51
|
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2490-2504. [PMID: 32067033 PMCID: PMC7210760 DOI: 10.1093/jxb/eraa057] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/03/2020] [Indexed: 05/18/2023]
Abstract
Many plants synchronize their life cycles in response to changing seasons and initiate flowering under favourable environmental conditions to ensure reproductive success. To confer a robust seasonal response, plants use diverse genetic programmes that integrate environmental and endogenous cues and converge on central floral regulatory hubs. Technological advances have allowed us to understand these complex processes more completely. Here, we review recent progress in our understanding of genetic and molecular mechanisms that control flowering in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Atsuko Kinoshita
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Correspondence: or
| | - René Richter
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Australia
- Correspondence: or
| |
Collapse
|
52
|
Lu Y, Meng Y, Zeng J, Luo Y, Feng Z, Bian L, Gao S. Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice. BMC PLANT BIOLOGY 2020; 20:200. [PMID: 32384927 PMCID: PMC7206744 DOI: 10.1186/s12870-020-02417-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The interactions between Growth-regulating factors (GRFs) and GRF-Interacting Factors (GIFs) have been well demonstrated but it remains unclear whether different combinations of GRF and GIF play distinctive roles in the pathway downstream of the complex. RESULTS Here we showed that OsGRF1 and OsGIF1 synergistically regulate leaf growth in rice. The expression of OsGIF1 emerged in all tissues with much higher level while that of OsGRF1 appeared preferentially only in the stem tips containing shoot apical meristem (SAM) and younger leaves containing leaf primordium. Overexpression of an OsmiR396-resistant version of mOsGRF1 resulted in expanded leaves due to increased cell proliferation while knockdown of OsGRF1 displayed an opposite phenotype. Overexpression of OsGIF1 did not exhibit new phenotype while knockdown lines displayed pleiotropic growth defects including shrunken leaves. The crossed lines of mOsGRF1 overexpression and OsGIF1 knockdown still exhibited shrunk leaves, indicating that OsGIF1 is indispensable in leaf growth regulated by OsGRF1. The expression of OsGRF1 could be upregulated by gibberellins (GAs) and downregulated by various stresses while that of OsGIF1 could not. CONCLUSION Our results suggest that OsGIF1 is in an excessive expression in various tissues and play roles in various aspects of growth while OsGRF1 may specifically involve in leaf growth through titrating OsGIF1. Both internal and external conditions impacting leaf growth are likely via way of regulating the expression of OsGRF1.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jia Zeng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Ying Luo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Suyun Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
53
|
Lu Y, Feng Z, Meng Y, Bian L, Xie H, Mysore KS, Liang J. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 Regulating OsmiR396 Are Involved in Stem Elongation. PLANT PHYSIOLOGY 2020; 182:2213-2227. [PMID: 31953375 PMCID: PMC7140908 DOI: 10.1104/pp.19.01008] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 05/04/2023]
Abstract
GAs play key roles in controlling cell proliferation through the GIBBERELLIN INSENSITIVE DWARF1/DELLA-mediated pathway. However, how DELLA proteins affect downstream pathways is not well understood. Therefore, discovering the signaling events downstream of DELLAs is key to better understanding the roles of GAs in plant development. Here, we discovered that miR396 is regulated by SLENDER RICE1 (SLR1) in controlling cell proliferation. The positive response of rice (Oryza sativa) GROWTH-REGULATING FACTORs (OsGRFs) to GAs was found to be caused by a negative response of miR396 to GAs. miR396 acts downstream of SLR1 and upstream of GA-induced cell-cycle genes. Rice INDETERMINATE DOMAIN2 (OsIDD2) directly binds the promoter of OsmiR396a and can interact with SLR1 in vivo and in vitro. Rice lines overexpressing miR396a (miR396OE) or OsIDD2 (OsIDD2OE) displayed dwarfism resulting from higher abundance of miR396 RNA. However, the stem elongation of OsIDD2OE plants could be significantly stimulated by applying exogenous GA3, while that of miR396OE plants could not. Rice with OsIDD2 knocked down by RNA interference showed a slr1-like phenotype, in which the expression of miR396 was inhibited while its targets were enhanced. The protein levels of OsIDD2 were unaffected by GA in wild-type and OsIDD2OE plants, implying that OsIDD2 promotes the expression of miR396 and likely requires the coactivator of SLR1. Taken together, these results provided a close link between SLR1/OsIDD2 and GRFs via a negative regulator, miR396, and thus highlighted a molecular mechanism of GA-mediated cell proliferation in rice.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hong Xie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
54
|
Zheng Z, Wang N, Jalajakumari M, Blackman L, Shen E, Verma S, Wang MB, Millar AA. miR159 Represses a Constitutive Pathogen Defense Response in Tobacco. PLANT PHYSIOLOGY 2020; 182:2182-2198. [PMID: 32041907 PMCID: PMC7140937 DOI: 10.1104/pp.19.00786] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/24/2020] [Indexed: 05/11/2023]
Abstract
MicroR159 (miR159) regulation of GAMYB expression is highly conserved in terrestrial plants; however, its functional role remains poorly understood. In Arabidopsis (Arabidopsis thaliana), although GAMYB-like genes are constitutively transcribed during vegetative growth, their effects are suppressed by strong and constitutive silencing by miR159. GAMYB expression occurs only if miR159 function is inhibited, which results in detrimental pleiotropic defects, questioning the purpose of the miR159-GAMYB pathway. Here, miR159 function was inhibited in tobacco (Nicotiana tabacum) and rice (Oryza sativa) using miRNA MIM159 technology. Similar to observations in Arabidopsis, inhibition of miR159 in tobacco and rice resulted in pleiotropic defects including stunted growth, implying functional conservation of the miR159-GAMYB pathway among angiosperms. In MIM159 tobacco, transcriptome profiling revealed that genes associated with defense and programmed cell death were strongly activated, including a suite of 22 PATHOGENESIS-RELATED PROTEIN (PR) genes that were 100- to 1,000-fold upregulated. Constitutive expression of a miR159-resistant GAMYB transgene in tobacco resulted in phenotypes similar to that of MIM159 tobacco and activated PR gene expression, verifying the dependence of the above-mentioned changes on GAMYB expression. Consistent with the broad defense response, MIM159 tobacco appeared immune to Phytophthora infection. These findings suggest that the tobacco miR159-GAMYB pathway functions in the biotic defense response, which becomes activated upon miR159 inhibition. However, PR gene expression was not upregulated in Arabidopsis or rice when miR159 was inhibited, suggesting that miR159-GAMYB pathway functional differences exist between species, or factors in addition to miR159 inhibition are required in Arabidopsis and rice to activate this broad defense response.
Collapse
Affiliation(s)
- Zihui Zheng
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Naiqi Wang
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Meachery Jalajakumari
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Leila Blackman
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Enhui Shen
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Saurabh Verma
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory 2601, Australia
| | - Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
55
|
Lunardon A, Johnson NR, Hagerott E, Phifer T, Polydore S, Coruh C, Axtell MJ. Integrated annotations and analyses of small RNA-producing loci from 47 diverse plants. Genome Res 2020; 30:497-513. [PMID: 32179590 PMCID: PMC7111516 DOI: 10.1101/gr.256750.119] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/27/2020] [Indexed: 01/25/2023]
Abstract
Plant endogenous small RNAs (sRNAs) are important regulators of gene expression. There are two broad categories of plant sRNAs: microRNAs (miRNAs) and endogenous short interfering RNAs (siRNAs). MicroRNA loci are relatively well-annotated but compose only a small minority of the total sRNA pool; siRNA locus annotations have lagged far behind. Here, we used a large data set of published and newly generated sRNA sequencing data (1333 sRNA-seq libraries containing more than 20 billion reads) and a uniform bioinformatic pipeline to produce comprehensive sRNA locus annotations of 47 diverse plants, yielding more than 2.7 million sRNA loci. The two most numerous classes of siRNA loci produced mainly 24- and 21-nucleotide (nt) siRNAs, respectively. Most often, 24-nt-dominated siRNA loci occurred in intergenic regions, especially at the 5′-flanking regions of protein-coding genes. In contrast, 21-nt-dominated siRNA loci were most often derived from double-stranded RNA precursors copied from spliced mRNAs. Genic 21-nt-dominated loci were especially common from disease resistance genes, including from a large number of monocots. Individual siRNA sequences of all types showed very little conservation across species, whereas mature miRNAs were more likely to be conserved. We developed a web server where our data and several search and analysis tools are freely accessible.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Nathan R Johnson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Emily Hagerott
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Tamia Phifer
- Department of Biology, Knox College, Galesburg, Illinois 61401, USA
| | - Seth Polydore
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Ceyda Coruh
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
56
|
Identification and profiling of microRNAs and differentially expressed genes during anther development between a genetic male-sterile mutant and its wildtype cotton via high-throughput RNA sequencing. Mol Genet Genomics 2020; 295:645-660. [PMID: 32172356 PMCID: PMC7203095 DOI: 10.1007/s00438-020-01656-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 02/19/2020] [Indexed: 11/10/2022]
Abstract
Genetic male sterility (GMS) facilitates hybrid seed production in crops including cotton (Gossypium hirsutum). However, the genetic and molecular mechanisms specifically involved in this developmental process are poorly understood. In this study, small RNA sequencing, degradome sequencing, and transcriptome sequencing were performed to analyze miRNAs and their target genes during anther development in a GMS mutant (‘Dong A’) and its fertile wildtype (WT). A total of 80 known and 220 novel miRNAs were identified, 71 of which showed differential expressions during anther development. A further degradome sequencing revealed a total of 117 candidate target genes cleaved by 16 known and 36 novel miRNAs. Based on RNA-seq, 24, 11, and 21 predicted target genes showed expression correlations with the corresponding miRNAs at the meiosis, tetrad and uninucleate stages, respectively. In addition, a large number of differentially expressed genes were identified, most of which were involved in sucrose and starch metabolism, carbohydrate metabolism, and plant hormone signal transduction based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results of our study provide valuable information for further functional investigations of the important miRNAs and target genes involved in genetic male sterility and advance our understanding of miRNA regulatory functions during cotton anther development.
Collapse
|
57
|
Ma J, Zhao P, Liu S, Yang Q, Guo H. The Control of Developmental Phase Transitions by microRNAs and Their Targets in Seed Plants. Int J Mol Sci 2020; 21:E1971. [PMID: 32183075 PMCID: PMC7139601 DOI: 10.3390/ijms21061971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/29/2020] [Accepted: 03/12/2020] [Indexed: 12/18/2022] Open
Abstract
Seed plants usually undergo various developmental phase transitions throughout their lifespan, mainly including juvenile-to-adult and vegetative-to-reproductive transitions, as well as developmental transitions within organ/tissue formation. MicroRNAs (miRNAs), as a class of small endogenous non-coding RNAs, are involved in the developmental phase transitions in plants by negatively regulating the expression of their target genes at the post-transcriptional level. In recent years, cumulative evidence has revealed that five miRNAs, miR156, miR159, miR166, miR172, and miR396, are key regulators of developmental phase transitions in plants. In this review, the advanced progress of the five miRNAs and their targets in regulating plant developmental transitions, especially in storage organ formation, are summarized and discussed, combining our own findings with the literature. In general, the functions of the five miRNAs and their targets are relatively conserved, but their functional divergences also emerge to some extent. In addition, potential research directions of miRNAs in regulating plant developmental phase transitions are prospected.
Collapse
Affiliation(s)
- Jingyi Ma
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Pan Zhao
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Shibiao Liu
- College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China;
| | - Qi Yang
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| | - Huihong Guo
- College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35, Tsing Hua East Road, Haidian District, Beijing 100083, China; (J.M.); (P.Z.); (Q.Y.)
| |
Collapse
|
58
|
Rao S, Balyan S, Jha S, Mathur S. Novel insights into expansion and functional diversification of MIR169 family in tomato. PLANTA 2020; 251:55. [PMID: 31974682 DOI: 10.1007/s00425-020-03346-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Expansion of MIR169 members by duplication and new mature forms, acquisition of new promoters, differential precursor-miRNA processivity and engaging novel targets increase the functional diversification of MIR169 in tomato. MIR169 family is an evolutionarily conserved miRNA family in plants. A systematic in-depth analysis of MIR169 family in tomato is lacking. We report 18 miR169 precursors, annotating new loci for MIR169a, b and d, as well as 3 novel mature isoforms (MIR169f/g/h). The family has expanded by both tandem- and segmental-duplication events during evolution. A tandem-pair MIR169b/b-1 and MIR169b-2/h is polycistronic in nature coding for three MIR169b isoforms and a new variant miR169h, that is evidently absent in the wild relatives S. pennellii and S. pimpinellifolium. Seven novel miR169 targets including RNA-binding protein, protein-phosphatase, aminotransferase, chaperone, tetratricopeptide-repeat-protein, and transcription factors ARF-9B and SEPELLATA-3 were established by efficient target cleavage in the presence of specific precursors as well as increased target abundance upon miR169 chelation by short-tandem-target-mimic construct in transient assays. Comparative antagonistic expression profiles of MIR169:target pairs suggest MIR169 family as ubiquitous regulator of various abiotic stresses (heat, cold, dehydration and salt) and developmental pathways. This regulation is partly brought about by acquisition of new promoters as demonstrated by promoter MIR169:GUS reporter assays as well as differential processivity of different precursors and miRNA cleavage efficiencies. Thus, the current study augments the functional horizon of MIR169 family with applications for stress tolerance in crops.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sarita Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
59
|
Gramzow L, Lobbes D, Innard N, Theißen G. Independent origin of MIRNA genes controlling homologous target genes by partial inverted duplication of antisense-transcribed sequences. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:401-419. [PMID: 31571291 DOI: 10.1111/tpj.14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Some microRNAs (miRNAs) are key regulators of developmental processes, mainly by controlling the accumulation of transcripts encoding transcription factors that are important for morphogenesis. MADS-box genes encode a family of transcription factors which control diverse developmental processes in flowering plants. Here we study the convergent evolution of two MIRNA (MIR) gene families, named MIR444 and MIR824, targeting members of the same clade of MIKCC -group MADS-box genes. We show that these two MIR genes most likely originated independently in monocots (MIR444) and in Brassicales (eudicots, MIR824). We provide evidence that, in both cases, the future target gene was transcribed in antisense prior to the evolution of the MIR genes. Both MIR genes then likely originated by a partial inverted duplication of their target genes, resulting in natural antisense organization of the newly evolved MIR gene and its target gene at birth. We thus propose a model for the origin of MIR genes, MEPIDAS (MicroRNA Evolution by Partial Inverted Duplication of Antisense-transcribed Sequences). MEPIDAS is a refinement of the inverted duplication hypothesis. According to MEPIDAS, a MIR gene evolves at a genomic locus at which the future target gene is also transcribed in the antisense direction. A partial inverted duplication at this locus causes the antisense transcript to fold into a stem-loop structure that is recognized by the miRNA biogenesis machinery to produce a miRNA that regulates the gene at this locus. Our analyses exemplify how to elucidate the origin of conserved miRNAs by comparative genomics and will guide future studies. OPEN RESEARCH BADGE: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://www.ncbi.nlm.nih.gov/genbank/.
Collapse
Affiliation(s)
- Lydia Gramzow
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Dajana Lobbes
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Nathan Innard
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743, Jena, Germany
| |
Collapse
|
60
|
Kamal H, Minhas FUAA, Tripathi D, Abbasi WA, Hamza M, Mustafa R, Khan MZ, Mansoor S, Pappu HR, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in Gossypium hirsutum. PLoS One 2019; 14:e0225876. [PMID: 31794580 PMCID: PMC6890265 DOI: 10.1371/journal.pone.0225876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Begomoviruses interfere with host plant machinery to evade host defense mechanism by interacting with plant proteins. In the old world, this group of viruses are usually associated with betasatellite that induces severe disease symptoms by encoding a protein, βC1, which is a pathogenicity determinant. Here, we show that βC1 encoded by Cotton leaf curl Multan betasatellite (CLCuMB) requires Gossypium hirsutum calmodulin-like protein 11 (Gh-CML11) to infect cotton. First, we used the in silico approach to predict the interaction of CLCuMB-βC1 with Gh-CML11. A number of sequence- and structure-based in-silico interaction prediction techniques suggested a strong putative binding of CLCuMB-βC1 with Gh-CML11 in a Ca+2-dependent manner. In-silico interaction prediction was then confirmed by three different experimental approaches: The Gh-CML11 interaction was confirmed using CLCuMB-βC1 in a yeast two hybrid system and pull down assay. These results were further validated using bimolecular fluorescence complementation system showing the interaction in cytoplasmic veins of Nicotiana benthamiana. Bioinformatics and molecular studies suggested that CLCuMB-βC1 induces the overexpression of Gh-CML11 protein and ultimately provides calcium as a nutrient source for virus movement and transmission. This is the first comprehensive study on the interaction between CLCuMB-βC1 and Gh-CML11 proteins which provided insights into our understating of the role of βC1 in cotton leaf curl disease.
Collapse
Affiliation(s)
- Hira Kamal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | | | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Wajid Arshad Abbasi
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Roma Mustafa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
61
|
Hu Z, Shen X, Xiang X, Cao J. Evolution of MIR159/319 genes in Brassica campestris and their function in pollen development. PLANT MOLECULAR BIOLOGY 2019; 101:537-550. [PMID: 31745746 DOI: 10.1007/s11103-019-00920-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 10/03/2019] [Indexed: 05/14/2023]
Abstract
MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality, Bra-MIR319c also can function in flower development. MiR159 and miR319 are extensively studied highly conserved microRNAs which play roles in vegetative development, reproduction, and hormone regulation. In this study, the effects of whole-genome triplication (WGT) on the evolution of the MIR159/319 family and the functional diversification of the genes were comprehensively investigated in Brassica campestris. We identified 11 MIR159/319 genes in B. campestris, which produced five mature sequences. After analyzing the precursor sequences and phylogenetic tree, we found that Bra-MIR159/319 have evolutionary conservatism. Furthermore, Bra-MIR159/319 show functional diversification after WGT, as indicated by their expression patterns and the cis-element in their promoter. GUS signal showed that Bra-MIR159a and Bra-MIR319c can be expressed in anther but in different development stages. In B. campestris, overexpressed MIR159a and MIR319c contribute to late anther development and promote pollen abortion. Moreover, Bra-MIR319c can partially assume the function of MIR319a in flower development.
Collapse
Affiliation(s)
- Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuping Shen
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
62
|
Lu Y, Deng S, Li Z, Wu J, Liu Q, Liu W, Yu WJ, Zhang Y, Shi W, Zhou J, Li H, Polle A, Luo ZB. Competing Endogenous RNA Networks Underlying Anatomical and Physiological Characteristics of Poplar Wood in Acclimation to Low Nitrogen Availability. PLANT & CELL PHYSIOLOGY 2019; 60:2478-2495. [PMID: 31368491 DOI: 10.1093/pcp/pcz146] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/10/2019] [Indexed: 05/27/2023]
Abstract
Although poplar plantations are often established on nitrogen (N)-poor soil, the physiological and molecular mechanisms underlying wood properties of poplars in acclimation to low N availability remain largely unknown. To investigate wood properties of poplars in acclimation to low N, Populus � canescens saplings were exposed to either 50 (low N) or 500 (normal N) �M NH4NO3 for 2 months. Low N resulted in decreased xylem width and cell layers of the xylem (the number of cells counted along the ray parenchyma on the stem cross section), narrower lumina of vessels and fibers, greater thickness of double fiber walls (the walls between two adjacent fiber cells), more hemicellulose and lignin deposition, and reduced cellulose accumulation in poplar wood. Consistently, concentrations of gibberellins involved in cell size determination and the abundance of various metabolites including amino acids, carbohydrates and precursors for cell wall biosynthesis were decreased in low N-supplied wood. In line with these anatomical and physiological changes, a number of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) were significantly differentially expressed. Competing endogenous RNA regulatory networks were identified in the wood of low N-treated poplars. Overall, these results indicate that miRNAs-lncRNAs-mRNAs networks are involved in regulating wood properties and physiological processes of poplars in acclimation to low N availability.
Collapse
Affiliation(s)
- Yan Lu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Shurong Deng
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Zhuorong Li
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Jiangting Wu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Qifeng Liu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Wenzhe Liu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Wen-Jian Yu
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Yuhong Zhang
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Wenguang Shi
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Jing Zhou
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| | - Hong Li
- Postgraduate School, Chinese Academy of Forestry, Beijing, P. R. China
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Goettingen, B�sgenweg 2, G�ttingen, Germany
| | - Zhi-Bin Luo
- State key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, P. R. China
| |
Collapse
|
63
|
Xiong P, Schneider RF, Hulsey CD, Meyer A, Franchini P. Conservation and novelty in the microRNA genomic landscape of hyperdiverse cichlid fishes. Sci Rep 2019; 9:13848. [PMID: 31554838 PMCID: PMC6761260 DOI: 10.1038/s41598-019-50124-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/05/2019] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in the post-transcriptional control of messenger RNA (mRNA). These miRNA-mRNA regulatory networks are present in nearly all organisms and contribute to development, phenotypic divergence, and speciation. To examine the miRNA landscape of cichlid fishes, one of the most species-rich families of vertebrates, we profiled the expression of both miRNA and mRNA in a diverse set of cichlid lineages. Among these, we found that conserved miRNAs differ from recently arisen miRNAs (i.e. lineage specific) in average expression levels, number of target sites, sequence variability, and physical clustering patterns in the genome. Furthermore, conserved miRNA target sites tend to be enriched at the 5' end of protein-coding gene 3' UTRs. Consistent with the presumed regulatory role of miRNAs, we detected more negative correlations between the expression of miRNA-mRNA functional pairs than in random pairings. Finally, we provide evidence that novel miRNA targets sites are enriched in genes involved in protein synthesis pathways. Our results show how conserved and evolutionarily novel miRNAs differ in their contribution to the genomic landscape and highlight their particular evolutionary roles in the adaptive diversification of cichlids.
Collapse
Affiliation(s)
- Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
- Marine Ecology, Helmholtz-Zentrum für Ozeanforschung Kiel (GEOMAR), 24105 Kiel, Germany
| | - C Darrin Hulsey
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
64
|
Tirumalai V, Swetha C, Nair A, Pandit A, Shivaprasad PV. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4775-4792. [PMID: 31145783 PMCID: PMC6760283 DOI: 10.1093/jxb/erz264] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
MicroRNAs are a class of non-coding small RNAs involved in the negative regulation of gene expression, which play critical roles in developmental and metabolic pathways. Studies in several plants have identified a few microRNAs and other small RNAs that target regulators of the phenylpropanoid metabolic pathway called the MYB transcription factors. However, it is not well understood how sRNA-mediated regulation of MYBs influences the accumulation of specific secondary metabolites. Using sRNA sequencing, degradome analysis, mRNA sequencing, and proteomic analysis, we establish that grape lines with high anthocyanin content express two MYB-targeting microRNAs abundantly, resulting in the differential expression of specific MYB proteins. miR828 and miR858 target coding sequences of specific helix motifs in the mRNA sequences of MYB proteins. Targeting by miR828 caused MYB RNA decay and the production of a cascade of secondary siRNAs that depend on RNA-dependent RNA polymerase 6. MYB suppression and cascade silencing was more robust in grape lines with high anthocyanin content than in a flavonol-rich grape line. We establish that microRNA-mediated silencing targeted the repressor class of MYBs to promote anthocyanin biosynthesis in grape lines with high anthocyanins. We propose that this process regulates the expression of appropriate MYBs in grape lines to produce specific secondary metabolites.
Collapse
Affiliation(s)
- Varsha Tirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Chenna Swetha
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Ashwin Nair
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- SASTRA University, Thirumalaisamudram, Thanjavur, India
| | - Awadhesh Pandit
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
| | - Padubidri V Shivaprasad
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bangalore, India
- Correspondence:
| |
Collapse
|
65
|
Millar AA, Lohe A, Wong G. Biology and Function of miR159 in Plants. PLANTS 2019; 8:plants8080255. [PMID: 31366066 PMCID: PMC6724108 DOI: 10.3390/plants8080255] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
MicroR159 (miR159) is ancient, being present in the majority of land plants where it targets a class of regulatory genes called GAMYB or GAMYB-like via highly conserved miR159-binding sites. These GAMYB genes encode R2R3 MYB domain transcription factors that transduce the gibberellin (GA) signal in the seed aleurone and the anther tapetum. Here, GAMYB plays a conserved role in promoting the programmed cell death of these tissues, where miR159 function appears weak. By contrast, GAMYB is not involved in GA-signaling in vegetative tissues, but rather its expression is deleterious, leading to the inhibition of growth and development. Here, the major function of miR159 is to mediate strong silencing of GAMYB to enable normal growth. Highlighting this requirement of strong silencing are conserved RNA secondary structures associated with the miR159-binding site in GAMYB mRNA that promotes miR159-mediated repression. Although the miR159-GAMYB pathway in vegetative tissues has been implicated in a number of different functions, presently no conserved role for this pathway has emerged. We will review the current knowledge of the different proposed functions of miR159, and how this ancient pathway has been used as a model to help form our understanding of miRNA biology in plants.
Collapse
Affiliation(s)
- Anthony A Millar
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia.
| | - Allan Lohe
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| | - Gigi Wong
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
66
|
Paschoal AR, Lozada-Chávez I, Domingues DS, Stadler PF. ceRNAs in plants: computational approaches and associated challenges for target mimic research. Brief Bioinform 2019; 19:1273-1289. [PMID: 28575144 DOI: 10.1093/bib/bbx058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/27/2017] [Indexed: 11/13/2022] Open
Abstract
The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | - Douglas Silva Domingues
- Department of Botany, Institute of Biosciences, S~ao Paulo State University (UNESP) in Rio Claro, Brazil
| | | |
Collapse
|
67
|
Shao Y, Zhou HZ, Wu Y, Zhang H, Lin J, Jiang X, He Q, Zhu J, Li Y, Yu H, Mao C. OsSPL3, an SBP-Domain Protein, Regulates Crown Root Development in Rice. THE PLANT CELL 2019; 31:1257-1275. [PMID: 30940685 PMCID: PMC6588302 DOI: 10.1105/tpc.19.00038] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/08/2019] [Accepted: 03/29/2019] [Indexed: 05/18/2023]
Abstract
The major root system of cereals consists of crown roots (or adventitious roots), which are important for anchoring plants in the soil and for water and nutrient uptake. However, the molecular basis of crown root formation is largely unknown. Here, we isolated a rice (Oryza sativa) mutant with fewer crown roots, named lower crown root number1 (lcrn1). Map-based cloning revealed that lcrn1 is caused by a mutation of a putative transcription factor-coding gene, O. sativa SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (OsSPL3). We demonstrate that the point mutation in lcrn1 perturbs theO. sativa microRNA156 (OsmiR156)-directed cleavage of OsSPL3 transcripts, resulting in the mutant phenotype. Chromatin immunoprecipitation sequencing assays of OsSPL3 binding sites and RNA sequencing of differentially expressed transcripts in lcrn1 further identified potential direct targets of OsSPL3 in basal nodes, including a MADS-box transcription factor, OsMADS50. OsMADS50-overexpressing plants produced fewer crown roots, phenocopying lcrn1, while knocking out OsMADS50 in the lcrn1 background reversed this phenotype. We also show that OsSPL12, another OsmiR156 target gene, regulates OsMADS50 and crown root development. Taken together, our findings suggest a novel regulatory pathway in which the OsmiR156-OsSPL3/OsSPL12 module directly activates OsMADS50 in the node to regulate crown root development in rice.
Collapse
Affiliation(s)
- Yanlin Shao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Zhu Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Jian Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiuju He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianshu Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543, Singapore
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
68
|
Ma F, Liu Z, Huang J, Li Y, Kang Y, Liu X, Wang J. High-throughput sequencing reveals microRNAs in response to heat stress in the head kidney of rainbow trout (Oncorhynchus mykiss). Funct Integr Genomics 2019; 19:775-786. [PMID: 31076931 DOI: 10.1007/s10142-019-00682-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 02/11/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022]
Abstract
Recently, the research of animal microRNAs (miRNAs) has attracted wide attention for its regulatory effect in the development process and the response to abiotic stresses. Rainbow trout is a commercially and cold water fish species, and usually encounters heat stress, which affects its growth and leads to a huge economic loss. But there were few investigations about the roles of miRNAs in heat stress in rainbow trout. In this study, miRNAs of rainbow trout which were involved in heat stress were identified by high-throughput sequencing of six small RNA libraries from head kidney tissues under control (18 °C) and heat-treated (24 °C) conditions. A total of 392 conserved miRNAs and 989 novel miRNAs were identified, of which 78 miRNAs were expressed in different response to heat stress. Ten of these miRNAs were further validated by quantitative real-time PCR. In addition to, including 393 negative correlation miRNA-target gene pairs, several important regulatory pathways were involved in heat stress of the potential target genes, including protein processing in endoplasmic reticulum, NOD-like receptor signaling pathway, and phagosome. Our data significantly advance understanding of heat stress regulatory mechanism of miRNA in the head kidney of rainbow trout, which provide a useful resource for the cultivation of rainbow trout.
Collapse
Affiliation(s)
- Fang Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhe Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yongjuan Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoxia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jianfu Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
69
|
MiR-34 and MiR-200: Regulator of Cell Fate Plasticity and Neural Development. Neuromolecular Med 2019; 21:97-109. [DOI: 10.1007/s12017-019-08535-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 01/01/2023]
|
70
|
Liang C, Liu H, Hao J, Li J, Luo L. Expression profiling and regulatory network of cucumber microRNAs and their putative target genes in response to cucumber green mottle mosaic virus infection. Arch Virol 2019; 164:1121-1134. [PMID: 30799510 PMCID: PMC6420491 DOI: 10.1007/s00705-019-04152-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022]
Abstract
Cucumber green mottle mosaic virus (CGMMV) is an important pathogen of cucumber (Cucumis sativus). The molecular mechanisms mediating host-pathogen interactions are likely to be strongly influenced by microRNAs (miRNAs), which are known to regulate gene expression during the disease cycle. This study focused on 14 miRNAs (miR159, miR169, miR172, miR838, miR854, miR5658, csa-miRn1-3p, csa-miRn2-3p, csa-miRn3-3p, csa-miRn4-5p, csa-miRn5-5p, csa-miRn6-3p, csa-miRn7-5p and csa-miRn8-3p) and their target genes. The data collected was used to construct a regulatory network of miRNAs and target genes associated with cucumber-CGMMV interactions, which identified 608 potential target genes associated with all of the miRNAs except csa-miRn7-5p. Five of the miRNAs (miR159, miR838, miR854, miR5658 and csa-miRn6-3p) were found to be mutually linked by target genes, while another eight (miR169, miR172, csa-miRn1-3p, csa-miRn2-3p, csa-miRn3-3p, csa-miRn4-5p, csa-miRn5-5p and csa-miRn8-3p) formed subnetworks that did not display any connectivity with other miRNAs or their target genes. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to analyze the expression levels of the different miRNAs and their putative target genes in leaf, stem and root samples of cucumber over a 42-day period after inoculation with CGMMV. A positive correlation was found between some of the miRNAs and their respective target genes, although for most, the response varied greatly depending on the time point, indicating that additional factors are likely to be involved in the interaction between cucumber miRNAs and their target genes. Several miRNAs, including miR159 and csa-miRn6-3p, were linked to target genes that have been associated with plant responses to disease. A model linking miRNAs, their targets and downstream biological processes is proposed to indicate the roles of these miRNAs in the cucumber-CGMMV pathosystem.
Collapse
Affiliation(s)
- Chaoqiong Liang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Huawei Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, ME 04469 USA
| | - Jianqiang Li
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Laixin Luo
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 People’s Republic of China
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
71
|
Comparative genomics reveals origin of MIR159A–MIR159B paralogy, and complexities of PTGS interaction between miR159 and target GA-MYBs in Brassicaceae. Mol Genet Genomics 2019; 294:693-714. [DOI: 10.1007/s00438-019-01540-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
|
72
|
Gorshkov O, Chernova T, Mokshina N, Gogoleva N, Suslov D, Tkachenko A, Gorshkova T. Intrusive Growth of Phloem Fibers in Flax Stem: Integrated Analysis of miRNA and mRNA Expression Profiles. PLANTS (BASEL, SWITZERLAND) 2019; 8:E47. [PMID: 30791461 PMCID: PMC6409982 DOI: 10.3390/plants8020047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Phloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax (Linum usitatissimum L.) stem revealed all 124 known flax miRNA from 23 gene families and the potential targets of differentially expressed miRNAs. A comparison of the expression between phloem fibers at different developmental stages, and parenchyma and xylem tissues demonstrated that members of miR159, miR166, miR167, miR319, miR396 families were down-regulated in intrusively growing fibers. Some putative target genes of these miRNA families, such as those putatively encoding growth-regulating factors, an argonaute family protein, and a homeobox-leucine zipper family protein were up-regulated in elongating fibers. miR160, miR169, miR390, and miR394 showed increased expression. Changes in the expression levels of miRNAs and their target genes did not match expectations for the majority of predicted target genes. Taken together, poorly understood intrusive fiber elongation, the key process of phloem fiber development, was characterized from a miRNA-target point of view, giving new insights into its regulation.
Collapse
Affiliation(s)
- Oleg Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Tatyana Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| | - Natalia Gogoleva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
- Laboratory of Extreme Biology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kremlyovskaya Str., 18, 420021 Kazan, Russia.
| | - Dmitry Suslov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Alexander Tkachenko
- Department of Genetics and Biotechnology, Faculty of Biology, Saint Petersburg State University, Universiteskaya emb., 7/9, 199034 Saint Petersburg, Russia.
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia.
| |
Collapse
|
73
|
Sanz-Carbonell A, Marques MC, Bustamante A, Fares MA, Rodrigo G, Gomez G. Inferring the regulatory network of the miRNA-mediated response to biotic and abiotic stress in melon. BMC PLANT BIOLOGY 2019; 19:78. [PMID: 30777009 PMCID: PMC6379984 DOI: 10.1186/s12870-019-1679-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 02/07/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND MiRNAs have emerged as key regulators of stress response in plants, suggesting their potential as candidates for knock-in/out to improve stress tolerance in agricultural crops. Although diverse assays have been performed, systematic and detailed studies of miRNA expression and function during exposure to multiple environments in crops are limited. RESULTS Here, we present such pioneering analysis in melon plants in response to seven biotic and abiotic stress conditions. Deep-sequencing and computational approaches have identified twenty-four known miRNAs whose expression was significantly altered under at least one stress condition, observing that down-regulation was preponderant. Additionally, miRNA function was characterized by high scale degradome assays and quantitative RNA measurements over the intended target mRNAs, providing mechanistic insight. Clustering analysis provided evidence that eight miRNAs showed a broad response range under the stress conditions analyzed, whereas another eight miRNAs displayed a narrow response range. Transcription factors were predominantly targeted by stress-responsive miRNAs in melon. Furthermore, our results show that the miRNAs that are down-regulated upon stress predominantly have as targets genes that are known to participate in the stress response by the plant, whereas the miRNAs that are up-regulated control genes linked to development. CONCLUSION Altogether, this high-resolution analysis of miRNA-target interactions, combining experimental and computational work, Illustrates the close interplay between miRNAs and the response to diverse environmental conditions, in melon.
Collapse
Affiliation(s)
- Alejandro Sanz-Carbonell
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - María Carmen Marques
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Antonio Bustamante
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto Nacional de Investigaciones Agropecuarias (INIAP), Estación Experimental Pichilingue, Km5 vía Quevedo El Empalme, Mocache, Ecuador
| | - Mario A. Fares
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Guillermo Rodrigo
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad Politécnica de Valencia (UPV), CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
74
|
Nadiya F, Anjali N, Thomas J, Gangaprasad A, Sabu KK. Deep sequencing identified potential miRNAs involved in defence response, stress and plant growth characteristics of wild genotypes of cardamom. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:3-14. [PMID: 30098091 DOI: 10.1111/plb.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Cardamom has long been used as a food flavouring agent and in ayurvedic medicines for mouth ulcers, digestive problems and even depression. Extensive occurrence of pests and diseases adversely affect its cultivation and result in substantial reductions in total production and productivity. Numerous studies revealed the significant role of miRNAs in plant biotic stress responses. In the current study, miRNA profiling of cultivar and wild cardamom genotypes was performed using an Ion Proton sequencer. We identified 161 potential miRNAs representing 42 families, including monocot/tissue-specific and 14 novel miRNAs in both genotypes. Significant differences in miRNA family abundance between the libraries were observed in read frequencies. A total of 19 miRNAs (from known miRNAs) displayed a twofold difference in expression between wild and cultivar genotypes. We found 1168 unique potential targets for 40 known miRNA families in wild and 1025 potential targets for 42 known miRNA families in cultivar genotypes. The differential expression analysis revealed that most miRNAs identified were highly expressed in cultivars and, furthermore, lower expression of miR169 and higher expression of miR529 in wild cardamom proved evidence that wild genotypes have stronger drought stress tolerance and floral development than cultivars. Potential targets predicted for the newly identified miRNAs from the miRNA libraries of wild and cultivar cardamom genotypes involved in metabolic and developmental processes and in response to various stimuli. qRT-PCR confirmed miRNAs were differentially expressed between wild and cultivar genotypes. Furthermore, four target genes were validated experimentally to confirm miRNA-mRNA target pairing using RNA ligase-mediated 5' Rapid Amplification of cDNA Ends (5'RLM-RACE) PCR.
Collapse
Affiliation(s)
- F Nadiya
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - N Anjali
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - J Thomas
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| | - A Gangaprasad
- Department of Botany, University of Kerala, Thiruvananthapuram, India
| | - K K Sabu
- Jawaharlal Nehru Tropical Botanic Garden and Research Institute (JNTBGRI), Palode, Thiruvananthapuram, India
| |
Collapse
|
75
|
Aydinoglu F, Lucas SJ. Identification and expression profiles of putative leaf growth related microRNAs in maize (Zea mays L.) hybrid ADA313. Gene 2018; 690:57-67. [PMID: 30597233 DOI: 10.1016/j.gene.2018.12.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/17/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023]
Abstract
Throughout the plant life cycle, growth of new leaves is governed by cell division and cell expansion. During steady-state growth of the maize leaf, these processes are spatially separated between the meristem zone, consisting of dividing cells at the leaf base, the elongation zone, consisting of expanding cells moving upwards from the meristem, and the mature zone containing differentiated mature cells. Increased leaf size can be achieved through increasing cell number or cell size, for example by manipulating the genes controlling the transition between those zones. In this study, microRNA (miRNA) genes, which are a class of endogenous small, non-coding gene regulatory RNAs, were investigated in the growth zones, to gain insight into their role in the transition between cell division and cell expansion. A genome-wide survey was conducted using a miRNA-microarray and 59 miRNA genes were detected to be differentially expressed between the growth zones. miR160, miR166, miR168, miR172, miR319 and miR390 families were significantly up-regulated in the meristem relative to the elongation and mature zones. In contrast, expression of the miR167 and miR396 families was lower in the meristem and higher in the mature zone. Therefore, these were considered to be candidate growth-regulated miRNAs that control cell division processes indirectly by repressing target genes. The miR156, miR166, miR167, miR399, miR408 and miR2275 families were expressed most highly in the elongation zone, and so were classified as elongation-specific, with possible roles in switching from cell division to cell elongation during leaf differentiation. In silico target prediction analysis showed that these miRNAs target several transcription factors and metabolic genes, and a reciprocal relationship between the expression levels of miR319 and miR396 and their targets was confirmed by qRT-PCR. Furthermore, 12 candidate novel miRNAs were identified from the microarray data and computationally verified. Three out of twelve were also validated by qRT-PCR. These findings provide important information regarding the regulatory functions of miRNAs in controlling progression of growth mechanisms.
Collapse
Affiliation(s)
- Fatma Aydinoglu
- Gebze Technical University, Molecular Biology and Genetics Department, Kocaeli, Turkey.
| | - Stuart James Lucas
- Sabanci University Nanotechnology Research & Application Center (SUNUM), Istanbul, Turkey
| |
Collapse
|
76
|
Abstract
The mineralocorticoid hormone aldosterone is released by the adrenal glands in a homeostatic mechanism to regulate blood volume. Several cues elicit aldosterone release, and the long-term action of the hormone is to restore blood pressure and/or increase the retrieval of sodium from filtered plasma in the kidney. While the signaling cascade that results in aldosterone release is well studied, the impact of this hormone on tissues and cells in various organ systems is pleotropic. Emerging evidence indicates aldosterone may alter non-coding RNAs (ncRNAs) to integrate the hormonal response, and these ncRNAs may contribute to the heterogeneity of signaling outcomes in aldosterone target tissues. The best studied of the ncRNAs in aldosterone action are the small ncRNAs, microRNAs. MicroRNA expression is regulated by aldosterone stimulation, and microRNAs are able to modulate protein expression at all steps in the renin-angiotensin-aldosterone-signaling system. The discovery and synthesis of microRNAs will be briefly covered followed by a discussion of the reciprocal role of aldosterone/microRNA regulation, including misregulation of microRNA signaling in aldosterone-linked disease states.
Collapse
|
77
|
Qiu Z, He Y, Zhang Y, Guo J, Zhang L. Genome-wide identification and profiling of microRNAs in Paulownia tomentosa cambial tissues in response to seasonal changes. Gene 2018; 677:32-40. [PMID: 30036657 DOI: 10.1016/j.gene.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, have been shown to play essential roles in the regulation of gene expression at the post-transcriptional level. Although Paulownia tomentosa is an ecologically and economically important timber species due to its rapid growth, few efforts have focused on small RNAs (sRNAs) in the cambial tissues during winter and summer transition. In the present study, we identified 33 known miRNA families and 29 novel miRNAs which include 20 putative novel miRNAs* in P. tomentosa cambial tissues during winter and summer transition. Through differential expression analysis, we showed that 15 known miRNAs and 8 novel miRNAs were preferentially abundant in certain stage of cambial tissues. Based on the P. tomentosa mRNA transcriptome database, 1667 and 78 potential targets were predicted for 29 known and 20 novel miRNAs, respectively and the predicted targets are mostly transcription factors and functional genes. The targets of these miRNAs were enriched in "metabolic process" and "transcription regulation" by using Gene Ontology enrichment analysis. In addition, KEGG pathway analyses revealed the involvement of miRNAs in starch and sucrose metabolism and plant-pathogen interaction metabolism pathways. Noticeably, qRT-PCR expression analysis demonstrated that 9 miRNAs and their targets were existed a negative correlation in P. tomentosa cambial tissues. This study is the first to examine known and novel miRNAs and their potential targets in P. tomentosa cambial tissues during winter and summer transition and identify several candidate genes potentially regulating cambial phase transition, and thus provide a framework for further understanding of miRNAs functions in the regulation of cambial phase transition and wood formation in trees.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yanyan He
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Yimeng Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Junli Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
78
|
Zhu T, Corraze G, Plagnes-Juan E, Skiba-Cassy S. Circulating miRNA measurements are reflective of cholesterol-based changes in rainbow trout (Oncorhynchus mykiss). PLoS One 2018; 13:e0206727. [PMID: 30395627 PMCID: PMC6218197 DOI: 10.1371/journal.pone.0206727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which are known to posttranscriptionally regulate the expression of most genes in both animals and plants. Meanwhile, studies have shown that numbers of miRNAs are present in body fluids including the plasma. Despite the mode of action of these circulating miRNAs still remains unknown, they have been found to be promising biomarkers for disease diagnosis, prognosis and response to treatment. In order to evaluate the potential of miRNAs as non-invasive biomarkers in aquaculture, a time-course experiment was implemented to investigate the postprandial regulation of miRNAs levels in liver and plasma as well as the hepatic expression of genes involved in cholesterol metabolism. We showed that miR-1, miR-33a, miR-122, miR-128 and miR-223 were expressed in the liver of rainbow trout and present at detectable level in the plasma. We also demonstrated that hepatic expression of miR-1, miR-122 and miR-128 were regulated by feed intake and reached their highest levels 12 hours after the meal. Interestingly, we observed that circulating levels of miR-128 and miR-223 are subjected to postprandial regulations similar to that observed in their hepatic counterparts. Statistical correlations were observed between liver and plasma for miR-128 and miR-223 and between hepatic and circulating miR-122, miR-128 and miR-223 and expression of genes related to cholesterol synthesis and efflux or glucose phosphorylation. These results demonstrated that circulating miR-122, miR-128 and miR-223 are potential biomarkers of cholesterol metabolism in rainbow trout.
Collapse
Affiliation(s)
- Tengfei Zhu
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Geneviève Corraze
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Elisabeth Plagnes-Juan
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
| | - Sandrine Skiba-Cassy
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme Aquaculture, Saint Pée sur Nivelle, France
- * E-mail:
| |
Collapse
|
79
|
Megha S, Basu U, Joshi RK, Kav NNV. Physiological studies and genome-wide microRNA profiling of cold-stressed Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:1-17. [PMID: 30170322 DOI: 10.1016/j.plaphy.2018.08.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/26/2018] [Accepted: 08/21/2018] [Indexed: 05/27/2023]
Abstract
Temperature extremes, including cold, adversely impact plant growth and development. Plant responses to cold stress (CS) are regulated at both transcriptional and post-transcriptional levels. MicroRNAs (miRNAs), small non-coding RNAs, are known to be involved in post-transcriptional regulation of various developmental processes and metal stress in Brassica napus L. (canola), however, their role in response to CS is largely unknown. In this study, changes in various physiological parameters and endogenous abundance of miRNAs were characterized in spring canola seedlings (DH12075) exposed to 4 °C for 0-48 h. Cold stress induced electrolyte leakage, increased the levels of malondialdheyde and antioxidant enzymes and reduced photosynthetic efficiency. Using small RNA sequencing, 70 known and 126 novel miRNAs were identified in CS leaf tissues and among these, 25 known and 104 novel miRNAs were differentially expressed. Quantitative real-time (qRT) PCR analysis of eight selected miRNAs confirmed their CS responsiveness. Furthermore, the expression of six out of eight miRNAs exhibited an opposite trend in a winter variety of canola, 'Mendel', when compared to 'DH12075'. This first study on the B. napus miRNAome provides a framework for further functional analysis of these miRNAs and their targets in response to CS which may contribute towards the future development of cold resilient crops.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Raj Kumar Joshi
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
80
|
Lu Y, Feng Z, Liu X, Bian L, Xie H, Zhang C, Mysore KS, Liang J. MiR393 and miR390 synergistically regulate lateral root growth in rice under different conditions. BMC PLANT BIOLOGY 2018; 18:261. [PMID: 30373525 PMCID: PMC6206659 DOI: 10.1186/s12870-018-1488-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Plants have evolved excellent ability of flexibly regulating the growth of organs to adapt to changing environment, for example, the modulation of lateral root development in response to environmental stresses. Despite of fundamental discovery that some microRNAs are involved in this process, the molecular mechanisms of how these microRNAs work together are still largely unknown. RESULTS Here we show that miR390 induced by auxin promotes lateral root growth in rice. However, this promotion can be suppressed by miR393, which is induced by various stresses and ABA (Abscisic Acid). Results that miR393 responded to ABA stronger and earlier than other stresses implied that ABA likely is authentic factor for inducing miR393. The transgenic lines respectively over-expressing miR393 and OsTAS3a (Oryza sativa Trans-Acting Short RNA precursor 3a) displayed opposite phenotypes in lateral root growth. MiR390 was found to be dominantly expressed at lateral root primordia and roots tips while miR393 mainly expressed in the base part of roots at very low level. When miR393 was up-regulated by various stresses, miR390 expression level fell down. However, the risen expression level of miR390 induced by auxin didn't affect the expression of miR393 and its target OsTIR1 (Transport Inhibitor Response 1). Together with analysis of the two transgenic lines, we provide a model of how the growth of lateral roots in rice is regulated distinctively by the 2 microRNAs. CONCLUSION We propose that miR390 induced by auxin triggers the lateral root growth under normal growth conditions, meanwhile miR393 just lurks as a potentially regulative role; Once plants suffer from stresses, miR393 will be induced to negatively regulate miR390-mediated growth of lateral roots in rice.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou, 225009 China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Xuanyu Liu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Hong Xie
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou, 225009 China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Changlun Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | | | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
81
|
Vivek A. In silico identification and characterization of microRNAs based on EST and GSS in orphan legume crop, Lens culinaris medik. (Lentil). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2018.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
82
|
Threshold-dependent repression of SPL gene expression by miR156/miR157 controls vegetative phase change in Arabidopsis thaliana. PLoS Genet 2018; 14:e1007337. [PMID: 29672610 PMCID: PMC5929574 DOI: 10.1371/journal.pgen.1007337] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/01/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022] Open
Abstract
Vegetative phase change is regulated by a decrease in the abundance of the miRNAs, miR156 and miR157, and the resulting increase in the expression of their targets, SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. To determine how miR156/miR157 specify the quantitative and qualitative changes in leaf morphology that occur during vegetative phase change, we measured their abundance in successive leaves and characterized the phenotype of mutations in different MIR156 and MIR157 genes. miR156/miR157 decline rapidly between leaf 1&2 and leaf 3 and decrease more slowly after this point. The amount of miR156/miR157 in leaves 1&2 greatly exceeds the threshold required to specify their identity. Subsequent leaves have relatively low levels of miR156/miR157 and are sensitive to small changes in their abundance. In these later-formed leaves, the amount of miR156/miR157 is close to the threshold required to specify juvenile vs. adult identity; a relatively small decrease in the abundance of miR156/157 in these leaves produces a disproportionately large increase in SPL proteins and a significant change in leaf morphology. miR157 is more abundant than miR156 but has a smaller effect on shoot morphology and SPL gene expression than miR156. This may be attributable to the inefficiency with which miR157 is loaded onto AGO1, as well as to the presence of an extra nucleotide at the 5' end of miR157 that is mis-paired in the miR157:SPL13 duplex. miR156 represses different targets by different mechanisms: it regulates SPL9 by a combination of transcript cleavage and translational repression and regulates SPL13 primarily by translational repression. Our results offer a molecular explanation for the changes in leaf morphology that occur during shoot development in Arabidopsis and provide new insights into the mechanism by which miR156 and miR157 regulate gene expression. Leaves produced at different stages in the development of an Arabidopsis shoot vary predictably in shape and size. Previous studies have shown that this phenomenon is regulated by variation in the abundance of the miRNAs, miR156 and miR157, but how miR156/miR157 produce the changes in leaf morphology that occur during shoot development is not understood. To answer this question, we measured the abundance of miR156/miR157 and their SPL targets in successive leaf primordia, and characterized the effect of variation in the abundance of miR156/miR157 on leaf morphology and the abundance of SPL transcripts and SPL proteins. miR156/miR157 are present at very high levels in the first two rosette leaves, where they act as buffers to stabilize leaf identity. They are present at lower and steadily declining levels in subsequent leaves, where they act to modulate leaf morphogenesis. In these later-formed leaves, a small decrease in the abundance of miR156/miR157 produces a disproportionately large increase in SPL activity, primarily as a result of the increased translation of SPL transcripts. Our results provide a new view of vegetative phase change in Arabidopsis and the mechanism by which miR156 and miR157 regulate this process.
Collapse
|
83
|
Liu C, Su C, Chen Y, Li G. MiR-144-3p promotes the tumor growth and metastasis of papillary thyroid carcinoma by targeting paired box gene 8. Cancer Cell Int 2018; 18:54. [PMID: 29632436 PMCID: PMC5885360 DOI: 10.1186/s12935-018-0550-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Paired box gene 8 (PAX8) is expressed in and indispensable to thyroid development. MiR-144-3p is found dys-regulated in cancers, and it can block the expression of target gens. This study sought to understand the effect of MiR-144-3p in papillary thyroid carcinoma (PTC) as well as the associated mechanisms. Materials and methods Real-time PCR, immunohistochemical and Western blot assays were performed to examine the expression of target miRNA and/or genes. CCK-8 and flow cytometry analysis was used to respectively test cell growth, cell cycle progression and apoptosis. Luciferase reporter assay was performed to find out whether miR-144-3p could bind to the 3′ untranslated region of PAX8 or not. Results We found that PAX8 decreased in PTC, while miR-144-3p increased in PTC. Over-expression of miR-144-3p promoted the cell viability and cell cycle progression. The expressions of cell-cycle-related genes, cyclin D1, cyclin-dependent kinase 2 and CDC25A were modulated by miR-144-3p. Meanwhile, the presence or absence of miR-144-3p both affected epithelial-mesenchymal transition of PTC by regulating the expression of E-cadherin, N-cadherin and vimentin. Moreover, PAX8 may be a potential direct target of miR-144-3p. Mechanically, the activation of extracellular signal–regulated kinases 1/2, Akt and c-Jun N-terminal kinases may be associated with the tumor-promoting effect of miR-144-3p. In addition, the blockage of miR-144-3p forced the anti-tumor effect delivered by X-ray exposure or paclitaxel. Conclusion MiR-144-3p promoted the growth of tumor and the metastasis of PTC by targeting PAX 8. The study provided promising prognosis markers and valuable treatment strategy for PTC.
Collapse
Affiliation(s)
- Chang Liu
- 1Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 NanJing North Road, Shenyang, 110000 China
| | - Chang Su
- Department of Ultrasound Diagnosis, The Liaoning Province People Hospital, Shenyang, China
| | - Yanchun Chen
- Department of Ultrasound Diagnosis, The Liaoning Province People Hospital, Shenyang, China
| | - Guang Li
- 1Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 NanJing North Road, Shenyang, 110000 China
| |
Collapse
|
84
|
Axtell MJ, Meyers BC. Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data. THE PLANT CELL 2018; 30:272-284. [PMID: 29343505 PMCID: PMC5868703 DOI: 10.1105/tpc.17.00851] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are ∼21-nucleotide-long regulatory RNAs that arise from endonucleolytic processing of hairpin precursors. Many function as essential posttranscriptional regulators of target mRNAs and long noncoding RNAs. Alongside miRNAs, plants also produce large numbers of short interfering RNAs (siRNAs), which are distinguished from miRNAs primarily by their biogenesis (typically processed from long double-stranded RNA instead of single-stranded hairpins) and functions (typically via roles in transcriptional regulation instead of posttranscriptional regulation). Next-generation DNA sequencing methods have yielded extensive data sets of plant small RNAs, resulting in many miRNA annotations. However, it has become clear that many miRNA annotations are questionable. The sheer number of endogenous siRNAs compared with miRNAs has been a major factor in the erroneous annotation of siRNAs as miRNAs. Here, we provide updated criteria for the confident annotation of plant miRNAs, suitable for the era of "big data" from DNA sequencing. The updated criteria emphasize replication and the minimization of false positives, and they require next-generation sequencing of small RNAs. We argue that improved annotation systems are needed for miRNAs and all other classes of plant small RNAs. Finally, to illustrate the complexities of miRNA and siRNA annotation, we review the evolution and functions of miRNAs and siRNAs in plants.
Collapse
Affiliation(s)
- Michael J Axtell
- The Pennsylvania State University, Department of Biology and Huck Institutes of the Life Sciences, University Park, Pennsylvania 16802
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- University of Missouri-Columbia, Division of Plant Sciences, Columbia, Missouri 65211
| |
Collapse
|
85
|
Kato H, Nishihama R, Weijers D, Kohchi T. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:291-301. [PMID: 28992186 DOI: 10.1093/jxb/erx267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Auxin plays critical roles in growth and development through the regulation of cell differentiation, cell expansion, and pattern formation. The auxin signal is mainly conveyed through a so-called nuclear auxin pathway involving the receptor TIR1/AFB, the transcriptional co-repressor AUX/IAA, and the transcription factor ARF with direct DNA-binding ability. Recent progress in sequence information and molecular genetics in basal plants has provided many insights into the evolutionary origin of the nuclear auxin pathway and its pleiotropic roles in land plant development. In this review, we summarize the latest knowledge of the nuclear auxin pathway gained from studies using basal plants, including charophycean green algae and two major model bryophytes, Marchantia polymorpha and Physcomitrella patens. In addition, we discuss the functional implication of the increase in genetic complexity of the nuclear auxin pathway during land plant evolution.
Collapse
Affiliation(s)
- Hirotaka Kato
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | | |
Collapse
|
86
|
MicroRNA and Putative Target Discoveries in Chrysanthemum Polyploidy Breeding. Int J Genomics 2017; 2017:6790478. [PMID: 29387713 PMCID: PMC5745731 DOI: 10.1155/2017/6790478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs), around 22 nucleotides (nt) in length, are a class of endogenous and noncoding RNA molecule that play an essential role in plant development, either by suppressing the transcription of target genes at a transcriptional level or inhibiting translation at a posttranscriptional level. To understand the roles of miRNAs and their target genes in chrysanthemum polyploidy breeding, three sRNA libraries of normal and abnormal embryos after hybridization were performed by RNA-Seq. As a result, a total of 170 miRNAs were identified and there are 41 special miRNAs in cross of paternal chromosome doubling, such as miR169b, miR440, and miR528-5p. miR164c and miR159a were highly expressed in a normal embryo at 18 days after pollination, suggesting the regulatory role at the late stage of embryonic development. miR172c was only detected in the normal embryo at 18 days after pollination, which means that miR172c mainly mediates gene expression in postembryonic development and these genes may promote embryo maturation. Other miRNAs, including miR414, miR2661, and miR5021, may regulate the genes participated in pathways of auxin response and energy metabolism; then they regulate the complex embryonic development together.
Collapse
|
87
|
Jeyaraj A, Zhang X, Hou Y, Shangguan M, Gajjeraman P, Li Y, Wei C. Genome-wide identification of conserved and novel microRNAs in one bud and two tender leaves of tea plant (Camellia sinensis) by small RNA sequencing, microarray-based hybridization and genome survey scaffold sequences. BMC PLANT BIOLOGY 2017; 17:212. [PMID: 29157210 PMCID: PMC5697157 DOI: 10.1186/s12870-017-1169-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are important for plant growth and responses to environmental stresses via post-transcriptional regulation of gene expression. Tea, which is primarily produced from one bud and two tender leaves of the tea plant (Camellia sinensis), is one of the most popular non-alcoholic beverages worldwide owing to its abundance of secondary metabolites. A large number of miRNAs have been identified in various plants, including non-model species. However, due to the lack of reference genome sequences and/or information of tea plant genome survey scaffold sequences, discovery of miRNAs has been limited in C. sinensis. RESULTS Using small RNA sequencing, combined with our recently obtained genome survey data, we have identified and analyzed 175 conserved and 83 novel miRNAs mainly in one bud and two tender leaves of the tea plant. Among these, 93 conserved and 18 novel miRNAs were validated using miRNA microarray hybridization. In addition, the expression pattern of 11 conserved and 8 novel miRNAs were validated by stem-loop-qRT-PCR. A total of 716 potential target genes of identified miRNAs were predicted. Further, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that most of the target genes were primarily involved in stress response and enzymes related to phenylpropanoid biosynthesis. The predicted targets of 4 conserved miRNAs were further validated by 5'RLM-RACE. A negative correlation between expression profiles of 3 out of 4 conserved miRNAs (csn-miR160a-5p, csn-miR164a, csn-miR828 and csn-miR858a) and their targets (ARF17, NAC100, WER and MYB12 transcription factor) were observed. CONCLUSION In summary, the present study is one of few such studies on miRNA detection and identification in the tea plant. The predicted target genes of majority of miRNAs encoded enzymes, transcription factors, and functional proteins. The miRNA-target transcription factor gene interactions may provide important clues about the regulatory mechanism of these miRNAs in the tea plant. The data reported in this study will make a huge contribution to knowledge on the potential miRNA regulators of the secondary metabolism pathway and other important biological processes in C. sinensis.
Collapse
Affiliation(s)
- Anburaj Jeyaraj
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Xiao Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Yan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Mingzhu Shangguan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Prabu Gajjeraman
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
- Department of Biotechnology, Karpagam University, Coimbatore, India
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui Province 230036 People’s Republic of China
| |
Collapse
|
88
|
Medina C, da Rocha M, Magliano M, Ratpopoulo A, Revel B, Marteu N, Magnone V, Lebrigand K, Cabrera J, Barcala M, Silva AC, Millar A, Escobar C, Abad P, Favery B, Jaubert-Possamai S. Characterization of microRNAs from Arabidopsis galls highlights a role for miR159 in the plant response to the root-knot nematode Meloidogyne incognita. THE NEW PHYTOLOGIST 2017; 216:882-896. [PMID: 28906559 DOI: 10.1111/nph.14717] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/10/2017] [Indexed: 05/05/2023]
Abstract
Root knot nematodes (RKN) are root parasites that induce the genetic reprogramming of vascular cells into giant feeding cells and the development of root galls. MicroRNAs (miRNAs) regulate gene expression during development and plant responses to various stresses. Disruption of post-transcriptional gene silencing in Arabidopsis ago1 or ago2 mutants decrease the infection rate of RKN suggesting a role for this mechanism in the plant-nematode interaction. By sequencing small RNAs from uninfected Arabidopsis roots and from galls 7 and 14 d post infection with Meloidogyne incognita, we identified 24 miRNAs differentially expressed in gall as putative regulators of gall development. Moreover, strong activity within galls was detected for five miRNA promoters. Analyses of nematode development in an Arabidopsis miR159abc mutant had a lower susceptibility to RKN, suggesting a role for the miR159 family in the plant response to M. incognita. Localization of mature miR159 within the giant and surrounding cells suggested a role in giant cell and gall. Finally, overexpression of miR159 in galls at 14 d post inoculation was associated with the repression of the miR159 target MYB33 which expression is restricted to the early stages of infection. Overall, these results implicate the miR159 in plant responses to RKN.
Collapse
Affiliation(s)
- Clémence Medina
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Martine da Rocha
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Marc Magliano
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Alizée Ratpopoulo
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Benoît Revel
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Nathalie Marteu
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Virginie Magnone
- UCA Genomix, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, France
| | - Kevin Lebrigand
- UCA Genomix, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS UMR6097, Sophia Antipolis, France
| | - Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avda. Carlos III S/N, Edificio Sabatini, E-45071, Toledo, Spain
| | - Marta Barcala
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avda. Carlos III S/N, Edificio Sabatini, E-45071, Toledo, Spain
| | - Ana Cláudia Silva
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avda. Carlos III S/N, Edificio Sabatini, E-45071, Toledo, Spain
| | - Anthony Millar
- Plant Science Division, Research School of Biology, Australian National University, Canberra, 2601, ACT, Australia
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avda. Carlos III S/N, Edificio Sabatini, E-45071, Toledo, Spain
| | - Pierre Abad
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | - Bruno Favery
- INRA, Université Côte d'Azur, CNRS, ISA, 400 route des Chappes, BP167, 06903, Sophia Antipolis, France
| | | |
Collapse
|
89
|
Smith O, Palmer SA, Clapham AJ, Rose P, Liu Y, Wang J, Allaby RG. Small RNA Activity in Archeological Barley Shows Novel Germination Inhibition in Response to Environment. Mol Biol Evol 2017; 34:2555-2562. [PMID: 28655202 PMCID: PMC5850308 DOI: 10.1093/molbev/msx175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The recovery of ancient RNA from archeological material could enable the direct study of microevolutionary processes. Small RNAs are a rich source of information because their small size is compatible with biomolecular preservation, and their roles in gene regulation make them likely foci of evolutionary change. We present here the small RNA fraction from a sample of archeological barley generated using high-throughput sequencing that has previously been associated with localized adaptation to drought. Its microRNA profile is broadly similar to 19 globally distributed modern barley samples with the exception of three microRNAs (miRNA159, miRNA319, and miR396), all of which are known to have variable expression under stress conditions. We also found retrotransposon activity to be significantly reduced in the archeological barley compared with the controls, where one would expect the opposite under stress conditions. We suggest that the archeological barley's conflicting stress signals could be the result of long-term adaptation to its local environment.
Collapse
Affiliation(s)
- Oliver Smith
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Sarah A. Palmer
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Alan J. Clapham
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| | - Pamela Rose
- The Austrian Archaeological Institute, Cairo Branch, Zamalek, Cairo, Egypt
| | - Yuan Liu
- BGI-Europe-UK, London, United Kingdom
| | | | - Robin G. Allaby
- School of Life Sciences, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
90
|
Ganie SA, Debnath AB, Gumi AM, Mondal TK. Comprehensive survey and evolutionary analysis of genome-wide miRNA genes from ten diploid Oryza species. BMC Genomics 2017; 18:711. [PMID: 28893199 PMCID: PMC5594537 DOI: 10.1186/s12864-017-4089-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding RNAs that play versatile roles in post-transcriptional gene regulation. Although much is known about their biogenesis, and gene regulation very little is known about their evolutionary relation among the closely related species. RESULT All the orthologous miRNA genes of Oryza sativa (japonica) from 10 different Oryza species were identified, and the evolutionary changes among these genes were analysed. Significant differences in the expansion of miRNA gene families were observed across the Oryza species. Analysis of the nucleotide substitution rates indicated that the mature sequences show the least substitution rates among the different regions of miRNA genes, and also show a very much less substitution rates as compared to that of all protein-coding genes across the Oryza species. Evolution of miRNA genes was also found to be contributed by transposons. A non-neutral selection was observed at 80 different miRNA loci across Oryza species which were estimated to have lost ~87% of the sequence diversity during the domestication. The phylogenetic analysis revealed that O. longistaminata diverged first among the AA-genomes, whereas O. brachyantha and O. punctata appeared as the eminent out-groups. The miR1861 family organised into nine distinct compact clusters in the studied Oryza species except O. brachyantha. Further, the expression analysis showed that 11 salt-responsive miRNAs were differentially regulated between O. coarctata and O. glaberrima. CONCLUSION Our study provides the evolutionary dynamics in the miRNA genes of 10 different Oryza species which will support more investigations about the structural and functional organization of miRNA genes of Oryza species.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Ananda Bhusan Debnath
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Abubakar Mohammad Gumi
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India
| | - Tapan Kumar Mondal
- Division of Genomic Resources, National Bureau of Plant Genetic Resources, Pusa, IARI Campus, New Delhi, 110012, India.
| |
Collapse
|
91
|
Genome-wide identification and co-expression network analysis provide insights into the roles of auxin response factor gene family in chickpea. Sci Rep 2017; 7:10895. [PMID: 28883480 PMCID: PMC5589731 DOI: 10.1038/s41598-017-11327-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/22/2017] [Indexed: 12/13/2022] Open
Abstract
Auxin response factors (ARFs) are the transcription factors that regulate auxin responses in various aspects of plant growth and development. Although genome-wide analysis of ARF gene family has been done in some species, no information is available regarding ARF genes in chickpea. In this study, we identified 28 ARF genes (CaARF) in the chickpea genome. Phylogenetic analysis revealed that CaARFs can be divided into four different groups. Duplication analysis revealed that 50% of CaARF genes arose from duplication events. We analyzed expression pattern of CaARFs in various developmental stages. CaARF16.3, CaARF17.1 and CaARF17.2 showed highest expression at initial stages of flower bud development, while CaARF6.2 had higher expression at later stages of flower development. Further, CaARF4.2, CaARF9.2, CaARF16.2 and CaARF7.1 exhibited differential expression under different abiotic stress conditions, suggesting their role in abiotic stress responses. Co-expression network analysis among CaARF, CaIAA and CaGH3 genes enabled us to recognize components involved in the regulatory network associated with CaARFs. Further, we identified microRNAs that target CaARFs and TAS3 locus that trigger production of trans-acting siRNAs targeting CaARFs. The analyses presented here provide comprehensive information on ARF family members and will help in elucidating their exact function in chickpea.
Collapse
|
92
|
You C, Cui J, Wang H, Qi X, Kuo LY, Ma H, Gao L, Mo B, Chen X. Conservation and divergence of small RNA pathways and microRNAs in land plants. Genome Biol 2017; 18:158. [PMID: 28835265 PMCID: PMC5569507 DOI: 10.1186/s13059-017-1291-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 07/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background As key regulators of gene expression in eukaryotes, small RNAs have been characterized in many seed plants, and pathways for their biogenesis, degradation, and action have been defined in model angiosperms. However, both small RNAs themselves and small RNA pathways are not well characterized in other land plants such as lycophytes and ferns, preventing a comprehensive evolutionary perspective on small RNAs in land plants. Results Using 25 representatives from major lineages of lycophytes and ferns, most of which lack sequenced genomes, we characterized small RNAs and small RNA pathways in these plants. We identified homologs of DICER-LIKE (DCL), ARGONAUTE (AGO), and other genes involved in small RNA pathways, predicted over 2600 conserved microRNA (miRNA) candidates, and performed phylogenetic analyses on small RNA pathways as well as miRNAs. Pathways underlying miRNA biogenesis, degradation, and activity were established in the common ancestor of land plants, but the 24-nucleotide siRNA pathway that guides DNA methylation is incomplete in sister species of seed plants, especially lycophytes. We show that the functional diversification of key gene families such as DCL and AGO as observed in angiosperms occurred early in land plants followed by parallel expansion of the AGO family in ferns and angiosperms. We uncovered a conserved AGO subfamily absent in angiosperms. Conclusions Our phylogenetic analyses of miRNAs in bryophytes, lycophytes, ferns, and angiosperms refine the time-of-origin for conserved miRNA families as well as small RNA machinery in land plants. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1291-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chenjiang You
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Jie Cui
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Hui Wang
- Shenzhen Key Laboratory of Southern Subtropical Plant Diversity, Fairylake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, People's Republic of China
| | - Xinping Qi
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Yaung Kuo
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Hong Ma
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Xuemei Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China. .,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA. .,Howard Hughes Medical Institute, University of California, Riverside, 92521, CA, USA.
| |
Collapse
|
93
|
Karakülah G. Discovery and Annotation of Plant Endogenous Target Mimicry Sequences from Public Transcriptome Libraries: A Case Study of Prunus persica. J Integr Bioinform 2017; 14:/j/jib.ahead-of-print/jib-2017-0009/jib-2017-0009.xml. [PMID: 28672765 PMCID: PMC6042811 DOI: 10.1515/jib-2017-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/12/2017] [Indexed: 01/28/2023] Open
Abstract
Novel transcript discovery through RNA sequencing has substantially improved our understanding of the transcriptome dynamics of biological systems. Endogenous target mimicry (eTM) transcripts, a novel class of regulatory molecules, bind to their target microRNAs (miRNAs) by base pairing and block their biological activity. The objective of this study was to provide a computational analysis framework for the prediction of putative eTM sequences in plants, and as an example, to discover previously un-annotated eTMs in Prunus persica (peach) transcriptome. Therefore, two public peach transcriptome libraries downloaded from Sequence Read Archive (SRA) and a previously published set of long non-coding RNAs (lncRNAs) were investigated with multi-step analysis pipeline, and 44 putative eTMs were found. Additionally, an eTM-miRNA-mRNA regulatory network module associated with peach fruit organ development was built via integration of the miRNA target information and predicted eTM-miRNA interactions. My findings suggest that one of the most widely expressed miRNA families among diverse plant species, miR156, might be potentially sponged by seven putative eTMs. Besides, the study indicates eTMs potentially play roles in the regulation of development processes in peach fruit via targeting specific miRNAs. In conclusion, by following the step-by step instructions provided in this study, novel eTMs can be identified and annotated effectively in public plant transcriptome libraries.
Collapse
|
94
|
Detecting the Candidate Gender Determinants by Bioinformatic Prediction of miRNAs and Their Targets from Transcriptome Sequences of the Male and Female Flowers in Salix suchowensis. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28638836 PMCID: PMC5468582 DOI: 10.1155/2017/9614596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
MicroRNAs (miRNAs) belong to a class of small, noncoding, and endogenous single-stranded RNAs that negatively regulate gene expression at the posttranscriptional level. Potential miRNAs can be identified based on sequence homology since miRNAs are highly conserved in plants. In this study, we aligned the expressed sequence tags derived from flower buds of male and female S. suchowensis to miRNAs in the miRBase, which enable us to identify 34 potential miRNAs from flower buds of the alternate sexes. Among them, 11 were from the female and 23 were from the male. Analyzing sequence complementarity led to identification of 124 and 55 miRNA targets in the male and female flower buds, respectively. By mapping the target genes of the predicted miRNAs to the sequence assemblies of S. suchowensis, a miR156 mediated gene was detected at the gender locus of willow, which was a transcription factor involved in flower development. It is noteworthy that this target is not expressed in male flower, while it is expressed fairly highly in female flower based on the transcriptome data derived from the alternate sexes of willows. This study provides new bioinformatic clue for further exploring the genetic mechanism underlying gender determination in willows.
Collapse
|
95
|
Chorostecki U, Moro B, Rojas AML, Debernardi JM, Schapire AL, Notredame C, Palatnik JF. Evolutionary Footprints Reveal Insights into Plant MicroRNA Biogenesis. THE PLANT CELL 2017; 29:1248-1261. [PMID: 28550151 PMCID: PMC5502457 DOI: 10.1105/tpc.17.00272] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 05/20/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs that recognize target sequences by base complementarity and play a role in the regulation of target gene expression. They are processed from longer precursor molecules that harbor a fold-back structure. Plant miRNA precursors are quite variable in size and shape, and are recognized by the processing machinery in different ways. However, ancient miRNAs and their binding sites in target genes are conserved during evolution. Here, we designed a strategy to systematically analyze MIRNAs from different species generating a graphical representation of the conservation of the primary sequence and secondary structure. We found that plant MIRNAs have evolutionary footprints that go beyond the small RNA sequence itself, yet their location along the precursor depends on the specific MIRNA We show that these conserved regions correspond to structural determinants recognized during the biogenesis of plant miRNAs. Furthermore, we found that the members of the miR166 family have unusual conservation patterns and demonstrated that the recognition of these precursors in vivo differs from other known miRNAs. Our results describe a link between the evolutionary conservation of plant MIRNAs and the mechanisms underlying the biogenesis of these small RNAs and show that the MIRNA pattern of conservation can be used to infer the mode of miRNA biogenesis.
Collapse
Affiliation(s)
- Uciel Chorostecki
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Belen Moro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Arantxa M L Rojas
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan M Debernardi
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Arnaldo L Schapire
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Cedric Notredame
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario, CONICET, and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
96
|
Guo C, Xu Y, Shi M, Lai Y, Wu X, Wang H, Zhu Z, Poethig RS, Wu G. Repression of miR156 by miR159 Regulates the Timing of the Juvenile-to-Adult Transition in Arabidopsis. THE PLANT CELL 2017; 29:1293-1304. [PMID: 28536099 PMCID: PMC5502449 DOI: 10.1105/tpc.16.00975] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/07/2017] [Accepted: 05/23/2017] [Indexed: 05/18/2023]
Abstract
Temporally regulated microRNAs have been identified as master regulators of developmental timing in both animals and plants. In plants, vegetative development is regulated by a temporal decrease in miR156 level, but how this decreased expression is initiated and then maintained during shoot development remains elusive. Here, we show that miR159 is required for the correct timing of vegetative development in Arabidopsis thaliana Loss of miR159 increases miR156 level throughout shoot development and delays vegetative development, whereas overexpression of miR159 slightly accelerated vegetative development. The repression of miR156 by miR159 is predominantly mediated by MYB33, an R2R3 MYB domain transcription factor targeted by miR159. Loss of MYB33 led to subtle precocious vegetative phase change phenotypes in spite of the significant downregulation of miR156. MYB33 simultaneously promotes the transcription of MIR156A and MIR156C, as well as their target, SPL9, by directly binding to the promoters of these three genes. Rather than acting as major players in vegetative phase change in Arabidopsis, our results suggest that miR159 and MYB33 function as modifiers of vegetative phase change; i.e., miR159 facilitates vegetative phase change by repressing MYB33 expression, thus preventing MYB33 from hyperactivating miR156 expression throughout shoot development to ensure correct timing of the juvenile-to-adult transition in Arabidopsis.
Collapse
Affiliation(s)
- Changkui Guo
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yunmin Xu
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Min Shi
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yongmin Lai
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Xi Wu
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Huasen Wang
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Zhujun Zhu
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gang Wu
- State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| |
Collapse
|
97
|
In Silico Identification and Validation of Potential microRNAs in Kinnow Mandarin (Citrus reticulata Blanco). Interdiscip Sci 2017; 10:762-770. [PMID: 28534166 DOI: 10.1007/s12539-017-0235-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are a large family of 19-25 nucleotides, regulatory, non-coding RNA molecules that control gene expression by cleaving or inhibiting the translation of target gene transcripts in animals and plants. Despite the important functions of miRNAs related to regulation of plant growth and development processes, metabolism, and abiotic and biotic stresses, little is known about the disease-related miRNA. Here, we present a new pipeline for miRNA analysis using expressed sequence tags (ESTs)-based bioinformatics approach in Kinnow mandarin, a commercially important citrus fruit crop. For this, 56,041 raw EST sequences of Citrus reticulata Blanco were retrieved from EST database in NCBI through step-by-step filtering and processing methods and 130 miRNAs were predicted. Upon blast with Citrus sinensis transcriptome data, these produced potential targets related to disease resistance proteins, pectin lyase-like superfamily proteins, lateral organ boundaries (LOB) domain-containing proteins 11, and protein phosphatase 2C family proteins, protein kinases, dehydrogenases, and methyltransferases. Majority of the predicted miRNAs were of 22, 23, and 24 nucleotides in length. To validate these computationally predicted miRNA, poly(A)-tailed Reverse Transcription-PCR was applied to detect the expression of seven miRNA which showed disease-related potential targets, in citrus greening diseased leaf tissues in comparison to the healthy tissues of Kinnow mandarin. Our study provides information on regulatory roles of these potential miRNAs for the citrus greening disease development, miRNA targets, and would be helpful for future research of miRNA function in citrus.
Collapse
|
98
|
Berruezo F, de Souza FSJ, Picca PI, Nemirovsky SI, Martínez Tosar L, Rivero M, Mentaberry AN, Zelada AM. Sequencing of small RNAs of the fern Pleopeltis minima (Polypodiaceae) offers insight into the evolution of the microrna repertoire in land plants. PLoS One 2017; 12:e0177573. [PMID: 28494025 PMCID: PMC5426797 DOI: 10.1371/journal.pone.0177573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are short, single stranded RNA molecules that regulate the stability and translation of messenger RNAs in diverse eukaryotic groups. Several miRNA genes are of ancient origin and have been maintained in the genomes of animal and plant taxa for hundreds of millions of years, playing key roles in development and physiology. In the last decade, genome and small RNA (sRNA) sequencing of several plant species have helped unveil the evolutionary history of land plants. Among these, the fern group (monilophytes) occupies a key phylogenetic position, as it represents the closest extant cousin taxon of seed plants, i.e. gymno- and angiosperms. However, in spite of their evolutionary, economic and ecological importance, no fern genome has been sequenced yet and few genomic resources are available for this group. Here, we sequenced the small RNA fraction of an epiphytic South American fern, Pleopeltis minima (Polypodiaceae), and compared it to plant miRNA databases, allowing for the identification of miRNA families that are shared by all land plants, shared by all vascular plants (tracheophytes) or shared by euphyllophytes (ferns and seed plants) only. Using the recently described transcriptome of another fern, Lygodium japonicum, we also estimated the degree of conservation of fern miRNA targets in relation to other plant groups. Our results pinpoint the origin of several miRNA families in the land plant evolutionary tree with more precision and are a resource for future genomic and functional studies of fern miRNAs.
Collapse
Affiliation(s)
- Florencia Berruezo
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Flávio S. J. de Souza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo I. Picca
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sergio I. Nemirovsky
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leandro Martínez Tosar
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Mercedes Rivero
- Instituto de Agrobiotecnología de Rosario (INDEAR), Rosario, Santa Fe, Argentina
| | - Alejandro N. Mentaberry
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| | - Alicia M. Zelada
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires (IBBEA, CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|
99
|
Noronha Fernandes-Brum C, Marinho Rezende P, Cherubino Ribeiro TH, Ricon de Oliveira R, Cunha de Sousa Cardoso T, Rodrigues do Amaral L, de Souza Gomes M, Chalfun-Junior A. A genome-wide analysis of the RNA-guided silencing pathway in coffee reveals insights into its regulatory mechanisms. PLoS One 2017; 12:e0176333. [PMID: 28448529 PMCID: PMC5407642 DOI: 10.1371/journal.pone.0176333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
microRNAs (miRNAs) are derived from self-complementary hairpin structures, while small-interfering RNAs (siRNAs) are derived from double-stranded RNA (dsRNA) or hairpin precursors. The core mechanism of sRNA production involves DICER-like (DCL) in processing the smallRNAs (sRNAs) and ARGONAUTE (AGO) as effectors of silencing, and siRNA biogenesis also involves action of RNA-Dependent RNA Polymerase (RDR), Pol IV and Pol V in biogenesis. Several other proteins interact with the core proteins to guide sRNA biogenesis, action, and turnover. We aimed to unravel the components and functions of the RNA-guided silencing pathway in a non-model plant species of worldwide economic relevance. The sRNA-guided silencing complex members have been identified in the Coffea canephora genome, and they have been characterized at the structural, functional, and evolutionary levels by computational analyses. Eleven AGO proteins, nine DCL proteins (which include a DCL1-like protein that was not previously annotated), and eight RDR proteins were identified. Another 48 proteins implicated in smallRNA (sRNA) pathways were also identified. Furthermore, we identified 235 miRNA precursors and 317 mature miRNAs from 113 MIR families, and we characterized ccp-MIR156, ccp-MIR172, and ccp-MIR390. Target prediction and gene ontology analyses of 2239 putative targets showed that significant pathways in coffee are targeted by miRNAs. We provide evidence of the expansion of the loci related to sRNA pathways, insights into the activities of these proteins by domain and catalytic site analyses, and gene expression analysis. The number of MIR loci and their targeted pathways highlight the importance of miRNAs in coffee. We identified several roles of sRNAs in C. canephora, which offers substantial insight into better understanding the transcriptional and post-transcriptional regulation of this major crop.
Collapse
Affiliation(s)
- Christiane Noronha Fernandes-Brum
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Pâmela Marinho Rezende
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Thales Henrique Cherubino Ribeiro
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | | | - Thaís Cunha de Sousa Cardoso
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Laurence Rodrigues do Amaral
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Matheus de Souza Gomes
- Institute of Genetics and Biochemistry (INGEB),Laboratory of Bioinformatics and Molecular Analysis (LBAM), Federal University of Uberlândia (UFU)- Campus Patos de Minas, Patos de Minas, Minas Gerais, Brasil
| | - Antonio Chalfun-Junior
- Department of Biology, Section of Plant Physiology, Laboratory of Plant Molecular Physiology (LFMP), Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| |
Collapse
|
100
|
Regulation of miR163 and its targets in defense against Pseudomonas syringae in Arabidopsis thaliana. Sci Rep 2017; 7:46433. [PMID: 28401908 PMCID: PMC5388894 DOI: 10.1038/srep46433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
Small RNAs are important regulators for a variety of biological processes, including leaf development, flowering-time, embryogenesis and defense responses. miR163 is a non-conserved miRNA and its locus has evolved recently through inverted duplication of its target genes to which they belong to the SABATH family of related small-molecule methyltransferases (MTs). In Arabidopsis thaliana, previous study demonstrated that miR163 accumulation was induced by alamethicin treatment, suggesting its roles in defense response pathways. Enhanced resistance against Pseudomonas syringae pv. tomato (Pst) was observed in the mir163 mutant, whereas transgenic lines overexpressing miR163 showed increase sensitivity to Pst, suggesting that miR163 is a negative regulator of defense response. Elevated level of miR163 and its targets in A. thaliana were observed upon Pst treatment, suggesting a modulating relationship between miR163 and its targets. In addition, miR163 and histone deacetylase were found to act cooperatively in mediating defense against Pst. Transgenic plants overexpressing miR163-resistant targets suggested their different contributions in defense. Results from this study revealed that the stress-inducible miR163 and its targets act in concert to modulate defense responses against bacterial pathogen in A. thaliana.
Collapse
|