, Biotechnology Building, Ithaca, 14853, USA
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Mohan Avsk Katta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Dadakhalandar Doddamani
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Vanika Garg
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - P B Kavi Kishor
- Osmania University, Department of Genetics, Hyderabad, 500007, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India
| | - Henry T Nguyen
- University of Missouri, National Center for Soybean Biotechnology and Division of Plant Sciences, Columbia, 65211, USA
| | - Jacqueline Batley
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| | - David Edwards
- The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, 5001, Australia.,University of Adelaide, Australia and School of Agriculture, Adelaide, 5064, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Center of Excellence in Genomics (CEG), Hyderabad, 502324, India.,The University of Western Australia, School of Plant Biology and the Institute of Agriculture, Crawley, 6009, Australia
| |
Collapse
|
97
|
Lim CW, Hwang BK, Lee SC. Functional roles of the pepper RING finger protein gene, CaRING1, in abscisic acid signaling and dehydration tolerance. PLANT MOLECULAR BIOLOGY 2015; 89:143-56. [PMID: 26249046 DOI: 10.1007/s11103-015-0359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 08/04/2015] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to a variety of biotic and abiotic stresses, which include pathogens and conditions of high salinity, low temperature, and drought. Abscisic acid (ABA) is a major plant hormone involved in signal transduction pathways that mediate the defense response of plants to abiotic stress. Previously, we isolated Ring finger protein gene (CaRING1) from pepper (Capsicum annuum), which is associated with resistance to bacterial pathogens, accompanied by hypersensitive cell death. Here, we report a new function of the CaRING1 gene product in the ABA-mediated defense responses of plants to dehydration stress. The expression of the CaRING1 gene was induced in pepper leaves treated with ABA or exposed to dehydration or NaCl. Virus-induced gene silencing of CaRING1 in pepper plants exhibited low degree of ABA-induced stomatal closure and high levels of transpirational water loss in dehydrated leaves. These led to be more vulnerable to dehydration stress in CaRING1-silenced pepper than in the control pepper, accompanied by reduction of ABA-regulated gene expression and low accumulation of ABA and H2O2. In contrast, CaRING1-overexpressing transgenic plants showed enhanced sensitivity to ABA during the seedling growth and establishment. These plants were also more tolerant to dehydration stress than the wild-type plants because of high ABA accumulation, enhanced stomatal closure and increased expression of stress-responsive genes. Together, these results suggest that the CaRING1 acts as positive factor for dehydration tolerance in Arabidopsis by modulating ABA biosynthesis and ABA-mediated stomatal closing and gene expression.
Collapse
Affiliation(s)
- Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Korea
| | - Byung Kook Hwang
- School of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
98
|
Park C, Lim CW, Baek W, Lee SC. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response. PLANT & CELL PHYSIOLOGY 2015; 56:1808-19. [PMID: 26169196 DOI: 10.1093/pcp/pcv103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/03/2015] [Indexed: 05/08/2023]
Abstract
Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism.
Collapse
Affiliation(s)
- Chanmi Park
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| |
Collapse
|
99
|
Upadhyay A, Amanullah A, Chhangani D, Mishra R, Prasad A, Mishra A. Mahogunin Ring Finger-1 (MGRN1), a Multifaceted Ubiquitin Ligase: Recent Unraveling of Neurobiological Mechanisms. Mol Neurobiol 2015; 53:4484-96. [PMID: 26255182 DOI: 10.1007/s12035-015-9379-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022]
Abstract
In healthy cell, inappropriate accumulation of poor or damaged proteins is prevented by cellular quality control system. Autophagy and ubiquitin proteasome system (UPS) provides regular cytoprotection against proteotoxicity induced by abnormal or disruptive proteins. E3 ubiquitin ligases are crucial components in this defense mechanism. Mahogunin Ring Finger-1 (MGRN1), an E3 ubiquitin ligase of the Really Interesting New Gene (RING) finger family, plays a pivotal role in many biological and cellular mechanisms. Previous findings indicate that lack of functions of MGRN1 can cause spongiform neurodegeneration, congenital heart defects, abnormal left-right patterning, and mitochondrial dysfunctions in mice brains. However, the detailed molecular pathomechanism of MGRN1 in cellular functions and diseases is not well known. This article comprehensively represents the molecular nature, characterization, and functions of MGRN1; we also summarize possible beneficiary aspects of this novel E3 ubiquitin ligase. Here, we review recent literature on the role of MGRN1 in the neuro-pathobiological mechanisms, with precise focus on the processes of neurodegeneration, and thereby propose new lines of potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Deepak Chhangani
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342011, India.
| |
Collapse
|
100
|
Suh JY, Kim WT. Arabidopsis RING E3 ubiquitin ligase AtATL80 is negatively involved in phosphate mobilization and cold stress response in sufficient phosphate growth conditions. Biochem Biophys Res Commun 2015; 463:793-9. [PMID: 26086094 DOI: 10.1016/j.bbrc.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 12/17/2022]
Abstract
Phosphate (Pi) remobilization in plants is critical to continuous growth and development. AtATL80 is a plasma membrane (PM)-localized RING E3 ubiquitin (Ub) ligase that belongs to the Arabidopsis Tóxicos en Levadura (ATL) family. AtATL80 was upregulated by long-term low Pi (0-0.02 mM KH2PO4) conditions in Arabidopsis seedlings. AtATL80-overexpressing transgenic Arabidopsis plants (35S:AtATL80-sGFP) displayed increased phosphorus (P) accumulation in the shoots and lower biomass, as well as reduced P-utilization efficiency (PUE) under high Pi (1 mM KH2PO4) conditions compared to wild-type plants. The loss-of-function atatl80 mutant line exhibited opposite phenotypic traits. The atatl80 mutant line bolted earlier than wild-type plants, whereas AtATL80-overexpressors bloomed significantly later and produced lower seed yields than wild-type plants under high Pi conditions. Thus, AtATL80 is negatively correlated not only with P content and PUE, but also with biomass and seed yield in Arabidopsis. In addition, AtATL80-overexpressors were significantly more sensitive to cold stress than wild-type plants, while the atatl80 mutant line exhibited an increased tolerance to cold stress. Taken together, our results suggest that AtATL80, a PM-localized ATL-type RING E3 Ub ligase, participates in the Pi mobilization and cold stress response as a negative factor in Arabidopsis.
Collapse
Affiliation(s)
- Ji Yeon Suh
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea.
| |
Collapse
|