51
|
Ybañez RH, Nishikawa Y. Comparative Performance of Recombinant GRA6, GRA7, and GRA14 for the Serodetection of T. gondii Infection and Analysis of IgG Subclasses in Human Sera from the Philippines. Pathogens 2022; 11:pathogens11020277. [PMID: 35215219 PMCID: PMC8874886 DOI: 10.3390/pathogens11020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Highly specific and sensitive diagnostic methods are vital for the effective control and treatment of toxoplasmosis. Routine diagnosis is primarily serological because T. gondii infections stimulate persistently high IgG antibody responses. The sensitivity and specificity of methods are crucial factors for the proper diagnosis of toxoplasmosis, primarily dependent on the antigens used in different assays. In the present study, we compared the serodiagnostic performances of three recombinant dense granule antigens, namely, the GRA6, GRA7, and GRA14, to detect IgG antibodies against T. gondii in human sera from the Philippines. Moreover, we evaluated the IgG1, IgG2, IgG3, and IgG4 responses against the different recombinant antigens, which has not been performed previously. Our results revealed that the TgGRA7 has consistently displayed superior diagnostic capability, while TgGRA6 can be a satisfactory alternative antigen among the GRA proteins. Furthermore, IgG1 is the predominant subclass stimulated by the different recombinant antigens. This study's results provide options to researchers and manufacturers to choose recombinant antigens suitable for their purpose.
Collapse
Affiliation(s)
- Rochelle Haidee Ybañez
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
- Institute of Molecular Parasitology and Protozoan Diseases, Main Campus and College of Veterinary Medicine, Barili Campus, Cebu Technological University, Cebu City 6000, Philippines
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan;
- Correspondence:
| |
Collapse
|
52
|
Tatar M. The role of Aβ in Alzheimer's Disease as an Evolutionary Outcome of Optimized Innate Immune Defense. J Prev Alzheimers Dis 2022; 9:580-588. [PMID: 36281662 PMCID: PMC10535726 DOI: 10.14283/jpad.2022.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Alzheimer's Disease is a progressive manifestation of aging associated with accumulated Amyloid β. It remains frustratingly unclear why this protein accumulates and how it contributes to Alzheimer's Disease pathology. In one recent hypothesis, Amyloid β is suggested to function as an antimicrobial peptide in innate immune defense within the brain, where Amyloid β gains toxicity when it becomes abundant. This essay proposes an evolutionary explanation for why Amyloid β expression is regulated at an optimum based on its function as a defense and how this leads to disease. Among its potential physiological functions, Amyloid β confers benefits to reduce direct pathogen damage while this simultaneously entails cellular cost of defense. Optimal Amyloid β expression occurs when the gain in fitness from an incremental increase is balanced by the marginal cost of this increase. It proposes that natural selection acting upon the young favored systems to maintain Amyloid β at an optimal level through mechanisms that induce the defense and repress its expression. With age, the force of natural selection declines and permits mechanisms of negative feedback repression to degenerate. Consequently, Amyloid β is expressed beyond its optimum. Age also elevates cumulative pathogen exposure, reduces pathogen barriers and reactivates latent pathogens. The net effect is elevated, chronic induction of Amyloid β in the brain. The model recommends attention to innate immune negative regulation in the brain to discover ways to restore these functions toward a youthful state in the elderly.
Collapse
Affiliation(s)
- M Tatar
- Marc Tatar, Department of Ecology, Evolution and Organismal Biology, Box GW, Walter Hall Brown University, Providence RI 02912, USA, Office: +1 401-863-3455, Fax: +1 401-863-2166,
| |
Collapse
|
53
|
Sana M, Rashid M, Rashid I, Akbar H, Gomez-Marin JE, Dimier-Poisson I. Immune response against toxoplasmosis-some recent updates RH: Toxoplasma gondii immune response. Int J Immunopathol Pharmacol 2022; 36:3946320221078436. [PMID: 35227108 PMCID: PMC8891885 DOI: 10.1177/03946320221078436] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Cytokines, soluble mediators of immunity, are key factors of the innate and adaptive immune system. They are secreted from and interact with various types of immune cells to manipulate host body's immune cell physiology for a counter-attack on the foreign body. A study was designed to explore the mechanism of Toxoplasma gondii (T. gondii) resistance from host immune response. METHODS AND RESULTS The published data on aspect of host (murine and human) immune response against T. gondii was taken from Google scholar and PubMed. Most relevant literature was included in this study. The basic mechanism of immune response starts from the interactions of antigens with host immune cells to trigger the production of cytokines (pro-inflammatory and anti-inflammatory) which then act by forming a cytokinome (network of cytokine). Their secretory equilibrium is essential for endowing resistance to the host against infectious diseases, particularly toxoplasmosis. A narrow balance lying between Th1, Th2, and Th17 cytokines (as demonstrated until now) is essential for the development of resistance against T. gondii as well as for the survival of host. Excessive production of pro-inflammatory cytokines leads to tissue damage resulting in the production of anti-inflammatory cytokines which enhances the proliferation of Toxoplasma. Stress and other infectious diseases (human immunodeficiency virus (HIV)) that weaken the host immunity particularly the cellular component, make the host susceptible to toxoplasmosis especially in pregnant women. CONCLUSION The current review findings state that in vitro harvesting of IL12 from DCs, Np and MΦ upon exposure with T. gondii might be a source for therapeutic use in toxoplasmosis. Current review also suggests that therapeutic interventions leading to up-regulation/supplementation of SOCS-3, IL12, and IFNγ to the infected host could be a solution to sterile immunity against T. gondii infection. This would be of interest particularly in patients passing through immunosuppression owing to any reason like the ones receiving anti-cancer therapy, the ones undergoing immunosuppressive therapy for graft/transplantation, the ones suffering from immunodeficiency virus (HIV) or having AIDS. Another imortant suggestion is to launch the efforts for a vaccine based on GRA6Nt or other similar antigens of T. gondii as a probable tool to destroy tissue cysts.
Collapse
Affiliation(s)
- Madiha Sana
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Rashid
- Department of Parasitology, Faculty of Veterinary and Animal Sciences, 66920The Islamia University of Bahawalpur, Pakistan
| | - Imran Rashid
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Haroon Akbar
- Department of Parasitology, 66920University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Jorge E Gomez-Marin
- Grupo Gepamol, Centro de Investigaciones Biomedicas, Universidad del Quindio, Armenia, CO, South America
| | - Isabelle Dimier-Poisson
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Unité mixte de recherche 1282 (UMR1282), Infectiologie et santé publique (ISP), Tours, France
| |
Collapse
|
54
|
Toxoplasma gondii in humans and animals in Japan: An epidemiological overview. Parasitol Int 2021; 87:102533. [PMID: 34968753 DOI: 10.1016/j.parint.2021.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
Abstract
Toxoplasmosis is a cosmopolitan protozoan zoonosis caused by Toxoplasma gondii infamous for inducing severe clinical manifestations in humans. Although the disease affects at least one billion people worldwide, it is neglected in many countries including developed ones. In literature, the epidemiological data documenting the actual incidence of the disease in humans and domestic animals from Japan are limited and importantly many earlier papers on T. gondii infections were published in Japanese and a considerable part is not available online. Herein, we review the current summary about the epidemiological situation of T. gondii infection in Japan and the potential associated risk factors in humans and animals as well as the different T. gondii genotypes isolated in Japan. Several T. gondii isolates have been identified among cats (TgCatJpTy1/k-3, TgCatJpGi1/TaJ, TgCatJpObi1 and TgCatJpOk1-4) and goats (TgGoatJpOk1-13). This literature review underscores the need for a nationwide investigation of T. gondii infection in Japanese people and assessment of the socioeconomic impact of the disease burden. Furthermore, epidemiological studies in domestic and wild animals and estimation of degree of contamination of soil or water with T. gondii oocysts are needed, for a better understanding of the scope of this public health concern.
Collapse
|
55
|
Amiri M, Saki J, Cheraghian B. Study of the prevalence of toxoplasmosis in pregnant women with diabetes type 1 and type 2 using serological and molecular methods in Abadan and Khoramshahr Counties, Southwest of Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
56
|
El-Sayad M, Abdel Rahman M, Hussein N, Abdel Aziz R, El-Taweel HA, Abd El-Latif N. microRNA-155 Expression and Butyrylcholinesterase Activity in the Liver Tissue of Mice Infected with Toxoplasma gondii (Avirulent and Virulent Strains). Acta Parasitol 2021; 66:1167-1176. [PMID: 33840057 DOI: 10.1007/s11686-021-00383-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Toxoplasma gondii is an apicomplexan parasite that exhibits distinct strain-related virulence patterns in mice. It can induce hepatic inflammation. The present study investigated MicroRNA-155 (miRNA-155) expression and butyrylcholinesterase (BChE) activity in the liver tissue of mice infected with virulent and avirulent strains of T. gondii. METHODS Mice groups included: Group (A), uninfected controls; Group (B), infected with T. gondii avirulent strain (ME-49) and euthanized 7, 27, 47, or 67 days post-infection (pi); Group (C), infected by T. gondii virulent strain (RH) and euthanized 7 days pi; and Group (D), infected by T. gondii virulent strain (RH), treated 24 h pi with sulfamethoxazole-trimethoprim (150 mg/Kg/day and 30 mg/Kg/day, respectively) and euthanized 5, 10, or 20 days pi. miRNA-155 expression was estimated in the liver tissue using the reverse transcription real-time polymerase chain reaction and the ΔΔCt method. BChE activity was estimated in liver homogenates by Ellman's colorimetric method. Liver sections were examined histopathologically. RESULTS revealed a significant elevation in miRNA-155 expression and a significant reduction of BChE activity in all the infected untreated groups compared to the uninfected mice. In group B, the maximum upregulation of miRNA-155 expression and the least reduction in BChE activity were detected 7 days pi. In group D, complete restoration of normal levels occurred 20 days pi. Liver sections showed distinct histopathological patterns with detection of intracellular tachyzoites in group B. CONCLUSION miRNA-155 and BChE play a role in regulating host-parasite interaction in toxoplasmosis and may contribute to the pathogenesis of T. gondii induced hepatic damage.
Collapse
Affiliation(s)
- Mona El-Sayad
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Neveen Hussein
- Department of Applied Medical Chemistry. Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Rawda Abdel Aziz
- Department of Applied Medical Chemistry. Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Hend A El-Taweel
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt.
| | - Naglaa Abd El-Latif
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
57
|
In vitro activity of N-phenyl-1,10-phenanthroline-2-amines against tachyzoites and bradyzoites of Toxoplasma gondii. Bioorg Med Chem 2021; 50:116467. [PMID: 34666274 DOI: 10.1016/j.bmc.2021.116467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
Abstract
Toxoplasma gondiiis an apicomplexan parasite, the causative agent of toxoplasmosis, a common disease in the world. Toxoplasmosis could be severe, especially in immunocompromised patients. The current therapy is limited, where pyrimethamine and sulfadiazine are the best choices despite being associated with side effects and ineffective against the bradyzoites, the parasitic form present during the chronic phase of the infection. Thus, new therapies against both tachyzoites and bradyzoites from T. gondii are urgent. Herein, we present the anti-T. gondii effect of 1,10-phenanthroline and its N-phenyl-1,10-phenanthroline-2-amine derivatives. The chemical modification of 1,10-phenanthroline tonew derivatives improved the anti-T. gondiiactivity 3.4 fold. The most active derivative presented ED50in the nanomolar range, the smallest value found was for Ph8, 0.1 µM for 96 h of treatment. The host cell viability was maintained after the treatment with the compounds, which were found to be highly selective presenting large selectivity indexes. Treatment with derivatives for 96 h was able to eliminate the T. gondii infection irreversibly. The ultrastructural alterations caused after the treatment with the most effective derivative (Ph8) included signs of cell death, specifically revealed by the Tunel assay for detection of DNA fragmentation. The Phen derivatives were also able to control the growth of the in vitro-derived bradyzoite forms of T. gondii EGS strain, causing its lysis and death. These findings promote the 1,10-phenanthroline derivatives as potential lead compounds for the development of a treatment for acute and chronic phases of toxoplasmosis.
Collapse
|
58
|
Elmehankar MS, Elhenawy AA, Aboukamar WA, Elzoheiry MA, Nabih N. Histopathological and ultrastructural assessment of atovaquone-proguanil hydrochloride combination in chronic murine toxoplasmosis. Ultrastruct Pathol 2021; 45:376-383. [PMID: 34595988 DOI: 10.1080/01913123.2021.1984349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over one billion people worldwide are expected to have Toxoplasma gondii infection with anonymous health problems. Available therapies are ineffective for persistent chronic toxoplasmosis. So, there is an imperative need for effective therapies to eliminate chronic tissue stage. In this study, we aimed to assess the effect of a drug combination of atovaquone and proguanil hydrochloride in the treatment of experimental chronic toxoplasmosis. Fifty Swiss Webster mice were used in the study. Forty mice were infected with Me49 type II cystogenic Toxoplasma gondii strain and allocated into four groups: infected untreated (vehicle-administered), infected and treated with cotrimoxazole (CTX) 370 mg/kg/day, infected and treated with atovaquone (ATV) 100 mg/kg/day, and infected and treated with atovaquone/proguanil (ATV/PROG) 50 mg/kg/day. An additional group of uninfected mice was used as an uninfected control group. Drug treatment was initiated 8 weeks post-infection and continued for two weeks. All mice were sacrificed 12 weeks post-infection. Parasitological and histopathological parameters were assessed. Toxoplasma gondii cysts recovered from brain tissue homogenates of both infected untreated and ATV/PROG-treated groups were examined by scanning electron microscopy. Combined ATV/PROG treatment demonstrated a significant reduction of Toxoplasma gondii cyst count in brain tissue (a reduction rate of 84.87%) compared to untreated group (P < .001). Brain tissues obtained from ATV/PROG treated group showed reduction of inflammatory infiltrate and marked attenuation and deformation of recovered Toxoplasma gondii cysts. We conclude that ATV/PROG drug combination could offer a potential drug therapy for Toxoplasma gondii chronic cystic stage.
Collapse
Affiliation(s)
- Manar S Elmehankar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abeer A Elhenawy
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Wafaa A Aboukamar
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal A Elzoheiry
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nairmen Nabih
- Department of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
59
|
OUTCOMES OF TRANSPLACENTAL TRANSMISSION OF TOXOPLASMA GONDII FROM CHRONICALLY INFECTED FEMALE RED RUFFED LEMURS ( VARECIA RUBRA). J Zoo Wildl Med 2021; 52:1036-1041. [PMID: 34687522 DOI: 10.1638/2021-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 11/21/2022] Open
Abstract
Ten red ruffed lemurs (Varecia rubra)-two adult females and their eight offspring-were evaluated in this case series. Two adult females were diagnosed with chronic, latent toxoplasmosis based on serologic testing. The first female lemur had two successive pregnancies. The first pregnancy resulted in transplacental transmission of Toxoplasma gondii. The only surviving offspring was diagnosed with congenital toxoplasmosis based on serologic testing and compatible ophthalmic lesions. The two deceased offspring had disseminated nonsuppurative inflammation and intralesional protozoal organisms consistent with T. gondii, which was confirmed by polymerase chain reaction. The second pregnancy did not result in transplacental transmission. The second chronically infected adult female lemur had one pregnancy that resulted in a single stillborn fetus without evidence of transplacental transmission of T. gondii. Treatment with trimethoprim-sulfamethoxazole and folinic acid was administered to the first adult female and one offspring, but no treatment was given to the second adult female. All surviving lemurs had no further complications associated with toxoplasmosis. This case series demonstrates that chronic, latent infection of reproductive female red ruffed lemurs with T. gondii may result in variable outcomes: (1) transplacental transmission with disseminated fetal infection and stillbirth, (2) transplacental transmission with congenital infection and survival, or (3) lack of transplacental transmission and healthy offspring. Information gained from these cases may help guide recommendations for breeding of this critically endangered species.
Collapse
|
60
|
da Silva M, Teixeira C, Gomes P, Borges M. Promising Drug Targets and Compounds with Anti- Toxoplasma gondii Activity. Microorganisms 2021; 9:1960. [PMID: 34576854 PMCID: PMC8471693 DOI: 10.3390/microorganisms9091960] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/25/2022] Open
Abstract
Toxoplasmosis is a parasitic disease caused by the globally distributed protozoan parasite Toxoplasma gondii, which infects around one-third of the world population. This disease may result in serious complications for fetuses, newborns, and immunocompromised individuals. Current treatment options are old, limited, and possess toxic side effects. Long treatment durations are required since the current therapeutic system lacks efficiency against T. gondii tissue cysts, promoting the establishment of latent infection. This review highlights the most promising drug targets involved in anti-T. gondii drug discovery, including the mitochondrial electron transport chain, microneme secretion pathway, type II fatty acid synthesis, DNA synthesis and replication and, DNA expression as well as others. A description of some of the most promising compounds demonstrating antiparasitic activity, developed over the last decade through drug discovery and drug repurposing, is provided as a means of giving new perspectives for future research in this field.
Collapse
Affiliation(s)
- Marco da Silva
- Departamento de Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal;
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Margarida Borges
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
61
|
Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front Vet Sci 2021; 8:699561. [PMID: 34513970 PMCID: PMC8426627 DOI: 10.3389/fvets.2021.699561] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
Collapse
Affiliation(s)
- Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| |
Collapse
|
62
|
Saraav I, Cervantes-Barragan L, Olias P, Fu Y, Wang Q, Wang L, Wang Y, Mack M, Baldridge MT, Stappenbeck T, Colonna M, Sibley LD. Chronic Toxoplasma gondii infection enhances susceptibility to colitis. Proc Natl Acad Sci U S A 2021; 118:e2106730118. [PMID: 34462359 PMCID: PMC8433586 DOI: 10.1073/pnas.2106730118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Oral infection with Toxoplasma gondii results in dysbiosis and enteritis, both of which revert to normal during chronic infection. However, whether infection leaves a lasting impact on mucosal responses remains uncertain. Here we examined the effect of the chemical irritant dextran sodium sulfate (DSS) on intestinal damage and wound healing in chronically infected mice. Our findings indicate that prior infection with T. gondii exacerbates damage to the colon caused by DSS and impairs wound healing by suppressing stem cell regeneration of the epithelium. Enhanced tissue damage was attributable to inflammatory monocytes that emerge preactivated from bone marrow, migrate to the intestine, and release inflammatory mediators, including nitric oxide. Tissue damage was reversed by neutralization of inflammatory monocytes or nitric oxide, revealing a causal mechanism for tissue damage. Our findings suggest that chronic infection with T. gondii enhances monocyte activation to increase inflammation associated with a secondary environmental insult.
Collapse
Affiliation(s)
- Iti Saraav
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Luisa Cervantes-Barragan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Philipp Olias
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Qiuling Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | - Leran Wang
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Yi Wang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Matthias Mack
- Department of Nephrology, University of Regensburg, 93042 Regensburg, Germany
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110
| | - Thaddeus Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110;
| |
Collapse
|
63
|
Medeiros TC, Mehra C, Pernas L. Contact and competition between mitochondria and microbes. Curr Opin Microbiol 2021; 63:189-194. [PMID: 34411806 DOI: 10.1016/j.mib.2021.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Invading microbes occupy the host cytosol and take up nutrients on which host organelles are also dependent. Thus, host organelles are poised to interact with intracellular microbes. Despite the essential role of host mitochondria in cellular metabolic homeostasis and in mediating cellular responses to microbial infection, we know little of how these organelles interact with intracellular pathogens, and how such interactions affect disease pathogenesis. Here, we give an overview of the different classes of physical and metabolic interactions reported to occur between mitochondria and eukaryotic pathogens. Investigating the underlying molecular mechanisms and functions of such interactions will reveal novel aspects of infection biology.
Collapse
Affiliation(s)
- Tânia C Medeiros
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Chahat Mehra
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Lena Pernas
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
64
|
Beck B, Grochow T, Schares G, Blaga R, Le Roux D, Bangoura B, Daugschies A, Fietz SA. Burden and regional distribution of Toxoplasma gondii cysts in the brain of COBB 500 broiler chickens following chronic infection with 76K strain. Vet Parasitol 2021; 296:109497. [PMID: 34147768 DOI: 10.1016/j.vetpar.2021.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Toxoplasmosis is a worldwide zoonosis caused by the obligate intracellular apicomplexan parasite Toxoplasma gondii (T. gondii). Chickens are ground-feeders and represent, especially if free-range, important intermediate hosts in the epidemiology of toxoplasmosis and are used as sentinels of environmental contamination with T. gondii oocysts. Until now, little is known about the burden and regional distribution of T. gondii cysts in the chicken brain. It was therefore the aim of this study to investigate the abundance and specific distribution of T. gondii cysts within the chicken brain following chronic infection with a type II strain (76 K) of T. gondii. A total of 29 chickens were included in the study and divided into control group (n = 9) and two different infection groups, a low dose (n = 10) and a high dose (n = 10) group, which were orally inoculated with 1500 or 150,000 T. gondii oocysts per animal, respectively. Seroconversion was detected in the majority of chickens of the high dose group, but not in the animals of the low dose and the control group. Moreover, T. gondii DNA was detected most frequently in the brain and more frequently in the heart than in liver, spleen, thigh and pectoral muscle using qPCR analysis. The number of T. gondii cysts, quantified in the chicken brain using histological analysis, seems to be considerably lower as compared to studies in rodents, which might explain why T. gondii infected chickens very rarely, if at all, develop neurological deficits. Similar to observations in mice, in which no lateralisation for T. gondii cysts was reported, T. gondii cysts were distributed nearly equally between the left and right chicken brain hemispheres. When different brain regions (fore-, mid- and hindbrain) were compared, all T. gondii cysts were located in the forebrain with the overwhelming majority of these cysts being present in the telencephalic pallium and subpallium. More studies including different strains and higher doses of T. gondii are needed in order to precisely evaluate its cyst burden and regional distribution in the chicken brain. Together, our findings provide insights into the course of T. gondii infection in chickens and are important to understand the differences of chronic T. gondii infection in the chicken and mammalian brain.
Collapse
Affiliation(s)
- Britta Beck
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany; Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Thomas Grochow
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany; Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Gereon Schares
- Friedrich-Loeffler-Institut, Institute of Epidemiology, 17493, Greifswald-Insel Riems, Germany
| | - Radu Blaga
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Delphine Le Roux
- Anses, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, F-94700, France
| | - Berit Bangoura
- Wyoming State Veterinary Laboratory, Department of Veterinary Sciences, University of Wyoming, Laramie, WY, 82070, USA
| | - Arwid Daugschies
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany
| | - Simone A Fietz
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
65
|
Bekier A, Węglińska L, Paneth A, Paneth P, Dzitko K. 4-Arylthiosemicarbazide derivatives as a new class of tyrosinase inhibitors and anti- Toxoplasma gondii agents. J Enzyme Inhib Med Chem 2021; 36:1145-1164. [PMID: 34074198 PMCID: PMC8174488 DOI: 10.1080/14756366.2021.1931164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We report herein anti-proliferation effects of 4-arylthiosemicarbazides, with a cyclopentane substitution at N1 position, on highly virulent RH strain of Toxoplasma gondii. Among them, the highest in vitro anti-Toxoplasma activity was found with the meta-iodo derivative. Further experiments demonstrated inhibitory effects of thiosemicarbazides on tyrosinase (Tyr) activity, and good correlation was found between percentage of Tyr inhibition and IC50Tg. To confirm the concept that thiosemicarbazides are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites, the most potent Tyr inhibitors were tested for their efficacy of T. gondii growth inhibition. All of them significantly reduced the number of tachyzoites in the parasitophorous vacuoles (PVs) compared to untreated cells, as well as inhibited tachyzoites growth by impeding cell division. Collectively, these results indicate that compounds with the thiosemicarbazide scaffold are able to disrupt tyrosine metabolism in Toxoplasma tachyzoites by deregulation of their crucial enzyme tyrosine hydroxylase (TyrH).
Collapse
Affiliation(s)
- Adrian Bekier
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Lidia Węglińska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland.,Institute Center for Research on Innovative Biobased Materials (ICRI-BioM) - International Research Agenda, Lodz University of Technology, Lodz, Poland
| | - Katarzyna Dzitko
- Department of Molecular Microbiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
66
|
Lasonder E, More K, Singh S, Haidar M, Bertinetti D, Kennedy EJ, Herberg FW, Holder AA, Langsley G, Chitnis CE. cAMP-Dependent Signaling Pathways as Potential Targets for Inhibition of Plasmodium falciparum Blood Stages. Front Microbiol 2021; 12:684005. [PMID: 34108954 PMCID: PMC8183823 DOI: 10.3389/fmicb.2021.684005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
We review the role of signaling pathways in regulation of the key processes of merozoite egress and red blood cell invasion by Plasmodium falciparum and, in particular, the importance of the second messengers, cAMP and Ca2+, and cyclic nucleotide dependent kinases. cAMP-dependent protein kinase (PKA) is comprised of cAMP-binding regulatory, and catalytic subunits. The less well conserved cAMP-binding pockets should make cAMP analogs attractive drug leads, but this approach is compromised by the poor membrane permeability of cyclic nucleotides. We discuss how the conserved nature of ATP-binding pockets makes ATP analogs inherently prone to off-target effects and how ATP analogs and genetic manipulation can be useful research tools to examine this. We suggest that targeting PKA interaction partners as well as substrates, or developing inhibitors based on PKA interaction sites or phosphorylation sites in PKA substrates, may provide viable alternative approaches for the development of anti-malarial drugs. Proximity of PKA to a substrate is necessary for substrate phosphorylation, but the P. falciparum genome encodes few recognizable A-kinase anchor proteins (AKAPs), suggesting the importance of PKA-regulatory subunit myristylation and membrane association in determining substrate preference. We also discuss how Pf14-3-3 assembles a phosphorylation-dependent signaling complex that includes PKA and calcium dependent protein kinase 1 (CDPK1) and how this complex may be critical for merozoite invasion, and a target to block parasite growth. We compare altered phosphorylation levels in intracellular and egressed merozoites to identify potential PKA substrates. Finally, as host PKA may have a critical role in supporting intracellular parasite development, we discuss its role at other stages of the life cycle, as well as in other apicomplexan infections. Throughout our review we propose possible new directions for the therapeutic exploitation of cAMP-PKA-signaling in malaria and other diseases caused by apicomplexan parasites.
Collapse
Affiliation(s)
- Edwin Lasonder
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Kunal More
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Malak Haidar
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | | | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | | | - Anthony A Holder
- Malaria Parasitology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Gordon Langsley
- Laboratoire de Biologie Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes - Sorbonne Paris Cité, Paris, France.,INSERM U1016, CNRS UMR 8104, Cochin Institute, Paris, France
| | - Chetan E Chitnis
- Unité de Biologie de Plasmodium et Vaccins, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
67
|
Holbrook Z, Bean TP, Lynch SA, Hauton C. What do the terms resistance, tolerance, and resilience mean in the case of Ostrea edulis infected by the haplosporidian parasite Bonamia ostreae. J Invertebr Pathol 2021; 182:107579. [PMID: 33811850 DOI: 10.1016/j.jip.2021.107579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
The decline of the European flat oyster Ostrea edulis represents a loss to European coastal economies both in terms of food security and by affecting the Good Environmental Status of the marine environment as set out by the European Council's Marine Strategy Framework Directive (2008/56/EC). Restoration of O. edulis habitat is being widely discussed across Europe, addressing key challenges such as the devastating impact of the haplosporidian parasite Bonamia ostreae. The use of resistant, tolerant, or resilient oysters as restoration broodstock has been proposed by restoration practitioners, but the definitions and implications of these superficially familiar terms have yet to be defined and agreed by all stakeholders. This opinion piece considers the challenges of differentiating Bonamia resistance, tolerance, and resilience; challenges which impede the adoption of robust definitions. We argue that, disease-resistance is reduced susceptibility to infection by the parasite, or active suppression of the parasites ability to multiply and proliferate. Disease-tolerance is the retention of fitness and an ability to neutralise the virulence of the parasite. Disease-resilience is the ability to recover from illness and, at population level, tolerance could be interpreted as resilience. We concede that further work is required to resolve practical uncertainty in applying these definitions, and argue for a collaboration of experts to achieve consensus. Failure to act now might result in the future dispersal of this disease into new locations and populations, because robust definitions are important components of regulatory mechanisms that underpin marine management.
Collapse
Affiliation(s)
- Zoë Holbrook
- Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre Southampton, UK
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Sharon A Lynch
- School of Biological, Earth and Environmental Sciences, Aquaculture and Fisheries Development Centre, and Environmental Research Institute, University College Cork, Ireland
| | - Chris Hauton
- Ocean and Earth Science, University of Southampton Waterfront Campus, National Oceanography Centre Southampton, UK.
| |
Collapse
|
68
|
Roscoe S, Manni E, Roberts M, Ananvoranich S. Formation of mRNP granules in Toxoplasma gondii during the lytic cycle. Mol Biochem Parasitol 2020; 242:111349. [PMID: 33383066 DOI: 10.1016/j.molbiopara.2020.111349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/01/2022]
Abstract
Two poly(A) binding proteins (PABPs) of Toxoplasma gondii, were identified and characterized. They were named TgPABPC and TgPABPN as they were found to localize in the cytoplasm and nucleus respectively. TgPABPC, which colocalizes with mRNA granules, is therefore used as a cellular marker of mRNP granules. We detected that the formation of mRNP granules was independent of polymerized microtubules, and that the granules were distributed stochastically within the cytosol. Formation of mRNP granules was found to occur prior to parasite egress when a Ca2+ ionophore is used to induce egress. It was also found that maturation of mRNP granules could be described as a two-phase process. First, prior to host cell lysis, mRNP granules were formed rapidly within the cytosol. Second, the mRNP granule load was reduced within 10 min post egress. To investigate the link between translational state and mRNP granule formation, treatments with salubrinal, nutrient deprivation, and pH stress were used. While salubrinal induced granule formation in tachyzoites, nutrient starvation and pH stress showed no induction effect on mRNP granule formation. Interestingly, salubrinal treatment in bradyzoites did not induce RNP granule formation, thus suggesting that mRNP granule formation is not a ubiquitous response or directly related to translational repression. Instead, mRNP granule formation is likely a response to the rapid increase in non-translating RNA brought on by sudden changes in translational state.
Collapse
Affiliation(s)
- Scott Roscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Emad Manni
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Mikayla Roberts
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada
| | - Sirinart Ananvoranich
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, N9B3P4, Canada.
| |
Collapse
|
69
|
Tomasina R, Francia ME. The Structural and Molecular Underpinnings of Gametogenesis in Toxoplasma gondii. Front Cell Infect Microbiol 2020; 10:608291. [PMID: 33365279 PMCID: PMC7750520 DOI: 10.3389/fcimb.2020.608291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023] Open
Abstract
Toxoplasma gondii is a widely prevalent protozoan parasite member of the phylum Apicomplexa. It causes disease in humans with clinical outcomes ranging from an asymptomatic manifestation to eye disease to reproductive failure and neurological symptoms. In farm animals, and particularly in sheep, toxoplasmosis costs the industry millions by profoundly affecting their reproductive potential. As do all the parasites in the phylum, T. gondii parasites go through sexual and asexual replication in the context of an heteroxenic life cycle involving members of the Felidae family and any warm-blooded vertebrate as definitive and intermediate hosts, respectively. During sexual replication, merozoites differentiate into female and male gametes; their combination gives rise to a zygotes which evolve into sporozoites that encyst and are shed in cat's feces as environmentally resistant oocysts. During zygote formation T. gondii parasites are diploid providing the parasite with a window of opportunity for genetic admixture making this a key step in the generation of genetic diversity. In addition, oocyst formation and shedding are central to dissemination and environmental contamination with infectious parasite forms. In this minireview we summarize the current state of the art on the process of gametogenesis. We discuss the unique structures of macro and microgametes, an insight acquired through classical techniques, as well as the more recently attained molecular understanding of the routes leading up to these life forms by in vitro and in vivo systems. We pose a number of unanswered questions and discuss these in the context of the latest findings on molecular cues mediating stage switching, and the implication for the field of newly available in vitro tools.
Collapse
Affiliation(s)
- Ramiro Tomasina
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - María E Francia
- Laboratory of Apicomplexan Biology, Institut Pasteur de Montevideo, Montevideo, Uruguay.,Department of Parasitology and Mycology, School of Medicine, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
70
|
Sokol-Borrelli SL, Coombs RS, Boyle JP. A Comparison of Stage Conversion in the Coccidian Apicomplexans Toxoplasma gondii, Hammondia hammondi, and Neospora caninum. Front Cell Infect Microbiol 2020; 10:608283. [PMID: 33344268 PMCID: PMC7744739 DOI: 10.3389/fcimb.2020.608283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023] Open
Abstract
Stage conversion is a critical life cycle feature for several Apicomplexan parasites as the ability to switch between life forms is critical for replication, dissemination, pathogenesis and ultimately, transmission to a new host. In order for these developmental transitions to occur, the parasite must first sense changes in their environment, such as the presence of stressors or other environmental signals, and then respond to these signals by initiating global alterations in gene expression. As our understanding of the genetic components required for stage conversion continues to broaden, we can better understand the conserved mechanisms for this process and unique components and their contribution to pathogenesis by comparing stage conversion in multiple closely related species. In this review, we will discuss what is currently known about the mechanisms driving stage conversion in Toxoplasma gondii and its closest relatives Hammondia hammondi and Neospora caninum. Work by us and others has shown that these species have some important differences in the way that they (1) progress through their life cycle and (2) respond to stage conversion initiating stressors. To provide a specific example of species-specific complexities associated with stage conversion, we will discuss our recent published and unpublished work comparing stress responses in T. gondii and H. hammondi.
Collapse
Affiliation(s)
| | | | - Jon P. Boyle
- University of Pittsburgh, Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA, United States
| |
Collapse
|
71
|
In Vivo and In Vitro Virulence Analysis of Four Genetically Distinct Toxoplasma gondii Lineage III Isolates. Microorganisms 2020; 8:microorganisms8111702. [PMID: 33142663 PMCID: PMC7693757 DOI: 10.3390/microorganisms8111702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 01/23/2023] Open
Abstract
Toxoplasma gondii archetypes II and III are mildly virulent, yet virulence of variant strains is largely unknown. While lineage II dominates in humans in Europe, lineage III strains are present in various intermediate hosts. In Serbia, lineage III represents 24% of the population structure and occurs most frequently in domestic animals, implying a significant presence in the human food web. In this study, the virulence of four genetically distinct lineage III variants was assessed in vivo and in vitro. In vivo, two strains were shown to be intermediately virulent and two mildly virulent, with cumulative mortalities of 69.4%, 38.8%, 10.7%, and 6.8%, respectively. The strain with the highest mortality has previously been isolated in Europe and may be endemic; the strain with the lowest mortality matches ToxoDB#54, while the remaining two represent novel genotypes. Identical alleles were detected at ROP5, ROP16, ROP18, and GRA15. A set of in vitro analyses revealed proliferation and plaque formation as virulence factors. Higher levels of expression of ENO2 in intermediately virulent strains point to enhanced metabolism as the underlying mechanism. The results suggest that metabolic attenuation, and possibly stage conversion, may be delayed in virulent strains.
Collapse
|
72
|
Velasco-Velásquez S, Celis-Giraldo D, Botero Hincapié A, Alejandro Hincapie Erira D, Sofia Cordero López S, Marulanda Orozco N, Enrique Gómez-Marín J. Clinical, Socio-economic and Environmental Factors Related with Recurrences in Ocular Toxoplasmosis in Quindío, Colombia. Ophthalmic Epidemiol 2020; 28:258-264. [PMID: 33115293 DOI: 10.1080/09286586.2020.1839509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To identify the sociodemographic, clinical, and environmental factors associated with recurrences in ocular toxoplasmosis (OT). METHODS Retrospective analysis of clinical records of patients who consulted in the Health Centre at Universidad del Quindío between 2004 and 2017. Patients with retinochoroiditis due to Toxoplasma gondii infection and follow up >12 months were included. Comparisons were made with a recurrence index adjusted for months of follow up. For the statistical analysis, the Kruskal-Wallis test and analysis of variance (ANOVA) tests were performed in Epi Info 7.2 and SPSS 14.0. A statistical significance is shown if p ≤ 0.05. RESULTS A total of 58 patients were included, with median age of 28 years (range 1-61) and 55.1% were women. The median of recurrences was 1.4 (range 0.6-16.6). High recurrence index was present in 43.1% of the patients. A higher size of lesions was observed in low socioeconomic groups (p = .016) and patients with congenital infection had more bilateral compromise (p = .002). Intake of boiled water was related to a lower recurrence index (p = .04). CONCLUSIONS Low socioeconomic level was associated with bigger lesions and congenital infection was related with higher frequency of bilateral OT. Finally, intake of boiled water is related to a lower recurrence index of OT.
Collapse
Affiliation(s)
- Stefany Velasco-Velásquez
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Daniel Celis-Giraldo
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Andrea Botero Hincapié
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Diego Alejandro Hincapie Erira
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Sara Sofia Cordero López
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Nathalia Marulanda Orozco
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Jorge Enrique Gómez-Marín
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| |
Collapse
|
73
|
Toxoplasma gondii: AnUnderestimated Threat? Trends Parasitol 2020; 36:959-969. [PMID: 33012669 DOI: 10.1016/j.pt.2020.08.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the protozoan parasite Toxoplasma gondii has been thought of as relevant to public health primarily within the context of congenital toxoplasmosis or postnatally acquired disease in immunocompromised patients. However, latent T.gondii infection has been increasingly associated with a wide variety of neuropsychiatric disorders and, more recently, causal frameworks for these epidemiological associations have been proposed. We present assimilated evidence on the associations between T.gondii and various human neuropsychiatric disorders and outline how these may be explained within a unifying causal framework. We argue that the occult effects of latent T.gondii infection likely outweigh the recognised overt morbidity caused by toxoplasmosis, substantially raising the public health importance of this parasite.
Collapse
|
74
|
Tan S, Tong WH, Vyas A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav Immun Health 2020; 8:100128. [PMID: 34589880 PMCID: PMC8474456 DOI: 10.1016/j.bbih.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis. Pomegranate extract reduces T. gondii tachyzoite load and cyst formation in-vitro. Urolithin-A, in part, underlies the anti-T. gondii effect of pomegranate extract. Urolithin-A perturbs cyst development in the brain of chronically infected mice. The reduction in brain cyst burden associates with enhanced fear of infected mice towards cat odor. Dietary supplementation with urolithin-A is a potential therapy for neurotoxoplasmosis.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
75
|
Doggett JS, Schultz T, Miller AJ, Bruzual I, Pou S, Winter R, Dodean R, Zakharov LN, Nilsen A, Riscoe MK, Carruthers VB. Orally Bioavailable Endochin-Like Quinolone Carbonate Ester Prodrug Reduces Toxoplasma gondii Brain Cysts. Antimicrob Agents Chemother 2020; 64:e00535-20. [PMID: 32540978 PMCID: PMC7449172 DOI: 10.1128/aac.00535-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmosis is a potentially fatal infection for immunocompromised people and the developing fetus. Current medicines for toxoplasmosis have high rates of adverse effects that interfere with therapeutic and prophylactic regimens. Endochin-like quinolones (ELQs) are potent inhibitors of Toxoplasma gondii proliferation in vitro and in animal models of acute and latent infection. ELQ-316, in particular, was found to be effective orally against acute toxoplasmosis in mice and highly selective for T. gondii cytochrome b over human cytochrome b Despite its oral efficacy, the high crystallinity of ELQ-316 limits oral absorption, plasma concentrations, and therapeutic potential. A carbonate ester prodrug of ELQ-316, ELQ-334, was created to decrease crystallinity and increase oral bioavailability, which resulted in a 6-fold increase in both the maximum plasma concentration (Cmax) and the area under the curve (AUC) of ELQ-316. The increased bioavailability of ELQ-316, when administered as ELQ-334, resulted in efficacy against acute toxoplasmosis greater than that of an equivalent dose of ELQ-316 and had efficacy against latent toxoplasmosis similar to that of ELQ-316 administered intraperitoneally. Treatment with carbonate ester prodrugs is a successful strategy to overcome the limited oral bioavailability of ELQs for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- J Stone Doggett
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Tracey Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alyssa J Miller
- Program in Cell and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Igor Bruzual
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Sovitj Pou
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rolf Winter
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Rozalia Dodean
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Lev N Zakharov
- Department of Chemistry, University of Oregon, Eugene, Oregon, USA
| | - Aaron Nilsen
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
| | - Michael K Riscoe
- Division of Infectious Diseases, Oregon Health and Science University School of Medicine, Portland, Oregon, USA
- Department of Hospital and Specialty Medicine, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
76
|
Gunderson EL, Vogel I, Chappell L, Bulman CA, Lim KC, Luo M, Whitman JD, Franklin C, Choi YJ, Lefoulon E, Clark T, Beerntsen B, Slatko B, Mitreva M, Sullivan W, Sakanari JA. The endosymbiont Wolbachia rebounds following antibiotic treatment. PLoS Pathog 2020; 16:e1008623. [PMID: 32639986 PMCID: PMC7371230 DOI: 10.1371/journal.ppat.1008623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Antibiotic treatment has emerged as a promising strategy to sterilize and kill filarial nematodes due to their dependence on their endosymbiotic bacteria, Wolbachia. Several studies have shown that novel and FDA-approved antibiotics are efficacious at depleting the filarial nematodes of their endosymbiont, thus reducing female fecundity. However, it remains unclear if antibiotics can permanently deplete Wolbachia and cause sterility for the lifespan of the adult worms. Concerns about resistance arising from mass drug administration necessitate a careful exploration of potential Wolbachia recrudescence. In the present study, we investigated the long-term effects of the FDA-approved antibiotic, rifampicin, in the Brugia pahangi jird model of infection. Initially, rifampicin treatment depleted Wolbachia in adult worms and simultaneously impaired female worm fecundity. However, during an 8-month washout period, Wolbachia titers rebounded and embryogenesis returned to normal. Genome sequence analyses of Wolbachia revealed that despite the population bottleneck and recovery, no genetic changes occurred that could account for the rebound. Clusters of densely packed Wolbachia within the worm's ovarian tissues were observed by confocal microscopy and remained in worms treated with rifampicin, suggesting that they may serve as privileged sites that allow Wolbachia to persist in worms while treated with antibiotic. To our knowledge, these clusters have not been previously described and may be the source of the Wolbachia rebound.
Collapse
Affiliation(s)
- Emma L. Gunderson
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Ian Vogel
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Laura Chappell
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Christina A. Bulman
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - K. C. Lim
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Mona Luo
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Jeffrey D. Whitman
- Dept. of Laboratory Medicine; University of California, San Francisco; San Francisco, California, United States of America
| | - Chris Franklin
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| | - Young-Jun Choi
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - Emilie Lefoulon
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Travis Clark
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Brenda Beerntsen
- Veterinary Pathobiology; University of Missouri-Columbia; Columbia, Missouri, United States of America
| | - Barton Slatko
- Molecular Parasitology Division; New England BioLabs; Ipswich, Massachusetts, United States of America
| | - Makedonka Mitreva
- Division of Infectious Diseases; Washington University School of Medicine, St. Louis; St. Louis, Missouri, United States of America
| | - William Sullivan
- Dept. of Molecular, Cell and Developmental Biology; University of California, Santa Cruz; Santa Cruz, California, United States of America
| | - Judy A. Sakanari
- Dept. of Pharmaceutical Chemistry; University of California, San Francisco; San Francisco, California, United States of America
| |
Collapse
|
77
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Toxoplasma GRA15 and GRA24 are important activators of the host innate immune response in the absence of TLR11. PLoS Pathog 2020; 16:e1008586. [PMID: 32453782 PMCID: PMC7274473 DOI: 10.1371/journal.ppat.1008586] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/05/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The murine innate immune response against Toxoplasma gondii is predominated by the interaction of TLR11/12 with Toxoplasma profilin. However, mice lacking Tlr11 or humans, who do not have functional TLR11 or TLR12, still elicit a strong innate immune response upon Toxoplasma infection. The parasite factors that determine this immune response are largely unknown. Herein, we investigated two dense granule proteins (GRAs) secreted by Toxoplasma, GRA15 and GRA24, for their role in stimulating the innate immune response in Tlr11-/- mice and in human cells, which naturally lack TLR11/TLR12. Our results show that GRA15 and GRA24 synergistically shape the early immune response and parasite virulence in Tlr11-/- mice, with GRA15 as the predominant effector. Nevertheless, acute virulence in Tlr11-/- mice is still dominated by allelic combinations of ROP18 and ROP5, which are effectors that determine evasion of the immunity-related GTPases. In human macrophages, GRA15 and GRA24 play a major role in the induction of IL12, IL18 and IL1β secretion. We further show that GRA15/GRA24-mediated IL12, IL18 and IL1β secretion activates IFNγ secretion by peripheral blood mononuclear cells (PBMCs), which controls Toxoplasma proliferation. Taken together, our study demonstrates the important role of GRA15 and GRA24 in activating the innate immune response in hosts lacking TLR11.
Collapse
Affiliation(s)
- Debanjan Mukhopadhyay
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - David Arranz-Solís
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
| | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
78
|
O’Connor RM, Nepveux V FJ, Abenoja J, Bowden G, Reis P, Beaushaw J, Bone Relat RM, Driskell I, Gimenez F, Riggs MW, Schaefer DA, Schmidt EW, Lin Z, Distel DL, Clardy J, Ramadhar TR, Allred DR, Fritz HM, Rathod P, Chery L, White J. A symbiotic bacterium of shipworms produces a compound with broad spectrum anti-apicomplexan activity. PLoS Pathog 2020; 16:e1008600. [PMID: 32453775 PMCID: PMC7274485 DOI: 10.1371/journal.ppat.1008600] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/05/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Apicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans. We chose to explore the therapeutic potential of shipworm symbiotic bacteria as they are bona fide symbionts, are easily grown in axenic culture and have genomes rich in secondary metabolite loci [1,2]. Two strains of the shipworm symbiotic bacterium, Teredinibacter turnerae, were screened for activity against Toxoplasma gondii and one strain, T7901, exhibited activity against intracellular stages of the parasite. Bioassay-guided fractionation identified tartrolon E (trtE) as the source of the activity. TrtE has an EC50 of 3 nM against T. gondii, acts directly on the parasite itself and kills the parasites after two hours of treatment. TrtE exhibits nanomolar to picomolar level activity against Cryptosporidium, Plasmodium, Babesia, Theileria, and Sarcocystis; parasites representing all branches of the apicomplexan phylogenetic tree. The compound also proved effective against Cryptosporidium parvum infection in neonatal mice, indicating that trtE may be a potential lead compound for preclinical development. Identification of a promising new compound after such limited screening strongly encourages further mining of invertebrate symbionts for new anti-parasitic therapeutics.
Collapse
Affiliation(s)
- Roberta M. O’Connor
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Felix J. Nepveux V
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Jaypee Abenoja
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Gregory Bowden
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Patricia Reis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Josiah Beaushaw
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Rachel M. Bone Relat
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Iwona Driskell
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Fernanda Gimenez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Michael W. Riggs
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Deborah A. Schaefer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Zhenjian Lin
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, United States of America
| | - Daniel L. Distel
- Ocean Genome Legacy Center, Northeastern University, Nahant, Massachusetts, United States of America
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Timothy R. Ramadhar
- Department of Chemistry, Howard University, Washington DC, United States of America
| | - David R. Allred
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Heather M. Fritz
- California Animal Health and Food Safety Lab, University of California, Davis, California, United States of America
| | - Pradipsinh Rathod
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Laura Chery
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - John White
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
79
|
de-la-Torre A, Gómez-Marín J. Disease of the Year 2019: Ocular Toxoplasmosis in HIV-infected Patients. Ocul Immunol Inflamm 2020; 28:1031-1039. [PMID: 32162993 DOI: 10.1080/09273948.2020.1735450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ocular toxoplasmosis (OT) may be an initial manifestation of acquired immunodeficiency syndrome (AIDS) in human immunodeficiency virus (HIV)-infected patients. OT has different clinical manifestations and can mimic other intraocular infections. Clinical findings may show single or multifocal retinochoroidal lesions or panuveitis. Atypical presentations are associated with extensive uni- or bilateral areas of retinal necrosis. OT lesions not associated with preexisting retinochoroidal scars are usually due to acquired rather than congenital infection. When CD4+ T cell counts are <100 c/uL, vitritis is frequently mild. Isolated anterior uveitis has been reported in single cases. Positive immunoglobulin M (IgM) antibodies are rare but their presence can support the diagnosis. As atypical presentations of OT are common, anterior chamber puncture for multiplex polymerase chain reaction amplification of infectious DNA should be considered, as early diagnosis and treatment can prevent massive tissue destruction and preserve vision. This review provides an overview of OT in HIV-infected patients.
Collapse
Affiliation(s)
- Alejandra de-la-Torre
- Grupo de Investigación en Neurociencia (Neuros), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario , Bogotá, Colombia
| | - Jorge Gómez-Marín
- Gepamol. Centro de Investigaciones Biomédicas, Universidad del Quindío , Armenia, Q, Colombia
| |
Collapse
|
80
|
Hanquier J, Gimeno T, Jeffers V, Sullivan WJ. Evaluating the GCN5b bromodomain as a novel therapeutic target against the parasite Toxoplasma gondii. Exp Parasitol 2020; 211:107868. [PMID: 32119930 PMCID: PMC7483680 DOI: 10.1016/j.exppara.2020.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii is a protozoan parasite of great importance in human and veterinary health. The frontline treatment of antifolates suffers a variety of drawbacks, including toxicity and allergic reactions, underscoring the need to identify novel drug targets for new therapeutics to be developed. We previously showed that the Toxoplasma lysine acetyltransferase (KAT) GCN5b is an essential chromatin remodeling enzyme in the parasite linked to the regulation of gene expression. We have previously established that the KAT domain is a liability that can be targeted in the parasite by compounds like garcinol; here, we investigate the potential of the bromodomain as a targetable element of GCN5b. Bromodomains bind acetylated lysine residues on histones, which helps stabilize the KAT complex at gene promoters. Using an inducible dominant-negative strategy, we found that the GCN5b bromodomain is critical for Toxoplasma viability. We also found that the GCN5-family bromodomain inhibitor, L-Moses, interferes with the ability of the GCN5b bromodomain to associate with acetylated histone residues using an in vitro binding assay. Moreover, L-Moses displays potent activity against Toxoplasma tachyzoites in vitro, which can be overcome if parasites are engineered to over-express GCN5b. Collectively, our data support the GCN5b bromodomain as an attractive target for the development of new therapeutics.
Collapse
Affiliation(s)
- Jocelyne Hanquier
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas Gimeno
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Victoria Jeffers
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William J Sullivan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
81
|
Zhou CX, Ai K, Huang CQ, Guo JJ, Cong H, He SY, Zhu XQ. miRNA and circRNA expression patterns in mouse brain during toxoplasmosis development. BMC Genomics 2020; 21:46. [PMID: 31937240 PMCID: PMC6958735 DOI: 10.1186/s12864-020-6464-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background Increasing evidence has shown that circular RNAs (circRNAs) are involved in neurodegenerative disorders, but their roles in neurological toxoplasmosis are yet to know. This study examined miRNA and circRNA expressions in mouse brain following oral infection with T. gondii Pru strain. Results Total RNA extracted from acutely infected (11 days post infection (DPI)), chronically infected (35 DPI) and uninfected mouse brain samples were subjected to genome-wide small RNA sequencing. In the acutely infected mice, 9 circRNAs and 20 miRNAs were upregulated, whereas 67 circRNAs and 28 miRNAs were downregulated. In the chronically infected mice, 2 circRNAs and 42 miRNAs were upregulated, whereas 1 circRNA and 29 miRNAs were downregulated. Gene ontology analysis predicted that the host genes that produced the dysregulated circRNAs in the acutely infected brain were primarily involved in response to stimulus and ion binding activities. Furthermore, predictive interaction networks of circRNA-miRNA and miRNA-mRNA were constructed based on genome-wide transcriptome sequencing and computational analyses, which might suggest the putative functions of miRNAs and circRNAs as a large class of post-transcriptional regulators. Conclusions These findings will shed light on circRNA-miRNA interactions during the pathogenesis of toxoplasmosis, and they will lay solid foundation for studying the potential regulation roles of miRNAs and circRNAs in T. gondii induced pathogenesis.
Collapse
Affiliation(s)
- Chun-Xue Zhou
- Department of Pathogenic biology, Shandong University School of Basic Medicine, Jinan, Shandong, 250012, People's Republic of China. .,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Kang Ai
- Department of Pathogenic biology, Shandong University School of Basic Medicine, Jinan, Shandong, 250012, People's Republic of China
| | - Cui-Qin Huang
- College of Life Sciences and Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan University, Longyan, Fujian, 364012, People's Republic of China
| | - Jing-Jing Guo
- Department of Pathogenic biology, Shandong University School of Basic Medicine, Jinan, Shandong, 250012, People's Republic of China
| | - Hua Cong
- Department of Pathogenic biology, Shandong University School of Basic Medicine, Jinan, Shandong, 250012, People's Republic of China
| | - Shen-Yi He
- Department of Pathogenic biology, Shandong University School of Basic Medicine, Jinan, Shandong, 250012, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, People's Republic of China.
| |
Collapse
|
82
|
Abstract
Toxoplasma gondii, a member of the Apicomplexa, is known for its ability to infect an impressive range of host species. It is a common human infection that causes significant morbidity in congenitally infected children and immunocompromised patients. This parasite can be transmitted by bradyzoites, a slowly replicating life stage found within intracellular tissue cysts, and oocysts, the sexual life cycle stage that develops in domestic cats and other Felidae. T. gondii bradyzoites retain the capacity to revert back to the quickly replicating tachyzoite life stage, and when the host is immune compromised unrestricted replication can lead to significant tissue destruction. Bradyzoites are refractory to currently available Toxoplasma treatments. Improving our understanding of bradyzoite biology is critical for the development of therapeutic strategies to eliminate latent infection. This chapter describes a commonly used protocol for the differentiation of T. gondii tachyzoites into bradyzoites using human foreskin fibroblast cultures and a CO2-limited alkaline cell media, which results in a high proportion of differentiated bradyzoites for further study. Also described are methods for purifying tissue cysts from chronically infected mouse brain using isopycnic centrifugation and a recently developed approach for measuring bradyzoite viability.
Collapse
|
83
|
Hernández-de-Los-Ríos A, Murillo-Leon M, Mantilla-Muriel LE, Arenas AF, Vargas-Montes M, Cardona N, de-la-Torre A, Sepúlveda-Arias JC, Gómez-Marín JE. Influence of Two Major Toxoplasma Gondii Virulence Factors (ROP16 and ROP18) on the Immune Response of Peripheral Blood Mononuclear Cells to Human Toxoplasmosis Infection. Front Cell Infect Microbiol 2019; 9:413. [PMID: 31867288 PMCID: PMC6904310 DOI: 10.3389/fcimb.2019.00413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii ROP16 and ROP18 proteins have been identified as important virulence factors for this parasite. Here, we describe the effect of ROP16 and ROP18 proteins on peripheral blood mononuclear cells (PBMCs) from individuals with different clinical status of infection. We evaluated IFN-γ, IL-10, and IL-1β levels in supernatants from PBMCs cultures infected with tachyzoites of the T. gondii wild-type RH strain or with knock-out mutants of the rop16 and rop18 encoding genes (RHΔrop16 and RHΔrop18). Cytokine secretion was compared between PBMCs obtained from seronegative individuals (n = 10), with those with chronic asymptomatic (n = 8), or ocular infection (n = 12). We also evaluated if polymorphisms in the genes encoding for IFN-γ, IL-10, IL-1β, Toll-like receptor 9 (TLR9), and purinoreceptor P2RX7 influenced the production of the encoded proteins after ex vivo stimulation. In individuals with chronic asymptomatic infection, only a moderate effect on IL-10 levels was observed when PBMCs were infected with RHΔrop16, whereas a significant difference in the levels of inflammatory cytokines IFN-γ and IL-1β was observed in seronegative individuals, but this was also dependent on the host's cytokine gene polymorphisms. Infection with ROP16-deficient parasites had a significant effect on IFN-γ production in previously non-infected individuals, suggesting that ROP16 which is considered as a virulence factor plays a role during the primary infection in humans, but not in the secondary immune response.
Collapse
Affiliation(s)
- Alejandro Hernández-de-Los-Ríos
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mateo Murillo-Leon
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Luz Eliana Mantilla-Muriel
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Ailan Farid Arenas
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Mónica Vargas-Montes
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| | - Néstor Cardona
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia.,Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia.,Universidad Antonio Nariño, Armenia, Colombia
| | - Alejandra de-la-Torre
- Grupo NeURos, Unidad de Inmunología, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogota, Colombia
| | - Juan Carlos Sepúlveda-Arias
- Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Jorge Enrique Gómez-Marín
- Grupo de Estudio en Parasitología Molecular (GEPAMOL), Facultad de Ciencias de la Salud, Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Colombia
| |
Collapse
|
84
|
Perrone Sibilia MD, Aldirico MDLÄ, Soto AS, Picchio MS, Sánchez VR, Arcón N, Moretta R, Martín V, Vanzulli S, Fenoy IM, Goldman A. Chronic infection with the protozoan Toxoplasma gondii prevents the development of experimental atopic dermatitis in mice. J Dermatol Sci 2019; 96:143-150. [PMID: 31735466 DOI: 10.1016/j.jdermsci.2019.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Supporting the hypothesis thatT. gondii infection protects against allergy in humans we previously demonstrated that this infection can modulate not only the susceptibility to develop respiratory allergies in mice but also suppresses allergic responses at systemic level. This latter finding suggests that T. gondii infection could prevent the onset of other allergic diseases, such as atopic dermatitis. At present, few studies have investigated the modulation of atopic dermatitis by parasite infections. OBJECTIVE Here, we sought to investigate whether chronic infection with T. gondii is capable of modulating the development of atopic dermatitis. METHODS Chronically infected mice were sensitized by repeated epicutaneous ovalbumin administration. Skin histopathology, humoral response, cytokine production and innate type-II lymphoid cells (ILC2) were assessed. RESULTS A marked reduction in epidermal thickness and dermal inflammatory infiltrate along with a reduction in mast cell count was observed in infected mice compared to non-infected mice. These results correlated with a diminished TH2 and TH1 allergen specific response. Reduced type-II IL-4 and IL-5 cytokines were already detected during the first 24 h of allergen sensitization in splenocytes and draining lymph nodes from infected mice. Moreover, this reduced type-II profile in chronically infected animals correlated with diminished ILC2 number in draining lymph nodes. CONCLUSION Chronic infection withT. gondii prevents the development of atopic dermatitis. The diminished susceptibility seems to result from changes in type-II innate immune response that may lead to the induction of a deficient TH2 response and consequently to a lower susceptibility to develop atopic dermatitis.
Collapse
Affiliation(s)
- Matías Damián Perrone Sibilia
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - María de Los Ängeles Aldirico
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Ariadna Soledad Soto
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Mariano Sergio Picchio
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Vanesa Roxana Sánchez
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Nadia Arcón
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Rosalía Moretta
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Valentina Martín
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Silvia Vanzulli
- Laboratorio de Anatomía Patológica, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ignacio Martín Fenoy
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina
| | - Alejandra Goldman
- Universidad Nacional de San Martín, CONICET, Laboratorio de Inmunología, Vacunas y Alergia, CESyMA, ECyT, San Martín, Argentina.
| |
Collapse
|
85
|
Genetic characterization of Toxoplasma gondii in Iranian HIV positive patients using multilocus nested-PCR-RFLP method. Parasitology 2019; 147:322-328. [PMID: 31727203 DOI: 10.1017/s0031182019001598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The aim of the present study was to investigate the prevalence and genotyping of Toxoplasma gondii in Iranian human immunodeficiency virus (HIV)-positive patients using multilocus-nested polymerase chain reaction restriction fragment length polymorphism (Mn-PCR-RFLP). A total of 102 serum samples obtained from infected patients were collected from the laboratory centres in northern Iran. Anti-T. gondii antibodies and deoxyribonucleic acid (DNA) detection were accomplished by an enzyme-linked immunosorbent assay and PCR. The Mn-PCR-RFLP method was used for the genotyping of T. gondii. Overall, 68.6% (70/102) and 11.7% (12/102) of the individuals were tested positive for anti-T. gondii immunoglobulin G and T. gondii DNA, respectively. Complete genotyping was performed on 10/12 (83.3%) PCR-positive samples. Accordingly, the samples were classified as genotype #1 (type II clonal; n = 3, 30%), genotype #2 (type III clonal; n = 2, 20%), genotype #10 (type I clonal; n = 2, 20%), genotype #27 (type I variant; n = 1, 10%), genotype #35 (type I variant; n = 1, 10%) and genotype #48 (type III variant; n = 1, 10%). The results were indicative of the high frequency of the type I and type I variant of T. gondii strains in HIV-positive patients in northern Iran. Given the high prevalence of T. gondii and frequency of pathogenic types (pathogen in laboratory mice) in the patients, special measures should be taken to prevent the possible increased incidence of encephalitis by T. gondii.
Collapse
|
86
|
Ribeiro-Andrade M, de Crasto Souza Carvalho J, Amorim da Silva R, da Conceição Carvalho M, Nascimento Porto WJ, Mota RA. Inter- and intra-genotype differences in induced cystogenesis of recombinant strains of Toxoplasma gondii isolated from chicken and pigs. Exp Parasitol 2019; 207:107775. [PMID: 31628896 DOI: 10.1016/j.exppara.2019.107775] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 11/17/2022]
Abstract
The ability to differentiate from the proliferative (tachyzoite) to the latent (bradyzoite) stage of isolates of Toxoplasma gondii recombinant genotypes (I/II/III and I/III) and reference strains from a clonal line (RH and ME49) was investigated in this study. Two isolates from chicken (#114 and #277; ToxoDB) and 3 from pigs (#114; ToxoDB) were the subjects for evaluation. The isolates were grown in cell culture under 2 different conditions: culture medium at pH 7.0 (neutral, without stress induction) or pH 8.0 (alkaline, stress inducing). After 4 days, the cultures were fixed and the events resulting from infection and induction were labeled. T. gondii cysts were labeled using Dolichos biflorus-FITC lectin (DBL-cysts) and free tachyzoites or vacuolar were labeled using an anti-T. gondii polyclonal antibody followed by an Alexa 594-conjugated secondary antibody (DBL-negative structures compatible with parasite structures - lysis plaques or vacuole). Differences in DBL-cysts formation in vitro in response to exogenous stress were observed between recombinant genotype isolates and the typical genotypes. The differences in conversion rates and the patterns of lysis plate production between genotype I/III isolates (#114) indicate that care should be taken when extrapolating the in vitro phenotypic characteristics of parasites from the same genotype.
Collapse
Affiliation(s)
- Müller Ribeiro-Andrade
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil; Department of Veterinary Medicine, Federal University of Roraima, Boa Vista, RR, Brazil.
| | - Jéssica de Crasto Souza Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Renato Amorim da Silva
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - Maria da Conceição Carvalho
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | | | - Rinaldo Aparecido Mota
- Laboratory of Infectious Diseases of Domestic Animals, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
87
|
Costa Mendonça-Natividade F, Duque Lopes C, Ricci-Azevedo R, Sardinha-Silva A, Figueiredo Pinzan C, Paiva Alegre-Maller AC, L Nohara L, B Carneiro A, Panunto-Castelo A, C Almeida I, Roque-Barreira MC. Receptor Heterodimerization and Co-Receptor Engagement in TLR2 Activation Induced by MIC1 and MIC4 from Toxoplasma gondii. Int J Mol Sci 2019; 20:ijms20205001. [PMID: 31658592 PMCID: PMC6829480 DOI: 10.3390/ijms20205001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023] Open
Abstract
The microneme organelles of Toxoplasma gondii tachyzoites release protein complexes (MICs), including one composed of the transmembrane protein MIC6 plus MIC1 and MIC4. In this complex, carbohydrate recognition domains of MIC1 and MIC4 are exposed and interact with terminal sialic acid and galactose residues, respectively, of host cell glycans. Recently, we demonstrated that MIC1 and MIC4 binding to the N-glycans of Toll-like receptor (TLR) 2 and TLR4 on phagocytes triggers cell activation and pro-inflammatory cytokine production. Herein, we investigated the requirement for TLR2 heterodimerization and co-receptors in MIC-induced responses, as well as the signaling molecules involved. We used MICs to stimulate macrophages and HEK293T cells transfected with TLR2 and TLR1 or TLR6, both with or without the co-receptors CD14 and CD36. Then, the cell responses were analyzed, including nuclear factor-kappa B (NF-κB) activation and cytokine production, which showed that (1) only TLR2, among the studied factors, is crucial for MIC-induced cell activation; (2) TLR2 heterodimerization augments, but is not critical for, activation; (3) CD14 and CD36 enhance the response to MIC stimulus; and (4) MICs activate cells through a transforming growth factor beta-activated kinase 1 (TAK1)-, mammalian p38 mitogen-activated protein kinase (p38)-, and NF-κB-dependent pathway. Remarkably, among the studied factors, the interaction of MIC1 and MIC4 with TLR2 N-glycans is sufficient to induce cell activation, which promotes host protection against T. gondii infection.
Collapse
Affiliation(s)
- Flávia Costa Mendonça-Natividade
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Carla Duque Lopes
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Rafael Ricci-Azevedo
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Aline Sardinha-Silva
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Camila Figueiredo Pinzan
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Ana Claudia Paiva Alegre-Maller
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| | - Lilian L Nohara
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
| | - Alan B Carneiro
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
- Institute of Medical Biochemistry, Program of Molecular Biology and Biotechnology at Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro RJ 21941-599, Brazil.
| | - Ademilson Panunto-Castelo
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo USP (FFCLRP/USP), Ribeirão Preto SP 14040-900, Brazil.
| | - Igor C Almeida
- Border Biomedical Research Center (BBRC), Department of Biological Sciences, University of Texas at El Paso (UTEP), El Paso, TX 79968, USA.
| | - Maria Cristina Roque-Barreira
- Laboratory of Immunochemistry and Glycobiology, Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto SP 14049-900, Brazil.
| |
Collapse
|
88
|
Paredes-Santos T, Wang Y, Waldman B, Lourido S, Saeij JP. The GRA17 Parasitophorous Vacuole Membrane Permeability Pore Contributes to Bradyzoite Viability. Front Cell Infect Microbiol 2019; 9:321. [PMID: 31572690 PMCID: PMC6751312 DOI: 10.3389/fcimb.2019.00321] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 08/27/2019] [Indexed: 01/25/2023] Open
Abstract
The Toxoplasma gondii parasitophorous vacuole membrane (PVM) offers protection from the host immune system but is also a barrier for uptake of nutrients from the host. Previously, we showed that GRA17 mediates the tachyzoite PVM permeability to small molecules. During the conversion from tachyzoites to encysted bradyzoites, the PVM become the cyst membrane that is the outer layer of the cyst wall. Little is known about how small molecules, such as nutrients, enter cysts. To characterize GRA17's role in cysts, we deleted GRA17 in the type II ME49 cyst-forming strain. ME49Δgra17 parasites have reduced growth and formed grossly enlarged "bubble vacuoles," which have reduced PVM small molecule permeability. ME49Δgra17 parasites formed cysts in vitro at rates comparable to the wild-type, but the viability of the bradyzoites inside these cysts was significantly reduced compared to wild-type bradyzoites. Genetic complementation of ME49Δgra17 with GRA17 expressed from the endogenous or tachyzoite-specific SAG1 promoter recovered the viability of bradyzoites. Complementation with the bradyzoite-specific SRS9 promoter drastically increased the viability of bradyzoites, demonstrating the importance of GRA17 in regulating bradyzoite viability inside cysts. Mice infected with a high dose of ME49Δgra17 parasites did not contain parasites in their brain nor did mice infected with ME49Δgra17 complemented with GRA17 expressed from a bradyzoite-specific promoter. Our results suggest that the ME49Δgra17 strain is avirulent and is cleared before it can reach the brain and that GRA17 not only plays an important role during acute infections but is also needed for viability of bradyzoites inside cysts.
Collapse
Affiliation(s)
- Tatiana Paredes-Santos
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Yifan Wang
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| | - Benjamin Waldman
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA, United States
- Biology Department, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jeroen P. Saeij
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
89
|
Abstract
Toxoplasma gondii is a remarkably successful protozoan parasite that infects a third of the human population, along with most mammals and birds. However, the sexual portion of the parasite's life cycle is narrowly limited to cats. How parasites distinguish between hosts has long been a mystery. A new study reveals that Toxoplasma identifies cats based on a single fatty acid, linoleic acid. Experimental manipulation of fatty acid metabolism by drug treatment turns a mouse into a cat in the "eye" of the parasite. This new model enables genetic crosses of an important human pathogen without the use of companion animals and opens the door to future discovery.
Collapse
Affiliation(s)
- Elizabeth D. English
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
90
|
Wang ZX, Zhou CX, Calderón-Mantilla G, Petsalaki E, He JJ, Song HY, Elsheikha HM, Zhu XQ. iTRAQ-Based Global Phosphoproteomics Reveals Novel Molecular Differences Between Toxoplasma gondii Strains of Different Genotypes. Front Cell Infect Microbiol 2019; 9:307. [PMID: 31508380 PMCID: PMC6716450 DOI: 10.3389/fcimb.2019.00307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/01/2022] Open
Abstract
To gain insights into differences in the virulence among T. gondii strains at the post-translational level, we conducted a quantitative analysis of the phosphoproteome profile of T. gondii strains belonging to three different genotypes. Phosphopeptides from three strains, type I (RH strain), type II (PRU strain) and ToxoDB#9 (PYS strain), were enriched by titanium dioxide (TiO2) affinity chromatography and quantified using iTRAQ technology. A total of 1,441 phosphopeptides, 1,250 phosphorylation sites and 759 phosphoproteins were detected. In addition, 392, 298, and 436 differentially expressed phosphoproteins (DEPs) were identified in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS strains, and in PYS strain when comparing PYS/RH strains, respectively. Functional characterization of the DEPs using GO, KEGG, and STRING analyses revealed marked differences between the three strains. In silico kinase substrate motif analysis of the DEPs revealed three (RxxS, SxxE, and SxxxE), three (RxxS, SxxE, and SP), and five (SxxE, SP, SxE, LxRxxS, and RxxS) motifs in RH strain when comparing RH/PRU strains, in PRU strain when comparing PRU/PYS, and in PYS strain when comparing PYS/RH strains, respectively. This suggests that multiple overrepresented protein kinases including PKA, PKG, CKII, IKK, and MAPK could be involved in such a difference between T. gondii strains. Kinase associated network analysis showed that ROP5, ROP16, and cell-cycle-associated protein kinase CDK were the most connected kinase peptides. Our data reveal significant changes in the abundance of phosphoproteins between T. gondii genotypes, which explain some of the mechanisms that contribute to the virulence heterogeneity of this parasite.
Collapse
Affiliation(s)
- Ze-Xiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chun-Xue Zhou
- Department of Parasitology, Shandong University School of Basic Medicine, Jinan, China
| | - Guillermo Calderón-Mantilla
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hai-Yang Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
91
|
Tiwari A, Hannah R, Lutshumba J, Ochiai E, Weiss LM, Suzuki Y. Penetration of CD8 + Cytotoxic T Cells into Large Target, Tissue Cysts of Toxoplasma gondii, Leads to Its Elimination. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1594-1607. [PMID: 31301754 DOI: 10.1016/j.ajpath.2019.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
CD8+ cytotoxic T cells kill target cells through direct cell-cell contact. However, it remains unclear how these T cells eliminate a target of large mass. We investigated how CD8+ T cells remove tissue cysts of Toxoplasma gondii, which can grow to the size of >50 μm in diameter within infected cells. Notably, immunohistologic analyses in the brains of infected mice visualized the presence of numbers of CD8+ immune T cells that had migrated halfway through the cyst wall as well as T cells located fully within the cysts. Perforin was required for their invasion and cyst elimination. Cysts invaded by the T cells displayed morphologic deterioration and destruction. Within these deteriorated cysts, granular structures intensely positive for granzyme B were detected in association with T. gondii bradyzoites. Furthermore, the bradyzoites within the destroyed cysts were located within accumulated ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia and Ly6C+ macrophages, suggesting that these phagocytes had phagocytosed those organisms for their eradication. The present study uncovered a previously unappreciated capability of CD8+ cytotoxic T cells to penetrate into a large target, T. gondii cysts, for their elimination. This invasive capability of CD8+ cytotoxic T cells in collaboration with phagocytes appears to be a powerful effector mechanism that functions against not only T. gondii cysts but also other large targets, including solid cancers.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Rancie Hannah
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Jenny Lutshumba
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Eri Ochiai
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Yasuhiro Suzuki
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
| |
Collapse
|
92
|
Rolling up the pieces of a puzzle: A systematic review and meta-analysis of the prevalence of toxoplasmosis in Iran. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
93
|
Mustafa M, Fathy F, Mirghani A, Mohamed MA, Muneer MS, Ahmed AE, Ali MS, Omer RA, Siddig EE, Mohamed NS, Abd Elkareem AM. Prevalence and risk factors profile of seropositive Toxoplasmosis gondii infection among apparently immunocompetent Sudanese women. BMC Res Notes 2019; 12:279. [PMID: 31097016 PMCID: PMC6524216 DOI: 10.1186/s13104-019-4314-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/11/2019] [Indexed: 12/29/2022] Open
Abstract
Objectives Toxoplasma gondii is an opportunistic parasite that causes a clinical manifestation known as toxoplasmosis. We investigated the prevalence and potential risk factors of T. gondii infection among women in Khartoum, Sudan. A sero-parasitological cross-sectional study included 100 women aging between 15 and 50 years old was conducted between January and November 2018. Serum samples were collected and investigated for the presence of anti-T. gondii immunoglobulins. Results Mean age of the women population included was 26.75 ± 8.25 with a range between 15 and 50 years. Sero-prevalence of T. gondii antibodies was 27% (27/100) with a 95% confidence interval (CI) of 18.6–36.8%. Among seropositive population 81% (22/27), 15% (4/27) and 4% (1/27) were seropositive for IgG antibodies, IgM antibodies and both antibodies respectively. Age group 21–30 years old had the highest frequency of detected IgG (10/45) and IgM (3/45). Married women had the highest frequency of detected IgG or IgM, 18/79 and 3/79, respectively. Risk factors analysis showed a total of 37/100 participants were having direct contact with cats and 66/100 have a frequent raw meat consumption, neither direct cats contact nor raw meat consumption had a statistically significant association with seropositivity to T. gondii (P value = 0.052 and 0.565, respectively). Electronic supplementary material The online version of this article (10.1186/s13104-019-4314-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madinna Mustafa
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Fatima Fathy
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Abubaker Mirghani
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Mona A Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan
| | - Mohamed S Muneer
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.,Department of Internal Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Abdallah E Ahmed
- Department of Molecular Biology, National University Biomedical Research Institute, National University, Khartoum, Sudan
| | - Mohamed Siralkhatim Ali
- Department of Molecular Biology, National University Biomedical Research Institute, National University, Khartoum, Sudan.,Faculty of Medicine, Neelain University, Khartoum, Sudan
| | - Rihab A Omer
- Department of Molecular Biology, National University Biomedical Research Institute, National University, Khartoum, Sudan
| | | | - Nouh S Mohamed
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan. .,Department of Molecular Biology, National University Biomedical Research Institute, National University, Khartoum, Sudan. .,Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Sinnar University, Sinnar, Sudan.
| | - Amjed M Abd Elkareem
- Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile College, Khartoum, Sudan.,Parasitology Department, College of Medical Laboratory Sciences, Sudan University of Science and Technology, Khartoum, Sudan
| |
Collapse
|
94
|
Nakashima F, Brandão de Mattos CC, Ferreira AIC, Spergiorin LCJF, Meira-Strejevitch CS, Oliani AH, Vaz-Oliani DCM, Pereira-Chioccola VL, de Mattos LC. FUT3 and FUT2 genotyping and glycoconjugate profile Lewis b as a protective factor to Toxoplasma gondii infection. Acta Trop 2019; 193:92-98. [PMID: 30831115 DOI: 10.1016/j.actatropica.2019.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/22/2019] [Accepted: 02/28/2019] [Indexed: 11/23/2022]
Abstract
The interaction between the ABO, FUT2 and FUT3 genes results in the synthesis of different glycoconjugates profiles expressed in gastrointestinal tract. Moreover, the protozoan Toxoplasma gondii, which causes toxoplasmosis, utilizes this organ as an infection route. We analyzed the frequencies of the different glycoconjugate profiles which were determined by phenotyping ABO and genotyping the status secretor (FUT2; substitution G428A) and Lewis (FUT3; substitution T202C and C314T) histo-blood systems, assessed by PCR-RFLP and PCR-SSP, respectively. A total of 244 pregnant women (G1: Seropositive; G2: Seronegative) for IgG T. gondii antibodies were enrolled. IgG anti-T. gondii antibodies were determined by ELISA. G1 was composed of 158 (64.8%) sample and G2 by 86 (36.2%). The glycoconjugate profile was accessed in 151 seropositive and 85 seronegative samples by the combination of ABO and Lewis phenotyping as well as FUT2 and FUT3 genotyping. In G1, 36 (22.8%) presented the glycoconjugate profile ALeb, 5 (3.3%) A, 13 (8.6) BLeb, 1 (0.6%) B, 41 (27.1%) Leb, 13(8.6%) H, 38(25.2%) Lea and 4 (2.6%) Lec. G2 was composed of 13 (15.3%) of ALeb, 15 (17.6%) BLeb, 1 (1.2%) B, 42 (49,4%) Leb and 14 (16.5) Lea. H and Lec glycoconjugate profiles were not found in G2. The frequencies of the glycoconjugates profiles Leb (p = 0.001) and H (p = 0.005) were significantly different compared between G1 and G2. The glycoconjugate profile H inferred from the ABO phenotyping and FUT3 and FUT2 genotyping is associated with infection by T. gondii in pregnant women and the Leb profile appears to protect the infection by this parasite.
Collapse
Affiliation(s)
- Fabiana Nakashima
- Biology Department, Bioscience, Languages and Exact Sciences Institute of the Universidade Estadual Paulista "Júlio de Mesquita Filho" (IBILCE/UNESP), São José do Rio Preto, São Paulo, Brazil; Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Cinara Cássia Brandão de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| | - Ana Iara Costa Ferreira
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Lígia Cosentino Junqueira Franco Spergiorin
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| | | | - Antonio Hélio Oliani
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | - Denise Cristina Mós Vaz-Oliani
- Gynecology and Obstetrics Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| | | | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, Brazil; FAMERP Toxoplasma Research Group, Brazil.
| |
Collapse
|
95
|
Discovery of Potent and Selective Halogen-Substituted Imidazole-Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro via Structure-Based Design. Molecules 2019; 24:molecules24081618. [PMID: 31022878 PMCID: PMC6514996 DOI: 10.3390/molecules24081618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/19/2023] Open
Abstract
Employing a simple synthetic protocol, a series of highly effective halogen-substituted imidazole-thiosemicarbazides with anti-Toxoplasma gondii effects against the RH tachyzoites, much better than sulfadiazine, were obtained (IC50s 10.30—113.45 µg/mL vs. ~2721.45 µg/mL). The most potent of them, 12, 13, and 15, blocked the in vitro proliferation of T. gondii more potently than trimethoprim (IC50 12.13 µg/mL), as well. The results of lipophilicity studies collectively suggest that logP would be a rate-limiting factor for the anti-Toxoplasma activity of this class of compounds.
Collapse
|
96
|
Zheng B, Ding J, Lou D, Tong Q, Zhuo X, Ding H, Kong Q, Lu S. The Virulence-Related MYR1 Protein of Toxoplasma gondii as a Novel DNA Vaccine Against Toxoplasmosis in Mice. Front Microbiol 2019; 10:734. [PMID: 31024505 PMCID: PMC6465564 DOI: 10.3389/fmicb.2019.00734] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
Toxoplasma gondii causes serious public health problems, but there is no effective treatment strategy against it currently. DNA vaccines have shown promising findings in this regard. MYR1 is a new virulence factor identified in T. gondii that may have potential as a DNA vaccine candidate. We constructed a recombinant eukaryotic plasmid, pVAX1-MYR1, as a DNA vaccine, injected it intramuscularly into BALB/c mice, and evaluated its immunoprotective effects. pVAX1-MYR1 immunization induced a sequential Th1 and Th2 T-cell response, as indicated by high levels of Th1 and mixed Th1/Th2 cytokines at 2 and 6 weeks after immunization, respectively. These findings were corroborated by the antibody assays too. In addition, increased levels of antigen-specific lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, cytotoxic T lymphocyte activity and cytokine (IFN-γ, IL-12, and IL-10) production were also observed in the immunized mice. These findings showed that pVAX1-MYR1 stimulated humoral and cellular immune responses in the immunized mice. The increased production of IFN-γ and IL-12 was correlated with increased expression of the T-bet and p65 genes of the NF-κB pathway. However, no significant increase was observed in the level of IL-4. The survival of mice immunized with pVAX1-MYR1 was also significantly prolonged compared with the control group mice. Based on all the above findings, the current study proposes that pVAX1-MYR1 can induce a T. gondii-specific immune response and should therefore be considered as a promising vaccine candidate against toxoplasmosis. To the best of our knowledge, this is the first report to evaluate the immunoprotective value of an MYR1-based DNA vaccine against T. gondii.
Collapse
Affiliation(s)
- Bin Zheng
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Jianzu Ding
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Di Lou
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Qunbo Tong
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Xunhui Zhuo
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Haojie Ding
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Qingming Kong
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| | - Shaohong Lu
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China.,Zhejiang Provincial Institute of Parasitic Diseases, Hangzhou, Zhejiang, China
| |
Collapse
|
97
|
Aleixo ALQDC, Vasconcelos C. de Oliveira R, Cavalcanti Albuquerque M, Biancardi AL, Land Curi AL, Israel Benchimol E, Reis Amendoeira MR. Toxoplasmic retinochoroiditis: The influence of age, number of retinochoroidal lesions and genetic polymorphism for IFN-γ +874 T/A as risk factors for recurrence in a survival analysis. PLoS One 2019; 14:e0211627. [PMID: 30753197 PMCID: PMC6372150 DOI: 10.1371/journal.pone.0211627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose To analyze risk factors for recurrent toxoplasmic retinochoroiditis. Design Single center prospective case series. Population and Methods A total of 230 patients with toxoplasmic retinochoroiditis were prospectively followed to assess recurrences. All patients were treated with a specific drug regime for toxoplasmosis in each episode of active retinochoroiditis. Individuals with chronic diseases and pregnant women were excluded. Survival analysis by extended Cox regression model (Prentice-Williams-Peterson counting process model) was performed to evaluate the time between recurrences according to some potential risk factors: age, number of retinochoroidal lesions at initial evaluation, sex and interferon gamma +874 T/A gene polymorphism. Hazard Ratios (HR) and 95% confidence intervals (CI) were provided to interpret the risk effects. Results One hundred sixty-two recurrence episodes were observed in 104 (45.2%) patients during follow-up that lasted from 269 to 1976 days. Mean age at presentation was 32.8 years (Standard deviation = 11.38). The risk of recurrence during follow up was influenced by age (HR = 1.02, 95% CI = 1.01–1.04) and number of retinochoroidal lesions at the beginning of the study (HR = 1.60, 95% CI = 1.07–2.40). Heterozygosis for IFN-γ gene polymorphism at position +874 T/A was also associated with recurrence (HR = 1.49, 95% CI = 1.04–2.14). Conclusion The risk of ocular toxoplasmosis recurrence after an active episode increased with age and was significantly higher in individuals with primary lesions, which suggests that individuals with this characteristic and the elderly could benefit from recurrence prophylactic strategies with antimicrobials. Results suggest an association between IFN-γ gene polymorphism at position +874T/A and recurrence.
Collapse
Affiliation(s)
| | | | | | | | - André Luiz Land Curi
- Infectious Ophthalmology Laboratory, Evandro Chagas National Institute of Infectious Diseases—FIOCRUZ, Rio de Janeiro, Brazil
| | - Eliezer Israel Benchimol
- Infectious Ophthalmology Laboratory, Evandro Chagas National Institute of Infectious Diseases—FIOCRUZ, Rio de Janeiro, Brazil
| | | |
Collapse
|
98
|
Paneth A, Węglińska L, Bekier A, Stefaniszyn E, Wujec M, Trotsko N, Dzitko K. Systematic Identification of Thiosemicarbazides for Inhibition of Toxoplasma gondii Growth In Vitro. Molecules 2019; 24:molecules24030614. [PMID: 30744161 PMCID: PMC6384730 DOI: 10.3390/molecules24030614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/24/2023] Open
Abstract
One of the key stages in the development of new therapies in the treatment of toxoplasmosis is the identification of new non-toxic small molecules with high specificity to Toxoplasma gondii. In the search for such structures, thiosemicarbazide-based compounds have emerged as a novel and promising leads. Here, a series of imidazole-thiosemicarbazides with suitable properties for CNS penetration was evaluated to determine the structural requirements needed for potent anti-Toxoplasma gondii activity. The best 4-arylthiosemicarbazides 3 and 4 showed much higher potency when compared to sulfadiazine at concentrations that are non-toxic to the host cells, indicating a high selectivity of their anti-toxoplasma activity.
Collapse
Affiliation(s)
- Agata Paneth
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Lidia Węglińska
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Adrian Bekier
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| | - Edyta Stefaniszyn
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Monika Wujec
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Nazar Trotsko
- Department of Organic Chemistry, Medical University, Chodźki 4a, 20-093 Lublin, Poland.
| | - Katarzyna Dzitko
- Department of Immunoparasitology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
99
|
Acosta Davila JA, Hernandez De Los Rios A. An Overview of Peripheral Blood Mononuclear Cells as a Model for Immunological Research of Toxoplasma gondii and Other Apicomplexan Parasites. Front Cell Infect Microbiol 2019; 9:24. [PMID: 30800644 PMCID: PMC6376612 DOI: 10.3389/fcimb.2019.00024] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
In biology, models are experimental systems meant to recreate aspects of diseases or human tissue with the goal of generating inferences and approximations that can contribute to the resolution of specific biological problems. Although there are many models for studying intracellular parasites, their data have produced critical contradictions, especially in immunological assays. Peripheral blood mononuclear cells (PBMCs) represent an attractive tissue source in pharmacogenomics and in molecular and immunologic studies, as these cells are easily collected from patients and can serve as sentinel tissue for monitoring physiological perturbations due to disease. However, these cells are a very sensitive model due to variables such as temperature, type of stimulus and time of collection as part of posterior processes. PBMCs have been used to study Toxoplasma gondii and other apicomplexan parasites. For instance, this model is frequently used in new therapies or vaccines that use peptides or recombinant proteins derived from the parasite. The immune response to T. gondii is highly variable, so it may be necessary to refine this cellular model. This mini review highlights the major approaches in which PBMCs are used as a model of study for T. gondii and other apicomplexan parasites. The variables related to this model have significant implications for data interpretation and conclusions related to host-parasite interaction.
Collapse
|
100
|
Micronemal protein 13 contributes to the optimal growth of Toxoplasma gondii under stress conditions. Parasitol Res 2019; 118:935-944. [PMID: 30635773 DOI: 10.1007/s00436-018-06197-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Toxoplasma gondii is a ubiquitous parasitic protozoan infecting humans and a wide variety of animals. Fast-replicating tachyzoites during acute infection and slowly growing bradyzoites during chronic infection are the two basic forms of T. gondii in intermediate hosts. Interconversion between the two contributes to the transmission and pathogenesis of this parasite. Secretory micronemal proteins are thought to mediate interactions with host cells and facilitate parasite invasion, therefore the majority of them are highly expressed in tachyzoites. Micronemal protein 13 (MIC13) is unique in that its expression is low in tachyzoites and is upregulated under bradyzoite-inducing conditions. Previous attempts to disrupt this gene were not successful, implying that it may play critical roles during parasite growth. However, in this study, MIC13 was successfully disrupted in type 1 strain RH and type 2 strain ME49 using CRISPR/Cas9-mediated gene disruption techniques. Consistent with its low expression in tachyzoites and increased expression under stress or bradyzoite-inducing conditions, MIC13-inactivated mutants displayed normal growth, host cell invasion, intracellular replication, and egress, as well as acute virulence at the tachyzoite stage. However, under stress conditions, such as high pH or oxygen limitation, MIC13-disrupted parasites showed significantly slower growth rates compared to the parental strains, suggesting that it is required for optimal parasite growth under bradyzoite-inducing or stress conditions. This is the first micronemal protein reported to have such expression pattern and function modes, which expands our understanding of the diverse functions of micronemal proteins.
Collapse
|