51
|
Liu L, Xu L, Jia Q, Pan R, Oelmüller R, Zhang W, Wu C. Arms race: diverse effector proteins with conserved motifs. PLANT SIGNALING & BEHAVIOR 2019; 14:1557008. [PMID: 30621489 PMCID: PMC6351098 DOI: 10.1080/15592324.2018.1557008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Effector proteins play important roles in the infection by pathogenic oomycetes and fungi or the colonization by endophytic and mycorrhizal fungi. They are either translocated into the host plant cells via specific translocation mechanisms and function in the host's cytoplasm or nucleus, or they reside in the apoplast of the plant cells and act at the extracellular host-microbe interface. Many effector proteins possess conserved motifs (such as the RXLR, CRN, LysM, RGD, DELD, EAR, RYWT, Y/F/WXC or CFEM motifs) localized in their N- or C-terminal regions. Analysis of the functions of effector proteins, especially so-called "core effectors", is crucial for the understanding of pathogenicity/symbiosis mechanisms and plant defense strategies, and helps to develop breeding strategies for pathogen-resistant cultivars, and to increase crop yield and quality as well as abiotic stress resistance. This review summarizes current knowledge about these effector proteins with the conversed motifs and their involvement in pathogenic or mutualistic plant/fungal interactions.
Collapse
Affiliation(s)
- Liping Liu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Le Xu
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Qie Jia
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
| | - Rui Pan
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Plant Physiology, Matthias-Schleiden-Institute for Genetics, Bioinformatics and Molecular Botany, Faculty of Biological Science, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou, China
- CONTACT Wenying Zhang Hubei Collaborative Innovation Center for Grain Industry/Research Center of Crop Stresses Resistance Technologies, Yangtze University, Jingzhou 434025, China; Chu Wu College of Horticulture & Gardening, Yangtze University, Jingzhou 434025, China
| | - Chu Wu
- College of Horticulture & Gardening, Yangtze University, Jingzhou, China
- Institute of Plant Ecology and Environmental Restoration, Yangtze University, Jingzhou, China
| |
Collapse
|
52
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
53
|
The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 2018; 475:2491-2509. [PMID: 30115747 DOI: 10.1042/bcj20170781] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/10/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Plants sense the presence of pathogens or pests through the recognition of evolutionarily conserved microbe- or herbivore-associated molecular patterns or specific pathogen effectors, as well as plant endogenous danger-associated molecular patterns. This sensory capacity is largely mediated through plasma membrane and cytosol-localized receptors which trigger complex downstream immune signaling cascades. As immune signaling outputs are often associated with a high fitness cost, precise regulation of this signaling is critical. Protease-mediated proteolysis represents an important form of pathway regulation in this context. Proteases have been widely implicated in plant-pathogen interactions, and their biochemical mechanisms and targets continue to be elucidated. During the plant and pathogen arms race, specific proteases are employed from both the plant and the pathogen sides to contribute to either defend or invade. Several pathogen effectors have been identified as proteases or protease inhibitors which act to functionally defend or camouflage the pathogens from plant proteases and immune receptors. In this review, we discuss known protease functions and protease-regulated signaling processes involved in both sides of plant-pathogen interactions.
Collapse
|
54
|
Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. Disease Resistance Mechanisms in Plants. Genes (Basel) 2018; 9:E339. [PMID: 29973557 PMCID: PMC6071103 DOI: 10.3390/genes9070339] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022] Open
Abstract
Plants have developed a complex defense system against diverse pests and pathogens. Once pathogens overcome mechanical barriers to infection, plant receptors initiate signaling pathways driving the expression of defense response genes. Plant immune systems rely on their ability to recognize enemy molecules, carry out signal transduction, and respond defensively through pathways involving many genes and their products. Pathogens actively attempt to evade and interfere with response pathways, selecting for a decentralized, multicomponent immune system. Recent advances in molecular techniques have greatly expanded our understanding of plant immunity, largely driven by potential application to agricultural systems. Here, we review the major plant immune system components, state of the art knowledge, and future direction of research on plant⁻pathogen interactions. In our review, we will discuss how the decentralization of plant immune systems have provided both increased evolutionary opportunity for pathogen resistance, as well as additional mechanisms for pathogen inhibition of such defense responses. We conclude that the rapid advances in bioinformatics and molecular biology are driving an explosion of information that will advance agricultural production and illustrate how complex molecular interactions evolve.
Collapse
Affiliation(s)
- Ethan J Andersen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Shaukat Ali
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Emmanuel Byamukama
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, 57007 SD, USA.
| | - Yang Yen
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| | - Madhav P Nepal
- Department of Biology and Microbiology, South Dakota State University, Brookings, 57007 SD, USA.
| |
Collapse
|
55
|
De Miccolis Angelini RM, Abate D, Rotolo C, Gerin D, Pollastro S, Faretra F. De novo assembly and comparative transcriptome analysis of Monilinia fructicola, Monilinia laxa and Monilinia fructigena, the causal agents of brown rot on stone fruits. BMC Genomics 2018; 19:436. [PMID: 29866047 PMCID: PMC5987419 DOI: 10.1186/s12864-018-4817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/22/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Brown rots are important fungal diseases of stone and pome fruits. They are caused by several Monilinia species but M. fructicola, M. laxa and M. fructigena are the most common all over the world. Although they have been intensively studied, the availability of genomic and transcriptomic data in public databases is still scant. We sequenced, assembled and annotated the transcriptomes of the three pathogens using mRNA from germinating conidia and actively growing mycelia of two isolates of opposite mating types per each species for comparative transcriptome analyses. RESULTS Illumina sequencing was used to generate about 70 million of paired-end reads per species, that were de novo assembled in 33,861 contigs for M. fructicola, 31,103 for M. laxa and 28,890 for M. fructigena. Approximately, 50% of the assembled contigs had significant hits when blasted against the NCBI non-redundant protein database and top-hits results were represented by Botrytis cinerea, Sclerotinia sclerotiorum and Sclerotinia borealis proteins. More than 90% of the obtained sequences were complete, the percentage of duplications was always less than 14% and fragmented and missing transcripts less than 5%. Orthologous transcripts were identified by tBLASTn analysis using the B. cinerea proteome as reference. Comparative transcriptome analyses revealed 65 transcripts over-expressed (FC ≥ 8 and FDR ≤ 0.05) or unique in M. fructicola, 30 in M. laxa and 31 in M. fructigena. Transcripts were involved in processes affecting fungal development, diversity and host-pathogen interactions, such as plant cell wall-degrading and detoxifying enzymes, zinc finger transcription factors, MFS transporters, cell surface proteins, key enzymes in biosynthesis and metabolism of antibiotics and toxins, and transposable elements. CONCLUSIONS This is the first large-scale reconstruction and annotation of the complete transcriptomes of M. fructicola, M. laxa and M. fructigena and the first comparative transcriptome analysis among the three pathogens revealing differentially expressed genes with potential important roles in metabolic and physiological processes related to fungal morphogenesis and development, diversity and pathogenesis which need further investigations. We believe that the data obtained represent a cornerstone for research aimed at improving knowledge on the population biology, physiology and plant-pathogen interactions of these important phytopathogenic fungi.
Collapse
Affiliation(s)
- Rita M. De Miccolis Angelini
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Domenico Abate
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Caterina Rotolo
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Donato Gerin
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Stefania Pollastro
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Faretra
- Department of Soil, Plant and Food Sciences - Plant Pathology Section, University of Bari Aldo Moro, via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
56
|
Planas-Marquès M, Bernardo-Faura M, Paulus J, Kaschani F, Kaiser M, Valls M, van der Hoorn RAL, Coll NS. Protease Activities Triggered by Ralstonia solanacearum Infection in Susceptible and Tolerant Tomato Lines. Mol Cell Proteomics 2018; 17:1112-1125. [PMID: 29523767 PMCID: PMC5986253 DOI: 10.1074/mcp.ra117.000052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/10/2018] [Indexed: 11/06/2022] Open
Abstract
Activity-based protein profiling (ABPP) is a powerful proteomic technique to display protein activities in a proteome. It is based on the use of small molecular probes that react with the active site of proteins in an activity-dependent manner. We used ABPP to dissect the protein activity changes that occur in the intercellular spaces of tolerant (Hawaii 7996) and susceptible (Marmande) tomato plants in response to R. solanacearum, the causing agent of bacterial wilt, one of the most destructive bacterial diseases in plants. The intercellular space -or apoplast- is the first battlefield where the plant faces R. solanacearum Here, we explore the possibility that the limited R. solanacearum colonization reported in the apoplast of tolerant tomato is partly determined by its active proteome. Our work reveals specific activation of papain-like cysteine proteases (PLCPs) and serine hydrolases (SHs) in the leaf apoplast of the tolerant tomato Hawaii 7996 on R. solanacearum infection. The P69 family members P69C and P69F, and an unannotated lipase (Solyc02g077110.2.1), were found to be post-translationally activated. In addition, protein network analysis showed that deeper changes in network topology take place in the susceptible tomato variety, suggesting that the tolerant cultivar might be more prepared to face R. solanacearum in its basal state. Altogether this work identifies significant changes in the activity of 4 PLCPs and 27 SHs in the tomato leaf apoplast in response to R. solanacearum, most of which are yet to be characterized. Our findings denote the importance of novel proteomic approaches such as ABPP to provide new insights on old and elusive questions regarding the molecular basis of resistance to R. solanacearum.
Collapse
Affiliation(s)
- Marc Planas-Marquès
- From the ‡Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- §Department of Genetics, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Martí Bernardo-Faura
- From the ‡Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Judith Paulus
- ¶Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Farnusch Kaschani
- ‖Chemische Biologie, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- ‖Chemische Biologie, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Marc Valls
- From the ‡Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- §Department of Genetics, University of Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Renier A L van der Hoorn
- ¶Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Núria S Coll
- From the ‡Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain;
| |
Collapse
|
57
|
Affiliation(s)
- Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
58
|
Santos RB, Chandrasekar B, Mandal MK, Kaschani F, Kaiser M, Both L, van der Hoorn RAL, Schiermeyer A, Abranches R. Low Protease Content in Medicago truncatula Cell Cultures Facilitates Recombinant Protein Production. Biotechnol J 2018. [PMID: 29528190 DOI: 10.1002/biot.201800050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Medicago truncatula is an established model for studying legume biology. More recently, it has also been exploited as a Molecular Farming platform for the production of recombinant proteins, with the successful expression of fungal and human proteins in plants and cell suspension cultures of this species. One of the challenges that now must be overcome is the degradation of final products during production and downstream processing stages. In the M. truncatula genome, there are more than 400 putative protease-encoding genes, but to date, the proteolytic content of Medicago cell cultures has not been studied. In this report, the proteolytic activities that can potentially hamper the successful production of recombinant proteins in this system are evaluated. The potential proteases responsible for the degradation of target proteins are identified. Interestingly, the number of proteases found in Medicago spent medium is considerably lower than that of the well-established tobacco bright yellow 2 (BY-2) system. Papain-like cysteine proteases are found to be the major contributors to recombinant protein degradation in Medicago. This knowledge is used to engineer a cell line with reduced endogenous protease activity by expressing a selective protease inhibitor, further improving this expression platform.
Collapse
Affiliation(s)
- Rita B Santos
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Balakumaran Chandrasekar
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Manoj K Mandal
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Farnusch Kaschani
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Faculty of Biology, University of Duisburg-Essen, ZMB, Universitätsstraße 2, 45117 Essen, Germany
| | - Leonard Both
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | - Andreas Schiermeyer
- Department of Plant Biotechnology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
59
|
Gumtow R, Wu D, Uchida J, Tian M. A Phytophthora palmivora Extracellular Cystatin-Like Protease Inhibitor Targets Papain to Contribute to Virulence on Papaya. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:363-373. [PMID: 29068239 DOI: 10.1094/mpmi-06-17-0131-fi] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Papaya fruits, stems, and leaves are rich in papain, a cysteine protease that has been shown to mediate plant defense against pathogens and insects. Yet the oomycete Phytophthora palmivora is a destructive pathogen that infects all parts of papaya plants, suggesting that it has evolved cysteine protease inhibitors to inhibit papain to enable successful infection. Out of five putative extracellular cystatin-like cysteine protease inhibitors (PpalEPICs) from P. palmivora transcriptomic sequence data, PpalEPIC8 appeared to be unique to P. palmivora and was highly induced during infection of papaya. Purified recombinant PpalEPIC8 strongly inhibited papain enzyme activity, suggesting that it is a functional cysteine protease inhibitor. Homozygous PpalEPIC8 mutants were generated using CRISPR/Cas9-mediated gene editing via Agrobacterium-mediated transformation (AMT). Increased papain sensitivity of in-vitro growth and reduced pathogenicity during infection of papaya fruits were observed for the mutants compared with the wild-type strain, suggesting that PpalEPIC8, indeed, plays a role in P. palmivora virulence by inhibiting papain. This study provided genetic evidence demonstrating that plant-pathogenic oomycetes secrete cystatins as important weapons to invade plants. It also established an effective gene-editing system for P. palmivora by the combined use of CRISPR/Cas9 and AMT, which is expected to be applicable to other oomycetes.
Collapse
Affiliation(s)
- Rebecca Gumtow
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, 96822, U.S.A
| | - Dongliang Wu
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, 96822, U.S.A
| | - Janice Uchida
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, 96822, U.S.A
| | - Miaoying Tian
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, 96822, U.S.A
| |
Collapse
|
60
|
Ten Prominent Host Proteases in Plant-Pathogen Interactions. Int J Mol Sci 2018; 19:ijms19020639. [PMID: 29495279 PMCID: PMC5855861 DOI: 10.3390/ijms19020639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 02/17/2018] [Accepted: 02/17/2018] [Indexed: 12/16/2022] Open
Abstract
Proteases are enzymes integral to the plant immune system. Multiple aspects of defence are regulated by proteases, including the hypersensitive response, pathogen recognition, priming and peptide hormone release. These processes are regulated by unrelated proteases residing at different subcellular locations. In this review, we discuss 10 prominent plant proteases contributing to the plant immune system, highlighting the diversity of roles they perform in plant defence.
Collapse
|
61
|
|
62
|
Su J, Spears BJ, Kim SH, Gassmann W. Constant vigilance: plant functions guarded by resistance proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:637-650. [PMID: 29232015 DOI: 10.1111/tpj.13798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 05/09/2023]
Abstract
Unlike animals, plants do not have an adaptive immune system and have instead evolved sophisticated and multi-layered innate immune mechanisms. To overcome plant immunity, pathogens secrete a diverse array of effectors into the apoplast and virtually all cellular compartments to dampen immune signaling and interfere with plant functions. Here we describe the scope of the arms race throughout the cell and summarize various strategies used by both plants and pathogens. Through studying the ongoing evolutionary battle between plants and key pathogens, we may yet uncover potential ways to achieve the ultimate goal of engineering broad-spectrum resistant crops without affecting food quality or productivity.
Collapse
Affiliation(s)
- Jianbin Su
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Benjamin J Spears
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| | - Sang Hee Kim
- Division of Applied Life Science (BK 21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Division of Life Science, Gyeongsang National University, Jinju, 52828, Korea
| | - Walter Gassmann
- Division of Plant Sciences, C.S. Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
63
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
64
|
Rodriguez-Moreno L, Ebert MK, Bolton MD, Thomma BPHJ. Tools of the crook- infection strategies of fungal plant pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:664-674. [PMID: 29277938 DOI: 10.1111/tpj.13810] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 05/14/2023]
Abstract
Fungi represent an ecologically diverse group of microorganisms that includes plant pathogenic species able to cause considerable yield loses in crop production systems worldwide. In order to establish compatible interactions with their hosts, pathogenic fungi rely on the secretion of molecules of diverse nature during host colonization to modulate host physiology, manipulate other environmental factors or provide self-defence. These molecules, collectively known as effectors, are typically small secreted cysteine-rich proteins, but may also comprise secondary metabolites and sRNAs. Here, we discuss the most common strategies that fungal plant pathogens employ to subvert their host plants in order to successfully complete their life cycle and secure the release of abundant viable progeny.
Collapse
Affiliation(s)
- Luis Rodriguez-Moreno
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Malaika K Ebert
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Melvin D Bolton
- USDA - Agricultural Research Service, Red River Valley Agricultural Research Center, Fargo, ND, USA
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
65
|
Kourelis J, van der Hoorn RAL. Defended to the Nines: 25 Years of Resistance Gene Cloning Identifies Nine Mechanisms for R Protein Function. THE PLANT CELL 2018; 30:285-299. [PMID: 29382771 PMCID: PMC5868693 DOI: 10.1105/tpc.17.00579] [Citation(s) in RCA: 475] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/14/2017] [Accepted: 01/29/2018] [Indexed: 05/18/2023]
Abstract
Plants have many, highly variable resistance (R) gene loci, which provide resistance to a variety of pathogens. The first R gene to be cloned, maize (Zea mays) Hm1, was published over 25 years ago, and since then, many different R genes have been identified and isolated. The encoded proteins have provided clues to the diverse molecular mechanisms underlying immunity. Here, we present a meta-analysis of 314 cloned R genes. The majority of R genes encode cell surface or intracellular receptors, and we distinguish nine molecular mechanisms by which R proteins can elevate or trigger disease resistance: direct (1) or indirect (2) perception of pathogen-derived molecules on the cell surface by receptor-like proteins and receptor-like kinases; direct (3) or indirect (4) intracellular detection of pathogen-derived molecules by nucleotide binding, leucine-rich repeat receptors, or detection through integrated domains (5); perception of transcription activator-like effectors through activation of executor genes (6); and active (7), passive (8), or host reprogramming-mediated (9) loss of susceptibility. Although the molecular mechanisms underlying the functions of R genes are only understood for a small proportion of known R genes, a clearer understanding of mechanisms is emerging and will be crucial for rational engineering and deployment of novel R genes.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, OX1 3RB Oxford, United Kingdom
| |
Collapse
|
66
|
Mesarich CH, Ӧkmen B, Rovenich H, Griffiths SA, Wang C, Karimi Jashni M, Mihajlovski A, Collemare J, Hunziker L, Deng CH, van der Burgt A, Beenen HG, Templeton MD, Bradshaw RE, de Wit PJGM. Specific Hypersensitive Response-Associated Recognition of New Apoplastic Effectors from Cladosporium fulvum in Wild Tomato. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:145-162. [PMID: 29144204 DOI: 10.1094/mpmi-05-17-0114-fi] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tomato leaf mold disease is caused by the biotrophic fungus Cladosporium fulvum. During infection, C. fulvum produces extracellular small secreted protein (SSP) effectors that function to promote colonization of the leaf apoplast. Resistance to the disease is governed by Cf immune receptor genes that encode receptor-like proteins (RLPs). These RLPs recognize specific SSP effectors to initiate a hypersensitive response (HR) that renders the pathogen avirulent. C. fulvum strains capable of overcoming one or more of all cloned Cf genes have now emerged. To combat these strains, new Cf genes are required. An effectoromics approach was employed to identify wild tomato accessions carrying new Cf genes. Proteomics and transcriptome sequencing were first used to identify 70 apoplastic in planta-induced C. fulvum SSPs. Based on sequence homology, 61 of these SSPs were novel or lacked known functional domains. Seven, however, had predicted structural homology to antimicrobial proteins, suggesting a possible role in mediating antagonistic microbe-microbe interactions in planta. Wild tomato accessions were then screened for HR-associated recognition of 41 SSPs, using the Potato virus X-based transient expression system. Nine SSPs were recognized by one or more accessions, suggesting that these plants carry new Cf genes available for incorporation into cultivated tomato.
Collapse
Affiliation(s)
- Carl H Mesarich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 2 Laboratory of Molecular Plant Pathology, Institute of Agriculture & Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
- 3 Bio-Protection Research Centre, New Zealand
| | - Bilal Ӧkmen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Hanna Rovenich
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Scott A Griffiths
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Changchun Wang
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
| | - Mansoor Karimi Jashni
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 5 Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization, P.O. Box 19395‒1454, Tehran, Iran
| | - Aleksandar Mihajlovski
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jérôme Collemare
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Lukas Hunziker
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Cecilia H Deng
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Ate van der Burgt
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Henriek G Beenen
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Matthew D Templeton
- 3 Bio-Protection Research Centre, New Zealand
- 7 Breeding & Genomics/Bioprotection Portfolio, the New Zealand Institute for Plant & Food Research Limited, Mount Albert Research Centre, Auckland 1025, New Zealand; and
| | - Rosie E Bradshaw
- 3 Bio-Protection Research Centre, New Zealand
- 6 Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Pierre J G M de Wit
- 1 Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- 8 Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
67
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
68
|
Arya P, Acharya V. Plant STAND P-loop NTPases: a current perspective of genome distribution, evolution, and function : Plant STAND P-loop NTPases: genomic organization, evolution, and molecular mechanism models contribute broadly to plant pathogen defense. Mol Genet Genomics 2017; 293:17-31. [PMID: 28900732 DOI: 10.1007/s00438-017-1368-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 09/07/2017] [Indexed: 01/18/2023]
Abstract
STAND P-loop NTPase is the common weapon used by plant and other organisms from all three kingdoms of life to defend themselves against pathogen invasion. The purpose of this study is to review comprehensively the latest finding of plant STAND P-loop NTPase related to their genomic distribution, evolution, and their mechanism of action. Earlier, the plant STAND P-loop NTPase known to be comprised of only NBS-LRRs/AP-ATPase/NB-ARC ATPase. However, recent finding suggests that genome of early green plants comprised of two types of STAND P-loop NTPases: (1) mammalian NACHT NTPases and (2) NBS-LRRs. Moreover, YchF (unconventional G protein and members of P-loop NTPase) subfamily has been reported to be exceptionally involved in biotic stress (in case of Oryza sativa), thereby a novel member of STAND P-loop NTPase in green plants. The lineage-specific expansion and genome duplication events are responsible for abundance of plant STAND P-loop NTPases; where "moderate tandem and low segmental duplication" trajectory followed in majority of plant species with few exception (equal contribution of tandem and segmental duplication). Since the past decades, systematic research is being investigated into NBS-LRR function supported the direct recognition of pathogen or pathogen effectors by the latest models proposed via 'integrated decoy' or 'sensor domains' model. Here, we integrate the recently published findings together with the previous literature on the genomic distribution, evolution, and distinct models proposed for functional molecular mechanism of plant STAND P-loop NTPases.
Collapse
Affiliation(s)
- Preeti Arya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.,National Agri-Food Biotechnology Institute, Sector-81 (Knowledge City), SAS Nagar, Punjab, 140306, India
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Palampur, Himachal Pradesh, 176061, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT) Campus, Palampur, Himachal Pradesh, India.
| |
Collapse
|
69
|
Abstract
The interactions between fungi and plants encompass a spectrum of ecologies ranging from saprotrophy (growth on dead plant material) through pathogenesis (growth of the fungus accompanied by disease on the plant) to symbiosis (growth of the fungus with growth enhancement of the plant). We consider pathogenesis in this article and the key roles played by a range of pathogen-encoded molecules that have collectively become known as effectors.
Collapse
|
70
|
Sun L, Qin J, Wang K, Zhang J. Expansion of pathogen recognition specificity in plants using pattern recognition receptors and artificially designed decoys. SCIENCE CHINA-LIFE SCIENCES 2017; 60:797-805. [DOI: 10.1007/s11427-017-9064-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
|
71
|
Cummins M, Huitema E. Effector-Decoy Pairs: Another Countermeasure Emerging during Host-Microbe Co-evolutionary Arms Races? MOLECULAR PLANT 2017; 10:662-664. [PMID: 28365332 DOI: 10.1016/j.molp.2017.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Michael Cummins
- Wellcome Trust PhD Programme, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Edgar Huitema
- Division of Plant Science, School of Life Sciences, University of Dundee at the James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, UK; Dundee Effector Consortium, JHI, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
72
|
Dagvadorj B, Ozketen AC, Andac A, Duggan C, Bozkurt TO, Akkaya MS. A Puccinia striiformis f. sp. tritici secreted protein activates plant immunity at the cell surface. Sci Rep 2017; 7:1141. [PMID: 28442716 PMCID: PMC5430700 DOI: 10.1038/s41598-017-01100-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
Pathogens secrete effector proteins to suppress host immunity, mediate nutrient uptake and subsequently enable parasitism. However, on non-adapted hosts, effectors can be detected as non-self by host immune receptors and activate non-host immunity. Nevertheless, the molecular mechanisms of effector triggered non-host resistance remain unknown. Here, we report that a small cysteine-rich protein PstSCR1 from the wheat rust pathogen Puccinia striiformis f. sp. tritici (Pst) activates immunity in the non-host solanaceous model plant Nicotiana benthamiana. PstSCR1 homologs were found to be conserved in Pst, and in its closest relatives, Puccinia graminis f. sp. tritici and Puccinia triticina. When PstSCR1 was expressed in N. benthamiana with its signal peptide, it provoked the plant immune system, whereas no stimulation was observed when it was expressed without its signal peptide. PstSCR1 expression in N. benthamiana significantly reduced infection capacity of the oomycete pathogens. Moreover, apoplast-targeted PstSCR1 triggered plant cell death in a dose dependent manner. However, in Brassinosteroid insensitive 1-Associated Kinase 1 (SERK3/BAK1) silenced N. benthamiana, cell death was remarkably decreased. Finally, purified PstSCR1 protein activated defence related gene expression in N. benthamiana. Our results show that a Pst-secreted protein, PstSCR1 can activate surface mediated immunity in non-adapted hosts and contribute to non-host resistance.
Collapse
Affiliation(s)
- Bayantes Dagvadorj
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Ahmet Caglar Ozketen
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Ayse Andac
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey
| | - Cian Duggan
- Imperial College London, Department of Life Sciences, London, SW7 2AZ, UK
| | | | - Mahinur S Akkaya
- Middle East Technical University, Biotechnology Program, Department of Chemistry, Dumlupinar Blvd., Cankaya, Ankara, TR-06800, Turkey.
| |
Collapse
|
73
|
Misas-Villamil JC, van der Burgh AM, Grosse-Holz F, Bach-Pages M, Kovács J, Kaschani F, Schilasky S, Emon AEK, Ruben M, Kaiser M, Overkleeft HS, van der Hoorn RAL. Subunit-selective proteasome activity profiling uncovers uncoupled proteasome subunit activities during bacterial infections. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:418-430. [PMID: 28117509 DOI: 10.1111/tpj.13494] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
The proteasome is a nuclear-cytoplasmic proteolytic complex involved in nearly all regulatory pathways in plant cells. The three different catalytic activities of the proteasome can have different functions, but tools to monitor and control these subunits selectively are not yet available in plant science. Here, we introduce subunit-selective inhibitors and dual-color fluorescent activity-based probes for studying two of the three active catalytic subunits of the plant proteasome. We validate these tools in two model plants and use this to study the proteasome during plant-microbe interactions. Our data reveal that Nicotiana benthamiana incorporates two different paralogs of each catalytic subunit into active proteasomes. Interestingly, both β1 and β5 activities are significantly increased upon infection with pathogenic Pseudomonas syringae pv. tomato DC3000 lacking hopQ1-1 [PtoDC3000(ΔhQ)] whilst the activity profile of the β1 subunit changes. Infection with wild-type PtoDC3000 causes proteasome activities that range from strongly induced β1 and β5 activities to strongly suppressed β5 activities, revealing that β1 and β5 activities can be uncoupled during bacterial infection. These selective probes and inhibitors are now available to the plant science community, and can be widely and easily applied to study the activity and role of the different catalytic subunits of the proteasome in different plant species.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, 50674, Cologne, Germany
| | - Aranka M van der Burgh
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Friederike Grosse-Holz
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Marcel Bach-Pages
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| | - Judit Kovács
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Sören Schilasky
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Asif E K Emon
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Mark Ruben
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Markus Kaiser
- Chemical Biology, Universität Duisburg-Essen, Zentrum für Medizinische Biotechnologie, Fakultät für Biologie, Universitätsstr. 2, 45117, Essen, Germany
| | - Hermen S Overkleeft
- Gorlaeus Laboratories, Institute of Chemistry and Netherlands Proteomics Centre, 2333 CC, Leiden, The Netherlands
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane, Oxford, OX1 3RB, UK
| |
Collapse
|
74
|
Ma Z, Zhu L, Song T, Wang Y, Zhang Q, Xia Y, Qiu M, Lin Y, Li H, Kong L, Fang Y, Ye W, Wang Y, Dong S, Zheng X, Tyler BM, Wang Y. A paralogous decoy protects Phytophthora sojae apoplastic effector PsXEG1 from a host inhibitor. Science 2017; 355:710-714. [PMID: 28082413 DOI: 10.1126/science.aai7919] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/28/2016] [Indexed: 12/15/2022]
Abstract
The extracellular space (apoplast) of plant tissue represents a critical battleground between plants and attacking microbes. Here we show that a pathogen-secreted apoplastic xyloglucan-specific endoglucanase, PsXEG1, is a focus of this struggle in the Phytophthora sojae-soybean interaction. We show that soybean produces an apoplastic glucanase inhibitor protein, GmGIP1, that binds to PsXEG1 to block its contribution to virulence. P. sojae, however, secretes a paralogous PsXEG1-like protein, PsXLP1, that has lost enzyme activity but binds to GmGIP1 more tightly than does PsXEG1, thus freeing PsXEG1 to support P. sojae infection. The gene pair encoding PsXEG1 and PsXLP1 is conserved in many Phytophthora species, and the P. parasitica orthologs PpXEG1 and PpXLP1 have similar functions. Thus, this apoplastic decoy strategy may be widely used in Phytophthora pathosystems.
Collapse
Affiliation(s)
- Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Lin Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Tianqiao Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yang Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Qi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yachun Lin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Haiyang Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Liang Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yufeng Fang
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| |
Collapse
|
75
|
Kovács J, Poór P, Kaschani F, Chandrasekar B, Hong TN, Misas-Villamil JC, Xin BT, Kaiser M, Overkleeft HS, Tari I, van der Hoorn RAL. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. FRONTIERS IN PLANT SCIENCE 2017; 8:107. [PMID: 28217134 PMCID: PMC5289967 DOI: 10.3389/fpls.2017.00107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 01/18/2017] [Indexed: 05/20/2023]
Abstract
The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.
Collapse
Affiliation(s)
- Judit Kovács
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Péter Poór
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Farnusch Kaschani
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Tram N. Hong
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Johana C. Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of CologneCologne, Germany
| | - Bo T. Xin
- Leiden Institute of Chemistry, Leiden UniversityLeiden, Netherlands
| | - Markus Kaiser
- Chemical Biology, Fakultät für Biologie, Zentrum für Medizinische Biotechnologie, Universität Duisburg-EssenEssen, Germany
| | | | - Irma Tari
- Department of Plant Biology, University of SzegedSzeged, Hungary
| | - Renier A. L. van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of OxfordOxford, UK
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
76
|
Jwa NS, Hwang BK. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1687. [PMID: 29033963 PMCID: PMC5627460 DOI: 10.3389/fpls.2017.01687] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/13/2017] [Indexed: 05/03/2023]
Abstract
Microbial pathogens have evolved protein effectors to promote virulence and cause disease in host plants. Pathogen effectors delivered into plant cells suppress plant immune responses and modulate host metabolism to support the infection processes of pathogens. Reactive oxygen species (ROS) act as cellular signaling molecules to trigger plant immune responses, such as pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity. In this review, we discuss recent insights into the molecular functions of pathogen effectors that target multiple steps in the ROS signaling pathway in plants. The perception of PAMPs by pattern recognition receptors leads to the rapid and strong production of ROS through activation of NADPH oxidase Respiratory Burst Oxidase Homologs (RBOHs) as well as peroxidases. Specific pathogen effectors directly or indirectly interact with plant nucleotide-binding leucine-rich repeat receptors to induce ROS production and the hypersensitive response in plant cells. By contrast, virulent pathogens possess effectors capable of suppressing plant ROS bursts in different ways during infection. PAMP-triggered ROS bursts are suppressed by pathogen effectors that target mitogen-activated protein kinase cascades. Moreover, pathogen effectors target vesicle trafficking or metabolic priming, leading to the suppression of ROS production. Secreted pathogen effectors block the metabolic coenzyme NADP-malic enzyme, inhibiting the transfer of electrons to the NADPH oxidases (RBOHs) responsible for ROS generation. Collectively, pathogen effectors may have evolved to converge on a common host protein network to suppress the common plant immune system, including the ROS burst and cell death response in plants.
Collapse
Affiliation(s)
- Nam-Soo Jwa
- Division of Integrative Bioscience and Biotechnology, College of Life Sciences, Sejong University, Seoul, South Korea
- *Correspondence: Nam-Soo Jwa,
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
77
|
Čerekovic N, Poltronieri P. Plant signaling pathways activating defence response and interfering mechanisms by pathogen effectors, protein decoys and bodyguards. AIMS MOLECULAR SCIENCE 2017; 4:370-388. [DOI: 10.3934/molsci.2017.3.370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
|
78
|
Misas-Villamil JC, van der Hoorn RAL, Doehlemann G. Papain-like cysteine proteases as hubs in plant immunity. THE NEW PHYTOLOGIST 2016; 212:902-907. [PMID: 27488095 DOI: 10.1111/nph.14117] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/11/2016] [Indexed: 05/02/2023]
Abstract
902 I. 902 II. 903 III. 903 IV. 903 V. 905 VI. 905 VII. 905 906 References 906 SUMMARY: Plants deploy a sophisticated immune system to cope with different microbial pathogens and other invaders. Recent research provides an increasing body of evidence for papain-like cysteine proteases (PLCPs) being central hubs in plant immunity. PLCPs are required for full resistance of plants to various pathogens. At the same time, PLCPs are targeted by secreted pathogen effectors to suppress immune responses. Consequently, they are subject to a co-evolutionary host-pathogen arms race. When activated, PLCPs induce a broad spectrum of defense responses including plant cell death. While the important role of PLCPs in plant immunity has become more evident, it remains largely elusive how these enzymes are activated and which signaling pathways are triggered to orchestrate different downstream responses.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, D-50674, Cologne, Germany
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Lane Road, Oxford, OX1 3RB, UK
| | - Gunther Doehlemann
- Botanical Institute and Center of Excellence on Plant Sciences (CEPLAS), University of Cologne, BioCenter, Zuelpicher Str. 47a, D-50674, Cologne, Germany
| |
Collapse
|
79
|
Shindo T, Kaschani F, Yang F, Kovács J, Tian F, Kourelis J, Hong TN, Colby T, Shabab M, Chawla R, Kumari S, Ilyas M, Hörger AC, Alfano JR, van der Hoorn RAL. Screen of Non-annotated Small Secreted Proteins of Pseudomonas syringae Reveals a Virulence Factor That Inhibits Tomato Immune Proteases. PLoS Pathog 2016; 12:e1005874. [PMID: 27603016 PMCID: PMC5014320 DOI: 10.1371/journal.ppat.1005874] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 08/15/2016] [Indexed: 11/18/2022] Open
Abstract
Pseudomonas syringae pv. tomato DC3000 (PtoDC3000) is an extracellular model plant pathogen, yet its potential to produce secreted effectors that manipulate the apoplast has been under investigated. Here we identified 131 candidate small, secreted, non-annotated proteins from the PtoDC3000 genome, most of which are common to Pseudomonas species and potentially expressed during apoplastic colonization. We produced 43 of these proteins through a custom-made gateway-compatible expression system for extracellular bacterial proteins, and screened them for their ability to inhibit the secreted immune protease C14 of tomato using competitive activity-based protein profiling. This screen revealed C14-inhibiting protein-1 (Cip1), which contains motifs of the chagasin-like protease inhibitors. Cip1 mutants are less virulent on tomato, demonstrating the importance of this effector in apoplastic immunity. Cip1 also inhibits immune protease Pip1, which is known to suppress PtoDC3000 infection, but has a lower affinity for its close homolog Rcr3, explaining why this protein is not recognized in tomato plants carrying the Cf-2 resistance gene, which uses Rcr3 as a co-receptor to detect pathogen-derived protease inhibitors. Thus, this approach uncovered a protease inhibitor of P. syringae, indicating that also P. syringae secretes effectors that selectively target apoplastic host proteases of tomato, similar to tomato pathogenic fungi, oomycetes and nematodes.
Collapse
Affiliation(s)
- Takayuki Shindo
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Farnusch Kaschani
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Fan Yang
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Judit Kovács
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Fang Tian
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jiorgos Kourelis
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Tram Ngoc Hong
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Tom Colby
- Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Mohammed Shabab
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rohini Chawla
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Selva Kumari
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Muhammad Ilyas
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Anja C. Hörger
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - James R. Alfano
- Center for Plant Science Innovation and the Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Renier A. L. van der Hoorn
- Plant Chemetics lab, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Plant Chemetics lab, Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
80
|
Toruño TY, Stergiopoulos I, Coaker G. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:419-41. [PMID: 27359369 PMCID: PMC5283857 DOI: 10.1146/annurev-phyto-080615-100204] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks.
Collapse
Affiliation(s)
- Tania Y Toruño
- Department of Plant Pathology, University of California, Davis, California; , ,
| | | | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California; , ,
| |
Collapse
|
81
|
Liu Z, Gao Y, Kim YM, Faris JD, Shelver WL, de Wit PJGM, Xu SS, Friesen TL. SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases. THE NEW PHYTOLOGIST 2016; 211:1052-64. [PMID: 27041151 DOI: 10.1111/nph.13959] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/03/2016] [Indexed: 05/02/2023]
Abstract
SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases.
Collapse
Affiliation(s)
- Zhaohui Liu
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yuanyuan Gao
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Yong Min Kim
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
| | - Justin D Faris
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Weilin L Shelver
- Biosciences Research Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Steven S Xu
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58102, USA
- Northern Crop Science Laboratory, United States Department of Agriculture - Agricultural Research Service, Fargo, ND, 58102, USA
| |
Collapse
|
82
|
Twelve ways to confirm targets of activity-based probes in plants. Bioorg Med Chem 2016; 24:3304-11. [DOI: 10.1016/j.bmc.2016.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/14/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022]
|
83
|
Kędzior M, Seredyński R, Gutowicz J. Microbial inhibitors of cysteine proteases. Med Microbiol Immunol 2016; 205:275-96. [PMID: 27048482 DOI: 10.1007/s00430-016-0454-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/24/2016] [Indexed: 01/06/2023]
Abstract
Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.
Collapse
Affiliation(s)
- Mateusz Kędzior
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland.
| | - Rafał Seredyński
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Jan Gutowicz
- Department of Physical Chemistry of Microorganisms, Institute of Genetics and Microbiology, University of Wrocław, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
84
|
Stam R, Scheikl D, Tellier A. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population. Genome Biol Evol 2016; 8:1501-15. [PMID: 27189991 PMCID: PMC4898808 DOI: 10.1093/gbe/evw094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technische Universität München, Freising, Germany
| |
Collapse
|
85
|
da Graça JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H. Huanglongbing: An overview of a complex pathosystem ravaging the world's citrus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:373-87. [PMID: 26466921 DOI: 10.1111/jipb.12437] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/12/2015] [Indexed: 05/24/2023]
Abstract
Citrus huanglongbing (HLB) has become a major disease and limiting factor of production in citrus areas that have become infected. The destruction to the affected citrus industries has resulted in a tremendous increase to support research that in return has resulted in significant information on both applied and basic knowledge concerning this important disease to the global citrus industry. Recent research indicates the relationship between citrus and the causal agent of HLB is shaped by multiple elements, in which host defense responses may also play an important role. This review is intended to provide an overview of the importance of HLB to a wider audience of plant biologists. Recent advances on host-pathogen interactions, population genetics and vectoring of the causal agent are discussed.
Collapse
Affiliation(s)
- John V da Graça
- Texas A&M University-Kingsville Citrus Center, Weslaco, Texas 78599, USA
| | - Greg W Douhan
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Susan E Halbert
- Florida Department of Agriculture and Consumer Services, Division of Plant Industry, P.O. Box 147100, Gainesville, Florida 32614, USA
| | - Manjunath L Keremane
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507, USA
| | - Richard F Lee
- USDA ARS National Clonal Germplasm Repository for Citrus and Dates, Riverside, California 92507, USA
| | - Georgios Vidalakis
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521, USA
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
86
|
Rodríguez-Celma J, Ceballos-Laita L, Grusak MA, Abadía J, López-Millán AF. Plant fluid proteomics: Delving into the xylem sap, phloem sap and apoplastic fluid proteomes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:991-1002. [PMID: 27033031 DOI: 10.1016/j.bbapap.2016.03.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
The phloem sap, xylem sap and apoplastic fluid play key roles in long and short distance transport of signals and nutrients, and act as a barrier against local and systemic pathogen infection. Among other components, these plant fluids contain proteins which are likely to be important players in their functionalities. However, detailed information about their proteomes is only starting to arise due to the difficulties inherent to the collection methods. This review compiles the proteomic information available to date in these three plant fluids, and compares the proteomes obtained in different plant species in order to shed light into conserved functions in each plant fluid. Inter-species comparisons indicate that all these fluids contain the protein machinery for self-maintenance and defense, including proteins related to cell wall metabolism, pathogen defense, proteolysis, and redox response. These analyses also revealed that proteins may play more relevant roles in signaling in the phloem sap and apoplastic fluid than in the xylem sap. A comparison of the proteomes of the three fluids indicates that although functional categories are somewhat similar, proteins involved are likely to be fluid-specific, except for a small group of proteins present in the three fluids, which may have a universal role, especially in cell wall maintenance and defense. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- University of East Anglia/John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Laura Ceballos-Laita
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain
| | - Ana-Flor López-Millán
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 13034, E-50080 Zaragoza, Spain; USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
87
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
88
|
Morimoto K, van der Hoorn RAL. The Increasing Impact of Activity-Based Protein Profiling in Plant Science. PLANT & CELL PHYSIOLOGY 2016; 57:446-61. [PMID: 26872839 DOI: 10.1093/pcp/pcw003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/28/2015] [Indexed: 05/08/2023]
Abstract
The active proteome dictates plant physiology. Yet, active proteins are difficult to predict based on transcript or protein levels, because protein activities are regulated post-translationally in their microenvironments. Over the past 10 years, activity-based protein profiling (ABPP) is increasingly used in plant science. ABPP monitors the activities of hundreds of plant proteins using tagged chemical probes that react with the active site of proteins in a mechanism-dependent manner. Since labeling is covalent and irreversible, labeled proteins can be detected and identified on protein gels and by mass spectrometry using tagged fluorophores and/or biotin. Here, we discuss general concepts, approaches and practical considerations of ABPP, before we summarize the discoveries made using 40 validated probes representing 14 chemotypes that can monitor the active state of >4,500 plant proteins. These discoveries and new opportunities indicate that this emerging functional proteomic technology is a powerful discovery tool that will have an increasing impact on plant science.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
89
|
Du Y, Stegmann M, Misas Villamil JC. The apoplast as battleground for plant-microbe interactions. THE NEW PHYTOLOGIST 2016; 209:34-8. [PMID: 26625346 DOI: 10.1111/nph.13777] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Yu Du
- Laboratory of Phytopathology, Wageningen University, Wageningen, the Netherlands
| | - Martin Stegmann
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Johana C Misas Villamil
- Botanical Institute and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, 50674, Germany
| |
Collapse
|
90
|
Abstract
The apoplastic fluid moving in the extracellular space external to the plasma membrane provides a means of delivering molecules and facilitates intercellular communications. However, the apoplastic fluid extraction from in planta systems remains challenging and this is particularly true for grapevine (Vitis vinifera L.), a worldwide-cultivated fruit plant. Here, we describe an optimized vacuum-infiltration-centrifugation method to extract soluble proteins from apoplastic fluid of grapevine leaves. This optimized method allows recovering of the grapevine apoplastic soluble proteins suitable for mono- and bi-dimensional gel electrophoresis for further proteomic analysis in order to elucidate their physiological functions.
Collapse
|
91
|
Asai S, Shirasu K. Plant cells under siege: plant immune system versus pathogen effectors. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:1-8. [PMID: 26343014 DOI: 10.1016/j.pbi.2015.08.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 05/20/2023]
Abstract
Pathogen-secreted effector proteins enable pathogens to manipulate plant immunity for successful infection. To penetrate host apoplastic space, pathogens reopen the stomata. Once the invasion into the apoplast occurs, pathogens deceive the host detection system by deploying apoplastic effectors. Pathogens also deliver an arsenal of cytosolic effectors into the host cells, which undermine host immunity such as salicylic acid (SA)-dependent immunity. Here we summarize recent findings that highlight the functions of the effectors from fungal, oomycete and bacterial pathogens in the key steps of infection at the stomata, in the apoplast, and inside the cell. We also discuss cell type-specific responses in the host during infection and the necessity of further investigation of plant-pathogen interactions at spatial and temporal resolution.
Collapse
Affiliation(s)
- Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045 Japan.
| |
Collapse
|
92
|
Figueroa M, Manning VA, Pandelova I, Ciuffetti LM. Persistence of the Host-Selective Toxin Ptr ToxB in the Apoplast. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1082-90. [PMID: 26057389 DOI: 10.1094/mpmi-05-15-0097-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The necrotrophic fungus Pyrenophora tritici-repentis is responsible for the disease tan spot of wheat. Ptr ToxB (ToxB), a proteinaceous host-selective toxin, is one of the effectors secreted by P. tritici-repentis. ToxB induces chlorosis in toxin-sensitive wheat cultivars and displays characteristics common to apoplastic effectors. We addressed the hypothesis that ToxB exerts its activity extracellularly. Our data indicate that hydraulic pressure applied in the apoplast following ToxB infiltration can displace ToxB-induced symptoms. In addition, treatment with a proteolytic cocktail following toxin infiltration results in reduction of symptom development and indicates that ToxB requires at least 8 h in planta to induce maximum symptom development. In vitro assays demonstrate that apoplastic fluids extracted from toxin-sensitive and -insensitive wheat cultivars cannot degrade ToxB. Additionally, ToxB can be reisolated from apoplastic fluid after toxin infiltration. Furthermore, localization studies of fluorescently labeled ToxB indicate that the toxin remains in the apoplast in toxin-sensitive and -insensitive wheat cultivars. Our findings support the hypothesis that ToxB acts as an extracellular effector.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Viola A Manning
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Iovanna Pandelova
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| | - Lynda M Ciuffetti
- Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, U.S.A
| |
Collapse
|
93
|
Ilyas M, Hörger A, Bozkurt T, van den Burg H, Kaschani F, Kaiser M, Belhaj K, Smoker M, Joosten M, Kamoun S, van der Hoorn R. Functional Divergence of Two Secreted Immune Proteases of Tomato. Curr Biol 2015; 25:2300-6. [DOI: 10.1016/j.cub.2015.07.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 11/30/2022]
|
94
|
Lu H, Chandrasekar B, Oeljeklaus J, Misas-Villamil JC, Wang Z, Shindo T, Bogyo M, Kaiser M, van der Hoorn RAL. Subfamily-Specific Fluorescent Probes for Cysteine Proteases Display Dynamic Protease Activities during Seed Germination. PLANT PHYSIOLOGY 2015; 168:1462-75. [PMID: 26048883 PMCID: PMC4528725 DOI: 10.1104/pp.114.254466] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 05/27/2015] [Indexed: 05/20/2023]
Abstract
Cysteine proteases are an important class of enzymes implicated in both developmental and defense-related programmed cell death and other biological processes in plants. Because there are dozens of cysteine proteases that are posttranslationally regulated by processing, environmental conditions, and inhibitors, new methodologies are required to study these pivotal enzymes individually. Here, we introduce fluorescence activity-based probes that specifically target three distinct cysteine protease subfamilies: aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes. We applied protease activity profiling with these new probes on Arabidopsis (Arabidopsis thaliana) protease knockout lines and agroinfiltrated leaves to identify the probe targets and on other plant species to demonstrate their broad applicability. These probes revealed that most commercially available protease inhibitors target unexpected proteases in plants. When applied on germinating seeds, these probes reveal dynamic activities of aleurain-like proteases, cathepsin B-like proteases, and vacuolar processing enzymes, coinciding with the remobilization of seed storage proteins.
Collapse
Affiliation(s)
- Haibin Lu
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Balakumaran Chandrasekar
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Julian Oeljeklaus
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Johana C Misas-Villamil
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Zheming Wang
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Takayuki Shindo
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Matthew Bogyo
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Markus Kaiser
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| | - Renier A L van der Hoorn
- Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom (H.L., B.C., J.C.M.-V., R.A.L.v.d.H.);Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany (H.L., B.C., J.C.M.-V., T.S., R.A.L.v.d.H.);Center for Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, 45117 Essen, Germany (J.O., Z.W., M.K.); andDepartment of Pathology, Stanford School for Medicine, Stanford, California 94305-5324 (M.B.)
| |
Collapse
|
95
|
Popova VV, Dunaevsky YE, Domash VI, Semenova TA, Beliakova GA, Belozersky MA. Some properties and possible biological role of peptidase inhibitors from the entomopathogenic fungus Tolypocladium cylindrosporum. Arch Microbiol 2015. [PMID: 26210235 DOI: 10.1007/s00203-015-1132-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The activities of secreted and mycelial inhibitors of proteolytic enzymes from fungi of the order Hypocreales have been investigated. Inhibitors of bromelain, papain, and trypsin of low molecular mass (about 1 kDa) and a subtilisin proteinaceous inhibitor with molecular mass of 45 kDa were revealed in the culture liquid of the fungus Tolypocladium cylindrosporum. The subtilisin inhibitor from T. cylindrosporum has antibiotic properties, significantly decreased the activity of purified bacterial enzymes, and prevented the growth of the bacterium Pseudomonas sp. Data suggesting the existence in fungi of the Hypocreales order of two pools of peptidase inhibitors have been obtained.
Collapse
Affiliation(s)
- V V Popova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | |
Collapse
|
96
|
Chaudhari P, Ahmed B, Joly DL, Germain H. Effector biology during biotrophic invasion of plant cells. Virulence 2015; 5:703-9. [PMID: 25513771 PMCID: PMC4189876 DOI: 10.4161/viru.29652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several obligate biotrophic phytopathogens, namely oomycetes and fungi, invade and feed on living plant cells through specialized structures known as haustoria. Deploying an arsenal of secreted proteins called effectors, these pathogens balance their parasitic propagation by subverting plant immunity without sacrificing host cells. Such secreted proteins, which are thought to be delivered by haustoria, conceivably reprogram host cells and instigate structural modifications, in addition to the modulation of various cellular processes. As effectors represent tools to assist disease resistance breeding, this short review provides a bird’s eye view on the relationship between the virulence function of effectors and their subcellular localization in host cells.
Collapse
Affiliation(s)
- Prateek Chaudhari
- a Groupe de Recherche en Biologie Végétale; Département de Chimie, Biochimie et Physique; Université du Québec à Trois-Rivières; Trois-Rivières, QC Canada
| | | | | | | |
Collapse
|
97
|
Ignacio IF, Carmela AA, Blondy CC. Recovery of active pathogenesis-related enzymes from the apoplast of Musa acuminata infected by Mycosphaerella fijiensis. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajb2014.14334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
98
|
Kabbage M, Yarden O, Dickman MB. Pathogenic attributes of Sclerotinia sclerotiorum: switching from a biotrophic to necrotrophic lifestyle. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 233:53-60. [PMID: 25711813 DOI: 10.1016/j.plantsci.2014.12.018] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 05/02/2023]
Abstract
Plants and fungi have had many years of friendly and not-so friendly competition for resources and quality of life. As a result, diverse pathosystems evolved numerous strategies, coupled with the emergence of multifaceted pathogenic and saprophytic lifestyles. We discuss fungal lifestyle classifications and how the views associated with certain fungal pathogens, particularly necrotophs, are changing as we learn more about the complexities of their interactions with a given host plant. We discuss the physiological events leading to the transition from biotrophy to necrotrophy in hemi-biotrophs, and conclude that both the control of plant immune responses and the need for a more efficient mode of nutrient acquisition are possible triggers for the transition to necrotrophy. Based on recent findings, we focus on the polyphagous plant pathogen Sclerotinia sclerotiorum. Rather than overwhelming plant foes, S. sclerotiorum has evolved clever means to compromise host recognition and establish disease, resulting in a broad and immensely successful pathogenic lifestyle. The tactics used by this fungus to achieve pathogenic success are being clarified. We propose that the hemi-biotrophic lifestyle may be more temporally and spatially complex than currently depicted, and that combining lifestyle attributes with damage response curves that consider the contribution of both the fungus and the host to pathogenesis, may provide a more holistic manner to view plant pathogens.
Collapse
Affiliation(s)
- Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7600, Israel
| | - Martin B Dickman
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA; Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
99
|
Gong X, Hurtado O, Wang B, Wu C, Yi M, Giraldo M, Valent B, Goodin M, Farman M. pFPL Vectors for High-Throughput Protein Localization in Fungi: Detecting Cytoplasmic Accumulation of Putative Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:107-121. [PMID: 25390188 DOI: 10.1094/mpmi-05-14-0144-ta] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As part of a large-scale project whose goal was to identify candidate effector proteins in Magnaporthe oryzae, we developed a suite of vectors that facilitate high-throughput protein localization experiments in fungi. These vectors utilize Gateway recombinational cloning to place a gene's promoter and coding sequences upstream and in frame with enhanced cyan fluorescent protein, green fluorescent protein (GFP), monomeric red fluorescence protein (mRFP), and yellow fluorescent protein or a nucleus-targeted mCHERRY variant. The respective Gateway cassettes were incorporated into Agrobacterium-based plasmids to allow efficient fungal transformation using hygromycin or geneticin resistance selection. mRFP proved to be more sensitive than the GFP spectral variants for monitoring proteins secreted in planta; and extensive testing showed that Gateway-derived fusion proteins produced localization patterns identical to their "directly fused" counterparts. Use of plasmid for fungal protein localization (pFPL) vectors with two different selectable markers provided a convenient way to label fungal cells with different fluorescent proteins. We demonstrate the utility of the pFPL vectors for identifying candidate effector proteins and we highlight a number of important factors that must be taken into consideration when screening for proteins that are translocated across the host plasma membrane.
Collapse
|
100
|
Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses. PLoS One 2015; 10:e0115042. [PMID: 25606855 PMCID: PMC4301866 DOI: 10.1371/journal.pone.0115042] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/18/2014] [Indexed: 12/01/2022] Open
Abstract
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Collapse
|