51
|
Mohamed H, AL-Ghareeb M, Abd-Allah R. Pharmacological Evaluation of Novel 1,2,4-triazine Derivatives Containing
Thiazole Ring against Hepatocellular Carcinoma. CURRENT BIOACTIVE COMPOUNDS 2022; 18. [DOI: 10.2174/1573407217666210910093142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 09/01/2023]
Abstract
Background:
New 6-hydroxy-5-(p-hydroxybenzylidene)-3-phenyl-2- [(5-pchlorophenyl)-
1,3-thiazol-2-yl]-1, 2, 4-triazine derivatives containing a thiazole ring were synthesised
as potential antitumor agents.
Methods:
Cytotoxicity of compounds (3) and (4) was evaluated in human hepatocellular carcinoma
(HCC) cell lines (HepG2); compound (3) showed more cytotoxicity (IC50=9.0μg/ml) than compound
(4) (IC50=18.40μg/ml) using doxorubicin as standard. The degree of toxicity of compound
(3) was assessed by the LD50 with its anticancer performance by suppressing tumor angiogenesis
against diethylnitrosamine (DENA) induced hepatocellular carcinoma (HCC) in male rat model.
Results :
Carcinogenic rats showed a significant increase in markers of angiogenesis, tumour
growth, and liver function tests and malondialdehyde level coupled with reduced hepatic glutathione
level and caspase-3 activity. The distribution of compound (3) to animals after the development
of HCC improved biochemical alterations from a DENA chemical carcinogen that is confirmed
by hepatic histopathology.
Conclusion:
Compound 3 perhaps utilized as a strong applicant for newly therapeutic protocols
against hepatocarcinogenesis by controlling tumor angiogenesis and renovating the activity of hepatic
marker enzymes in addition to reversing the oxidant-antioxidant imbalance in corporation with
amelioration of histopathology. While the trial supports the use of compound 3 for improved HCC
outcome and the toxicity and side effects should be considered.
Collapse
Affiliation(s)
- Heba Mohamed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy
Authority, Nasr City, Cairo, Egypt
| | - Mohamed AL-Ghareeb
- Chemistry Department, Faculty of Science, Port-Said University, Port Said,
Egypt
| | - Raghda Abd-Allah
- Chemistry Department, Faculty of Science, Port-Said University, Port Said,
Egypt
| |
Collapse
|
52
|
Abd El-Fattah EE, Saber S, Youssef ME, Eissa H, El-Ahwany E, Amin NA, Alqarni M, Batiha GES, Obaidullah AJ, Kaddah MMY, Ahmed Gaafar AG, Mourad AAE, Mostafa-Hedeab G, Abdelhamid AM. AKT-AMPKα-mTOR-dependent HIF-1α Activation is a New Therapeutic Target for Cancer Treatment: A Novel Approach to Repositioning the Antidiabetic Drug Sitagliptin for the Management of Hepatocellular Carcinoma. Front Pharmacol 2022; 12:720173. [PMID: 35095479 PMCID: PMC8790251 DOI: 10.3389/fphar.2021.720173] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
HIF-1α is a key factor promoting the development of hepatocellular carcinoma (HCC). As well, AKT-AMPKα-mTOR signaling is a promising target for cancer therapy. Yet, the AKT-AMPKα-mTOR-dependent activation of HIF-1α has not been studied in livers with HCC. In addition, the mechanisms underlying the potential antineoplastic effects of sitagliptin (STGPT), an antidiabetic agent, have not yet been elucidated. For that purpose, the N-nitrosodiethylamine (NDEA)-induced HCC mouse model was used in the present study using a dose of 100 mg/kg/week, i.p., for 8 weeks. NDEA-induced HCC mice received STGPT 20, 40, or 80 mg/kg starting on day 61 up to day 120. The present study revealed that STGPT inhibited HIF-1α activation via the interference with the AKT-AMPKα-mTOR axis and the interruption of IKKβ, P38α, and ERK1/2 signals as well. Accordingly, STGPT prolonged the survival, restored the histological features and improved liver function. Additionally, STGPT inhibited angiogenesis, as revealed by a significant downregulation in the VEGF and mRNA expression of CD309 with concomitant inhibition of tissue invasion was evident by an increased ratio of TIMP-1/MMP-2. STGPT exhibited apoptotic stimulatory effect as indicated upon calculating the BCL-2/Bax ratio and by the gene expression of p53. The decrease in AFP and liver index calculation, gene expression of Ki-67 confirmed the antiproliferative activity of STGPT. The anti-inflammatory potential was revealed by the decreased TNF-α level and the downregulation of MCP-1 gene expression. Moreover, an antifibrotic potential was supported by lower levels of TGF-β. These effects appear to be GLP1R-independent. The present study provides a potential basis for repurposing STGPT for the inhibition of HCC progression. Since STGPT is unlikely to cause hypoglycemia, it may be promising as monotherapy or adjuvant therapy to treat diabetic or even normoglycemic patients with HCC.
Collapse
Affiliation(s)
- Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia.,Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
53
|
Yun J, Kim YS, Heo MJ, Kim MJ, Moon A, Kim SG. ERα inhibits mesenchymal and amoeboidal movement of liver cancer cell via Gα12. Int J Cancer 2022; 150:1690-1705. [PMID: 35020952 DOI: 10.1002/ijc.33929] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second most common cancer worldwide, demonstrating aggressiveness and mortality more frequently in men than in women. Despite reports regarding the inhibitory ability of estrogen receptor alpha (ERα, ESR1) in certain cancer progression, targets and the basis of underlying gender disparity in HCC worsening remain elusive. Here, we report the ability of ERα to transcriptionally inhibit G protein subunit alpha 12 (Gα12) responsible for HCC worsening. First, using human samples and public database, the expression of ERα and Gα12 in HCC was examined. Then, quantitative real-time PCR, chromatin immunoprecipitation-assay, luciferase assay, and immunoblottings of liver cancer cell lines confirmed the inhibitory ability of ERα on Gα12 and HCC progression. Gα12 promoted mesenchymal characteristics and amoeboidal movement, which was antagonized by ERα overexpression. Additionally, we found microRNA-141 and -200a as downstream targets of the Gα12 signaling axis for cancer malignancy regulation under the control of ERα. As for in-depth mechanism, PTP4A1 was found to be directly inhibited by microRNA-141 and -200a. Moreover, we found the inhibitory effect of ERα on amoeboidal movement by analyzing the morphology and blebbing of liver cancer cells and the active form of MLC levels. The identified targets and ESR1 levels are inversely correlated in human specimens, as well as with sex-biased survival rates of HCC patients. Collectively, ERα-dependent repression of Gα12 and consequent changes in the Gα12 signaling may explain the gender disparity in HCC, providing pharmacological clues for the control of metastatic HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jessica Yun
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Yun Seok Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine, Seoul, Korea
| | - Mi Jeong Heo
- College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min Joo Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, Republic of Korea
| | - Sang Geon Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang 10326, Kyeonggi-do, Republic of Korea
| |
Collapse
|
54
|
Gu CY, Lee TKW. Preclinical mouse models of hepatocellular carcinoma: An overview and update. Exp Cell Res 2022; 412:113042. [PMID: 35101391 DOI: 10.1016/j.yexcr.2022.113042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
|
55
|
Kerdput V, Kanjanapongkul K, Itharat A, Pramong R, Lamers WH, Hakvoort TBM, Jongejan A, Pradidarcheep W. Molecular Changes Following Induction of Hepatocellular Carcinoma by Diethylnitrosamine and Thioacetamide, and Subsequent Treatment with Dioscorea membranacea Extract. Int J Med Sci 2022; 19:1806-1815. [PMID: 36313224 PMCID: PMC9608040 DOI: 10.7150/ijms.72987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer commonly found in adults. Previously, we showed the anticancer effects of Thai herbal plant extract, Dioscorea membranacea Pierre (DM), in HCC-bearing rats. In the present study, we further examined the proposed mechanism of DM, including apoptosis and antioxidant activity. Moreover, we used RNA sequencing (RNA-seq) to analyze molecular pathways in the rat model in which HCC was induced by diethylnitrosamine (DEN) and thioacetamide (TAA). The HCC-bearing rats were then treated with 40 mg/kg of DM for 8 weeks, after which experimental and control rats were sacrificed and liver tissues were collected. The RNA-seq data of DEN/TAA-treated rats exhibited upregulation of 16 hallmark pathways, including epithelial mesenchymal transition, inflammatory responses, and angiogenesis (p<0.01). DM extract expanded the Bax protein-positive pericentral zone in the tumor areas and decreased hepatic malondialdehyde levels, implying a decrease in lipid peroxidation in liver. However, DM treatment did not ameliorate the molecular pathways induced in DEN/TAA-treated livers. Our findings indicate that DM extract has antioxidant activity and exerts its pro-apoptotic effect on rat HCCs in vivo at the (post-)translational level.
Collapse
Affiliation(s)
- Vichununt Kerdput
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Kritsakorn Kanjanapongkul
- Department of Science, Mahidol University International College, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University, Pathumthani 10120, Thailand
| | - Ratchadaporn Pramong
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Wouter H Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 BK Amsterdam, The Netherlands
| | - Theodorus B M Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Location AMC, 1105 BK Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Wisuit Pradidarcheep
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| |
Collapse
|
56
|
Abdelhamid AM, Saber S, Youssef ME, Gaafar AGA, Eissa H, Abd-Eldayem MA, Alqarni M, Batiha GES, Obaidullah AJ, Shahien MA, El-Ahwany E, Amin NA, Etman MA, Kaddah MMY, Abd El-Fattah EE. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother 2021; 145:112455. [PMID: 34844106 DOI: 10.1016/j.biopha.2021.112455] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Awad Shahien
- Department of Clinical Pharmacology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Ali Etman
- Research and Development, Department of Drug Stability, Safe Pharma, Pharco Pharmaceuticals, Alexandria, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
57
|
Aljuhr SA, Abdelaziz G, Essa BM, Zaghary WA, Sakr TM. Hepatoprotective, antioxidant and anti-inflammatory potentials of Vit-E/C@SeNPs in rats: Synthesis, characterization, biochemical, radio-biodistribution, molecular and histopathological studies. Bioorg Chem 2021; 117:105412. [PMID: 34649153 DOI: 10.1016/j.bioorg.2021.105412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
This study aimed to synthesize a nano-structure between selenium, Vit. C, and Vit. E (Vit-E/C@SeNPs) as a promising protective and therapeutic agent for hepatocellular carcinoma. Vit-E/C@SeNPs were characterized using TEM and DLS and its zetapotential was measured to evaluate its stability. DPPH assay and SRB test were performed to estimate its antioxidant capacity and cytotoxicity, respectively. A radiosynthesis of 99mTc-Vit-E/C@SeNPs was done for further in-vivo pharmacokinetic studies on normal and solid tumor induced mice. Further, in-vivo studies were conducted to investigate Vit-E/C@SeNPs efficacy against hepatocellular damage in Wistar albino rats induced by diethylnitrosamine (DEN) / Carbon Tetra chloride (CCl4). The synthesis results showed spherical Vit-E/C@SeNPs with core size of 50 nm, radical scavenging activity (%RSC) of 75.9%, and IC50 of 27.9 µg/ml. The biochemical analysis results showed that the lower liver function biomarker values (ALT, AST, ALP, total bilirubin and GGT) has gone for the Vit-E/C@SeNPs prevention and treated group, which also showed significant depletion of liver tissue l-MDA, and obvious increase in GSH concentration and CAT activity and marked improvement in the histological feature of liver tissue. Additionally, a significant up-regulation of mRNA gene expression levels of inflammatory gene (TGFβ1, NFκB, iNOS, PPAR-γ and TNFα) and Apoptotic gene (P53) were determined by using Quantitative real-time PCR (qPCR). The values down regulate and tend to normal in prevention and control group. All of these introduce Vit-E/C@SeNPs as a promising agent as protective and therapeutic agent against DEN/ CCl4-induced hepatocellular damage (Hepatocellular carcinoma).
Collapse
Affiliation(s)
- Safa A Aljuhr
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Gamal Abdelaziz
- Labeled Compounds Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Basma M Essa
- Radioactive Isotopes and Generators Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt
| | - Wafaa A Zaghary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Tamer M Sakr
- Radioactive Isotopes and Generators Department, Hot Laboratories Center, Egyptian Atomic Energy Authority, 13759 Cairo, Egypt.
| |
Collapse
|
58
|
Saha J, Bae J, Wang SY, Lu H, Chappell LJ, Gopal P, Davis AJ. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma. Nucleic Acids Res 2021; 49:9836-9850. [PMID: 34428289 PMCID: PMC8464062 DOI: 10.1093/nar/gkab743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.
Collapse
Affiliation(s)
- Janapriya Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinsung Bae
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Ya Wang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
59
|
Mattu S, Zavattari P, Kowalik MA, Serra M, Sulas P, Pal R, Puliga E, Sutti S, Foglia B, Parola M, Albano E, Giordano S, Perra A, Columbano A. Nrf2 Mutation/Activation Is Dispensable for the Development of Chemically Induced Mouse HCC. Cell Mol Gastroenterol Hepatol 2021; 13:113-127. [PMID: 34530178 PMCID: PMC8593617 DOI: 10.1016/j.jcmgh.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Activation of the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway has been associated with metabolic reprogramming in many tumors, including hepatocellular carcinoma (HCC). However, the contribution of Nrf2 mutations in this process remains elusive. Here, we investigated the occurrence of Nrf2 mutations in distinct models of mouse hepatocarcinogenesis. METHODS HCCs were generated by experimental protocols consisting of the following: (1) a single dose of diethylnitrosamine (DEN), followed by repeated treatments with the nuclear-receptor agonist 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene; (2) repeated treatments with 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene alone; (3) a single dose of DEN followed by exposure to a choline-deficient L-amino acid-defined diet; and (4) a single dose of DEN with no further treatment. All of these protocols led to HCC development within 28-42 weeks. Activation of the Keap1-Nrf2 pathway was investigated by analyzing the presence of Nrf2 gene mutations, and the expression of Nrf2 target genes. Metabolic reprogramming was assessed by evaluating the expression of genes involved in glycolysis, the pentose phosphate pathway, and glutaminolysis. RESULTS No Nrf2 mutations were found in any of the models of hepatocarcinogenesis analyzed. Intriguingly, despite the described cooperation between β-catenin and the Nrf2 pathway, we found no evidence of Nrf2 activation in both early dysplastic nodules and HCCs, characterized by the presence of up to 80%-90% β-catenin mutations. No HCC metabolic reprogramming was observed either. CONCLUSIONS These results show that, unlike rat hepatocarcinogenesis, Nrf2 mutations do not occur in 4 distinct models of chemically induced mouse HCC. Interestingly, in the same models, metabolic reprogramming also was minimal or absent, supporting the concept that Nrf2 activation is critical for the switch from oxidative to glycolytic metabolism.
Collapse
Affiliation(s)
- Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy
| | - Patrizia Zavattari
- Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, Cagliari, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy
| | - Marina Serra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy
| | - Pia Sulas
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy
| | - Rajesh Pal
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Oncology, Candiolo, Italy; Candiolo Cancer Institute, Fondazione Piemonte per l'Oncologia -Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy
| | - Salvatore Sutti
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Beatrice Foglia
- Department of Clinical and Biological Sciences, Unit of Experimental and Clinical Pathology, University of Torino, Candiolo, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental and Clinical Pathology, University of Torino, Candiolo, Italy
| | - Emanuele Albano
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Silvia Giordano
- Department of Oncology, Candiolo, Italy; Candiolo Cancer Institute, Fondazione Piemonte per l'Oncologia -Istituto di Ricovero e Cura a Carattere Scientifico, Candiolo, Torino, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy.
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, Cagliari, Italy.
| |
Collapse
|
60
|
Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21:541-557. [PMID: 34326518 DOI: 10.1038/s41568-021-00383-9] [Citation(s) in RCA: 313] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The liver is the sixth most common site of primary cancer in humans, and generally arises in a background of cirrhosis and inflammation. Moreover, the liver is frequently colonized by metastases from cancers of other organs (particularly the colon) because of its anatomical location and organization, as well as its unique metabolic and immunosuppressive environment. In this Review, we discuss how the hepatic microenvironment adapts to pathologies characterized by chronic inflammation and metabolic alterations. We illustrate how these immunological or metabolic changes alter immunosurveillance and thus hinder or promote the development of primary liver cancer. In addition, we describe how inflammatory and metabolic niches affect the spreading of cancer metastases into or within the liver. Finally, we review the current therapeutic options in this context and the resulting challenges that must be surmounted.
Collapse
Affiliation(s)
- Xin Li
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
61
|
Atta S, Kramani NE, Mohamed SR, Mohamed MA, Hassan SH, Hesham R, Mohamed AM, Abdel-Halim EE, Mohamed YA, El-Ahwany E. MicroRNA-199: A Potential Therapeutic Tool for Hepatocellular Carcinoma in an Experimental Model. Asian Pac J Cancer Prev 2021; 22:2771-2779. [PMID: 34582645 PMCID: PMC8850877 DOI: 10.31557/apjcp.2021.22.9.2771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma is one of the major health problems throughout the world with a very poor prognosis. MicroRNAs are small regulatory non-protein-coding RNA molecules. We aimed at investigating microRNA-199 as a potential therapeutic tool for HCC both in vitro and in an experimental model. A therapeutic strategy based on the effect of microRNAs to target genes responsible for liver cancer was adopted in this work. The ability of these small RNAs to potently influence cellular behavior was also investigated. The role of miR-199a in the development of liver cancer has been identified using a systematic literature search using miRBase. HepG2 cell line was used to test the effect of miRNA199a in vitro. Hepatocellular carcinoma was induced in Male Balb/C mice by diethylnitrosamine (DEN). Mice were treated with miRNA-199a and sacrificed after 16 weeks and blood samples and liver specimens were collected for biochemical and histopathological assessment. Histopathological examination of liver specimens after miRNA 199a treatment showed regression of Hepatocellular carcinoma with restoration of normal architecture. AFP, VEGF and TNFα levels decreased after treatment with miRNA 199a. Caspase 3 and 9; showed decreased expression in animals treated with miRNA 199a than non-treated ones.
Collapse
Affiliation(s)
- Shimaa Atta
- Immunology Lab, Theodor Bilharz Research Institute, Kornish El Nil street, Giza, Egypt.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Newberry EP, Hall Z, Xie Y, Molitor EA, Bayguinov PO, Strout GW, Fitzpatrick JA, Brunt EM, Griffin JL, Davidson NO. Liver-Specific Deletion of Mouse Tm6sf2 Promotes Steatosis, Fibrosis, and Hepatocellular Cancer. Hepatology 2021; 74:1203-1219. [PMID: 33638902 PMCID: PMC8390580 DOI: 10.1002/hep.31771] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Human transmembrane 6 superfamily 2 (TM6SF2) variant rs58542926 is associated with NAFLD and HCC. However, conflicting reports in germline Tm6sf2 knockout mice suggest no change or decreased very low density lipoprotein (VLDL) secretion and either unchanged or increased hepatic steatosis, with no increased fibrosis. We generated liver-specific Tm6Sf2 knockout mice (Tm6 LKO) to study VLDL secretion and the impact on development and progression of NAFLD. APPROACH AND RESULTS Two independent lines of Tm6 LKO mice exhibited spontaneous hepatic steatosis. Targeted lipidomic analyses showed increased triglyceride species whose distribution and abundance phenocopied findings in mice with liver-specific deletion of microsomal triglyceride transfer protein. The VLDL triglyceride secretion was reduced with small, underlipidated particles and unchanged or increased apolipoprotein B. Liver-specific adeno-associated viral, serotype 8 (AAV8) rescue using either wild-type or mutant E167K-Tm6 reduced hepatic steatosis and improved VLDL secretion. The Tm6 LKO mice fed a high milk-fat diet for 3 weeks exhibited increased steatosis and fibrosis, and those phenotypes were further exacerbated when mice were fed fibrogenic, high fat/fructose diets for 20 weeks. In two models of HCC, either neonatal mice injected with streptozotocin (NASH/STAM) and high-fat fed or with diethylnitrosamine injection plus fibrogenic diet feeding, Tm6 LKO mice exhibited increased steatosis, greater tumor burden, and increased tumor area versus Tm6 flox controls. Additionally, diethylnitrosamine-injected and fibrogenic diet-fed Tm6 LKO mice administered wild-type Tm6 or E167K-mutant Tm6 AAV8 revealed significant tumor attenuation, with tumor burden inversely correlated with Tm6 protein levels. CONCLUSIONS Liver-specific Tm6sf2 deletion impairs VLDL secretion, promoting hepatic steatosis, fibrosis, and accelerated development of HCC, which was mitigated with AAV8- mediated rescue.
Collapse
Affiliation(s)
- Elizabeth P. Newberry
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Xie
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Elizabeth A. Molitor
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Peter O. Bayguinov
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - Gregory W. Strout
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
| | - James A.J. Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University in Saint Louis, St. Louis, MO 63130
- Departments of Cell Biology & Physiology and Neuroscience, Washington University School of Medicine, Louis, St. Louis, MO 63130
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130
| | - Elizabeth M. Brunt
- Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Julian L. Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
- Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Nicholas O. Davidson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
63
|
Uehara T, Pogribny IP, Rusyn I. The DEN and CCl 4 -Induced Mouse Model of Fibrosis and Inflammation-Associated Hepatocellular Carcinoma. Curr Protoc 2021; 1:e211. [PMID: 34370903 PMCID: PMC8744072 DOI: 10.1002/cpz1.211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human hepatocellular carcinoma (HCC) develops most often as a complication of fibrosis or cirrhosis. Although most human studies of HCC provide crucial insights into the molecular signatures of HCC, they seldom address its etiology. Mouse models provide essential tools for investigating the pathogenesis of HCC, but the majority of rodent cancer models do not feature liver fibrosis. Detailed here is a protocol for an experimental mouse model of HCC that arises in association with advanced liver fibrosis. The disease model is induced by a single injection of N-nitrosodiethylamine (DEN) at 2 weeks of age followed by repeated administration of carbon tetrachloride (CCl4 ) from 8 weeks of age for up to 14 consecutive weeks. A dramatic potentiation of liver tumor incidence is observed following administration of DEN and CCl4 , with 100% of mice developing liver tumors at 5 months of age. This model has been employed for studying the molecular mechanisms of fibrogenesis and HCC development, as well as for cancer hazard/chemotherapy testing of drug candidates. © 2021 Wiley Periodicals LLC. Basic Protocol: The DEN and CCl4 -induced mouse model of fibrosis and inflammation-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Takeki Uehara
- Strategic Development Department, Shionogi & Co., Osaka, Japan
| | - Igor P. Pogribny
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
64
|
Kim H, Lee JY, Park SJ, Kwag E, Koo O, Shin JH. ZNF746/PARIS promotes the occurrence of hepatocellular carcinoma. Biochem Biophys Res Commun 2021; 563:98-104. [PMID: 34062393 DOI: 10.1016/j.bbrc.2021.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer to cause liver cancer related deaths worldwide. Zinc finger protein 746 (ZNF746), initially identified as a Parkin-interacting substrate (PARIS), acts as a transcriptional repressor of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in Parkinson's disease. As recent studies reported that PARIS is associated with cancer onset, we investigated whether PARIS is associated with HCC. We found an increase in insoluble parkin and PARIS accumulation in the liver of diethylnitrosamine (DEN)-injected mice, leading to the downregulation of PGC-1α and nuclear respiratory factor 1 (NRF1). Interestingly, the occurrence of DEN-induced tumors was significantly alleviated in the livers of DEN-injected PARIS knockout mice compared to DEN-injected wild-type mice, suggesting that PARIS is involved in DEN-induced hepatocellular tumorigenesis. Moreover, H2O2-treated Chang liver cells showed accumulation of PARIS and downregulation of PGC-1α and NRF1. Thus, these results suggest that PARIS upregulation by oncogenic stresses can promote cancer progression by suppressing the transcriptional level of PGC-1α, and the modulation of PARIS can be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Soo Jeong Park
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Eunsang Kwag
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Okjae Koo
- Laboratory Animal Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, South Korea; Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, South Korea.
| |
Collapse
|
65
|
Blidisel A, Marcovici I, Coricovac D, Hut F, Dehelean CA, Cretu OM. Experimental Models of Hepatocellular Carcinoma-A Preclinical Perspective. Cancers (Basel) 2021; 13:3651. [PMID: 34359553 PMCID: PMC8344976 DOI: 10.3390/cancers13153651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most frequent form of primary liver carcinoma, is a heterogenous and complex tumor type with increased incidence, poor prognosis, and high mortality. The actual therapeutic arsenal is narrow and poorly effective, rendering this disease a global health concern. Although considerable progress has been made in terms of understanding the pathogenesis, molecular mechanisms, genetics, and therapeutical approaches, several facets of human HCC remain undiscovered. A valuable and prompt approach to acquire further knowledge about the unrevealed aspects of HCC and novel therapeutic candidates is represented by the application of experimental models. Experimental models (in vivo and in vitro 2D and 3D models) are considered reliable tools to gather data for clinical usability. This review offers an overview of the currently available preclinical models frequently applied for the study of hepatocellular carcinoma in terms of initiation, development, and progression, as well as for the discovery of efficient treatments, highlighting the advantages and the limitations of each model. Furthermore, we also focus on the role played by computational studies (in silico models and artificial intelligence-based prediction models) as promising novel tools in liver cancer research.
Collapse
Affiliation(s)
- Alexandru Blidisel
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Florin Hut
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania;
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania
| | - Octavian Marius Cretu
- Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, RO-300041 Timișoara, Romania; (A.B.); (F.H.); (O.M.C.)
| |
Collapse
|
66
|
Ranasinghe KNK, Premarathna AD, Mahakapuge TAN, Wijesundera KK, Ambagaspitiya AT, Jayasooriya AP, Kularatne SAM, Rajapakse RPVJ. In vivo anticancer effects of Momordica charantia seed fat on hepatocellular carcinoma in a rat model. J Ayurveda Integr Med 2021; 12:435-442. [PMID: 34275705 PMCID: PMC8377176 DOI: 10.1016/j.jaim.2021.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Momordica charantia or bitter melon is a well-known vegetable with a number of therapeutic actions in Ayurvedic medicine. Alpha-eleostearic acid, a conjugated trienoic fatty acid present in bitter melon is proven to have anticancer properties. Crude seed oil from local bitter melon varieties could be an effective and economical anticancer therapy. OBJECTIVE(S) The study was conducted to evaluate the anticancer effect of the crude oil from the seeds of Matale green variety of bitter melon on a hepatocellular carcinoma-induced rat model. MATERIALS AND METHODS Hepatocellular carcinoma (HCC) was experimentally induced in Wistar rats. Crude seed oil of Matale green bitter melon (MGBM) was supplemented to one treatment group in concurrence with carcinoma induction and to another treatment group after the development of carcinoma. After 168 days, gross morphological, histopathological, biochemical, hematological and gene-expression analysis of treated and control groups were performed. RESULTS Oral supplementation of MGBM seed oil showed a statistically significant reduction (p < 0.05) in the average number, diameter and area of hepatic dysplastic nodules and a reduction in the size of histopathological neoplastic lesions in both treatment groups compared to the non-treated control group. The expression of tumor suppressor gene p53 and anti-apoptotic gene Bcl-2 were significantly increased while the expression of apoptotic gene caspase 3 was significantly reduced in the treatment group when MGBM supplementation was in concurrence with carcinogenesis (p < 0.05). CONCLUSION Crude seed oil from the MGBM has anticancer effects against experimentally induced HCC in Wistar rats, specially when supplemented in concurrence with carcinoma induction.
Collapse
Affiliation(s)
- K N K Ranasinghe
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A D Premarathna
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - T A N Mahakapuge
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - K K Wijesundera
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A T Ambagaspitiya
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - A P Jayasooriya
- Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - S A M Kularatne
- Department of Medicine, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - R P V J Rajapakse
- Department of Veterinary Pathobiology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
67
|
Lambrecht C, Ferreira GB, Omella JD, Libbrecht L, DE Vos R, Derua R, Mathieu C, Overbergh L, Waelkens E, Janssens V. Differential Proteomic Analysis of Hepatocellular Carcinomas from Ppp2r5d Knockout Mice and Normal (Knockout) Livers. Cancer Genomics Proteomics 2021; 17:669-685. [PMID: 33099469 DOI: 10.21873/cgp.20222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the major type of primary liver cancer. Mice lacking the tumor-suppressive protein phosphatase 2A subunit B56δ (Ppp2r5d) spontaneously develop HCC, correlating with increased c-MYC oncogenicity. MATERIALS AND METHODS We used two-dimensional difference gel electrophoresis-coupled matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to identify differential proteomes of livers from wild-type, non-cancerous and HCC-affected B56δ knockout mice. RESULTS A total of 23 proteins were differentially expressed/regulated in liver between wild-type and non-cancerous knockout mice, and 119 between non-cancerous and HCC knockout mice ('cancer proteins'). Overlap with our reported differential transcriptome data was poor. Overall, 56% of cancer proteins were reported before in HCC proteomics studies; 44% were novel. Gene Ontology analysis revealed cancer proteins mainly associated with liver metabolism (18%) and mitochondria (15%). Ingenuity Pathway Analysis identified 'cancer' and 'gastrointestinal disease' as top hits. CONCLUSION We identified several proteins for further exploration as novel potential HCC biomarkers, and independently underscored the relevance of Ppp2r5d knockout mice as a valuable hepatocarcinogenesis model.
Collapse
Affiliation(s)
- Caroline Lambrecht
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Gabriela Bomfim Ferreira
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Judit DomÈnech Omella
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Louis Libbrecht
- Department of Pathology, Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Rita DE Vos
- Translational Cell and Tissue Research, Department Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Rita Derua
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Chantal Mathieu
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lut Overbergh
- Clinical and Experimental Endocrinology, Department Clinical and Experimental Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Etienne Waelkens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation and Proteomics, Department Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium .,LKI, KU Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
68
|
Owumi SE, Oladimeji BN, Elebiyo TC, Arunsi UO. Combine effect of exposure to petrol, kerosene and diesel fumes: On hepatic oxidative stress and haematological function in rats. Toxicol Ind Health 2021; 37:336-352. [PMID: 33949275 DOI: 10.1177/07482337211012498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Petroleum product fumes (PPFs) containing toxic organic components are pervasive in the environment, emanating from anthropogenic activities, including petroleum exploration and utilization by end-user activities from petrol-gasoline stations. Petrol station attendants are exposed to PPF through inhalation and dermal contact with consequent toxicological implications. We investigated the effects of chronic exposure (60 and 90 days) to petrol (P), kerosene (K) and diesel (D) alone and combined exposure to petrol, kerosene and diesel (PKD) fumes on hepatotoxicity, haematological function and oxidative stress in rats. Following sacrifice, we evaluated hepatic damage biomarkers, blood glucose, oxidative stress and haematological function. Chronic exposure to PPF significantly increased organo-somatic indices, blood glucose, biomarkers of hepatic toxicity and oxidative stress in an exposure duration-dependent manner. There was a simultaneous decrease in the protective capacity of antioxidants. Furthermore, exposure to PPF increased pro-inflammatory biomarkers in rats (90 > 60 days). Regardless of exposure duration, plateletcrit, mean platelet volume, platelet distribution width and red cell distribution width in the coefficient of variation increased, whereas red blood cell count, haemoglobin, packed cell volume, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, white blood cell, lymphocyte, monocyte-basophil-eosinophil mixed counts and platelet count decreased after 60 and 90 days exposure. Microscopic examination of the liver demonstrated hepatic pathological changes paralleling the duration of exposure to PKD fumes. However, the injury observed was lesser to that of rats treated with the diethylnitrosamine - positive control. Our results expanded previous findings and further demonstrated the probable adverse effect on populations' health occasioned by persistent exposure to PPF. Individuals chronically exposed by occupation to PPF may be at greater risk of developing disorders promoted by continuous oxido-inflammatory perturbation and suboptimal haematological-immunologic function - thereby enabling a permissive environment for pathogenesis notwithstanding the limitation of quantifying PPF absolute values in our model system.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bidemi N Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uche O Arunsi
- Cancer Immunology and Biotechnology Center, The University of Nottingham, Nottingham, UK
| |
Collapse
|
69
|
Kato T, Murata D, Anders RA, Sesaki H, Iijima M. Nuclear PTEN and p53 suppress stress-induced liver cancer through distinct mechanisms. Biochem Biophys Res Commun 2021; 549:83-90. [PMID: 33667713 PMCID: PMC7995232 DOI: 10.1016/j.bbrc.2021.02.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/06/2023]
Abstract
PTEN and p53 are highly mutated in many cancers. These two tumor suppressors have critical functions in the nucleus, such as DNA repair, cell cycle progression, and genome maintenance. However, the in vivo functional relationship of nuclear PTEN and p53 is unknown. Here, we analyzed the liver of mice in which nuclear PTEN and p53 are individually or simultaneously depleted. We found that nuclear PTEN loss greatly upregulates p53 expression upon oxidative stress, while the loss of p53 potentiates stress-induced accumulation of PTEN in the nucleus. Next, we examined oxidative stress-induced DNA damage in hepatocytes, and found that nuclear PTEN loss aggravated the damage while p53 loss did not. Notably, mice lacking nuclear PTEN had increased hepatocellular carcinoma under oxidative stress, while mice lacking p53 in hepatocytes had accelerated hepatocellular carcinoma and intrahepatic cholangiocarcinoma. The formation of cholangiocarcinoma appears to involve the transformation of hepatocytes into cholangiocarcinoma. Simultaneous loss of nuclear PTEN and p53 exacerbated both types of liver cancers. These data suggest that nuclear PTEN and p53 suppress liver cancers through distinct mechanisms.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Daisuke Murata
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
70
|
Vilfranc CL, Che LX, Patra KC, Niu L, Olowokure O, Wang J, Shah SA, Du CY. BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) regulation of β-catenin signaling in the progression of drug-induced hepatic fibrosis and carcinogenesis. World J Hepatol 2021; 13:343-361. [PMID: 33815677 PMCID: PMC8006081 DOI: 10.4254/wjh.v13.i3.343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND BIR repeat-containing ubiquitin conjugating enzyme (BRUCE) is a liver tumor suppressor, which is downregulated in a large number of patients with liver diseases. BRUCE facilitates DNA damage repair to protect the mouse liver against the hepatocarcinogen diethylnitrosamine (DEN)-dependent acute liver injury and carcinogenesis. While there exists an established pathologic connection between fibrosis and hepatocellular carcinoma (HCC), DEN exposure alone does not induce robust hepatic fibrosis. Further studies are warranted to identify new suppressive mechanisms contributing to DEN-induced fibrosis and HCC.
AIM To investigate the suppressive mechanisms of BRUCE in hepatic fibrosis and HCC development.
METHODS Male C57/BL6/J control mice [loxp/Loxp; albumin-cre (Alb-cre)-] and BRUCE Alb-Cre KO mice (loxp/Loxp; Alb-Cre+) were injected with a single dose of DEN at postnatal day 15 and sacrificed at different time points to examine liver disease progression.
RESULTS By using a liver-specific BRUCE knockout (LKO) mouse model, we found that BRUCE deficiency, in conjunction with DEN exposure, induced hepatic fibrosis in both premalignant as well as malignant stages, thus recapitulating the chronic fibrosis background often observed in HCC patients. Activated in fibrosis and HCC, β-catenin activity depends on its stabilization and subsequent translocation to the nucleus. Interestingly, we observed that livers from BRUCE KO mice demonstrated an increased nuclear accumulation and elevated activity of β-catenin in the three stages of carcinogenesis: Pre-malignancy, tumor initiation, and HCC. This suggests that BRUCE negatively regulates β-catenin activity during liver disease progression. β-catenin can be activated by phosphorylation by protein kinases, such as protein kinase A (PKA), which phosphorylates it at Ser-675 (pSer-675-β-catenin). Mechanistically, BRUCE and PKA were colocalized in the cytoplasm of hepatocytes where PKA activity is maintained at the basal level. However, in BRUCE deficient mouse livers or a human liver cancer cell line, both PKA activity and pSer-675-β-catenin levels were observed to be elevated.
CONCLUSION Our data support a “BRUCE-PKA-β-catenin” signaling axis in the mouse liver. The BRUCE interaction with PKA in hepatocytes suppresses PKA-dependent phosphorylation and activation of β-catenin. This study implicates BRUCE as a novel negative regulator of both PKA and β-catenin in chronic liver disease progression. Furthermore, BRUCE-liver specific KO mice serve as a promising model for understanding hepatic fibrosis and HCC in patients with aberrant activation of PKA and β-catenin.
Collapse
Affiliation(s)
- Chrystelle L Vilfranc
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Li-Xiao Che
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Krushna C Patra
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Liang Niu
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Olugbenga Olowokure
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Shimul A Shah
- Department of Surgery, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Chun-Ying Du
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, United States
| |
Collapse
|
71
|
Hasanin AH, Habib EK, El Gayar N, Matboli M. Promotive action of 2-acetylaminofluorene on hepatic precancerous lesions initiated by diethylnitrosamine in rats: Molecular study. World J Hepatol 2021; 13:328-342. [PMID: 33815676 PMCID: PMC8006078 DOI: 10.4254/wjh.v13.i3.328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Diethylnitrosamine (DEN) induces hepatic neoplastic lesions over a prolonged period. AIM To investigate the promotive action of 2-acetylaminofluorene (2-AAF) when combined with DEN in order to develop a rat model for induction of precancerous lesion and investigate the molecular mechanism underlying the activity of 2-AAF. METHODS The pre-precancerous lesions were initiated by intraperitoneal injection of DEN for three weeks consecutively, followed by one intraperitoneal injection of 2-AAF at three different doses (100, 200 and 300 mg/kg). Rats were separated into naïve, DEN, DEN + 100 mg 2-AAF, DEN + 200 mg 2-AAF, and DEN + 300 mg 2-AAF groups. Rats were sacrificed after 10 wk and 16 wk. Liver functions, level of alpha-fetoprotein, glutathione S-transferase-P and proliferating cell nuclear antigen staining of liver tissues were performed. The mRNA level of RAB11A, BAX, p53, and Cyclin E and epigenetic regulation by long-noncoding RNA (lncRNA) RP11-513I15.6, miR-1262 (microRNA), and miR-1298 were assessed in the sera and liver tissues of the rats. RESULTS 2-AAF administration significantly increased the percent area of the precancerous foci and cell proliferation along with a significant decrease in RAB11A, BAX, and p53 mRNA, and the increase in Cyclin E mRNA was associated with a marked decrease in lncRNA RP11-513I15.6 expression with a significant increase in both miR-1262 and miR-1298. CONCLUSION 2-AFF promoted hepatic precancerous lesions initiated through DEN by decreasing autophagy, apoptosis, and tumor suppression genes, along with increased cell proliferation, in a time- and dose-dependent manner. These actions were mediated under the epigenetic regulation of lncRNA RP11-513I15.6/miR-1262/miR-1298.
Collapse
Affiliation(s)
- Amany Helmy Hasanin
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11318, Egypt
| | - Eman K Habib
- Anatomy and Embryology Department, Faculty of Medicine, Ain Shams University, Cairo 11318, Egypt
| | - Nesreen El Gayar
- Clinical Pharmacology Department, Faculty of Medicine, Ain Shams University, Cairo 11318, Egypt
| | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo 11381, Egypt.
| |
Collapse
|
72
|
Mishima K, Itano O, Matsuda S, Suzuki S, Onishi A, Tamura M, Inoue M, Abe Y, Yagi H, Hibi T, Kitago M, Shinoda M, Kitagawa Y. Development of human hepatocellular carcinoma in X-linked severe combined immunodeficient pigs: An orthotopic xenograft model. PLoS One 2021; 16:e0248352. [PMID: 33750947 PMCID: PMC7984615 DOI: 10.1371/journal.pone.0248352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common primary tumor and the third leading cause of cancer-related deaths worldwide. Rodent models of HCC have contributed to the advancement of studies investigating liver carcinogenesis, tumor-host interactions, and drug screening. However, their small size renders them unsuitable for surgical or clinical imaging studies, necessitating the development of larger-size HCC models. Here, we developed a xenograft model of human HCC in X-linked interleukin-2 receptor gamma chain gene (Il2rg)-targeted severe combined immunodeficient (SCID) pigs. HepG2 cell suspension in serum-free medium containing 50% membrane matrix was directly injected into the liver parenchyma of eight X-linked Il2rg-targeted SCID pigs (6.6–15.6 kg) via ultrasonography-guided percutaneous puncture. Tumor engraftment was evaluated weekly using ultrasonography, and cone-beam computed tomography was performed during arterial portography (CTAP) and hepatic arteriography (CTHA) to evaluate the hemodynamics of engrafted tumors. The engrafted tumors were histologically analyzed following necropsy and assessed for pathological similarities to human HCCs. Macroscopic tumor formation was observed in seven of the eight pigs (simple nodular tumors in three and multinodular tumors in four). Engrafted tumors were identified as low-echoic upon ultrasonography and as perfusion-defect nodules on the CTAP images. Meanwhile, CTHA showed that the tumors were hyperattenuating. Further, histopathological findings of the engrafted tumors were consistent with those of human HCC. In conclusion, the porcine model of human HCC, successfully generated herein, might help develop more effective therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Kohei Mishima
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Itano
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic & Gastrointestinal Surgery, International University of Health and Welfare School of Medicine, Chiba, Japan
- * E-mail:
| | - Sachiko Matsuda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shunichi Suzuki
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Akira Onishi
- Division of Animal Science, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki, Japan
- Department of Animal Science and Resources, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Masashi Tamura
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Masanori Inoue
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Yagi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Taizo Hibi
- Department of Transplantation and Pediatric Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
73
|
Optimized protocol for an inducible rat model of liver tumor with chronic hepatocellular injury, inflammation, fibrosis, and cirrhosis. STAR Protoc 2021; 2:100353. [PMID: 33665633 PMCID: PMC7905469 DOI: 10.1016/j.xpro.2021.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Animal models of liver cancer are instrumental in the study of hepatocarcinogenesis and development of novel therapeutic approaches. Here, we describe steps to establish liver cancer in a rat model, via chronic administration of diethylnitrosamine. This causes liver tumors with a sequential progression of hepatitis, cirrhosis, and tumor formation, which closely mimics the development of human liver cancer. This protocol was optimized to significantly increase the incidence of liver tumor formation and reduce the duration of the procedure. For complete details on the use and execution of this protocol, please refer to Chen et al. (2020). Detailed protocol for a carcinogen-induced rat hepatocellular carcinoma model Undergoes a sequential progression of hepatitis, cirrhosis, and tumor formation Optimized to significantly increase the incidence of liver tumor formation
Collapse
|
74
|
Characterization of the inflammatory microenvironment and hepatic macrophage subsets in experimental hepatocellular carcinoma models. Oncotarget 2021; 12:562-577. [PMID: 33796224 PMCID: PMC7984829 DOI: 10.18632/oncotarget.27906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. HCC typically develops on a background of chronic inflammation and fibrosis with tumor associated macrophages (TAMs) playing an important role in chronic inflammation-induced HCC and progression. However, the liver harbors unique macrophages, resident liver Kupffer cells (KCs) and monocyte-derived macrophages (Mo-Mφ), and their contribution to HCC and to the population of TAMs is incompletely known. Here, we characterized the tumor microenvironment and the proportion and transcriptional profile of hepatic macrophages (Mφ) in two commonly used HCC mouse models. A gradually increased expression of inflammatory, immune regulatory, fibrotic and cell proliferation pathways and markers was observed during diethylnitrosamine (DEN)- and non-alcoholic steatohepatitis (NASH)-induced HCC development. The transcriptional phenotypes of isolated hepatic Mφ subsets were clearly distinct and shifted during HCC development, with mixed pro-inflammatory and tumor-promoting expression profiles. There were marked differences between the models as well, with Mφ in NASH-HCC exhibiting a more immunomodulatory phenotype, in conjunction with an upregulation of lipid metabolism genes. Our data show that at least some infiltrated macrophages display expression of pro-tumoral markers, and that Kupffer cells are part of the population of TAMs and enhance tumor progression. These insights are useful to further unravel sequential pathogenic events during hepatocarcinogenesis and direct future development of new treatment strategies for HCC.
Collapse
|
75
|
Abstract
Transgenic mouse are reliable, convenient models for studying human hepatocellular carcinoma (HCC). The development of a synthetically engineered Sleeping Beauty (SB) transposon system further enables the viral-free, efficient delivery of desired oncogenes to mouse tissues. Here, we describe an SB transposon-based approach to induce HCC in mice by expressing a hyperactive form of N-RAS, N-RASG12V, while silencing the endogenous Trp53 gene via hydrodynamic tail vein injection, a method to rapidly deliver naked plasmids to mouse liver.
Collapse
|
76
|
Broadfield LA, Duarte JAG, Schmieder R, Broekaert D, Veys K, Planque M, Vriens K, Karasawa Y, Napolitano F, Fujita S, Fujii M, Eto M, Holvoet B, Vangoitsenhoven R, Fernandez-Garcia J, Van Elsen J, Dehairs J, Zeng J, Dooley J, Rubio RA, van Pelt J, Grünewald TGP, Liston A, Mathieu C, Deroose CM, Swinnen JV, Lambrechts D, di Bernardo D, Kuroda S, De Bock K, Fendt SM. Fat Induces Glucose Metabolism in Nontransformed Liver Cells and Promotes Liver Tumorigenesis. Cancer Res 2021; 81:1988-2001. [PMID: 33687947 DOI: 10.1158/0008-5472.can-20-1954] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Hepatic fat accumulation is associated with diabetes and hepatocellular carcinoma (HCC). Here, we characterize the metabolic response that high-fat availability elicits in livers before disease development. After a short term on a high-fat diet (HFD), otherwise healthy mice showed elevated hepatic glucose uptake and increased glucose contribution to serine and pyruvate carboxylase activity compared with control diet (CD) mice. This glucose phenotype occurred independently from transcriptional or proteomic programming, which identifies increased peroxisomal and lipid metabolism pathways. HFD-fed mice exhibited increased lactate production when challenged with glucose. Consistently, administration of an oral glucose bolus to healthy individuals revealed a correlation between waist circumference and lactate secretion in a human cohort. In vitro, palmitate exposure stimulated production of reactive oxygen species and subsequent glucose uptake and lactate secretion in hepatocytes and liver cancer cells. Furthermore, HFD enhanced the formation of HCC compared with CD in mice exposed to a hepatic carcinogen. Regardless of the dietary background, all murine tumors showed similar alterations in glucose metabolism to those identified in fat exposed nontransformed mouse livers, however, particular lipid species were elevated in HFD tumor and nontumor-bearing HFD liver tissue. These findings suggest that fat can induce glucose-mediated metabolic changes in nontransformed liver cells similar to those found in HCC. SIGNIFICANCE: With obesity-induced hepatocellular carcinoma on a rising trend, this study shows in normal, nontransformed livers that fat induces glucose metabolism similar to an oncogenic transformation.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - João André Gonçalves Duarte
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Roberta Schmieder
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Dorien Broekaert
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Koen Veys
- Department of Oncology (KU Leuven) and Center for Cancer Biology (VIB), Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Mélanie Planque
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Kim Vriens
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Yasuaki Karasawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan.,Department of Neurosurgery, University of Tokyo Hospital, Tokyo, Japan.,Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan
| | - Francesco Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics Laboratory and High Content Screening Facility, Naples, Italy
| | - Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Masashi Fujii
- Department of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Miki Eto
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Bryan Holvoet
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
| | | | - Juan Fernandez-Garcia
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Joke Van Elsen
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium.,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, Leuven, Belgium
| | - Jia Zeng
- School of Life Science, Hunan University of Science and Technology, Xiangtan, Hunan, China
| | - James Dooley
- Department of Microbiology and Immunology, KU Leuven; and Translational Immunology Laboratory, Leuven, Belgium
| | - Rebeca Alba Rubio
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Munich, Germany
| | - Jos van Pelt
- Department of Oncology, Laboratory of Clinical Digestive Oncology, KU, Leuven, Belgium
| | - Thomas G P Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, Munich, Germany.,Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Adrian Liston
- Department of Microbiology and Immunology, KU Leuven; and Translational Immunology Laboratory, Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, UZ Gasthuisberg KU Leuven, Leuven, Belgium
| | - Christophe M Deroose
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, Leuven, Belgium
| | - Diether Lambrechts
- Department of Human Genetics, Laboratory of Translational Genetics, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Diego di Bernardo
- Telethon Institute of Genetics and Medicine (TIGEM), System Biology and Bioinformatics Laboratory and High Content Screening Facility, Naples, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Katrien De Bock
- Department of Health Sciences and Technology, Laboratory of Exercise and Health, ETH Zurich, Zurich, Switzerland
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium. .,Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| |
Collapse
|
77
|
Shafique Y, Qureshi MA, Khan S, Mirza T. Differential Immune Landscape of Hepatocellular Carcinoma Suggests Potential role of Macrophages in Hepatocarcinogenesis. Pak J Med Sci 2021; 37:858-862. [PMID: 34104178 PMCID: PMC8155426 DOI: 10.12669/pjms.37.3.2973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To investigate immune cell densities in tumor microenvironment of hepatocellular carcinoma. Methods This cross-sectional study was conducted during 2017-2019 at the Dow University of Health Sciences Karachi. A total of 42 subsequent patients undergoing liver biopsy/resection and diagnosed with hepatocellular carcinoma were included in the study. Moreover, a total of 10 control tissues were also included. In order to investigate immune cells densities in hepatocellular carcinoma, immunohistochemistry was performed using antibodies including α-MPO(neutrophils), α-CD-68(macrophages), α-CD-3(T-cells), α-CD-20(B-cells), α-CD-4(CD4+ T-cells) and α-CD-8(CD8+ T-cells). Quantification of immune cells/mm2 was performed as per the College of American Pathologists' guidelines. Data were analyzed using SPSS version 21. A p-value of 0.05 was considered significant at all times. Results We report significantly increased infiltration of macrophages (mean macrophages= 306.57/mm2, p-value <0.05), moderately significant infiltration of neutrophils (p-value=0.06) and B-cells (p-value=0.07) while no significant infiltration of CD4+T-cells (p- value=0.31), and CD8+T-cells (p-value=0.39) in tumour microenvironment of patients with hepatocellular carcinoma. Conclusion We provide evidence for increased macrophage infiltration in liver cancer microenvironment suggesting a potential role of these cells in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yusra Shafique
- Dr. Yusra Shafique, MBBS, M.Phil. Lecturer of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad Asif Qureshi
- Prof. Dr. Muhammad Asif Qureshi, MBBS, PhD (Glasgow-UK), Professor of Pathology, MA(IR), Postdoc (Germany), CHPE, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Saeed Khan
- Prof. Dr. Saeed Khan, MSc, PhD, Postdoc (USA). Professor of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Talat Mirza
- Prof. Dr. Talat Mirza, MBBS, M.Phil., PhD. Dean, Research Ziauddin University, Karachi, Pakistan
| |
Collapse
|
78
|
Wang F, Zhang Y, Shen J, Yang B, Dai W, Yan J, Maimouni S, Daguplo HQ, Coppola S, Gao Y, Wang Y, Du Z, Peng K, Liu H, Zhang Q, Tang F, Wang P, Gao S, Wang Y, Ding WX, Guo G, Wang F, Zong WX. The Ubiquitin E3 Ligase TRIM21 Promotes Hepatocarcinogenesis by Suppressing the p62-Keap1-Nrf2 Antioxidant Pathway. Cell Mol Gastroenterol Hepatol 2021; 11:1369-1385. [PMID: 33482392 PMCID: PMC8024979 DOI: 10.1016/j.jcmgh.2021.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS TRIM21 is a ubiquitin E3 ligase that is implicated in numerous biological processes including immune response, cell metabolism, redox homeostasis, and cancer development. We recently reported that TRIM21 can negatively regulate the p62-Keap1-Nrf2 antioxidant pathway by ubiquitylating p62 and prevents its oligomerization and protein sequestration function. As redox homeostasis plays a pivotal role in many cancers including liver cancer, we sought to determine the role of TRIM21 in hepatocarcinogenesis. METHODS We examined the correlation between TRIM21 expression and the disease using publicly available data sets and 49 cases of HCC clinical samples. We used TRIM21 genetic knockout mice to determine how TRIM21 ablation impact HCC induced by the carcinogen DEN plus phenobarbital (PB). We explored the mechanism that loss of TRIM21 protects cells from DEN-induced oxidative damage and cell death. RESULTS There is a positive correlation between TRIM21 expression and HCC. Consistently, TRIM21-knockout mice are resistant to DEN-induced hepatocarcinogenesis. This is accompanied by decreased cell death and tissue damage upon DEN treatment, hence reduced hepatic tissue repair response and compensatory proliferation. Cells deficient in TRIM21 display enhanced p62 sequestration of Keap1 and are protected from DEN-induced ROS induction and cell death. Reconstitution of wild-type but not the E3 ligase-dead and the p62 binding-deficient mutant TRIM21 impedes the protection from DEN-induced oxidative damage and cell death in TRIM21-deficient cells. CONCLUSIONS Increased TRIM21 expression is associated with human HCC. Genetic ablation of TRIM21 leads to protection against oxidative hepatic damage and decreased hepatocarcinogenesis, suggesting TRIM21 as a preventive and therapeutic target.
Collapse
Affiliation(s)
- Fang Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Ye Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China; Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Bin Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Weiwei Dai
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Heineken Q Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Sara Coppola
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Zhi Du
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Kesong Peng
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Liu
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Qin Zhang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Fei Tang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Peng Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
79
|
Alsahli MA, Almatroodi SA, Almatroudi A, Khan AA, Anwar S, Almutary AG, Alrumaihi F, Rahmani AH. 6-Gingerol, a Major Ingredient of Ginger Attenuates Diethylnitrosamine-Induced Liver Injury in Rats through the Modulation of Oxidative Stress and Anti-Inflammatory Activity. Mediators Inflamm 2021; 2021:6661937. [PMID: 33531877 PMCID: PMC7837795 DOI: 10.1155/2021/6661937] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 01/02/2021] [Indexed: 12/24/2022] Open
Abstract
Diethylnitrosamine (DEN) is a well-known hepatocarcinogen, and its oral administration causes severe liver damage including cancer. DEN induces the pathogenesis of the liver through reactive oxygen species mediated inflammation and modulation of various biological activities. 6-Gingerol, a major component of ginger, is reported to prevent liver diseases by reducing the oxidative stress and proinflammatory mediators. The present study investigated the hepatoprotective effects of 6-gingerol through the measurement of oxidative stress, anti-inflammatory markers, liver function enzyme parameter, and histopathological analysis. The rats were randomly divided into four groups as the control, DEN treated (50 mg/kg b.w.), DEN+6-gingerol (each 50 mg/kg b.w.), and 6-gingerol only. To evaluate the hepatoprotective effects, liver function enzymes (ALT, AST, and ALP), oxidative stress markers (SOD, GSH, GST, and TAC), lipid peroxidation, inflammatory markers (CRP, TNF-α, IL-6, and ICAM1), haematoxylin and eosin staining, Sirius red staining, immunohistochemistry, and electron microscopy were performed. The results showed a significant increase in liver function enzymes, oxidative stress, and inflammatory markers in the DEN-treated group as compared to the control group. Besides this, altered architecture of hepatocytes (infiltration of inflammatory cells, congestion, blood vessel dilation, and edema), abundant collagen fiber and organelle structures like distorted shaped and swollen mitochondria, and broken endoplasmic reticulum were noticed. The administration of 6-gingerol significantly ameliorated the biochemical and histopathological changes. The increased expression of TNF-α protein was noticed in the DEN-treated group whereas the administration of 6-gingerol significantly decreased the expression of this protein. Based on these findings, it can be suggested that 6-gingerol may be an alternative therapy for the prevention and treatment of liver diseases.
Collapse
Affiliation(s)
- Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdulmajeed G. Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
80
|
Schmidt CA, McLaughlin KL, Boykov IN, Mojalagbe R, Ranganathan A, Buddo KA, Lin CT, Fisher-Wellman KH, Neufer PD. Aglycemic growth enhances carbohydrate metabolism and induces sensitivity to menadione in cultured tumor-derived cells. Cancer Metab 2021; 9:3. [PMID: 33468237 PMCID: PMC7816515 DOI: 10.1186/s40170-021-00241-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/06/2021] [Indexed: 12/19/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most prevalent form of liver malignancy and carries poor prognoses due to late presentation of symptoms. Treatment of late-stage HCC relies heavily on chemotherapeutics, many of which target cellular energy metabolism. A key platform for testing candidate chemotherapeutic compounds is the intrahepatic orthotopic xenograft (IOX) model in rodents. Translational efficacy from the IOX model to clinical use is limited (in part) by variation in the metabolic phenotypes of the tumor-derived cells that can be induced by selective adaptation to subculture conditions. Methods In this study, a detailed multilevel systems approach combining microscopy, respirometry, potentiometry, and extracellular flux analysis (EFA) was utilized to examine metabolic adaptations that occur under aglycemic growth media conditions in HCC-derived (HEPG2) cells. We hypothesized that aglycemic growth would result in adaptive “aerobic poise” characterized by enhanced capacity for oxidative phosphorylation over a range of physiological energetic demand states. Results Aglycemic growth did not invoke adaptive changes in mitochondrial content, network complexity, or intrinsic functional capacity/efficiency. In intact cells, aglycemic growth markedly enhanced fermentative glycolytic substrate-level phosphorylation during glucose refeeding and enhanced responsiveness of both fermentation and oxidative phosphorylation to stimulated energy demand. Additionally, aglycemic growth induced sensitivity of HEPG2 cells to the provitamin menadione at a 25-fold lower dose compared to control cells. Conclusions These findings indicate that growth media conditions have substantial effects on the energy metabolism of subcultured tumor-derived cells, which may have significant implications for chemotherapeutic sensitivity during incorporation in IOX testing panels. Additionally, the metabolic phenotyping approach used in this study provides a practical workflow that can be incorporated with IOX screening practices to aid in deciphering the metabolic underpinnings of chemotherapeutic drug sensitivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40170-021-00241-0.
Collapse
Affiliation(s)
- Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey L McLaughlin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Ilya N Boykov
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Rafiq Mojalagbe
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA
| | | | - Katherine A Buddo
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA.,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Kelsey H Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Greenville, NC, USA. .,Dept. of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
81
|
The effect of capsaicin and diethylnitrosamine on mouse nephrotoxicity, hepatotoxicity and hepatocarcinogenesis. ACTA VET BRNO 2021. [DOI: 10.2754/avb202089040383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Diethylnitrosamine is well known for its toxic and carcinogenic properties affecting mainly liver and kidneys. Capsaicin has been proven in previous years as a promising protective agent against many health problems affecting modern people. In this study we used diethylnitrosamine induced mouse experimental model of liver and kidney damage to assess the potential chemopreventive effect of capsaicin in vivo. Fifty female ICR mice were randomly divided into five groups intraperitoneally administered 1% ethanol solution in controls, capsaicin to assess its toxicity, diethylnitrosamine alone, and diethylnitrosamine and capsaicin in combination in different manners in two groups. After 14 weeks all mice were sacrificed, complete necropsy was performed and liver and kidneys were used for further examination. Slides of both organs stained with haematoxylin and eosin were histologically evaluated and immunohistochemical detection of proliferating cell nuclear antigen and glutamine synthetase in the liver tissue was performed. Histological evaluation of the liver and kidneys revealed toxic damage of diethylnitrosamine treated animals, whereas mice that received the combination of the substances showed milder lesions. Proliferating cell nuclear antigen expression was lower in diethylnitrosamine treated animals compared to the control and capsaicin groups, pointing to a disruption of the proliferative activity of hepatocytes in the juvenile liver. Glutamine synthetase expression did not differ between the groups, indicating that no tumours were induced by any of the substances used in our study. In conclusion, our experiment demonstrated the toxic properties of diethylnitrosamine in mice liver and kidneys, with the promising beneficial effect of capsaicin.
Collapse
|
82
|
Brandi G, Tavolari S. In Vitro and In Vivo Model Systems of Cholangiocarcinoma. DIAGNOSIS AND MANAGEMENT OF CHOLANGIOCARCINOMA 2021:471-494. [DOI: 10.1007/978-3-030-70936-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
83
|
Owumi SE, Elebiyo TC, Oladimeji BN. Oxido-inflammatory responses and histological alterations in rat lungs exposed to petroleum product fumes. ENVIRONMENTAL TOXICOLOGY 2021; 36:132-143. [PMID: 32894650 DOI: 10.1002/tox.23019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
Petroleum products-petrol, kerosene, and diesel-composed of volatile organic constituents contribute to air pollution. Exposure of gas station attendants (GSAs) to petroleum products fumes (PPFs) may account for occupation-related predisposition to respiratory toxicity and disease pathogenesis. We simulated GSA exposure to PPF inhalation and examined their effect on oxido-inflammatory responses, toxicity, and histopathological alterations in rat lungs, following 8-hours daily exposure for 60 and 90 days. Reactive oxygen and nitrogen species (RONS), oxidative stress and inflammatory biomarkers, namely: superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), TNF-α, IL-1β, xanthine oxidase (XO), nitric oxide (NO) activity were evaluated. Besides, histopathological examination of the lungs and trachea of exposed rats, PPF exposure resulted in significant (P < .05) increases in RONS, biomarkers of oxidative stress, pro-inflammation cytokines, and reduced (P < .05) GSH levels in rats, secondary to histopathological alteration in lungs and trachea cytoarchitecture examined in an exposure-duration-dependent manner. We conclude, therefore, that the observed biochemical and histological changes create a microenvironment that is permissive to diseases pathogenesis of the respiratory system via oxido-inflammatory mechanistic pathways.
Collapse
Affiliation(s)
- Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Tobiloba C Elebiyo
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Bidemi Noah Oladimeji
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
84
|
Tao H, Liu M, Wang Y, Luo S, Xu Y, Ye B, Zheng L, Meng K, Li L. Icaritin Induces Anti-tumor Immune Responses in Hepatocellular Carcinoma by Inhibiting Splenic Myeloid-Derived Suppressor Cell Generation. Front Immunol 2021; 12:609295. [PMID: 33717093 PMCID: PMC7952329 DOI: 10.3389/fimmu.2021.609295] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/02/2021] [Indexed: 12/31/2022] Open
Abstract
Recent studies have demonstrated that splenic extramedullary hematopoiesis (EMH) is an important mechanism for the accumulation of myeloid-derived suppressor cells (MDSCs) in tumor tissues, and thus contributes to disease progression. Icaritin, a prenylflavonoid derivative from plants of the Epimedium genus, has been implicated as a novel immune-modulator that could prolong the survival of hepatocellular carcinoma (HCC) patients. However, it is unclear whether icaritin achieves its anti-tumor effects via the regulation of MDSCs generated by EMH in HCC. Here, we investigated the anti-tumor potential of icaritin and its mechanism of action in murine HCC. Icaritin suppressed tumor progression and significantly prolonged the survival of mice-bearing orthotopic and subcutaneous HCC tumors. Rather than exerting direct cytotoxic activity against tumor cells, icaritin significantly reduced the accumulation and activation of tumoral and splenic MDSCs, and increased the number and activity of cytotoxic T cells. Mechanistically, icaritin downregulates the tumor-associated splenic EMH, thereby reducing the generation and activation of MDSCs. The inhibitory effects of icaritin on human MDSCs in vitro were verified in short-term culture with cord-blood derived hematopoietic precursors. Furthermore, icaritin synergistically enhanced the therapeutic efficacy of immune checkpoint blockade therapy in HCC mice. These findings revealed that icaritin dampens tumoral immunosuppression to elicit anti-tumor immune responses by preventing MDSC generation via the attenuation of EMH. Thus, icaritin may serve as a novel adjuvant or even a stand-alone therapeutic agent for the effective treatment of HCC.
Collapse
Affiliation(s)
- Huimin Tao
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Mingyu Liu
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Wang
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufeng Luo
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongquan Xu
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bin Ye
- Beijing Shenogen Biomedical Ltd, Beijing, China
| | - Limin Zheng
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Kun Meng
- Beijing Shenogen Biomedical Ltd, Beijing, China
- Kun Meng
| | - Lian Li
- Ministry of Education Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lian Li
| |
Collapse
|
85
|
Vanderborght B, De Muynck K, Lefere S, Geerts A, Degroote H, Verhelst X, Van Vlierberghe H, Devisscher L. Effect of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides on tumorigenesis, inflammation and fibrosis in a hepatocellular carcinoma mouse model. Oncotarget 2020; 11:4504-4520. [PMID: 33400730 PMCID: PMC7721613 DOI: 10.18632/oncotarget.27830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. For advanced HCC, there is still an unmet need for more effective therapeutic strategies. HCC is typically associated with hypoxia and the hypoxia-inducible factor (HIF) regulatory pathway plays an important role in HCC development and progression. Therefore, we investigated the therapeutic potential of isoform-specific HIF-1α and HIF-2α antisense oligonucleotides (ASOs), along with their effect on the inflammatory and fibrotic component of the tumor microenvironment (TME), in an experimental HCC mouse model. Based on its efficacy and safety, a dosage regimen of 20 mg/kg intraperitoneal injection of HIFα ASO twice per week was selected for further investigation in a preventive and therapeutic setting in a N,N-diethylnitrous amide (DEN)-induced HCC mouse model. DEN administration resulted in 100% tumor formation and HIFα ASO administration led to effective and selective hepatic downregulation of its target genes. HIFα ASO treatment had no effect on tumor numbers, but even enhanced the increased hepatic expression of HCC tumor markers, α-fetoprotein and glypican-3, compared to scrambled control ASO treatment in HCC mice. Especially HIF-1α ASO treatment resulted in an enhanced increase of monocytes and monocyte-derived macrophages in the liver and an enhanced hepatic upregulation of inflammatory markers. Both HIFα ASOs aggravated liver fibrosis in HCC mice compared to scrambled ASO treatment. The observed effects of our dosing regimen for HIF-1α and HIF-2α ASO treatment in the DEN-induced HCC mouse model discourage the use of HIFα isoforms as targets for the treatment of HCC.
Collapse
Affiliation(s)
- Bart Vanderborght
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Kevin De Muynck
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Anja Geerts
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Helena Degroote
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium.,Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | - Xavier Verhelst
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| |
Collapse
|
86
|
Jiang P, Han W, Fu Y, Chen Q. The Hsa_circ_0091579/miR-940/TACR1 Axis Regulates the Development of Hepatocellular Carcinoma. Cancer Manag Res 2020; 12:9087-9096. [PMID: 33061603 PMCID: PMC7532044 DOI: 10.2147/cmar.s259243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose Circular RNAs (circRNAs) play important roles in hepatocellular carcinoma (HCC) development. The circRNA hsa_circ_0091579 (circ_0091579) is dysregulated in HCC, while the mechanism of circ_0091579 in HCC development is largely unknown. Patients and Methods Thirty paired cancer and adjacent normal tissues were harvested from HCC patients. SNU-387 and Huh7 cells were cultured in this study. circ_0091579, microRNA-940 (miR-940) and tachykinin-1 receptor (TACR1) abundances were measured via quantitative reverse transcription-polymerase chain reaction or Western blot. Cell viability, migration, invasion, colony ability, cell cycle distribution and apoptosis were assessed via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, transwell assay, colony formation assay and flow cytometry. The interaction among circ_0091579, miR-940 and TACR1 was tested via dual-luciferase reporter analysis. The anti-HCC role of circ_0091579 knockdown in vivo was investigated using xenograft model. Results circ_0091579 expression was enhanced in HCC tissue samples and cells. circ_0091579 silence inhibited cell viability, migration, invasion and colony formation, induced cell cycle arrest at G0/G1 phase, and promoted apoptosis in HCC cells. miR-940 was targeted via circ_0091579 and miR-940 knockdown reversed the suppressive effect of circ_0091579 silence on HCC development. miR-940 targeted TACR1 to repress HCC development. circ_0091579 could regulate TACR1 expression by mediating miR-940. Down-regulation of circ_0091579 decreased xenograft tumor growth. Conclusion Knockdown of circ_0091579 repressed HCC development by mediating miR-940/TACR1 axis, indicating a new pathogenesis of HCC.
Collapse
Affiliation(s)
- Peiqiang Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Wei Han
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yu Fu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Qingmin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
87
|
Dolicka D, Sobolewski C, Gjorgjieva M, Correia de Sousa M, Berthou F, De Vito C, Colin DJ, Bejuy O, Fournier M, Maeder C, Blackshear PJ, Rubbia-Brandt L, Foti M. Tristetraprolin Promotes Hepatic Inflammation and Tumor Initiation but Restrains Cancer Progression to Malignancy. Cell Mol Gastroenterol Hepatol 2020; 11:597-621. [PMID: 32987153 PMCID: PMC7806869 DOI: 10.1016/j.jcmgh.2020.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Tristetraprolin (TTP) is a key post-transcriptional regulator of inflammatory and oncogenic transcripts. Accordingly, TTP was reported to act as a tumor suppressor in specific cancers. Herein, we investigated how TTP contributes to the development of liver inflammation and fibrosis, which are key drivers of hepatocarcinogenesis, as well as to the onset and progression of hepatocellular carcinoma (HCC). METHODS TTP expression was investigated in mouse/human models of hepatic metabolic diseases and cancer. The role of TTP in nonalcoholic steatohepatitis and HCC development was further examined through in vivo/vitro approaches using liver-specific TTP knockout mice and a panel of hepatic cancer cells. RESULTS Our data demonstrate that TTP loss in vivo strongly restrains development of hepatic steatosis and inflammation/fibrosis in mice fed a methionine/choline-deficient diet, as well as HCC development induced by the carcinogen diethylnitrosamine. In contrast, low TTP expression fostered migration and invasion capacities of in vitro transformed hepatic cancer cells likely by unleashing expression of key oncogenes previously associated with these cancerous features. Consistent with these data, TTP was significantly down-regulated in high-grade human HCC, a feature further correlating with poor clinical prognosis. Finally, we uncover hepatocyte nuclear factor 4 alpha and early growth response 1, two key transcription factors lost with hepatocyte dedifferentiation, as key regulators of TTP expression. CONCLUSIONS Although TTP importantly contributes to hepatic inflammation and cancer initiation, its loss with hepatocyte dedifferentiation fosters cancer cells migration and invasion. Loss of TTP may represent a clinically relevant biomarker of high-grade HCC associated with poor prognosis.
Collapse
MESH Headings
- Animals
- Carcinogenesis/genetics
- Carcinogenesis/immunology
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Datasets as Topic
- Diethylnitrosamine/administration & dosage
- Diethylnitrosamine/toxicity
- Down-Regulation
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Hepatocytes
- Humans
- Liver/immunology
- Liver/pathology
- Liver Cirrhosis/genetics
- Liver Cirrhosis/immunology
- Liver Cirrhosis/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/chemistry
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/immunology
- Liver Neoplasms, Experimental/pathology
- Male
- Mice
- Non-alcoholic Fatty Liver Disease
- Primary Cell Culture
- Prognosis
- RNA-Seq
- Survival Analysis
- Tristetraprolin/genetics
- Tristetraprolin/metabolism
Collapse
Affiliation(s)
- Dobrochna Dolicka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Monika Gjorgjieva
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Marta Correia de Sousa
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Flavien Berthou
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, University Hospitals, Geneva, Switzerland
| | - Didier J Colin
- Centre for Biomedical Imaging and Preclinical Imaging Platform, University of Geneva, Geneva, Switzerland
| | - Olivia Bejuy
- Centre for Biomedical Imaging and Preclinical Imaging Platform, University of Geneva, Geneva, Switzerland
| | - Margot Fournier
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christine Maeder
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Perry J Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Translational Research Centre in Onco-haematology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
88
|
Kato T, Yamada T, Nakamura H, Igarashi A, Anders RA, Sesaki H, Iijima M. The Loss of Nuclear PTEN Increases Tumorigenesis in a Preclinical Mouse Model for Hepatocellular Carcinoma. iScience 2020; 23:101548. [PMID: 33083717 PMCID: PMC7516300 DOI: 10.1016/j.isci.2020.101548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
The PTEN gene is highly mutated in many cancers, including hepatocellular carcinoma. The PTEN protein is located at different subcellular regions-PTEN at the plasma membrane suppresses PI3-kinase signaling in cell growth, whereas PTEN in the nucleus maintains genome integrity. Here, using nuclear PTEN-deficient mice, we analyzed the role of PTEN in the nucleus in hepatocellular carcinoma that is induced by carcinogen and oxidative stress-producing hepatotoxin. Upon oxidative stress, PTEN was accumulated in the nucleus of the liver, and this accumulation promoted repair of DNA damage in wild-type mice. In contrast, nuclear PTEN-deficient mice had increased DNA damage and accelerated hepatocellular carcinoma formation. Both basal and oxidative stress-induced localization of PTEN in the nucleus require ubiquitination of lysine 13 in PTEN. Taken together, these data suggest the critical role of nuclear PTEN in the protection from DNA damage and tumorigenesis in vivo.
Collapse
Affiliation(s)
- Takashi Kato
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tatsuya Yamada
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hideki Nakamura
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Igarashi
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert A. Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miho Iijima
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
89
|
El-Ashmawy NE, Al-Ashmawy GM, Fakher HE, Khedr NF. The role of WNT/β-catenin signaling pathway and glutamine metabolism in the pathogenesis of CCl 4-induced liver fibrosis: Repositioning of niclosamide and concerns about lithium. Cytokine 2020; 136:155250. [PMID: 32882667 DOI: 10.1016/j.cyto.2020.155250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Liver fibrosis is a serious health problem which may lead to advanced liver cirrhosis and hepatocellular carcinoma. OBJECTIVE The present study aimed to investigate the role of Wnt/β-catenin signaling pathway and glutamine aminohydrolase enzyme (l-glutaminase) in the pathogenesis of liver fibrosis and the potential benefits of niclosamide in treating liver fibrosis. METHODS Ninety male Albino rats were divided into 6 equal groups (n = 15) as follows: a normal control group (NC), CCl4-only treated group (Fib.) which received 1 mg/kg CCl4 two times weekly, niclosamide-treated group (Niclo.) which received 5 mg/kg of niclosamide one time daily, lithium chloride-treated group (LiCl) which received 100 mg/kg of LiCl one time daily, niclosamide-and-CCl4-treated group (Niclo. + Fib.) which received same doses of niclosamide and CCl4 given to other groups, and finally lithium chloride-and-CCl4-treated rat group (LiCl + Fib.) which received same doses of LiCl and CCl4 given to other groups. All treatments were administered orally for 8 weeks. Liver tissue was assessed for l-hydroxyproline, beta-catenin (β-catenin), l-glutaminase activity, as well as the gene expression of transforming growth factor beta-1 (TGF-β1) and Dishevelled-2 (Dvl2). Histopathological and immunohistochemical analyses of alpha smooth muscle actin α-SMA were performed. Serum alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin were measured. RESULTS The group of niclosamide-and-CCl4-treated rats showed a significant decrease in total bilirubin, ALT and AST, β-catenin, l-hydroxyproline, l-glutaminase activity, and gene expression of TGF-β1 and Dvl2. Moreover, the liver tissue in this group of rats showed mild α-SMA reactivity compared with the rats treated with CCl4 only (fibrosis group). On the other hand, lithium chloride-and-CCl4-treated rats showed a significant increase in liver indices, TGF-β1 expression, β-catenin, l-hydroxyproline, and l-glutaminase activity with severe α-SMA reactivity and apoptosis in the liver tissue. CONCLUSIONS Niclosamide protected rats against liver fibrosis by inhibiting the Wnt/β-catenin pathway and glutaminolysis.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| | - Ghada M Al-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| | - Hoda E Fakher
- Department of Biochemistry, Faculty of Pharmacy, Menoufia University, Postal code: 32511, Egypt.
| | - Naglaa F Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Postal code: 31527, Egypt
| |
Collapse
|
90
|
Lin YL, Li Y. Study on the hepatocellular carcinoma model with metastasis. Genes Dis 2020; 7:336-350. [PMID: 32884988 PMCID: PMC7452459 DOI: 10.1016/j.gendis.2019.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/07/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death around the world due to advanced clinical stage at diagnosis, high incidence of recurrence and metastasis after surgical treatment. It is in urgent need to create appropriate animal models to explore the mechanism, patterns, risk factors, and therapeutic strategies of HCC metastasis and recurrence. However, most of the established models lack the phenotype of invasion and metastasis in patient, or have unstable phenotype. To establish HCC models with stable metastasis phenotype requires profound understanding in cancer metastasis biology and scientific methodology. Over the past 3 decades, HCC models with stable metastasis have been extensively studied. This paper reviewed the history and development of HCC animal models and cell models, focusing on the screening and maintaining of metastatic potential and phenotype. In-depth studies using these models vastly promote the understanding of cellular and molecular mechanisms and development of therapeutic strategies on HCC metastasis.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| |
Collapse
|
91
|
Chung AS, Mettlen M, Ganguly D, Lu T, Wang T, Brekken RA, Hsiehchen D, Zhu H. Immune Checkpoint Inhibition is Safe and Effective for Liver Cancer Prevention in a Mouse Model of Hepatocellular Carcinoma. Cancer Prev Res (Phila) 2020; 13:911-922. [PMID: 32839204 DOI: 10.1158/1940-6207.capr-20-0200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/24/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022]
Abstract
Cirrhosis is a high-risk state for hepatocellular carcinoma (HCC) development and represents an opportunity to prevent cancer. In the precancerous state of cirrhosis, there is an accumulation of neoantigens that may be specifically targetable through immunotherapy. We asked whether immune checkpoint inhibition could prevent tumorigenesis in a mouse model of diethylnitrosamine and carbon tetrachloride-induced HCC. We found that initiation of anti-PD-1 therapy prior to tumorigenesis could prevent up to 46% of liver tumors. This significant reduction in tumor burden was accompanied by infiltration of CD4+ Th cells and CD8+ cytotoxic T cells into the liver parenchyma. Importantly, anti-PD-1 therapy did not exacerbate liver dysfunction or worsen overall health in this liver disease model. Given the safety and preservation of quality of life observed with long-term immunotherapy use, an immunotherapy chemoprevention strategy is likely associated with a low risk-to-benefit ratio and high value care in select patients. These results encourage a prevention trial in cirrhotic patients with the highest risk of developing HCC.See related Spotlight by Mohammed et al., p. 897.
Collapse
Affiliation(s)
- Andrew S Chung
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Marcel Mettlen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Debolina Ganguly
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tianshi Lu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas.,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David Hsiehchen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
92
|
Zhu H, Shan Y, Ge K, Lu J, Kong W, Jia C. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy. Cell Oncol (Dordr) 2020; 43:1203-1214. [PMID: 32797385 DOI: 10.1007/s13402-020-00552-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and devastating malignancies. Oxaliplatin, a platinum-based chemotherapeutic agent, is approved for the treatment of several malignancies, including HCC. However, its role in HCC is not well established. This study was designed to investigate the potential of oxaliplatin as an immunogenic cell death (ICD) inducer and to explore its regulatory effects on the response of HCC to immune checkpoint blockade therapy. METHODS Murine and human HCC cells were treated with oxaliplatin, followed by evaluation of the expression of ICD-related biomarkers. Murine HCC cells (H22) were subcutaneously inoculated into mice to establish a syngeneic tumor graft model, after which tumor sizes and in vivo immune cell activation were evaluated. To assess putative synergistic effects of oxaliplatin with anti-PD-1 antibodies on H22 tumors, tumor parameters and secreted cytokines were quantified. RESULTS ICD-related biomarkers were found to be enhanced after treatment of human and murine HCC cells with oxaliplatin. Additionally, we found that the number of mature dendritic cells (DCs) was increased after immature DCs were cocultured with oxaliplatin-treated H22 cells. The numbers of CD8+ T cells and mature DCs were found to be increased in vivo whereas, in contrast, the number of Treg cells was decreased. The tumor sizes were smaller in the oxaliplatin group than in the control group. In the syngeneic tumor graft model, we found that combination therapy with oxaliplatin and anti-PD-1 antibodies could achieve better outcomes than monotherapy, as indicated by (i) inhibition of tumor growth and TGF-β secretion and (ii) augmentation of inflammatory cytokine secretion. CONCLUSIONS Our data indicate that oxaliplatin can be used as an inducer of ICD and as a modulator of the tumor immune microenvironment. Combination therapies composed of oxaliplatin and immune checkpoint inhibitors may open up novel avenues for the treatment of HCC.
Collapse
Affiliation(s)
- Hanzhang Zhu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Yuqiang Shan
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Ke Ge
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Jun Lu
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Wencheng Kong
- Department of Gastrointestinal Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China
| | - Changku Jia
- Department of Hepatopancreatobiliary Surgery, Hangzhou First People's Hospital, the Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
93
|
Younis MA, Khalil IA, Harashima H. Gene Therapy for Hepatocellular Carcinoma: Highlighting the Journey from Theory to Clinical Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mahmoud A. Younis
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Ikramy A. Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
- Faculty of Pharmacy Assiut University Assiut 71526 Egypt
| | - Hideyoshi Harashima
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12, Nishi‐6, Kita‐ku Sapporo 060‐0812 Japan
| |
Collapse
|
94
|
Memon A, Pyao Y, Jung Y, Lee JI, Lee WK. A Modified Protocol of Diethylnitrosamine Administration in Mice to Model Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:5461. [PMID: 32751728 PMCID: PMC7432842 DOI: 10.3390/ijms21155461] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
We aimed to create an animal model for hepatocellular carcinoma (HCC) with a short time, a high survival rate, as well as a high incidence of HCC in both males and females than previously reported. The Diethylnitrosamine (DEN) model has an age-related effect. A single dose of DEN treatment is not enough in young mice up to 50 weeks. The same pattern is shown in an adult with multiple-dose trials whether or not there is some promotion agent. In this study, two-week old C57BL6 mice were given a total of eight doses of DEN, initially 20mg/kg body weight, and then 30mg/kg in the third week, followed by 50mg/kg for the last six weeks. The first group is DEN treatment only and the other two groups received thioacetamide (TAA) treatment for four or eight weeks after one week of rest from the last DEN treatment. An autopsy was performed after 24 weeks of the initial dose of DEN in each group. The cellular arrangement of HCC in the entire group was well-differentiated carcinoma and tumor presence with no significant impact on the survival of mice. Increased levels of the biochemical markers in serum, loss of tissue architecture, hepatocyte death, and proliferation were highly activated in all tumor-induced groups. This finding demonstrates an improved strategy to generate an animal model with a high occurrence of tumors combined with cirrhosis in a short time regardless of sex for researchers who want to investigate liver cancer-related.
Collapse
Affiliation(s)
- Azra Memon
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yuliya Pyao
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Yerin Jung
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| | - Jung Il Lee
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea;
| | - Woon Kyu Lee
- Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea; (A.M.); (Y.P.); (Y.J.)
| |
Collapse
|
95
|
Manieri E, Folgueira C, Rodríguez ME, Leiva-Vega L, Esteban-Lafuente L, Chen C, Cubero FJ, Barrett T, Cavanagh-Kyros J, Seruggia D, Rosell A, Sanchez-Cabo F, Gómez MJ, Monte MJ, G Marin JJ, Davis RJ, Mora A, Sabio G. JNK-mediated disruption of bile acid homeostasis promotes intrahepatic cholangiocarcinoma. Proc Natl Acad Sci U S A 2020; 117:16492-16499. [PMID: 32601222 PMCID: PMC7368313 DOI: 10.1073/pnas.2002672117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolic stress causes activation of the cJun NH2-terminal kinase (JNK) signal transduction pathway. It is established that one consequence of JNK activation is the development of insulin resistance and hepatic steatosis through inhibition of the transcription factor PPARα. Indeed, JNK1/2 deficiency in hepatocytes protects against the development of steatosis, suggesting that JNK inhibition represents a possible treatment for this disease. However, the long-term consequences of JNK inhibition have not been evaluated. Here we demonstrate that hepatic JNK controls bile acid production. We found that hepatic JNK deficiency alters cholesterol metabolism and bile acid synthesis, conjugation, and transport, resulting in cholestasis, increased cholangiocyte proliferation, and intrahepatic cholangiocarcinoma. Gene ablation studies confirmed that PPARα mediated these effects of JNK in hepatocytes. This analysis highlights potential consequences of long-term use of JNK inhibitors for the treatment of metabolic syndrome.
Collapse
Affiliation(s)
- Elisa Manieri
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - María Elena Rodríguez
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Luis Leiva-Vega
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Laura Esteban-Lafuente
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Chaobo Chen
- Department of Immunology, Ophthalmology, and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology, and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Tamera Barrett
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Julie Cavanagh-Kyros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Davide Seruggia
- Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215
| | - Alejandro Rosell
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Fátima Sanchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Manuel Jose Gómez
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain
| | - Maria J Monte
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for Study of Liver and Gastrointestinal Diseases (CIBERehd), University of Salamanca, 37007 Salamanca, Spain
| | - Jose J G Marin
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for Study of Liver and Gastrointestinal Diseases (CIBERehd), University of Salamanca, 37007 Salamanca, Spain
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain;
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Myocardial Pathophysiology Area, 28029 Madrid, Spain;
| |
Collapse
|
96
|
Hu H, Luo SJ, Cao ZR, Wu Y, Mo Z, Wang Y, Yu L, Chen Y, Xu L, Zhang SJ. Depressive Disorder promotes Hepatocellular Carcinoma metastasis via upregulation of ABCG2 gene expression and maintenance of self-renewal. J Cancer 2020; 11:5309-5317. [PMID: 32742477 PMCID: PMC7391196 DOI: 10.7150/jca.45712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/15/2020] [Indexed: 12/30/2022] Open
Abstract
Depressive disorder (DD) is the leading cause of disability worldwide and is the most prevalent mood disorder. Accumulative evidence from epidemiological studies has shown that DD is a risk factor for cancer. However, the role and molecular mechanism of DD in hepatocellular carcinoma (HCC) are still unknown. In this study, 30 mice were randomly divided into two groups: the HCC group and the HCC-DD group. The DD mouse model of HCC was established by induction with reserpine every other day and with monthly doses of diethylnitrosamine (DEN). All of the molecular studies were based on primary cell culture, and the effects of DD on HCC cell proliferation and migration and cancer stem cell (CSC) self-renewal were determined by colony formation, wound healing, and sphere culture assays. We found that the CSC markers ABCG2 and CD133 were upregulated in HCC-DD primary cells compared with HCC primary cells. Moreover, HCC-DD primary cells were more aggressive in terms of metastasis and self-renewal than HCC primary cells. Further study revealed that DD promoted tumor growth and metastasis by activating the AKT signaling pathway followed by an increased ABCG2 expression. Taken together, our novel findings indicate that DD promotes proliferation, self-renewal, and metastasis by upregulating ABCG2 in the AKT pathway.
Collapse
Affiliation(s)
- Hao Hu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China.,Department of Oncology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou (510407), China
| | - Shao-Ju Luo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Zhi-Rui Cao
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yingzi Wu
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Zhuomao Mo
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yongdan Wang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Ling Yu
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Yan Chen
- Department of Chinese Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, Guangdong, P. R. China
| | - Liang Xu
- The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| | - Shi-Jun Zhang
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong, P. R. China
| |
Collapse
|
97
|
Chenopodium Quinoa and Salvia Hispanica Provide Immunonutritional Agonists to Ameliorate Hepatocarcinoma Severity under a High-Fat Diet. Nutrients 2020; 12:nu12071946. [PMID: 32629893 PMCID: PMC7400258 DOI: 10.3390/nu12071946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Complex interactions between immunonutritional agonist and high fat intake (HFD), the immune system and finally gut microbiota are important determinants of hepatocarcinoma (HCC) severity. The ability of immunonutritional agonists to modulate major aspects such as liver innate immunity and inflammation and alterations in major lipids profile as well as gut microbiota during HCC development is poorly understood. 1H NMR has been employed to assess imbalances in saturated fatty acids, MUFA and PUFA, which were associated to variations in iron homeostasis. These effects were dependent on the botanical nature (Chenopodium quinoa vs. Salvia hispanica L.) of the compounds. The results showed that immunonutritional agonists' promoted resistance to hepatocarcinogenesis under pro-tumorigenic inflammation reflected, at a different extent, in increased proportions of F4/80+ cells in injured livers as well as positive trends of accumulated immune mediators (CD68/CD206 ratio) in intestinal tissue. Administration of all immunonutritional agonists caused similar variations of fecal microbiota, towards a lower obesity-inducing potential than animals only fed a HFD. Modulation of Firmicutes to Bacteroidetes contents restored the induction of microbial metabolites to improve epithelial barrier function, showing an association with liver saturated fatty acids and the MUFA and PUFA fractions. Collectively, these data provide novel findings supporting beneficial immunometabolic effects targeting hepatocarcinogenesis, influencing innate immunity within the gut-liver axis, and providing novel insights into their immunomodulatory activity.
Collapse
|
98
|
Chandrashekar DS, Golonka RM, Yeoh BS, Gonzalez DJ, Heikenwälder M, Gerwirtz AT, Varambally S, Vijay-Kumar M. Fermentable fiber-induced hepatocellular carcinoma in mice recapitulates gene signatures found in human liver cancer. PLoS One 2020; 15:e0234726. [PMID: 32559205 PMCID: PMC7304627 DOI: 10.1371/journal.pone.0234726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most malignant form of primary liver cancer, is the fourth most prevalent cause of cancer mortality globally. It was recently discovered that the dietary fermentable fiber, inulin, can reprogram the murine liver to favor HCC development in a gut microbiota-dependent manner. Determining the molecular pathways that are either over expressed or repressed during inulin-induced HCC would provide a platform of potential therapeutic targets. In the present study, we have combined analysis of the novel inulin-induced HCC murine model and human HCC samples to identify differentially expressed genes (DEGs) in hepatocarcinogenesis. Hepatic transcriptome profiling revealed that there were 674 DEGs in HCC mice compared to mice safeguarded from HCC. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis uncovered enrichment in ECM-receptor interaction, steroid hormone biosynthesis, PPAR signaling pathway, focal adhesion and protein digestion and absorption during inulin-induced HCC. Tandem mass tag based quantitative, multiplexed proteomic analysis delineated 57 differentially expressed proteins, where the over-expressed proteins were associated with cell adhesion molecules, valine, leucine and isoleucine degradation and ECM-receptor interaction. After obtaining the human orthologs of the mouse genes, we did a comparison analysis to level 3 RNA-seq data found in the Cancer Genome Atlas (TCGA) database, corresponding to human HCC (n = 361) and healthy liver (n = 50) samples. Out of the 549 up-regulated and 68 down-regulated human orthologs identified, 142 genes (137 significantly over-expressed and 5 significantly under-expressed) were associated with human HCC. Using univariate survival analysis, we found 27 over-expressed genes involved in cell-cell adhesion and cell division that were associated with poor HCC patient survival. Overall, the genetic and proteomics signatures highlight potential underlying mechanisms in inulin-induced HCC and support that this murine HCC model is human relevant.
Collapse
Affiliation(s)
| | - Rachel M. Golonka
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - Beng San Yeoh
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, and The School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew T. Gerwirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, United States of America
| | - Sooryanarayana Varambally
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail: (MVK); (SV)
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States of America
- * E-mail: (MVK); (SV)
| |
Collapse
|
99
|
Soyluoglu S, Durmus-Altun G. Animal Models for the Evaluation of Theranostic Radiopharmaceuticals. Curr Radiopharm 2020; 14:15-22. [PMID: 32334507 DOI: 10.2174/1874471013666200425223428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/06/2019] [Accepted: 02/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Theranostic is a new field of medicine that combines diagnosis and patient- specific targeted treatment. In the theranostic approach, it is aimed to detect diseased cells by using targeted molecules using disease-specific biological pathways and then destroy them by cellular irradiation without damaging other tissues. Diagnostic tests guide the use of specific therapeutic agents by demonstrating the presence of the receptor/molecule on the target tissue. As the therapeutic agent is administered to patients who have a positive diagnostic test, the efficacy of treatment in these patients is largely guaranteed. As therapeutic efficacy can be predicted by therapeutic agents, it is also possible to monitor the response to treatment. Many diagnostic and therapeutic procedures in nuclear medicine are classified as theranostic. 131I treatment and scintigraphy are the best examples of the theranostic application. Likewise, 177Lu / 90Y octreotate for neuroendocrine tumors, 177Lu PSMA for metastatic or treatment-resistant prostate cancer, 90Y SIRT for metastatic liver cancer, and 223Ra for bone metastasis of prostate cancer are widely used. Moreover, nanoparticles are one of the most rapidly developing subjects of theranostics. Diagnostic and therapeutic agents that show fluorescent, ultrasonic, magnetic, radioactive, contrast, pharmacological drug or antibody properties are loaded into the nanoparticle to provide theranostic use. METHODS This article reviewed general aspects of preclinical models for theranostic research, and presented examples from the literature. CONCLUSION To achieve successful results in rapidly accelerating personalized treatment research of today, the first step is to conduct appropriate preclinical studies.
Collapse
Affiliation(s)
- Selin Soyluoglu
- Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Gulay Durmus-Altun
- Department of Nuclear Medicine, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
100
|
Wu Y, Wang J, Zheng X, Chen Y, Huang M, Huang Q, Xiao W, Wei H, Tian Z, Sun R, Sun C. Establishment and Preclinical Therapy of Patient-derived Hepatocellular Carcinoma Xenograft Model. Immunol Lett 2020; 223:33-43. [PMID: 32335145 DOI: 10.1016/j.imlet.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/06/2019] [Accepted: 04/18/2020] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a world-wide health problem. Poor and delayed diagnoses as well as high recurrence rate resulting in high mortality rate. In this study, we established a patient-derived xenograft (PDX) model from HCC patient, and continuously maintained with subcutaneous passage more than 20 times. This HCC PDX tumor exhibited the same histological characteristics with the HCC patient and could be used to verify therapeutic effect of liver cancer. We further evaluated this PDX model by experimental chemotherapy, demonstrating that this HCC PDX model was sensitive to sorafenib treatment. Further, the potential of natural killer cell-based immunotherapy for HCC was tested using this model. We found that NK92 cells effectively suppressed the tumor growth in vivo and prolonged the survival time of HCC-bearing PDX mice. This study indicates that HCC PDX model is a good platform to testify the efficacy of preclinical chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Yuwei Wu
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Jinyu Wang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Xiaodong Zheng
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Yongyan Chen
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Mei Huang
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science & Technology of China, Hefei, China
| | - Weihua Xiao
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Haiming Wei
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Zhigang Tian
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China
| | - Rui Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China.
| | - Cheng Sun
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, China; Institute of Immunology, University of Science and Technology of China, China; Transplant & Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|