51
|
Zhou ZR, Wang XY, Jiang L, Li DW, Qian RC. Sialidase-Conjugated "NanoNiche" for Efficient Immune Checkpoint Blockade Therapy. ACS APPLIED BIO MATERIALS 2021; 4:5735-5741. [PMID: 35006749 DOI: 10.1021/acsabm.1c00507] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reactivation of T-cell immunity by blocking the PD-1/PD-L1 immune checkpoint has been considered a promising strategy for cancer treatment. However, the recognition of PD-L1 by antibodies is usually suppressed due to the N-linked glycosylation of PD-L1. In this study, we present an effective PD-L1-blocking strategy based on a sialidase-conjugated "NanoNiche" to improve the antitumor effect via T-cell reactivation. Molecularly imprinted by PD-L1 N-glycans, NanoNiche can specifically recognize glycosylated PD-L1 on the tumor cell surface, thereby resulting in more efficient PD-L1 blockade. Moreover, sialidase modified on the surface of NanoNiche can selectively strip sialoglycans from tumor cells, enhancing immune cell infiltration. In vitro studies confirmed that NanoNiche can specifically bind with PD-L1 while also desialylate the tumor cell surface. The proliferation of PD-L1-positive MDA-MB-231 human breast cancer cells under T-cell killing was significantly inhibited after NanoNiche treatment. In vivo experiments in solid tumors show enhanced therapeutic efficacy. Thus, the NanoNiche-sialidase conjugate represents a promising approach for immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiao-Yuan Wang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lei Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
52
|
Scherlinger M, Guillotin V, Douchet I, Vacher P, Boizard-Moracchini A, Guegan JP, Garreau A, Merillon N, Vermorel A, Ribeiro E, Machelart I, Lazaro E, Couzi L, Duffau P, Barnetche T, Pellegrin JL, Viallard JF, Saleh M, Schaeverbeke T, Legembre P, Truchetet ME, Dumortier H, Contin-Bordes C, Sisirak V, Richez C, Blanco P. Selectins impair regulatory T cell function and contribute to systemic lupus erythematosus pathogenesis. Sci Transl Med 2021; 13:13/600/eabi4994. [PMID: 34193612 DOI: 10.1126/scitranslmed.abi4994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/14/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by a loss of tolerance toward self-nucleic acids, autoantibody production, interferon expression and signaling, and a defect in the regulatory T (Treg) cell compartment. In this work, we identified that platelets from patients with active SLE preferentially interacted with Treg cells via the P-selectin/P-selectin glycoprotein ligand-1 (PSGL-1) axis. Selectin interaction with PSGL-1 blocked the regulatory and suppressive properties of Treg cells and particularly follicular Treg cells by triggering Syk phosphorylation and an increase in intracytosolic calcium. Mechanistically, P-selectin engagement on Treg cells induced a down-regulation of the transforming growth factor-β axis, altering the phenotype of Treg cells and limiting their immunosuppressive responses. In patients with SLE, we found an up-regulation of P- and E-selectin both on microparticles and in their soluble forms that correlated with disease activity. Last, blocking P-selectin in a mouse model of SLE improved cardinal features of the disease, such as anti-dsDNA antibody concentrations and kidney pathology. Overall, our results identify a P-selectin-dependent pathway that is active in patients with SLE and validate it as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Vivien Guillotin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Isabelle Douchet
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | | | | | - Anne Garreau
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Merillon
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Agathe Vermorel
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Emmanuel Ribeiro
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Irène Machelart
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Estibaliz Lazaro
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Lionel Couzi
- Nephrology Department, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Pierre Duffau
- Department of Internal Medicine, Saint André, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Thomas Barnetche
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Jean-Luc Pellegrin
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Jean-François Viallard
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,Department of Internal Medicine, Haut-Leveque, Bordeaux University Hospital, 33604, Pessac, France
| | - Maya Saleh
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Thierry Schaeverbeke
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France
| | - Patrick Legembre
- Contrôle de la Réponse Immune B et lymphoproliférations, CRIBL, UMR CNRS 7276, INSERM 1262, Limoges, France
| | - Marie-Elise Truchetet
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France.,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | | | - Cécile Contin-Bordes
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Vanja Sisirak
- UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Christophe Richez
- Department of Rheumatology, Pellegrin, Bordeaux University Hospital, 33076 Bordeaux, France. .,Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France.,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France
| | - Patrick Blanco
- Centre national de référence maladie auto-immune et systémique rares Est/Sud-Ouest (RESO), Bordeaux University Hospital, 33076 Bordeaux, France. .,UMR-CNRS 5164, ImmunoConcept, University of Bordeaux, 33076 Bordeaux, France.,Department of Immunology and Immunogenetics, Bordeaux University Hospital, 33076 Bordeaux, France
| |
Collapse
|
53
|
Oommen AM, Cunningham S, O'Súilleabháin PS, Hughes BM, Joshi L. An integrative network analysis framework for identifying molecular functions in complex disorders examining major depressive disorder as a test case. Sci Rep 2021; 11:9645. [PMID: 33958659 PMCID: PMC8102631 DOI: 10.1038/s41598-021-89040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
In addition to the psychological depressive phenotype, major depressive disorder (MDD) patients are also associated with underlying immune dysregulation that correlates with metabolic syndrome prevalent in depressive patients. A robust integrative analysis of biological pathways underlying the dysregulated neural connectivity and systemic inflammatory response will provide implications in the development of effective strategies for the diagnosis, management and the alleviation of associated comorbidities. In the current study, focusing on MDD, we explored an integrative network analysis methodology to analyze transcriptomic data combined with the meta-analysis of biomarker data available throughout public databases and published scientific peer-reviewed articles. Detailed gene set enrichment analysis and complex protein–protein, gene regulatory and biochemical pathway analysis has been undertaken to identify the functional significance and potential biomarker utility of differentially regulated genes, proteins and metabolite markers. This integrative analysis method provides insights into the molecular mechanisms along with key glycosylation dysregulation underlying altered neutrophil-platelet activation and dysregulated neuronal survival maintenance and synaptic functioning. Highlighting the significant gap that exists in the current literature, the network analysis framework proposed reduces the impact of data gaps and permits the identification of key molecular signatures underlying complex disorders with multiple etiologies such as within MDD and presents multiple treatment options to address their molecular dysfunction.
Collapse
Affiliation(s)
- Anup Mammen Oommen
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Stephen Cunningham
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland. .,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.
| | - Páraic S O'Súilleabháin
- Department of Psychology, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Brian M Hughes
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Advanced Glycoscience Research Cluster (AGRC), National University of Ireland Galway, Galway, Ireland. .,Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
54
|
Fuehrer J, Pichler KM, Fischer A, Giurea A, Weinmann D, Altmann F, Windhager R, Gabius H, Toegel S. N-Glycan profiling of chondrocytes and fibroblast-like synoviocytes: Towards functional glycomics in osteoarthritis. Proteomics Clin Appl 2021; 15:e2000057. [PMID: 33580901 PMCID: PMC8548877 DOI: 10.1002/prca.202000057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE N-Glycan profiling provides an indicator of the cellular potential for functional pairing with tissue lectins. Following the discovery of galectin expression by chondrocytes as a factor in osteoarthritis pathobiology, mapping of N-glycans upon their phenotypic dedifferentiation in culture and in fibroblast-like synoviocytes is a step to better understand glycobiological contributions to disease progression. EXPERIMENTAL DESIGN The profiles of cellular N-glycans of human osteoarthritic chondrocytes and fibroblast-like synoviocytes were characterized by mass spectrometry. RT-qPCR experiments determined mRNA levels of 16 glycosyltransferases. Responsiveness of cells to galectins was quantified by measuring the mRNA level for interleukin-1β. RESULTS The shift of chondrocytes to a fibroblastic phenotype (dedifferentiation) is associated with changes in N-glycosylation. The N-glycan profile of chondrocytes at passage 4 reflects characteristics of synoviocytes. Galectins-1 and -3 enhance expression of interleukin-1β mRNA in both cell types, most pronounced in primary culture. Presence of interleukin-1β leads to changes in sialylation in synoviocytes that favor galectin binding. CONCLUSIONS AND CLINICAL RELEVANCE N-Glycosylation reflects phenotypic changes of osteoarthritic cells in vitro. Like chondrocytes, fibroblast-like synoviocytes express N-glycans that are suited to bind galectins, and these proteins serve as inducers of pro-inflammatory markers in these cells. Synoviocytes can thus contribute to disease progression in osteoarthritis in situ.
Collapse
Affiliation(s)
- Johannes Fuehrer
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Katharina M. Pichler
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Anita Fischer
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| | - Alexander Giurea
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Daniela Weinmann
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
| | - Friedrich Altmann
- Department of ChemistryUniversity of Natural Resources and Life SciencesViennaAustria
| | - Reinhard Windhager
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Department of Orthopedics and Trauma SurgeryDivision of OrthopedicsMedical University of ViennaViennaAustria
| | - Hans‐Joachim Gabius
- Faculty of Veterinary MedicineInstitute of Physiological ChemistryLudwig‐Maximilians University MunichMunichGermany
| | - Stefan Toegel
- Karl Chiari Lab for Orthopaedic BiologyDepartment of Orthopedics and Trauma SurgeryMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Arthritis and RehabilitationViennaAustria
| |
Collapse
|
55
|
Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, Rica R, Stolz V, Sandner L, Alteneder M, Kaba E, Waltenberger D, Huppa JB, Trauner M, Bock C, Lyck R, Bauer J, Dupré L, Seiser C, Boucheron N, Engelhardt B, Ellmeier W. Histone deacetylase 1 controls CD4 + T cell trafficking in autoinflammatory diseases. J Autoimmun 2021; 119:102610. [PMID: 33621930 DOI: 10.1016/j.jaut.2021.102610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 01/13/2023]
Abstract
CD4+ T cell trafficking is a fundamental property of adaptive immunity. In this study, we uncover a novel role for histone deacetylase 1 (HDAC1) in controlling effector CD4+ T cell migration, thereby providing mechanistic insight into why a T cell-specific deletion of HDAC1 protects against experimental autoimmune encephalomyelitis (EAE). HDAC1-deficient CD4+ T cells downregulated genes associated with leukocyte extravasation. In vitro, HDAC1-deficient CD4+ T cells displayed aberrant morphology and migration on surfaces coated with integrin LFA-1 ligand ICAM-1 and showed an impaired ability to arrest on and to migrate across a monolayer of primary mouse brain microvascular endothelial cells under physiological flow. Moreover, HDAC1 deficiency reduced homing of CD4+ T cells into the intestinal epithelium and lamina propria preventing weight-loss, crypt damage and intestinal inflammation in adoptive CD4+ T cell transfer colitis. This correlated with reduced expression levels of LFA-1 integrin chains CD11a and CD18 as well as of selectin ligands CD43, CD44 and CD162 on transferred circulating HDAC1-deficient CD4+ T cells. Our data reveal that HDAC1 controls T cell-mediated autoimmunity via the regulation of CD4+ T cell trafficking into the CNS and intestinal tissues.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Biomarkers
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Adhesion
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Disease Models, Animal
- Disease Susceptibility
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Endothelial Cells
- Gene Expression Profiling
- Gene Expression Regulation
- Histone Deacetylase 1/genetics
- Histone Deacetylase 1/metabolism
- Immunohistochemistry
- Inflammation/diagnosis
- Inflammation/etiology
- Inflammation/metabolism
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/pathology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Knockout
Collapse
Affiliation(s)
- Patricia Hamminger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Teresa Preglej
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Current Address: Division of Rheumatology, Medical University of Vienna, Vienna, Austria.
| | - René Platzer
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Ci Zhu
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria; Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Ramona Rica
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Valentina Stolz
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Lisa Sandner
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Marlis Alteneder
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Elisa Kaba
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Darina Waltenberger
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Johannes B Huppa
- Institute of Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Austria.
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria; Department of Dermatology, Medical University of Vienna, Vienna, Austria; Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse, France.
| | - Christian Seiser
- Division of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.
| | - Nicole Boucheron
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| | | | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
56
|
Morikis VA, Hernandez AA, Magnani JL, Sperandio M, Simon SI. Targeting Neutrophil Adhesive Events to Address Vaso-Occlusive Crisis in Sickle Cell Patients. Front Immunol 2021; 12:663886. [PMID: 33995392 PMCID: PMC8113856 DOI: 10.3389/fimmu.2021.663886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are essential to protect the host against invading pathogens but can promote disease progression in sickle cell disease (SCD) by becoming adherent to inflamed microvascular networks in peripheral tissue throughout the body. During the inflammatory response, leukocytes extravasate from the bloodstream using selectin adhesion molecules and migrate to sites of tissue insult through activation of integrins that are essential for combating pathogens. However, during vaso-occlusion associated with SCD, neutrophils are activated during tethering and rolling on selectins upregulated on activated endothelium that line blood vessels. Recently, we reported that recognition of sLex on L-selectin by E-selectin during neutrophil rolling initiates shear force resistant catch-bonds that facilitate tethering to endothelium and activation of integrin bond clusters that anchor cells to the vessel wall. Evidence indicates that blocking this important signaling cascade prevents the congestion and ischemia in microvasculature that occurs from neutrophil capture of sickled red blood cells, which are normally deformable ellipses that flow easily through small blood vessels. Two recently completed clinical trials of therapies targeting selectins and their effect on neutrophil activation in small blood vessels reveal the importance of mechanoregulation that in health is an immune adaption facilitating rapid and proportional leukocyte adhesion, while sustaining tissue perfusion. We provide a timely perspective on the mechanism underlying vaso-occlusive crisis (VOC) with a focus on new drugs that target selectin mediated integrin adhesive bond formation.
Collapse
Affiliation(s)
- Vasilios A. Morikis
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | - Alfredo A. Hernandez
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| | | | - Markus Sperandio
- Institute for Cardiovascular Physiology and Pathophysiology, Walter Brendel Center for Experimental Medicine Biomedical Center, Ludwig Maximilians University, Walter Brendel Center, Munich, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, University of California-Davis, Davis, CA, United States
| |
Collapse
|
57
|
Luo G, Jin K, Deng S, Cheng H, Fan Z, Gong Y, Qian Y, Huang Q, Ni Q, Liu C, Yu X. Roles of CA19-9 in pancreatic cancer: Biomarker, predictor and promoter. Biochim Biophys Acta Rev Cancer 2021; 1875:188409. [PMID: 32827580 DOI: 10.1016/j.bbcan.2020.188409] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Carbohydrate antigen 19-9 (CA19-9) is the best validated biomarker and an indicator of aberrant glycosylation in pancreatic cancer. CA19-9 functions as a biomarker, predictor, and promoter in pancreatic cancer. As a biomarker, the sensitivity is approximately 80%, and the major challenges involve false positives in conditions of inflammation and nonpancreatic cancers and false negatives in Lewis-negative Individuals. Lewis antigen status should be determined when using CA19-9 as a biomarker. CA19-9 has screening potential when combined with symptoms and/or risk factors. As a predictor, CA19-9 could be used to assess stage, prognosis, resectability, recurrence, and therapeutic efficacy. Normal baseline levels of CA19-9 are associated with long-term survival. As a promoter, CA19-9 could be used to evaluate the biology of pancreatic cancer. CA19-9 can accelerate pancreatic cancer progression by glycosylating proteins, binding to E-selectin, strengthening angiogenesis, and mediating the immunological response. CA19-9 is an attractive therapeutic target for cancer, and strategies include therapeutic antibodies and vaccines, CA19-9-guided nanoparticles, and inhibition of CA19-9 biosynthesis.
Collapse
Affiliation(s)
- Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Shengming Deng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Zhiyao Fan
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Qiuyi Huang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, China; Department of Oncology, Shanghai Medical College, Fudan University, China; Pancreatic Cancer Institute, Fudan University, Shanghai Pancreatic Cancer Institute, China.
| |
Collapse
|
58
|
Yeini E, Ofek P, Pozzi S, Albeck N, Ben-Shushan D, Tiram G, Golan S, Kleiner R, Sheinin R, Israeli Dangoor S, Reich-Zeliger S, Grossman R, Ram Z, Brem H, Hyde TM, Magod P, Friedmann-Morvinski D, Madi A, Satchi-Fainaro R. P-selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nat Commun 2021; 12:1912. [PMID: 33771989 PMCID: PMC7997963 DOI: 10.1038/s41467-021-22186-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GB) is a highly invasive type of brain cancer exhibiting poor prognosis. As such, its microenvironment plays a crucial role in its progression. Among the brain stromal cells, the microglia were shown to facilitate GB invasion and immunosuppression. However, the reciprocal mechanisms by which GB cells alter microglia/macrophages behavior are not fully understood. We propose that these mechanisms involve adhesion molecules such as the Selectins family. These proteins are involved in immune modulation and cancer immunity. We show that P-selectin mediates microglia-enhanced GB proliferation and invasion by altering microglia/macrophages activation state. We demonstrate these findings by pharmacological and molecular inhibition of P-selectin which leads to reduced tumor growth and increased survival in GB mouse models. Our work sheds light on tumor-associated microglia/macrophage function and the mechanisms by which GB cells suppress the immune system and invade the brain, paving the way to exploit P-selectin as a target for GB therapy.
Collapse
Affiliation(s)
- Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Albeck
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sapir Golan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Sheinin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Henry Brem
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Prerna Magod
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Sherman Building, Tel Aviv University, Tel Aviv, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Sherman Building, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Madi
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neurosciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
59
|
Anti-metastatic effect of methylprednisolone targeting vascular endothelial cells under surgical stress. Sci Rep 2021; 11:6268. [PMID: 33737522 PMCID: PMC7973421 DOI: 10.1038/s41598-021-85241-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 02/26/2021] [Indexed: 12/02/2022] Open
Abstract
Perioperative systemic inflammation induced by surgical stress elevates the risk of hematogenous cancer metastasis. This study investigated the anti-metastatic effects and mechanisms of methylprednisolone (MP) administration for surgical stress. We examined the effects of MP on the expression of adhesion molecules in human vascular endothelial cells and in a murine hepatic metastasis model under lipopolysaccharide (LPS) administration, which mimics systemic inflammation induced by surgical stress. Serum E-selectin level was measured in blood samples obtained from 32 gastric cancer patients who were randomly assigned to treat preoperatively with or without MP. The expression of E-selectin in LPS-induced vascular endothelial cells was suppressed by MP. An adhesion assay showed the number of LPS-induced adherent tumour cells was significantly lower following MP. In the in vivo study, LPS significantly elevated the number of hepatic metastases, but pretreatment with MP before LPS significantly inhibited this elevation. The LPS-induced expression of E-selectin in the vascular endothelium of the portal vein was suppressed by MP. In human clinical samples, serum E-selectin level was significantly decreased by preoperative MP. Suppression of surgically induced systemic inflammation by MP administration might prevent hematogenous cancer metastases by suppressing the induction of E-selectin expression in the vascular endothelium.
Collapse
|
60
|
Gautam S, Banazadeh A, Cho BG, Goli M, Zhong J, Mechref Y. Mesoporous Graphitized Carbon Column for Efficient Isomeric Separation of Permethylated Glycans. Anal Chem 2021; 93:5061-5070. [DOI: 10.1021/acs.analchem.0c04395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
61
|
Xiang P, Chew WS, Seow WL, Lam BWS, Ong WY, Herr DR. The S1P 2 receptor regulates blood-brain barrier integrity and leukocyte extravasation with implications for neurodegenerative disease. Neurochem Int 2021; 146:105018. [PMID: 33727061 DOI: 10.1016/j.neuint.2021.105018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 01/08/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which modulates vascular integrity through its receptors, S1P1-S1P5. Notably, S1P2 has been shown to mediate the disruption of cerebrovascular integrity in vitro and in vivo. However, the mechanism underlying this process has not been fully elucidated. We evaluated the role of S1P2 in blood-brain barrier (BBB) disruption induced by lipopolysaccharide (LPS)-mediated systemic inflammation and found that BBB disruption and neutrophil infiltration were significantly attenuated in S1pr2-/- mice relative to S1pr2+/- littermates. This is concomitant with attenuation of LPS-induced transcriptional activation of IL-6 and downregulation of occludin. Furthermore, S1pr2-/- mice had significantly reduced expression of genes essential for neutrophil infiltration: Sele, Cxcl1, and Cxcl2. Conversely, pharmacological agonism of S1P2 induced transcriptional activation of E-selectin in vitro and in vivo. Although S1P2 does not appear to be required for activation of microglia, stimulation of microglial cells with the S1P2 potentiated the response of endothelial cells to LPS. These results demonstrate that S1P2 promotes LPS-induced neutrophil extravasation by inducing expression of endothelial adhesion molecule gene, Sele, and potentiating microglial inflammation of endothelial cells. It is likely that S1P2 is a mediator of cerebrovascular inflammation and represents a potential therapeutic target for neurodegenerative disease such as vascular cognitive impairment.
Collapse
Affiliation(s)
- Ping Xiang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Siong Chew
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Lun Seow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Brenda Wan Shing Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei-Yi Ong
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biology, San Diego State University, San Diego, CA, 92182, USA; American University of Health Sciences, Long Beach, CA, 90755, USA.
| |
Collapse
|
62
|
Lin WC, Fessler MB. Regulatory mechanisms of neutrophil migration from the circulation to the airspace. Cell Mol Life Sci 2021; 78:4095-4124. [PMID: 33544156 PMCID: PMC7863617 DOI: 10.1007/s00018-021-03768-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
The neutrophil, a short-lived effector leukocyte of the innate immune system best known for its proteases and other degradative cargo, has unique, reciprocal physiological interactions with the lung. During health, large numbers of ‘marginated’ neutrophils reside within the pulmonary vasculature, where they patrol the endothelial surface for pathogens and complete their life cycle. Upon respiratory infection, rapid and sustained recruitment of neutrophils through the endothelial barrier, across the extravascular pulmonary interstitium, and again through the respiratory epithelium into the airspace lumen, is required for pathogen killing. Overexuberant neutrophil trafficking to the lung, however, causes bystander tissue injury and underlies several acute and chronic lung diseases. Due in part to the unique architecture of the lung’s capillary network, the neutrophil follows a microanatomic passage into the distal airspace unlike that observed in other end-organs that it infiltrates. Several of the regulatory mechanisms underlying the stepwise recruitment of circulating neutrophils to the infected lung have been defined over the past few decades; however, fundamental questions remain. In this article, we provide an updated review and perspective on emerging roles for the neutrophil in lung biology, on the molecular mechanisms that control the trafficking of neutrophils to the lung, and on past and ongoing efforts to design therapeutics to intervene upon pulmonary neutrophilia in lung disease.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, NIH, 111 T.W. Alexander Drive, P.O. Box 12233, MD D2-01, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
63
|
Dąbrowska AM, Barabaś A, Sikorski A, Wera M, Brzeski J, Domżalska M, Chylewska A. t-Butyl 3-azido- and 3-amino-2,3-dideoxy-α- d- arabino-hexopyranosides: a concise protocol of structural and chemical profiles to identify metal ion binding modes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1871899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Anna Barabaś
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Artur Sikorski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Michał Wera
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Jakub Brzeski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Marta Domżalska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| | - Agnieszka Chylewska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, Gdańsk, 80-308, Poland
| |
Collapse
|
64
|
Zou C, Huang C, Yan L, Li X, Xing M, Li B, Gao C, Wang H. Serum N-glycan profiling as a diagnostic biomarker for the identification and assessment of psoriasis. J Clin Lab Anal 2021; 35:e23711. [PMID: 33507566 PMCID: PMC8059725 DOI: 10.1002/jcla.23711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Glycosylation is an important post‐translational modification of protein. The change in glycosylation is involved in the occurrence and development of various diseases, and this study verified that N‐glycan markers might be a diagnostic marker in psoriasis. Methods A total of 76 psoriasis patients were recruited. We used Psoriasis Area Severity Index (PASI) scores to evaluate the state of psoriasis, 41 of whom were divided into three subgroups: mild, moderate, and severe. At the same time, 76 healthy subjects were enrolled as a control group. We used DNA sequencer–assisted fluorophore‐assisted carbohydrate electrophoresis (DSA‐FACE) to analyze serum N‐glycan profiling. Results Compared with the healthy controls, the relative abundance of structures in peaks 5(NA2), 9(NA3Fb), 11(NA4), and 12(NA4Fb) was elevated (p < .05), while that in peaks 3(NG1A2F), 4(NG1A2F), 6(NA2F), and 7(NA2FB) was decreased (p < .05) in the psoriasis group. The abundance of peak 5 (NA2) increased gradually with the aggravation of disease severity though there was no statistically significant, was probably correlated with the disease severity. The best area under the receiver operating characteristic (ROC) curve (AUC) of the logistic regression model (PglycoA) to diagnose psoriasis was 0.867, with a sensitivity of 72.37%, a specificity of 85.53%, a positive predictive value(PPV) of 83.33%, a negative predictive value(NPV) of 75.58%, and an accuracy of 78.95%. Conclusions Our study indicated that the N‐glycan–based diagnostic model would be a new, valuable, and noninvasive alternative for diagnosing psoriasis. Furthermore, the characteristic distinctive N‐glycan marker might be correlated with the severity gradation of the psoriasis disease.
Collapse
Affiliation(s)
- Chengyun Zou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Li Yan
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Xing
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, The Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Haiying Wang
- Department of Clinical Laboratory, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
65
|
Abukar T, Rahmani S, Thompson NK, Antonescu CN, Wakarchuk WW. Development of BODIPY labelled sialic acids as sialyltransferase substrates for direct detection of terminal galactose on N- and O-linked glycans. Carbohydr Res 2021; 500:108249. [PMID: 33545445 DOI: 10.1016/j.carres.2021.108249] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022]
Abstract
Glycans on proteins and cell surfaces are useful biomarkers for determining functional interactions with glycan binding proteins, potential disease states, or indeed level of differentiation. The ability to rapidly and sensitively detect or tag specific glycans on proteins provides a diagnostic tool with wide application in chemical glycobiology. The monosaccharide N-acetylneuraminic acid (sialic acid) is a key player in these interactions and the manipulation and control of sialylation levels has been an important research focus, particularly in the development of therapeutic proteins. Using sialyltransferases to tag specific glycans provides a rapid means of determining what types of glycans are present. We have synthesized two variants of sialic acid carrying the fluorophore BODIPY (4,4 -Difluoro-4-boro-3a,4a-diaza-s-indacene) and examined its use with several different sialyltransferases on a variety of protein substrates and cell surface glycans. Our data show that there are significant differences between various enzymes ability to transfer the labelled sialic acids, and that the type of N-glycan and target protein strongly influences this activity.
Collapse
Affiliation(s)
- Tasnim Abukar
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Current Address. PlantForm Corporation, 1920 Yonge Street, Suite 200, Toronto, ON M4S3E2, Canada
| | - Sadia Rahmani
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Nicole K Thompson
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada
| | - Warren W Wakarchuk
- Department of Chemistry and Biology, Ryerson University, 661 University Ave 11th Floor, Toronto, ON M5G1M1, Canada; Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive Edmonton AB, T6G 2E9, Canada.
| |
Collapse
|
66
|
Mycobacterium tuberculosis Infection Up-Regulates Sialyl Lewis X Expression in the Lung Epithelium. Microorganisms 2021; 9:microorganisms9010099. [PMID: 33406734 PMCID: PMC7823657 DOI: 10.3390/microorganisms9010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Glycans display increasingly recognized roles in pathological contexts, however, their impact in the host-pathogen interplay in many infectious diseases remains largely unknown. This is the case for tuberculosis (TB), one of the ten most fatal diseases worldwide, caused by infection of the bacteria Mycobacterium tuberculosis. We have recently reported that perturbing the core-2 O-glycans biosynthetic pathway increases the host susceptibility to M. tuberculosis infection, by disrupting the neutrophil homeostasis and enhancing lung pathology. In the present study, we show an increased expression of the sialylated glycan structure Sialyl-Lewis X (SLeX) in the lung epithelium upon M. tuberculosis infection. This increase in SLeX glycan epitope is accompanied by an altered lung tissue transcriptomic signature, with up-regulation of genes codifying enzymes that are involved in the SLeX core-2 O-glycans biosynthetic pathway. This study provides novel insights into previously unappreciated molecular mechanisms involving glycosylation, which modulate the host response to M. tuberculosis infection, possibly contributing to shape TB disease outcome.
Collapse
|
67
|
Cho BG, Jiang P, Goli M, Gautam S, Mechref Y. Using micro pillar array columns (μPAC) for the analysis of permethylated glycans. Analyst 2021; 146:4374-4383. [DOI: 10.1039/d1an00643f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of both 50 cm and 200 cm micro pillar array column (μPAC) for the analysis of permethylated glycan is demonstrated and assessed.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Peilin Jiang
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Mona Goli
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Sakshi Gautam
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry
- Texas Tech University
- Lubbock
- USA
| |
Collapse
|
68
|
Deschepper FM, Zoppi R, Pirro M, Hensbergen PJ, Dall’Olio F, Kotsias M, Gardner RA, Spencer DI, Videira PA. L1CAM as an E-selectin Ligand in Colon Cancer. Int J Mol Sci 2020; 21:ijms21218286. [PMID: 33167483 PMCID: PMC7672641 DOI: 10.3390/ijms21218286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is the main cause of death among colorectal cancer (CRC) patients. E-selectin and its carbohydrate ligands, including sialyl Lewis X (sLeX) antigen, are key players in the binding of circulating tumor cells to the endothelium, which is one of the major events leading to organ invasion. Nevertheless, the identity of the glycoprotein scaffolds presenting these glycans in CRC remains unclear. In this study, we firstly have characterized the glycoengineered cell line SW620 transfected with the fucosyltransferase 6 (FUT6) coding for the α1,3-fucosyltransferase 6 (FUT6), which is the main enzyme responsible for the synthesis of sLeX in CRC. The SW620FUT6 cell line expressed high levels of sLeX antigen and E-selectin ligands. Moreover, it displayed increased migration ability. E-selectin ligand glycoproteins were isolated from the SW620FUT6 cell line, identified by mass spectrometry, and validated by flow cytometry and Western blot (WB). The most prominent E-selectin ligand we identified was the neural cell adhesion molecule L1 (L1CAM). Previous studies have shown association of L1CAM with metastasis in cancer, thus the novel role as E-selectin counter-receptor contributes to understand the molecular mechanism involving L1CAM in metastasis formation.
Collapse
Affiliation(s)
- Fanny M. Deschepper
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Roberta Zoppi
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
| | - Martina Pirro
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Paul J. Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (M.P.); (P.J.H.)
| | - Fabio Dall’Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy;
| | - Maximillianos Kotsias
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Richard A. Gardner
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Daniel I.R. Spencer
- Ludger Ltd., Culham Science Centre, Abingdon, Oxfordshire OX14 3EB, UK; (M.K.); (R.A.G.); (D.I.R.S.)
| | - Paula A. Videira
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (F.M.D.); (R.Z.)
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), 2829-516 Caparica, Portugal
- Correspondence:
| |
Collapse
|
69
|
Cho BG, Peng W, Mechref Y. Separation of Permethylated O-Glycans, Free Oligosaccharides, and Glycosphingolipid-Glycans Using Porous Graphitized Carbon (PGC) Column. Metabolites 2020; 10:metabo10110433. [PMID: 33121051 PMCID: PMC7692250 DOI: 10.3390/metabo10110433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Glycosylation is one of the most common and complex post-translational modifications of proteins. However, there are other carbohydrates such as free oligosaccharides and glycosphingolipids-glycans that are associated with important biological and clinical roles. To analyze these molecules using liquid chromatography coupled with mass spectrometry (LC-MS), the permethylation approach was utilized. Although permethylation is a commonly utilized glycan derivatization technique, separation of permethylated glycans released from glycosphingolipid (GSL) by LC-MS has never been previously demonstrated. Here, a nanoflow porous graphitized carbon (PGC) column coupled with a high-resolution mass spectrometer was used to achieve isomeric separation of these permethylated glycans. We demonstrate the separation of free reducing end and reduced end O-glycans, free oligosaccharides derived from human milk, and GSL glycans derived from the MDA-MB-231BR cancer cell line using PGC-LC-MS.
Collapse
|
70
|
MacRitchie N, Grassia G, Noonan J, Cole JE, Hughes CE, Schroeder J, Benson RA, Cochain C, Zernecke A, Guzik TJ, Garside P, Monaco C, Maffia P. The aorta can act as a site of naïve CD4+ T-cell priming. Cardiovasc Res 2020; 116:306-316. [PMID: 30980670 DOI: 10.1093/cvr/cvz102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/20/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
AIMS Aortic adaptive immunity plays a role in atherosclerosis; however, the precise mechanisms leading to T-cell activation in the arterial wall remain poorly understood. METHODS AND RESULTS Here, we have identified naïve T cells in the aorta of wild-type and T-cell receptor transgenic mice and we demonstrate that naïve T cells can be primed directly in the vessel wall with both kinetics and frequency of T-cell activation found to be similar to splenic and lymphoid T cells. Aortic homing of naïve T cells is regulated at least in part by the P-selectin glycosylated ligand-1 receptor. In experimental atherosclerosis the aorta supports CD4+ T-cell activation selectively driving Th1 polarization. By contrast, secondary lymphoid organs display Treg expansion. CONCLUSION Our results demonstrate that the aorta can support T-cell priming and that naïve T cells traffic between the circulation and vessel wall. These data underpin the paradigm that local priming of T cells specific for plaque antigens contributes to atherosclerosis progression.
Collapse
Affiliation(s)
- Neil MacRitchie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Gianluca Grassia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jonathan Noonan
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Jennifer E Cole
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Catherine E Hughes
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Juliane Schroeder
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Robert A Benson
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Internal Medicine, Jagiellonian University, Collegium Medicum, Kraków, Poland
| | - Paul Garside
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Claudia Monaco
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.,Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
71
|
Ugonotti J, Chatterjee S, Thaysen-Andersen M. Structural and functional diversity of neutrophil glycosylation in innate immunity and related disorders. Mol Aspects Med 2020; 79:100882. [PMID: 32847678 DOI: 10.1016/j.mam.2020.100882] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
The granulated neutrophils are abundant innate immune cells that utilize bioactive glycoproteins packed in cytosolic granules to fight pathogenic infections, but the neutrophil glycobiology remains poorly understood. Facilitated by technological advances in glycoimmunology, systems glycobiology and glycoanalytics, a considerable body of literature reporting on novel aspects of neutrophil glycosylation has accumulated. Herein, we summarize the building knowledge of the structural and functional diversity displayed by N- and O-linked glycoproteins spatiotemporally expressed and sequentially brought-into-action across the diverse neutrophil life stages during bone marrow maturation, movements to, from and within the blood circulation and microbicidal processes at the inflammatory sites in peripheral tissues. It transpires that neutrophils abundantly decorate their granule glycoproteins including neutrophil elastase, myeloperoxidase and cathepsin G with peculiar glyco-signatures not commonly reported in other areas of human glycobiology such as hyper-truncated chitobiose core- and paucimannosidic-type N-glycans and monoantennary complex-type N-glycans. Sialyl Lewisx, Lewisx, poly-N-acetyllactosamine extensions and core 1-/2-type O-glycans are also common neutrophil glyco-signatures. Granule-specific glycosylation is another fascinating yet not fully understood feature of neutrophils. Recent literature suggests that unconventional biosynthetic pathways and functions underpin these prominent neutrophil-associated glyco-phenotypes. The impact of glycosylation on key neutrophil effector functions including extravasation, degranulation, phagocytosis and formation of neutrophil extracellular traps during normal physiological conditions and in innate immune-related diseases is discussed. We also highlight new technologies that are expected to further advance neutrophil glycobiology and briefly discuss the untapped diagnostic and therapeutic potential of neutrophil glycosylation that could open avenues to combat the increasingly prevalent innate immune disorders.
Collapse
Affiliation(s)
- Julian Ugonotti
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia; Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
72
|
Zeng J, Eljalby M, Aryal RP, Lehoux S, Stavenhagen K, Kudelka MR, Wang Y, Wang J, Ju T, von Andrian UH, Cummings RD. Cosmc controls B cell homing. Nat Commun 2020; 11:3990. [PMID: 32778659 PMCID: PMC7417590 DOI: 10.1038/s41467-020-17765-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
The molecular mechanisms regulating lymphocyte homing into lymph nodes are only partly understood. Here, we report that B cell-specific deletion of the X-linked gene, Cosmc, and the consequent decrease of protein O-glycosylation, induces developmental blocks of mouse B cells. After transfer into wild-type recipient, Cosmc-null B cells fail to home to lymph nodes as well as non-lymphoid organs. Enzymatic desialylation of wild-type B cells blocks their migration into lymph nodes, indicating a requirement of sialylated O-glycans for proper trafficking. Mechanistically, Cosmc-deficient B cells have normal rolling and firm arrest on high endothelium venules (HEV), thereby attributing their inefficient trafficking to alterations in the subsequent transendothelial migration step. Finally, Cosmc-null B cells have defective chemokine signaling responses. Our results thus demonstrate that Cosmc and its effects on O-glycosylation are important for controlling B cell homing.
Collapse
Affiliation(s)
- Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mahmoud Eljalby
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kathrin Stavenhagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew R Kudelka
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Yingchun Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Jianmei Wang
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Tongzhong Ju
- Department of Biochemistry, Emory University, Atlanta, GA, USA
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U. S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Ulrich H von Andrian
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA
- The Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
73
|
Teal E, Dua-Awereh M, Hirshorn ST, Zavros Y. Role of metaplasia during gastric regeneration. Am J Physiol Cell Physiol 2020; 319:C947-C954. [PMID: 32755448 DOI: 10.1152/ajpcell.00415.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spasmolytic polypeptide/trefoil factor 2 (TFF2)-expressing metaplasia (SPEM) is a mucous-secreting reparative lineage that emerges at the ulcer margin in response to gastric injury. Under conditions of chronic inflammation with parietal cell loss, SPEM has been found to emerge and evolve into neoplasia. Cluster-of-differentiation gene 44 (CD44) is known to coordinate normal and metaplastic epithelial cell proliferation. In particular, CD44 variant isoform 9 (CD44v9) associates with the cystine-glutamate transporter xCT, stabilizes the protein, and provides defense against reactive oxygen species (ROS). xCT stabilization by CD44v9 leads to defense against ROS by cystine uptake, glutathione (GSH) synthesis, and maintenance of the redox balance within the intracellular environment. Furthermore, p38 signaling is a known downstream ROS target, leading to diminished cell proliferation and migration, two vital processes of gastric epithelial repair. CD44v9 emerges during repair of the gastric epithelium after injury, where it is coexpressed with other markers of SPEM. The regulatory mechanisms for the emergence of CD44v9 and the role of CD44v9 during the process of gastric epithelial regeneration are largely unknown. Inflammation and M2 macrophage infiltration have recently been demonstrated to play key roles in the induction of SPEM after injury. The following review proposes new insights into the functional role of metaplasia in the process of gastric regeneration in response to ulceration. Our insights are extrapolated from documented studies reporting oxyntic atrophy and SPEM development and our current unpublished findings using the acetic acid-induced gastric injury model.
Collapse
Affiliation(s)
- Emma Teal
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Martha Dua-Awereh
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, Ohio.,Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Sabrina T Hirshorn
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
74
|
Liu S, Jiang X, Shang Z, Ji Y, Wang H, Wang Z, Wang P, Zhang Y, Xiao H. N-glycan structures of target cancer biomarker characterized by two-dimensional gel electrophoresis and mass spectrometry. Anal Chim Acta 2020; 1123:18-27. [DOI: 10.1016/j.aca.2020.04.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 04/25/2020] [Indexed: 12/11/2022]
|
75
|
Brulois K, Rajaraman A, Szade A, Nordling S, Bogoslowski A, Dermadi D, Rahman M, Kiefel H, O'Hara E, Koning JJ, Kawashima H, Zhou B, Vestweber D, Red-Horse K, Mebius RE, Adams RH, Kubes P, Pan J, Butcher EC. A molecular map of murine lymph node blood vascular endothelium at single cell resolution. Nat Commun 2020; 11:3798. [PMID: 32732867 PMCID: PMC7393069 DOI: 10.1038/s41467-020-17291-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Blood vascular endothelial cells (BECs) control the immune response by regulating blood flow and immune cell recruitment in lymphoid tissues. However, the diversity of BEC and their origins during immune angiogenesis remain unclear. Here we profile transcriptomes of BEC from peripheral lymph nodes and map phenotypes to the vasculature. We identify multiple subsets, including a medullary venous population whose gene signature predicts a selective role in myeloid cell (vs lymphocyte) recruitment to the medulla, confirmed by videomicroscopy. We define five capillary subsets, including a capillary resident precursor (CRP) that displays stem cell and migratory gene signatures, and contributes to homeostatic BEC turnover and to neogenesis of high endothelium after immunization. Cell alignments show retention of developmental programs along trajectories from CRP to mature venous and arterial populations. Our single cell atlas provides a molecular roadmap of the lymph node blood vasculature and defines subset specialization for leukocyte recruitment and vascular homeostasis.
Collapse
Affiliation(s)
- Kevin Brulois
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anusha Rajaraman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Agata Szade
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sofia Nordling
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ania Bogoslowski
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Denis Dermadi
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Milladur Rahman
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Helena Kiefel
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward O'Hara
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jasper J Koning
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Hiroto Kawashima
- Department of Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 200031, Beijing, China
| | - Dietmar Vestweber
- Department Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, University of Münster, Faculty of Medicine, Münster, Germany
| | - Paul Kubes
- Calvin, Phoebe & Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Junliang Pan
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
76
|
D’Addio M, Frey J, Otto VI. The manifold roles of sialic acid for the biological functions of endothelial glycoproteins. Glycobiology 2020; 30:490-499. [PMID: 32039454 PMCID: PMC7372927 DOI: 10.1093/glycob/cwaa008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vascular endothelia are covered with a dense glycocalix that is heavily sialylated. Sialylation of vascular glycoconjugates is involved in the regulation of cell-cell interactions, be it among endothelial cells at cell junctions or between endothelial and blood-borne cells. It also plays important roles in modulating the binding of soluble ligands and the signaling by vascular receptors. Here, we provide an overview over the sialylation-function relationships of glycoproteins expressed in the blood and lymphatic vasculature. We first describe cellular interactions in which sialic acid contributes in a stereospecific manner to glycan epitopes recognized by glycan-binding proteins. Our major focus is however on the rarely discussed examples of vascular glycoproteins whose biological functions are modulated by sialylation through other mechanisms.
Collapse
Affiliation(s)
- Marco D’Addio
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jasmin Frey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
77
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
78
|
Masgrau-Alsina S, Sperandio M, Rohwedder I. Neutrophil recruitment and intracellular vesicle transport: A short overview. Eur J Clin Invest 2020; 50:e13237. [PMID: 32289185 DOI: 10.1111/eci.13237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/22/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Recruitment of neutrophils from the intravascular compartment into injured tissue is an essential component of the inflammatory response. It involves intracellular trafficking of vesicles within neutrophils and endothelial cells, both containing numerous proteins that have to be distributed in a tightly controlled and precise spatiotemporal fashion during the recruitment process. Rab proteins, a family of small GTPases, together with their effectors, are the key players in guiding and regulating the intracellular vesicle trafficking machinery during neutrophil recruitment. This review will provide a short overview on this process and highlight new findings as well as current controversies in the field.
Collapse
Affiliation(s)
- Sergi Masgrau-Alsina
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
79
|
Engle DD, Tiriac H, Rivera KD, Pommier A, Whalen S, Oni TE, Alagesan B, Lee EJ, Yao MA, Lucito MS, Spielman B, Da Silva B, Schoepfer C, Wright K, Creighton B, Afinowicz L, Yu KH, Grützmann R, Aust D, Gimotty PA, Pollard KS, Hruban RH, Goggins MG, Pilarsky C, Park Y, Pappin DJ, Hollingsworth MA, Tuveson DA. The glycan CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science 2020; 364:1156-1162. [PMID: 31221853 DOI: 10.1126/science.aaw3145] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/25/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Glycosylation alterations are indicative of tissue inflammation and neoplasia, but whether these alterations contribute to disease pathogenesis is largely unknown. To study the role of glycan changes in pancreatic disease, we inducibly expressed human fucosyltransferase 3 and β1,3-galactosyltransferase 5 in mice, reconstituting the glycan sialyl-Lewisa, also known as carbohydrate antigen 19-9 (CA19-9). Notably, CA19-9 expression in mice resulted in rapid and severe pancreatitis with hyperactivation of epidermal growth factor receptor (EGFR) signaling. Mechanistically, CA19-9 modification of the matricellular protein fibulin-3 increased its interaction with EGFR, and blockade of fibulin-3, EGFR ligands, or CA19-9 prevented EGFR hyperactivation in organoids. CA19-9-mediated pancreatitis was reversible and could be suppressed with CA19-9 antibodies. CA19-9 also cooperated with the KrasG12D oncogene to produce aggressive pancreatic cancer. These findings implicate CA19-9 in the etiology of pancreatitis and pancreatic cancer and nominate CA19-9 as a therapeutic target.
Collapse
Affiliation(s)
- Dannielle D Engle
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hervé Tiriac
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Keith D Rivera
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Arnaud Pommier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Sean Whalen
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Tobiloba E Oni
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brinda Alagesan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Eun Jung Lee
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Melissa A Yao
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matthew S Lucito
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Benjamin Spielman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brandon Da Silva
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Christina Schoepfer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kevin Wright
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brianna Creighton
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Lauren Afinowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kenneth H Yu
- David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Joan and Sanford I. Weill Medical College, Cornell University, New York, NY 10065, USA
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Daniela Aust
- Institute for Pathology, Universitätsklinikum Dresden, 01307 Dresden, Germany
| | - Phyllis A Gimotty
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, Institute for Computational Health Sciences, and Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph H Hruban
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Michael G Goggins
- Sidney Kimmel Cancer Center, The Sol Goldman Pancreatic Cancer Research Center, and Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA.,Departments of Medicine and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Christian Pilarsky
- Department of Surgery, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Youngkyu Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. .,Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
80
|
Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov 2020; 19:253-275. [PMID: 31969717 DOI: 10.1038/s41573-019-0054-z] [Citation(s) in RCA: 454] [Impact Index Per Article: 90.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2019] [Indexed: 12/13/2022]
|
81
|
Fonseca KL, Maceiras AR, Matos R, Simoes-Costa L, Sousa J, Cá B, Barros L, Fernandes AI, Mereiter S, Reis R, Gomes J, Tapia G, Rodríguez-Martínez P, Martín-Céspedes M, Vashakidze S, Gogishvili S, Nikolaishvili K, Appelberg R, Gärtner F, Rodrigues PNS, Vilaplana C, Reis CA, Magalhães A, Saraiva M. Deficiency in the glycosyltransferase Gcnt1 increases susceptibility to tuberculosis through a mechanism involving neutrophils. Mucosal Immunol 2020; 13:836-848. [PMID: 32203062 PMCID: PMC7434595 DOI: 10.1038/s41385-020-0277-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/12/2020] [Indexed: 02/04/2023]
Abstract
Modulation of immunity and disease by glycans is increasingly recognized. However, how host glycosylation shapes and is shaped by tuberculosis remains poorly understood. We show that deficiency in the glucosaminyl (N-acetyl) transferase 1 (Gcnt1), a key enzyme for core-2 O-glycans biosynthesis, drives susceptibility to Mycobacterium tuberculosis infection. The increased susceptibility of Gcnt1 deficient mice was characterized by extensive lung immune pathology, mechanistically related to neutrophils. Uninfected Gcnt1 deficient mice presented bone marrow, blood and lung neutrophilia, which further increased with infection. Blood neutrophilia required Gcnt1 deficiency in the hematopoietic compartment, relating with enhanced granulopoiesis, but normal cellular egress from the bone marrow. Interestingly, for the blood neutrophilia to translate into susceptibility to M. tuberculosis infection, Gnct1 deficiency in the stroma was also necessary. Complete Gcnt1 deficiency associated with increased lung expression of the neutrophil chemoattractant CXCL2. Lastly, we demonstrate that the transcript levels of various glycosyltransferase-encoding genes were altered in whole blood of active tuberculosis patients and that sialyl Lewis x, a glycan widely present in human neutrophils, was detected in the lung of tuberculosis patients. Our findings reveal a previously unappreciated link between Gcnt1, neutrophilia and susceptibility to M. tuberculosis infection, uncovering new players balancing the immune response in tuberculosis.
Collapse
Affiliation(s)
- Kaori L. Fonseca
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.418346.c0000 0001 2191 3202Programa de Pós-Graduação Ciência para o Desenvolvimento (PGCD), Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Rita Matos
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Luisa Simoes-Costa
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jeremy Sousa
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Baltazar Cá
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Leandro Barros
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Ana Isabel Fernandes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Stefan Mereiter
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Ricardo Reis
- CDP-Centro de Diagnóstico Pneumológico do Porto, Porto, Portugal
| | - Joana Gomes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Gustavo Tapia
- grid.411438.b0000 0004 1767 6330UAB—Pathology Department, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Paula Rodríguez-Martínez
- grid.411438.b0000 0004 1767 6330UAB—Pathology Department, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Montse Martín-Céspedes
- grid.411438.b0000 0004 1767 6330UAB—Pathology Department, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain
| | - Sergo Vashakidze
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Shota Gogishvili
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Keti Nikolaishvili
- National Center for Tuberculosis and Lung Diseases (NCTLD), Tbilisi, Georgia
| | - Rui Appelberg
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Fátima Gärtner
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Pedro N. S. Rodrigues
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Cristina Vilaplana
- UAB—Experimental Tuberculosis Unit. Universitat Autònoma de Barcelona, CIBER Enfermedades Respiratorias. Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Celso A. Reis
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226FMUP—Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Margarida Saraiva
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
82
|
Nonmalignant leukocyte disorders. RODAK'S HEMATOLOGY 2020. [PMCID: PMC7151933 DOI: 10.1016/b978-0-323-53045-3.00035-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
83
|
Rohwedder I, Kurz ARM, Pruenster M, Immler R, Pick R, Eggersmann T, Klapproth S, Johnson JL, Alsina SM, Lowell CA, Mócsai A, Catz SD, Sperandio M. Src family kinase-mediated vesicle trafficking is critical for neutrophil basement membrane penetration. Haematologica 2019; 105:1845-1856. [PMID: 31699792 PMCID: PMC7327629 DOI: 10.3324/haematol.2019.225722] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/05/2019] [Indexed: 01/07/2023] Open
Abstract
Leukocyte recruitment into inflamed tissue is highly dependent on the activation and binding of integrins to their respective ligands, followed by the induction of various signaling events within the cell referred to as outside-in signaling. Src family kinases (SFK) are the central players in the outside-in signaling process, assigning them a critical role for proper immune cell function. Our study investigated the role of SFK on neutrophil recruitment in vivo using Hck−/- Fgr−/- Lyn−/- mice, which lack SFK expressed in neutrophils. We show that loss of SFK strongly reduces neutrophil adhesion and post-arrest modifications in a shear force dependent manner. Additionally, we found that in the absence of SFK, neutrophils display impaired Rab27a-dependent surface mobilization of neutrophil elastase, VLA3 and VLA6 containing vesicles. This results in a defect in neutrophil vascular basement membrane penetration and thus strongly impaired extravasation. Taken together, we demonstrate that SFK play a role in neutrophil post-arrest modifications and extravasation during acute inflammation. These findings may support the current efforts to use SFK-inhibitors in inflammatory diseases with unwanted neutrophil recruitment.
Collapse
Affiliation(s)
- Ina Rohwedder
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Angela R M Kurz
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Monika Pruenster
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Roland Immler
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Robert Pick
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tanja Eggersmann
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Sarah Klapproth
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Jennifer L Johnson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergi Masgrau Alsina
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Sergio D Catz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Markus Sperandio
- Walter-Brendel-Center of Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Klinikum der Universität, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
84
|
Cho BG, Veillon L, Mechref Y. N-Glycan Profile of Cerebrospinal Fluids from Alzheimer's Disease Patients Using Liquid Chromatography with Mass Spectrometry. J Proteome Res 2019; 18:3770-3779. [PMID: 31437391 PMCID: PMC7027932 DOI: 10.1021/acs.jproteome.9b00504] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glycosylation, an essential post-translational protein modification, is known to be altered in a variety of diseases, including neurodegenerative diseases such as Alzheimer's disease (AD), which is one of the most common neurodegenerative disorders that results in cognitive and memory impairments. To investigate the progression of such a condition, cerebrospinal fluid (CSF), a unique biofluid that may possess significant biochemical and neurochemical changes due to the disease, is utilized. However, due to the low concentration of proteins in CSF, a large volume of the biofluid is often required to comprehensively characterize the glycome in CSF. In this work, a glycomic study of CSF was performed using as little as 10 μL of CSF. This approach was executed with permethylation of released N-glycans with minimal sample cleanup, in conjunction with an online purification system attached to liquid chromatography and a high-resolution mass spectrometer. This technique was then applied to clinical samples. Preliminary data suggest that fucosylated and bisecting GlcNAc structures were higher in abundances in females with AD, while both females and males exhibited lower abundances of high-mannose structures. Although there seems to be statistically significant differences between disease state and disease-free CSF, due to the lack of number of samples, further validation study should be conducted.
Collapse
Affiliation(s)
- Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
85
|
Peng W, Goli M, Mirzaei P, Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). J Proteome Res 2019; 18:3731-3740. [PMID: 31430160 DOI: 10.1021/acs.jproteome.9b00429] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer is a leading cancer in women and is considered to be the second-most common metastatic cancer following lung cancer. An estimated 10-16% of breast cancer patients are suffering from brain metastasis, and the diagnostic cases of breast cancer brain metastasis are increasing. Nevertheless, the mechanisms behind this process are still unclear. Aberrant glycosylation has been proved to be related to many diseases and cancer metastasis. However, studies of N-glycan isomer function in breast cancer brain metastasis are limited. In this study, the expressions of N-glycan isomers derived from five breast cancer cell lines and one brain cancer cell line were investigated and compared to a brain-seeking cell line, 231BR, to acquire a better understanding of the role glycan isomers play in breast cancer brain metastasis. The high temperature nanoPGC-LC-MS/MS achieved an efficient isomeric separation and permitted the identification and quantitation of 144 isomers from 50 N-glycan compositions. There were significant expression alterations of these glycan isomers among the different breast cancer cell lines. The increase of total glycan abundance and sialylation level were observed to be associated with breast cancer invasion. With regard to individual isomers, the greatest number of sialylated isomers was observed along with significant expression alterations in 231BR, suggesting a relationship between glycan sialylation and breast cancer brain metastasis. Furthermore, the increase of the α2,6-sialylation level in 231BR likely contributes to the passage of breast cancer cells through the blood-brain barrier, thus facilitating breast cancer brain metastasis. Meanwhile, the upregulation of highly sialylated glycan isomers with α2,6-linked sialic acids were found to be associated with breast cancer metastasis. This investigation of glycan isomer expressions, especially the unique isomeric expression in brain-seeking cell line 231BR, provides new information toward understanding the potential roles glycan isomers play during breast cancer metastasis and more clues for a deeper insight of this bioprocess.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Mona Goli
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409-1061 , United States
| |
Collapse
|
86
|
Tjondro HC, Loke I, Chatterjee S, Thaysen-Andersen M. Human protein paucimannosylation: cues from the eukaryotic kingdoms. Biol Rev Camb Philos Soc 2019; 94:2068-2100. [PMID: 31410980 DOI: 10.1111/brv.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022]
Abstract
Paucimannosidic proteins (PMPs) are bioactive glycoproteins carrying truncated α- or β-mannosyl-terminating asparagine (N)-linked glycans widely reported across the eukaryotic domain. Our understanding of human PMPs remains limited, despite findings documenting their existence and association with human disease glycobiology. This review comprehensively surveys the structures, biosynthetic routes and functions of PMPs across the eukaryotic kingdoms with the aim of synthesising an improved understanding on the role of protein paucimannosylation in human health and diseases. Convincing biochemical, glycoanalytical and biological data detail a vast structural heterogeneity and fascinating tissue- and subcellular-specific expression of PMPs within invertebrates and plants, often comprising multi-α1,3/6-fucosylation and β1,2-xylosylation amongst other glycan modifications and non-glycan substitutions e.g. O-methylation. Vertebrates and protists express less-heterogeneous PMPs typically only comprising variable core fucosylation of bi- and trimannosylchitobiose core glycans. In particular, the Manα1,6Manβ1,4GlcNAc(α1,6Fuc)β1,4GlcNAcβAsn glycan (M2F) decorates various human neutrophil proteins reportedly displaying bioactivity and structural integrity demonstrating that they are not degradation products. Less-truncated paucimannosidic glycans (e.g. M3F) are characteristic glycosylation features of proteins expressed by human cancer and stem cells. Concertedly, these observations suggest the involvement of human PMPs in processes related to innate immunity, tumorigenesis and cellular differentiation. The absence of human PMPs in diverse bodily fluids studied under many (patho)physiological conditions suggests extravascular residence and points to localised functions of PMPs in peripheral tissues. Absence of PMPs in Fungi indicates that paucimannosylation is common, but not universally conserved, in eukaryotes. Relative to human PMPs, the expression of PMPs in plants, invertebrates and protists is more tissue-wide and constitutive yet, similar to their human counterparts, PMP expression remains regulated by the physiology of the producing organism and PMPs evidently serve essential functions in development, cell-cell communication and host-pathogen/symbiont interactions. In most PMP-producing organisms, including humans, the N-acetyl-β-hexosaminidase isoenzymes and linkage-specific α-mannosidases are glycoside hydrolases critical for generating PMPs via N-acetylglucosaminyltransferase I (GnT-I)-dependent and GnT-I-independent truncation pathways. However, the identity and structure of many species-specific PMPs in eukaryotes, their biosynthetic routes, strong tissue- and development-specific expression, and diverse functions are still elusive. Deep exploration of these PMP features involving, for example, the characterisation of endogenous PMP-recognising lectins across a variety of healthy and N-acetyl-β-hexosaminidase-deficient human tissue types and identification of microbial adhesins reactive to human PMPs, are amongst the many tasks required for enhanced insight into the glycobiology of human PMPs. In conclusion, the literature supports the notion that PMPs are significant, yet still heavily under-studied biomolecules in human glycobiology that serve essential functions and create structural heterogeneity not dissimilar to other human N-glycoprotein types. Human PMPs should therefore be recognised as bioactive glycoproteins that are distinctly different from the canonical N-glycoprotein classes and which warrant a more dedicated focus in glycobiological research.
Collapse
Affiliation(s)
- Harry C Tjondro
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ian Loke
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sayantani Chatterjee
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
87
|
Breimer ME, Holgersson J. The Structural Complexity and Animal Tissue Distribution of N-Glycolylneuraminic Acid (Neu5Gc)-Terminated Glycans. Implications for Their Immunogenicity in Clinical Xenografting. Front Mol Biosci 2019; 6:57. [PMID: 31428616 PMCID: PMC6690001 DOI: 10.3389/fmolb.2019.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
N-Glycolylneuraminic acid (Neu5Gc)-terminated glycans are present in all animal cells/tissues that are already used in the clinic such as bioprosthetic heart valves (BHV) as well as in those that potentially will be xenografted in the future to overcome end stage cell/organ failure. Humans, as a species lack this antigen determinant and can react with an immune response after exposure to Neu5Gc present in these products/cells/tissues. Genetically engineered source animals lacking Neu5Gc has been generated and so has animals that in addition lack the major αGal xenoantigen. The use of cells/tissues/organs from such animals may improve the long-term performance of BHV and allow future xenografting. This review summarizes the present knowledge regarding structural complexity and tissue distribution of Neu5Gc on glycans of cells/tissue/organs already used in the clinic or intended for treatment of end stage organ failure by xenografting. In addition, we briefly discuss the role of anti-Neu5Gc antibodies in the xenorejection process and how knowledge about Neu5Gc structural complexity can be used to design novel diagnostics for anti-Neu5Gc antibody detection.
Collapse
Affiliation(s)
- Michael E Breimer
- Department of Surgery, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Holgersson
- Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
88
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
89
|
Blanas A, Cornelissen LAM, Kotsias M, van der Horst JC, van de Vrugt HJ, Kalay H, Spencer DIR, Kozak RP, van Vliet SJ. Transcriptional activation of fucosyltransferase (FUT) genes using the CRISPR-dCas9-VPR technology reveals potent N-glycome alterations in colorectal cancer cells. Glycobiology 2019; 29:137-150. [PMID: 30476078 PMCID: PMC6330019 DOI: 10.1093/glycob/cwy096] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant fucosylation in cancer cells is considered as a signature of malignant cell transformation and it is associated with tumor progression, metastasis and resistance to chemotherapy. Specifically, in colorectal cancer cells, increased levels of the fucosylated Lewisx antigen are attributed to the deregulated expression of pertinent fucosyltransferases, like fucosyltransferase 4 (FUT4) and fucosyltransferase 9 (FUT9). However, the lack of experimental models closely mimicking cancer-specific regulation of fucosyltransferase gene expression has, so far, limited our knowledge regarding the substrate specificity of these enzymes and the impact of Lewisx synthesis on the glycome of colorectal cancer cells. Therefore, we sought to transcriptionally activate the Fut4 and Fut9 genes in the well-known murine colorectal cancer cell line, MC38, which lacks expression of the FUT4 and FUT9 enzymes. For this purpose, we utilized a physiologically relevant, guide RNA-based model of de novo gene expression, namely the CRISPR-dCas9-VPR system. Induction of the Fut4 and Fut9 genes in MC38 cells using CRISPR-dCas9-VPR resulted in specific neo-expression of functional Lewisx antigen on the cell surface. Interestingly, Lewisx was mainly carried by N-linked glycans in both MC38-FUT4 and MC38-FUT9 cells, despite pronounced differences in the biosynthetic properties and the expression stability of the induced enzymes. Moreover, Lewisx expression was found to influence core-fucosylation, sialylation, antennarity and the subtypes of N-glycans in the MC38-glycovariants. In conclusion, exploiting the CRISPR-dCas9-VPR system to augment glycosyltransferase expression is a promising method of transcriptional gene activation with broad application possibilities in glycobiology and oncology research.
Collapse
Affiliation(s)
- Athanasios Blanas
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | - Lenneke A M Cornelissen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | | | - Joost C van der Horst
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | - Henri J van de Vrugt
- Amsterdam UMC, Vrije Universiteit Amsterdam, Oncogenetics, Department of Clinical Genetics, Cancer Center Amsterdam, HV Amsterdam, the Netherlands
| | - Hakan Kalay
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| | | | - Rad P Kozak
- Ludger Ltd, Culham Science Centre, Abingdon, United Kingdom
| | - Sandra J van Vliet
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection & Immunity Institute, HZ Amsterdam, the Netherlands
| |
Collapse
|
90
|
Shu J, Dang L, Zhang D, Shah P, Chen L, Zhang H, Sun S. Dynamic analysis of proteomic alterations in response to N-linked glycosylation inhibition in a drug-resistant ovarian carcinoma cell line. FEBS J 2019; 286:1594-1605. [PMID: 30884134 PMCID: PMC7360092 DOI: 10.1111/febs.14811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/04/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation inhibition can improve the efficacy of antitumor drugs and enhance the apoptosis of cancer cells, thus holding great potential for cancer treatment. Inhibition of N-glycosylation induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), and eventually triggers ER stress-related apoptosis. Unfortunately, the detailed timeline of these cell responses and protein expression alterations related to N-glycosylation inhibition is not explicit yet, and the pathways involved in different stages of N-glycosylation inhibition still need to be characterized. In this study, the dynamic proteome alterations related to N-glycosylation inhibition were investigated by further analyzing our previously published quantitative proteomics data from tunicamycin (TM)-treated ovarian carcinoma (OVCAR-3) cells. The results revealed that N-glycosylation inhibition not only directly affects the expression of glycosylated proteins but also alters an extended scale of proteins. Functional annotation of these altered proteins demonstrated that proteins related to ER stress start changing within 6 h, followed by UPR within 24 h, and eventually ER stress-related apoptosis is triggered after 48 h, indicating the conversion of cellular response from positive to negative. The dynamic proteome data presented here provide important information for better understanding of the significance of N-glycosylation to cell survival and TM-related cancer treatment.
Collapse
Affiliation(s)
- Jian Shu
- College of Life Sciences, Northwest University, Xi'an, China
| | - Liuyi Dang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Dandan Zhang
- College of Life Sciences, Northwest University, Xi'an, China
| | - Punit Shah
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Shisheng Sun
- College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
91
|
Wang M, Zhu J, Lubman DM, Gao C. Aberrant glycosylation and cancer biomarker discovery: a promising and thorny journey. Clin Chem Lab Med 2019; 57:407-416. [PMID: 30138110 PMCID: PMC6785348 DOI: 10.1515/cclm-2018-0379] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/15/2018] [Indexed: 12/12/2022]
Abstract
Glycosylation is among the most important post-translational modifications for proteins and is of intrinsic complex character compared with DNAs and naked proteins. Indeed, over 50%-70% of proteins in circulation are glycosylated, and the "sweet attachments" have versatile structural and functional implications. Both the configuration and composition of the attached glycans affect the biological activities of consensus proteins significantly. Glycosylation is generated by complex biosynthetic pathways comprising hundreds of glycosyltransferases, glycosidases, transcriptional factors, transporters and the protein backbone. In addition, lack of direct genetic templates and glyco-specific antibodies such as those commonly used in DNA amplification and protein capture makes research on glycans and glycoproteins even more difficult, thus resulting in sparse knowledge on the pathophysiological implications of glycosylation. Fortunately, cutting-edge technologies have afforded new opportunities and approaches for investigating cancer-related glycosylation. Thus, glycans as well as aberrantly glycosylated protein-based cancer biomarkers have been increasingly recognized. This mini-review highlights the most recent developments in glyco-biomarker studies in an effort to discover clinically relevant cancer biomarkers using advanced analytical methodologies such as mass spectrometry, high-performance liquid chromatographic/ultra-performance liquid chromatography, capillary electrophoresis, and lectin-based technologies. Recent clinical-centered glycobiological studies focused on determining the regulatory mechanisms and the relation with diagnostics, prognostics and even therapeutics are also summarized. These studies indicate that glycomics is a treasure waiting to be mined where the growth of cancer-related glycomics and glycoproteomics is the next great challenge after genomics and proteomics.
Collapse
Affiliation(s)
- Mengmeng Wang
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, P.R. China
| | - Jianhui Zhu
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David M. Lubman
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chunfang Gao
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, P.R. China
| |
Collapse
|
92
|
Effector and Regulatory T Cells Roll at High Shear Stress by Inducible Tether and Sling Formation. Cell Rep 2019; 21:3885-3899. [PMID: 29281835 DOI: 10.1016/j.celrep.2017.11.099] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/04/2017] [Accepted: 11/28/2017] [Indexed: 01/07/2023] Open
Abstract
The adaptive immune response involves T cell differentiation and migration to sites of inflammation. T cell trafficking is initiated by rolling on inflamed endothelium. Tethers and slings, discovered in neutrophils, facilitate cell rolling at high shear stress. Here, we demonstrate that the ability to form tethers and slings during rolling is highly inducible in T helper 1 (Th1), Th17, and regulatory T (Treg) cells but less in Th2 cells. In vivo, endogenous Treg cells rolled stably in cremaster venules at physiological shear stress. Quantitative dynamic footprinting nanoscopy of Th1, Th17, and Treg cells uncovered the formation of multiple tethers per cell. Human Th1 cells also showed tethers and slings. RNA sequencing (RNA-seq) revealed the induction of cell migration and cytoskeletal genes in sling-forming cells. We conclude that differentiated CD4 T cells stabilize rolling by inducible tether and sling formation. These phenotypic changes approximate the adhesion phenotype of neutrophils and support CD4 T cell access to sites of inflammation.
Collapse
|
93
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW To evaluate role of the lymph node in immune regulation and tolerance in transplantation and recent advances in the delivery of antigen and immune modulatory signals to the lymph node. RECENT FINDINGS Lymph nodes are a primary site of immune cell priming, activation, and modulation, and changes within the lymph node microenvironment have the potential to induce specific regulation, suppression, and potentially tolerance. Antigen enters the lymph node either from tissues via lymphatics, from blood via high endothelial venules, or directly via injection. Here we review different techniques and materials to deliver antigen to the lymph node including microparticles or nanoparticles, ex-vivo antigen presenting cell manipulation, and use of receptor conjugation for specific intralymph node targeting locations. SUMMARY The promising results point to powerful techniques to harness the lymph node microenvironment and direct systemic immune regulation. The materials, techniques, and approaches suggest that translational and clinical trials in nonhuman primate and patients may soon be possible.
Collapse
|
95
|
da Fonseca LM, da Costa KM, Chaves VDS, Freire-de-Lima CG, Morrot A, Mendonça-Previato L, Previato JO, Freire-de-Lima L. Theft and Reception of Host Cell's Sialic Acid: Dynamics of Trypanosoma Cruzi Trans-sialidases and Mucin-Like Molecules on Chagas' Disease Immunomodulation. Front Immunol 2019; 10:164. [PMID: 30787935 PMCID: PMC6372544 DOI: 10.3389/fimmu.2019.00164] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022] Open
Abstract
The last decades have produced a plethora of evidence on the role of glycans, from cell adhesion to signaling pathways. Much of that information pertains to their role on the immune system and their importance on the surface of many human pathogens. A clear example of this is the flagellated protozoan Trypanosoma cruzi, which displays on its surface a great variety of glycoconjugates, including O-glycosylated mucin-like glycoproteins, as well as multiple glycan-binding proteins belonging to the trans-sialidase (TS) family. Among the latter, different and concurrently expressed molecules may present or not TS activity, and are accordingly known as active (aTS) and inactive (iTS) members. Over the last thirty years, it has been well described that T. cruzi is unable to synthesize sialic acid (SIA) on its own, making use of aTS to steal the host's SIA. Although iTS did not show enzymatic activity, it retains a substrate specificity similar to aTS (α-2,3 SIA-containing glycotopes), displaying lectinic properties. It is accepted that aTS members act as virulence factors in mammals coursing the acute phase of the T. cruzi infection. However, recent findings have demonstrated that iTS may also play a pathogenic role during T. cruzi infection, since it modulates events related to adhesion and invasion of the parasite into the host cells. Since both aTS and iTS proteins share structural substrate specificity, it might be plausible to speculate that iTS proteins are able to assuage and/or attenuate biological phenomena depending on the catalytic activity displayed by aTS members. Since SIA-containing glycotopes modulate the host immune system, it should not come as any surprise that changes in the sialylation of parasite's mucin-like molecules, as well as host cell glycoconjugates might disrupt critical physiological events, such as the building of effective immune responses. This review aims to discuss the importance of mucin-like glycoproteins and both aTS and iTS for T. cruzi biology, as well as to present a snapshot of how disturbances in both parasite and host cell sialoglycophenotypes may facilitate the persistence of T. cruzi in the infected mammalian host.
Collapse
Affiliation(s)
- Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Victoria de Sousa Chaves
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Laboratório de Pesquisa em Tuberculose, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
96
|
Alatrash G, Qiao N, Zhang M, Zope M, Perakis AA, Sukhumalchandra P, Philips AV, Garber HR, Kerros C, St John LS, Khouri MR, Khong H, Clise-Dwyer K, Miller LP, Wolpe S, Overwijk WW, Molldrem JJ, Ma Q, Shpall EJ, Mittendorf EA. Fucosylation Enhances the Efficacy of Adoptively Transferred Antigen-Specific Cytotoxic T Lymphocytes. Clin Cancer Res 2019; 25:2610-2620. [PMID: 30647079 DOI: 10.1158/1078-0432.ccr-18-1527] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 01/13/2023]
Abstract
PURPOSE Inefficient homing of adoptively transferred cytotoxic T lymphocytes (CTLs) to tumors is a major limitation to the efficacy of adoptive cellular therapy (ACT) for cancer. However, through fucosylation, a process whereby fucosyltransferases (FT) add fucose groups to cell surface glycoproteins, this challenge may be overcome. Endogenously fucosylated CTLs and ex vivo fucosylated cord blood stem cells and regulatory T cells were shown to preferentially home to inflamed tissues and marrow. Here, we show a novel approach to enhance CTL homing to leukemic marrow and tumor tissue. EXPERIMENTAL DESIGN Using the enzyme FT-VII, we fucosylated CTLs that target the HLA-A2-restricted leukemia antigens CG1 and PR1, the HER2-derived breast cancer antigen E75, and the melanoma antigen gp-100. We performed in vitro homing assays to study the effects of fucosylation on CTL homing and target killing. We used in vivo mouse models to demonstrate the effects of ex vivo fucosylation on CTL antitumor activities against leukemia, breast cancer, and melanoma. RESULTS Our data show that fucosylation increases in vitro homing and cytotoxicity of antigen-specific CTLs. Furthermore, fucosylation enhances in vivo CTL homing to leukemic bone marrow, breast cancer, and melanoma tissue in NOD/SCID gamma (NSG) and immunocompetent mice, ultimately boosting the antitumor activity of the antigen-specific CTLs. Importantly, our work demonstrates that fucosylation does not interfere with CTL specificity. CONCLUSIONS Together, our data establish ex vivo CTL fucosylation as a novel approach to improving the efficacy of ACT, which may be of great value for the future of ACT for cancer.
Collapse
Affiliation(s)
- Gheath Alatrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Na Qiao
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Madhushree Zope
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander A Perakis
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haven R Garber
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Celine Kerros
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lisa S St John
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria R Khouri
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiep Khong
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Willem W Overwijk
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts.
| |
Collapse
|
97
|
Harada PH, Benseñor IM, Bittencourt MS, Nasir K, Blaha MJ, Jones SR, Toth PP, Lotufo PA. Composite acute phase glycoproteins with coronary artery calcification depends on metabolic syndrome presence - The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Cardiol 2018; 73:408-415. [PMID: 30595405 DOI: 10.1016/j.jjcc.2018.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/03/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Inflammation has been weakly associated with coronary artery calcium (CAC) in the overall population. However, it is currently unknown whether this varies according to the cardio-metabolic profile. We evaluated the association between GlycA, a unique composite biomarker of pro-inflammatory acute phase glycoproteins, high sensitivity C-reactive protein (hsCRP), uric acid, and their composite values (composite inflammation) in the overall population and strata according to cardiovascular risk. METHODS This is a cross-sectional study of 3753 Sao Paulo site participants of the ELSA-Brasil cohort that were free of cardiovascular/chronic inflammatory disease and not taking statins or allopurinol. We measured GlycA by nuclear magnetic resonance spectroscopy. For each biomarker quartile (Qs), we ran adjusted logistic and linear regression for CAC>0 and CAC score. RESULTS In the overall analysis, the 4th vs. 1st GlycA Q odds ratio (OR) for CAC>0 was 1.53 (95% CI: 1.18, 1.98, p trend<0.001) adjusted for demographics and lifestyle, but null after adding metabolic syndrome (MS) components, OR 1.14 (95% CI: 0.86, 1.51, p trend=0.140). Likewise, for continuous CAC values there was no difference across GlycA Qs in the fully adjusted analysis. Similarly, hsCRP, uric acid, and composite inflammation were not associated with CAC>0 or CAC score. In stratified analysis, GlycA was associated with CAC>0 in No-MS individuals, standardized (SD) OR 1.23 (95% CI: 1.08, 1.40); but not in MS individuals, SD OR 1.01 (95% CI: 0.89, 1.15) (p interaction 0.037). We found similar interaction in stratified analysis for continuous CAC on composite inflammation. CONCLUSIONS GlycA and composite inflammation are associated with CAC among low cardiovascular risk individuals (No-MS), but not otherwise. GlycA and composite biomarkers may better represent sources of inflammation apart from visceral obesity and traditional cardiovascular risk factors, which may have relevant effect on CAC accumulation in low cardiovascular risk individuals.
Collapse
Affiliation(s)
- Paulo H Harada
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Isabela M Benseñor
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo, Sao Paulo, Brazil; Department of Medicine, School of Medicine University of Sao Paulo, Sao Paulo, Brazil
| | - Márcio S Bittencourt
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Khurram Nasir
- Population Health & Health Systems Research, Center for Outcomes Research & Evaluation, Yale University/YNHH, New Haven, CT, USA; Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Blaha
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University, Baltimore, MD, USA
| | - Steven R Jones
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University, Baltimore, MD, USA
| | - Peter P Toth
- Ciccarone Center for the Prevention of Heart Disease, Johns Hopkins University, Baltimore, MD, USA; University of Illinois College of Medicine Peoria, Illinois CGH Medical Center, Sterling, IL, USA
| | - Paulo A Lotufo
- Center for Clinical and Epidemiological Research, University Hospital, University of Sao Paulo, Sao Paulo, Brazil; Department of Medicine, School of Medicine University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
98
|
Omega-9 Oleic Acid, the Main Compound of Olive Oil, Mitigates Inflammation during Experimental Sepsis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6053492. [PMID: 30538802 PMCID: PMC6260523 DOI: 10.1155/2018/6053492] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/26/2018] [Accepted: 10/10/2018] [Indexed: 12/21/2022]
Abstract
The Mediterranean diet, rich in olive oil, is beneficial, reducing the risk of cardiovascular diseases and cancer. Olive oil is mostly composed of the monounsaturated fatty acid omega-9. We showed omega-9 protects septic mice modulating lipid metabolism. Sepsis is initiated by the host response to infection with organ damage, increased plasma free fatty acids, high levels of cortisol, massive cytokine production, leukocyte activation, and endothelial dysfunction. We aimed to analyze the effect of omega-9 supplementation on corticosteroid unbalance, inflammation, bacterial elimination, and peroxisome proliferator-activated receptor (PPAR) gamma expression, an omega-9 receptor and inflammatory modulator. We treated mice for 14 days with omega-9 and induced sepsis by cecal ligation and puncture (CLP). We measured systemic corticosterone levels, cytokine production, leukocyte and bacterial counts in the peritoneum, and the expression of PPAR gamma in both liver and adipose tissues during experimental sepsis. We further studied omega-9 effects on leukocyte rolling in mouse cremaster muscle-inflamed postcapillary venules and in the cerebral microcirculation of septic mice. Here, we demonstrate that omega-9 treatment is associated with increased levels of the anti-inflammatory cytokine IL-10 and decreased levels of the proinflammatory cytokines TNF-α and IL-1β in peritoneal lavage fluid of mice with sepsis. Omega-9 treatment also decreased systemic corticosterone levels. Neutrophil migration from circulation to the peritoneal cavity and leukocyte rolling on the endothelium were decreased by omega-9 treatment. Omega-9 also decreased bacterial load in the peritoneal lavage and restored liver and adipose tissue PPAR gamma expression in septic animals. Our data suggest a beneficial anti-inflammatory role of omega-9 in sepsis, mitigating leukocyte rolling and leukocyte influx, balancing cytokine production, and controlling bacterial growth possibly through a PPAR gamma expression-dependent mechanism. The significant reduction of inflammation detected after omega-9 enteral injection can further contribute to the already known beneficial properties facilitated by unsaturated fatty acid-enriched diets.
Collapse
|
99
|
Immler R, Simon SI, Sperandio M. Calcium signalling and related ion channels in neutrophil recruitment and function. Eur J Clin Invest 2018; 48 Suppl 2:e12964. [PMID: 29873837 PMCID: PMC6221920 DOI: 10.1111/eci.12964] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022]
Abstract
The recruitment of neutrophils to sites of inflammation, their battle against invading microorganisms through phagocytosis and the release of antimicrobial agents is a highly coordinated and tightly regulated process that involves the interplay of many different receptors, ion channels and signalling pathways. Changes in intracellular calcium levels, caused by cytosolic Ca2+ store depletion and the influx of extracellular Ca2+ via ion channels, play a critical role in synchronizing neutrophil activation and function. In this review, we provide an overview of how Ca2+ signalling is initiated in neutrophils and how changes in intracellular Ca2+ levels modulate neutrophil function.
Collapse
Affiliation(s)
- Roland Immler
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Klinikum der Universität, Ludwig-Maximilians-Universität München, Germany
| | - Scott I. Simon
- Department of Biomedical Engineering, Graduate Group in Immunology, University of California, Davis, CA, USA
| | - Markus Sperandio
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Klinikum der Universität, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
100
|
Rankin CR, Theodorou E, Man Law IK, Rowe L, Kokkotou E, Pekow J, Wang J, Martín MG, Pothoulakis C, Padua D. Identification of novel mRNAs and lncRNAs associated with mouse experimental colitis and human inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2018; 315:G722-G733. [PMID: 29953254 PMCID: PMC6293253 DOI: 10.1152/ajpgi.00077.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend toward improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and noncoding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate-induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 noncoding RNAs that were differentially expressed in either mouse model. Surprisingly, only three noncoding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and noncoding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD. NEW & NOTEWORTHY Much of the genome is transcribed as non-protein-coding RNAs; however, their role in inflammatory bowel disease is largely unknown. This study represents the first of its kind to analyze the expression of long noncoding RNAs in two mouse models of inflammatory bowel disease and correlate them to human clinical samples. Using high-throughput RNA-seq analysis, we identified new coding and noncoding RNAs that were differentially expressed such as ubiquitin D and 5730437C11Rik.
Collapse
Affiliation(s)
- Carl Robert Rankin
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Evangelos Theodorou
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ivy Ka Man Law
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Lorraine Rowe
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Efi Kokkotou
- 2Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joel Pekow
- 3Division of Gastroenterology, University of Chicago, Chicago, Illinois
| | - Jiafang Wang
- 4Division of Pediatrics, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Martín G. Martín
- 4Division of Pediatrics, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - Charalabos Pothoulakis
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California
| | - David Padua
- 1Division of Digestive Diseases, Department of Medicine David Geffen School of Medicine at University of California, Los Angeles, California,5Division of Gastroenterology, Hepatology and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|