51
|
Worthy SJ, Umaña MN, Zhang C, Lin L, Cao M, Swenson NG. Intraspecific alternative phenotypes contribute to variation in species' strategies for growth. Oecologia 2024; 205:39-48. [PMID: 38652293 DOI: 10.1007/s00442-024-05553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Ecologists have historically sought to identify the mechanisms underlying the maintenance of local species diversity. High-dimensional trait-based relationships, such as alternative phenotypes, have been hypothesized as important for maintaining species diversity such that phenotypically dissimilar individuals compete less for resources but have similar performance in a given environment. The presence of alternative phenotypes has primarily been investigated at the community level, despite the importance of intraspecific variation to diversity maintenance. The aims of this research are to (1) determine the presence or absence of intraspecific alternative phenotypes in three species of tropical tree seedlings, (2) investigate if these different species use the same alternative phenotypes for growth success, and (3) evaluate how findings align with species co-occurrence patterns. We model species-specific relative growth rate with individual-level measurements of leaf mass per area (LMA) and root mass fraction (RMF), environmental data, and their interactions. We find that two of the three species have intraspecific alternative phenotypes, with individuals within species having different functional forms leading to similar growth. Interestingly, individuals within these species use the same trait combinations, high LMA × low RMF and low LMA × high RMF, in high soil nutrient environments to acquire resources for higher growth. This similarity among species in intraspecific alternative phenotypes and variables that contribute most to growth may lead to their negative spatial co-occurrence. Overall, we find that multiple traits or interactions between traits and the environment drive species-specific strategies for growth, but that individuals within species leverage this multi-dimensionality in different ways for growth success.
Collapse
Affiliation(s)
- Samantha J Worthy
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, 95616, USA.
| | - María N Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caicai Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Nathan G Swenson
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, 46556, USA
| |
Collapse
|
52
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
53
|
Edwards JD, Krichels AH, Seyfried GS, Dalling J, Kent AD, Yang WH. Soil microbial community response to ectomycorrhizal dominance in diverse neotropical montane forests. MYCORRHIZA 2024; 34:95-105. [PMID: 38183463 PMCID: PMC10998807 DOI: 10.1007/s00572-023-01134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Ectomycorrhizal (EM) associations can promote the dominance of tree species in otherwise diverse tropical forests. These EM associations between trees and their fungal mutualists have important consequences for soil organic matter cycling, yet the influence of these EM-associated effects on surrounding microbial communities is not well known, particularly in neotropical forests. We examined fungal and prokaryotic community composition in surface soil samples from mixed arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) stands as well as stands dominated by EM-associated Oreomunnea mexicana (Juglandaceae) in four watersheds differing in soil fertility in the Fortuna Forest Reserve, Panama. We hypothesized that EM-dominated stands would support distinct microbial community assemblages relative to the mixed AM-EM stands due to differences in carbon and nitrogen cycling associated with the dominance of EM trees. We expected that this microbiome selection in EM-dominated stands would lead to lower overall microbial community diversity and turnover, with tighter correspondence between general fungal and prokaryotic communities. We measured fungal and prokaryotic community composition via high-throughput Illumina sequencing of the ITS2 (fungi) and 16S rRNA (prokaryotic) gene regions. We analyzed differences in alpha and beta diversity between forest stands associated with different mycorrhizal types, as well as the relative abundance of fungal functional groups and various microbial taxa. We found that fungal and prokaryotic community composition differed based on stand mycorrhizal type. There was lower prokaryotic diversity and lower relative abundance of fungal saprotrophs and pathogens in EM-dominated than AM-EM mixed stands. However, contrary to our prediction, there was lower homogeneity for fungal communities in EM-dominated stands compared to mixed AM-EM stands. Overall, we demonstrate that EM-dominated tropical forest stands have distinct soil microbiomes relative to surrounding diverse forests, suggesting that EM fungi may filter microbial functional groups in ways that could potentially influence plant performance or ecosystem function.
Collapse
Affiliation(s)
- Joseph D Edwards
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.
| | - Alexander H Krichels
- USDA Forest Service, Rocky Mountain Research Station, Albuquerque, NM, 87102, USA
| | - Georgia S Seyfried
- Department of Forest Ecology and Resource Management, Oregon State University, Corvallis, OR, 97331, USA
| | - James Dalling
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Angela D Kent
- Department of Natural Resources and Environmental Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
54
|
Thouvenot L, Ferlian O, Craven D, Johnson EA, Köhler J, Lochner A, Quosh J, Zeuner A, Eisenhauer N. Invasive earthworms can change understory plant community traits and reduce plant functional diversity. iScience 2024; 27:109036. [PMID: 38361612 PMCID: PMC10867650 DOI: 10.1016/j.isci.2024.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Among the most important impacts of biological invasions on biodiversity is biotic homogenization, which may further compromise key ecosystem processes. However, the extent to which they homogenize functional diversity and shift dominant ecological strategies of invaded communities remains uncertain. Here, we investigated changes in plant communities in a northern North American forest in response to invasive earthworms, by examining the taxonomic and functional diversity of the plant community and soil ecosystem functions. We found that although plant taxonomic diversity did not change in response to invasive earthworms, they modified the dominance structure of plant functional groups. Invasive earthworms promoted the dominance of fast-growing plants at the expense of slow-growing ones. Moreover, earthworms decreased plant functional diversity, which coincided with changes in abiotic and biotic soil properties. Our study reveals that invasive earthworms erode multiple biodiversity facets of invaded forests, with potential cascading effects on ecosystem functioning.
Collapse
Affiliation(s)
- Lise Thouvenot
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Dylan Craven
- GEMA Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Pirámide Huechuraba 5750, Santiago, Chile
- Data Observatory Foundation, Santiago, Chile
| | - Edward A. Johnson
- Department Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Johannes Köhler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Alfred Lochner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Anja Zeuner
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany
- Leipzig University, Institute of Biology, Puschstraße 4, 04103 Leipzig, Germany
| |
Collapse
|
55
|
Mueller KE, Kray JA, Blumenthal DM. Coordination of leaf, root, and seed traits shows the importance of whole plant economics in two semiarid grasslands. THE NEW PHYTOLOGIST 2024; 241:2410-2422. [PMID: 38214451 DOI: 10.1111/nph.19529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Uncertainty persists within trait-based ecology, partly because few studies assess multiple axes of functional variation and their effect on plant performance. For 55 species from two semiarid grasslands, we quantified: (1) covariation between economic traits of leaves and absorptive roots, (2) covariation among economic traits, plant height, leaf size, and seed mass, and (3) relationships between these traits and species' abundance. Pairs of analogous leaf and root traits were at least weakly positively correlated (e.g. specific leaf area (SLA) and specific root length (SRL)). Two pairs of such traits, N content and DMC of leaves and roots, were at least moderately correlated (r > 0.5) whether species were grouped by site, taxonomic group and growth form, or life history. Root diameter was positively correlated with seed mass for all groups of species except annuals and monocots. Species with higher leaf dry matter content (LDMC) tended to be more abundant (r = 0.63). Annuals with larger seeds were more abundant (r = 0.69). Compared with global-scale syntheses with many observations from mesic ecosystems, we observed stronger correlations between analogous leaf and root traits, weaker correlations between SLA and leaf N, and stronger correlations between SRL and root N. In dry grasslands, plant persistence may require coordination of above- and belowground traits, and dense tissues may facilitate dominance.
Collapse
Affiliation(s)
- Kevin E Mueller
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, 44115, USA
| | - Julie A Kray
- United States Department of Agriculture, Agricultural Research Service, Rangeland Resources & Systems Research, Fort Collins, CO, 80526, USA
| | - Dana M Blumenthal
- United States Department of Agriculture, Agricultural Research Service, Rangeland Resources & Systems Research, Fort Collins, CO, 80526, USA
| |
Collapse
|
56
|
Ma K, Fu Y, Liu Y. The effects of microplastics on crop variation depend on polymer types and their interactions with soil nutrient availability and weed competition. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:223-231. [PMID: 38198234 DOI: 10.1111/plb.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024]
Abstract
Microplastics pollution of agricultural soil is a global environmental concern because of its potential risk to food security and human health. Although many studies have tested the direct effects of microplastics on growth of Eruca sativa Mill., little is known about whether these effects are regulated by fertilization and weed competition in field management practices. Here, we performed a greenhouse experiment growing E. sativa as target species in a three-factorial design with two levels of fertilization (low versus. high), two levels of weed competition treatments (weed competition versus no weed competition) and five levels of microplastic treatments (no microplastics, Polybutylene adipate-co-terephthalate [PBAT], Polybutylene succinate [PBS], Polycaprolactone [PCL] or Polypropylene [PP]). Compared to the soil without microplastics, PBS and PCL reduced aboveground biomass and leaf number of the E. sativa. PBS also resulted in increased root allocation and thicker roots in E. sativa. In addition, fertilization significantly mitigated the negative effects of PBS and PCL on aboveground biomass of E. sativa, but weed competition significantly promoted these effects. Although fertilization alleviated the negative effect of PBS on aboveground biomass, such alleviation became weaker under weed competition than when E. sativa grew alone. The results indicate that the effects of specific polymer types on E. sativa growth could be regulated by fertilization, weed management, and even their interactions. Therefore, reasonable on-farm management practices may help in mitigating the negative effects of microplastics pollution on E. sativa growth in agricultural fields.
Collapse
Affiliation(s)
- K Ma
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Y Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
57
|
Määttä T, Malhotra A. The hidden roots of wetland methane emissions. GLOBAL CHANGE BIOLOGY 2024; 30:e17127. [PMID: 38337165 DOI: 10.1111/gcb.17127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024]
Abstract
Wetlands are the largest natural source of methane (CH4 ) globally. Climate and land use change are expected to alter CH4 emissions but current and future wetland CH4 budgets remain uncertain. One important predictor of wetland CH4 flux, plants, play an important role in providing substrates for CH4 -producing microbes, increasing CH4 consumption by oxygenating the rhizosphere, and transporting CH4 from soils to the atmosphere. Yet, there remain various mechanistic knowledge gaps regarding the extent to which plant root systems and their traits influence wetland CH4 emissions. Here, we present a novel conceptual framework of the relationships between a range of root traits and CH4 processes in wetlands. Based on a literature review, we propose four main CH4 -relevant categories of root function: gas transport, carbon substrate provision, physicochemical influences and root system architecture. Within these categories, we discuss how individual root traits influence CH4 production, consumption, and transport (PCT). Our findings reveal knowledge gaps concerning trait functions in physicochemical influences, and the role of mycorrhizae and temporal root dynamics in PCT. We also identify priority research needs such as integrating trait measurements from different root function categories, measuring root-CH4 linkages along environmental gradients, and following standardized root ecology protocols and vocabularies. Thus, our conceptual framework identifies relevant belowground plant traits that will help improve wetland CH4 predictions and reduce uncertainties in current and future wetland CH4 budgets.
Collapse
Affiliation(s)
- Tiia Määttä
- Department of Geography, University of Zürich, Zürich, Switzerland
| | - Avni Malhotra
- Department of Geography, University of Zürich, Zürich, Switzerland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
58
|
Hu H, Bao W, Huang L, Li F. Shifting patterns in fine root distribution of four xerophytic species across soil structural gradients and years of growth. Ecol Evol 2024; 14:e10889. [PMID: 38333099 PMCID: PMC10850925 DOI: 10.1002/ece3.10889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/10/2024] Open
Abstract
Fine root (diameter < 2 mm) distribution influences the potential for resource acquisition in soil profiles, which defines how plants interact with local soil environments; however, a deep understanding of how fine root vertical distribution varies with soil structural variations and across growth years is lacking. We subjected four xerophytic species native to an arid valley of China, Artemisia vestita, Bauhinia brachycarpa, Sophora davidii, and Cotinus szechuanensis, to increasing rock fragment content (RFC) treatments (0%, 25%, 50%, and 75%, v v-1) in an arid environment and measured fine root vertical profiles over 4 years of growth. Fine root depth and biomass of woody species increased with increasing RFC, but the extent of increase declined with growth years. Increasing RFC also increased the degree of interannual decreases in fine root diameter. The limited supply of soil resources in coarse soils explained the increases in rooting depth and variations in the pattern of fine root profiles across RFC. Fine root depth and biomass of the non-woody species (A. vestita) in soil profiles decreased with the increase in RFC and growth years, showing an opposite pattern from the other three woody species. Within woody species, the annual increase in fine root biomass varied with RFC, which led to large interannual differences in the patterns of fine root profiles. Younger or non-woody plants were more susceptible to soil environmental changes than the older or woody plants. These results reveal the limitations of dry and rocky environments on the growth of different plants, with woody and non-woody plants adjusting their root vertical distribution through opposite pathways to cope with resource constraints, which has management implications for degraded agroforest ecosystems.
Collapse
Affiliation(s)
- Hui Hu
- Chengdu Institute of BiologyChinese Academy of SciencesChengduSichuanChina
- Henan Key Laboratory of Water Pollution Control and RehabilitationHenan University of Urban ConstructionPingdingshanChina
| | - Weikai Bao
- Chengdu Institute of BiologyChinese Academy of SciencesChengduSichuanChina
| | - Long Huang
- Chengdu Institute of BiologyChinese Academy of SciencesChengduSichuanChina
| | - Fanglan Li
- Chengdu Institute of BiologyChinese Academy of SciencesChengduSichuanChina
| |
Collapse
|
59
|
Tang H, Liu Y, Lou Y, Yu D, Zhou M, Lu X, Jiang M. Nitrogen availability affects the responses of marsh grass and sedge plants (Phragmites australis and Bolboschoenus planiculmis) to flooding time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168008. [PMID: 37914133 DOI: 10.1016/j.scitotenv.2023.168008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Flooding time and external nitrogen (N) input have been projected to be the main threats to marsh ecosystems in the scenario of more intense flooding events and N deposition. How flooding and N addition experienced at different growth stages interact in determining phenotypic change remains scarce. We established a controlled experiment (3 flooding time treatments x 5 N addition levels) using two herbaceous marsh species (Phragmites australis and Bolboschoenus planiculmis) to assess the responses of six key traits to environmental changes and the indication of plant performance. Early flooding reduced plant height and aboveground biomass of P. australis and below/aboveground biomass ratio of B. planiculmis and increased below/aboveground biomass ratio of P. australis and root biomass of B. planiculmis, whereas late flooding reduced root biomass of P. australis and ramet number and aboveground biomass of B. planiculmis. The combination of flooding and high N (16 and 32 g N m-2) exerted negative effects on ramet number of both plant species. The interaction of early flooding and low-medium N (8 and 16 g N m-2) inhibited clonal/belowground biomass ratio of both plant species. The combination of early flooding and low N (0, 4 and 8 g N m-2) promoted root biomass and below/aboveground biomass ratio of P. australis. Ramet number, plant height, and root biomass explained 80-90 % of aboveground biomass variation of both plant species, and the contribution of ramet number was greater than that of the other two traits. These results highlight that the influence of flooding time and external N input on the performance of marsh plants depends on species identity. Meanwhile, the ramet number-plant height-root biomass (RHR) strategy is supposed to be the adaptation strategy of wetland clonal plants to environmental changes, and clonal reproductive traits should be incorporated into vegetation dynamics models for marsh plants.
Collapse
Affiliation(s)
- Haoran Tang
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- The Three Gorges Institute of Ecological Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yanjing Lou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Dongjia Yu
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdie Zhou
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianguo Lu
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming Jiang
- Key Laboratory of Wetland Ecology and Environment & Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
60
|
Zhang Y, Cao J, Lu M, Kardol P, Wang J, Fan G, Kong D. The origin of bi-dimensionality in plant root traits. Trends Ecol Evol 2024; 39:78-88. [PMID: 37777374 DOI: 10.1016/j.tree.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Plant roots show extraordinary diversity in form and function in heterogeneous environments. Mounting evidence has shown global bi-dimensionality in root traits, the root economics spectrum (RES), and an orthogonal dimension describing mycorrhizal collaboration; however, the origin of the bi-dimensionality remains unresolved. Here, we propose that bi-dimensionality arises from the cylindrical geometry of roots, allometry between root cortex and stele, and independence between root cell wall thickness and cell number. Root geometry and mycorrhizal collaboration may both underlie the bi-dimensionality. Further, we emphasize why plant roots should be cylindrical rather than flat. Finally, we highlight the need to integrate organ-, cellular-, and molecular-level processes driving the bi-dimensionality in plant roots to fully understand plant diversity and functions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingjing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Umeå, 75007, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
61
|
Luo W, Wang Y, Cahill JF, Luan F, Zhong Y, Li Y, Li B, Chu C. Root-centric β diversity reveals functional homogeneity while phylogenetic heterogeneity in a subtropical forest. Ecology 2024; 105:e4189. [PMID: 37877169 DOI: 10.1002/ecy.4189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/25/2023] [Indexed: 10/26/2023]
Abstract
Root-centric studies have revealed fast taxonomic turnover across root neighborhoods, but how such turnover is accompanied by changes in species functions and phylogeny (i.e., β diversity) remains largely unknown. As β diversity can reflect the degree of community-wide biotic homogenization, such information is crucial for better inference of below-ground assembly rules, community structuring, and ecosystem processes. We collected 2480 root segments from 625 0-30 cm soil profiles in a subtropical forest in China. Root segments were identified into 138 species with DNA-barcoding with six root morphological and architectural traits measured per species. By using the mean pairwise (Dpw ) and mean nearest neighbor distance (Dnn ) to quantify species ecological differences, we first tested the non-random functional and phylogenetic turnover of root neighborhoods that would lend more support to deterministic over stochastic community assembly processes. Additionally, we examined the distance-decay pattern of β diversity, and finally partitioned β diversity into geographical and environmental components to infer their potential drivers of environmental filtering, dispersal limitation, and biotic interactions. We found that functional turnover was often lower than expected given the taxonomic turnover, whereas phylogenetic turnover was often higher than expected. Phylogenetic Dpw (e.g., interfamily species) turnover exhibited a distance-decay pattern, likely reflecting limited dispersal or abiotic filtering that leads to the spatial aggregation of specific plant lineages. Conversely, both functional and phylogenetic Dnn (e.g., intrageneric species) exhibited an inverted distance-decay pattern, likely reflecting strong biotic interactions among spatially and phylogenetically close species leading to phylogenetic and functional divergence. While the spatial distance was generally a better predictor of β diversity than environmental distance, the joint effect of environmental and spatial distance usually overrode their respective pure effects. These findings suggest that root neighborhood functional homogeneity may somewhat increase forest resilience after disturbance by exhibiting an insurance effect. Likewise, root neighborhood phylogenetic heterogeneity may enhance plant fitness by hindering the transmission of host-specific pathogens through root networks or by promoting interspecific niche complementarity not captured by species functions. Our study highlights the potential role of root-centric β diversity in mediating community structures and functions largely ignored in previous studies.
Collapse
Affiliation(s)
- Wenqi Luo
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Youshi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fucheng Luan
- Guangdong Chebaling National Nature Reserve, Shaoguan, China
| | - Yonglin Zhong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Buhang Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
62
|
de Tomás Marín S, Galán Díaz J, Rodríguez-Calcerrada J, Prieto I, de la Riva EG. Linking functional composition moments of the sub-Mediterranean ecotone with environmental drivers. FRONTIERS IN PLANT SCIENCE 2023; 14:1303022. [PMID: 38143583 PMCID: PMC10748396 DOI: 10.3389/fpls.2023.1303022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
Introduction Functional trait-based approaches are extensively applied to the study of mechanisms governing community assembly along environmental gradients. These approaches have been classically based on studying differences in mean values among species, but there is increasing recognition that alternative metrics of trait distributions should be considered to decipher the mechanisms determining community assembly and species coexistence. Under this framework, the main aim of this study is to unravel the effects of environmental conditions as drivers of plant community assembly in sub-Mediterranean ecotones. Methods We set 60 plots in six plant communities of a sub-Mediterranean forest in Central Spain, and measured key above- and belowground functional traits in 411 individuals belonging to 19 species, along with abiotic variables. We calculated community-weighted mean (CWM), skewness (CWS) and kurtosis (CWK) of three plant dimensions, and used maximum likelihood techniques to analyze how variation in these functional community traits was driven by abiotic factors. Additionally, we estimated the relative contribution of intraspecific trait variability and species turnover to variation in CWM. Results and discussion The first three axes of variation of the principal component analyses were related to three main plant ecological dimensions: Leaf Economics Spectrum, Root Economics Spectrum and plant hydraulic architecture, respectively. Type of community was the most important factor determining differences in the functional structure among communities, as compared to the role of abiotic variables. We found strong differences among communities in their CWMs in line with their biogeographic origin (Eurosiberian vs Mediterranean), while differences in CWS and CWK indicate different trends in the functional structure among communities and the coexistence of different functional strategies, respectively. Moreover, changes in functional composition were primarily due to intraspecific variability. Conclusion We observed a high number of strategies in the forest with the different communities spreading along the acquisitive-conservative axis of resource-use, partly matching their Eurosiberian-Mediterranean nature, respectively. Intraspecific trait variability, rather than species turnover, stood as the most relevant factor when analyzing functional changes and assembly patterns among communities. Altogether, our data support the notion that ecotones are ecosystems where relatively minor environmental shifts may result in changes in plant and functional composition.
Collapse
Affiliation(s)
- Sergio de Tomás Marín
- Department of Ecology, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
| | - Javier Galán Díaz
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Jesús Rodríguez-Calcerrada
- Functioning of Forest Systems in a Changing Environment Research Group, Universidad Politécnica de Madrid, Madrid, Spain
| | - Iván Prieto
- Ecology Department, Faculty of Biology and Environmental Sciences, Universidad de León, León, Spain
| | - Enrique G. de la Riva
- Department of Ecology, Brandenburgische Technische Universität Cottbus-Senftenberg, Cottbus, Germany
- Ecology Department, Faculty of Biology and Environmental Sciences, Universidad de León, León, Spain
| |
Collapse
|
63
|
Lemoine T, Violle C, Montazeaud G, Isaac ME, Rocher A, Fréville H, Fort F. Plant trait relationships are maintained within a major crop species: lack of artificial selection signal and potential for improved agronomic performance. THE NEW PHYTOLOGIST 2023; 240:2227-2238. [PMID: 37771248 DOI: 10.1111/nph.19279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/05/2023] [Indexed: 09/30/2023]
Abstract
The exploration of phenotypic spaces of large sets of plant species has considerably increased our understanding of diversification processes in the plant kingdom. Nevertheless, such advances have predominantly relied on interspecific comparisons that hold several limitations. Here, we grew in the field a unique set of 179 inbred lines of durum wheat, Triticum turgidum spp. durum, characterized by variable degrees of artificial selection. We measured aboveground and belowground traits as well as agronomic traits to explore the functional and agronomic trait spaces and to investigate trait-to-agronomic performance relationships. We showed that the wheat functional trait space shared commonalities with global cross-species spaces previously described, with two main axes of variation: a root foraging axis and a slow-fast trade-off axis. Moreover, we detected a clear signature of artificial selection on the variation of agronomic traits, unlike functional traits. Interestingly, we identified alternative phenotypic combinations that can optimize crop performance. Our work brings insightful knowledge about the structure of phenotypic spaces of domesticated plants and the maintenance of phenotypic trade-offs in response to artificial selection, with implications for trade-off-free and multi-criteria selection in plant breeding.
Collapse
Affiliation(s)
- Taïna Lemoine
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, 34000, France
| | - Germain Montazeaud
- Department of Ecology and Evolution, University of Lausanne, Lausanne, CH-1015, Switzerland
| | - Marney E Isaac
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, M1C 1A4, ON, Canada
| | - Aline Rocher
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Hélène Fréville
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34000, France
| | - Florian Fort
- CEFE, Univ Montpellier, Institut Agro, CNRS, EPHE, IRD, Montpellier, 34000, France
| |
Collapse
|
64
|
Hennecke J, Bassi L, Mommer L, Albracht C, Bergmann J, Eisenhauer N, Guerra CA, Heintz-Buschart A, Kuyper TW, Lange M, Solbach MD, Weigelt A. Responses of rhizosphere fungi to the root economics space in grassland monocultures of different age. THE NEW PHYTOLOGIST 2023; 240:2035-2049. [PMID: 37691273 DOI: 10.1111/nph.19261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Recent studies on root traits have shown that there are two axes explaining trait variation belowground: the collaboration axis with mycorrhizal partners and the conservation ('fast - slow') axis. However, it is yet unknown whether these trait axes affect the assembly of soilborne fungi. We expect saprotrophic fungi to link to the conservation axis of root traits, whereas pathogenic and arbuscular mycorrhizal fungi link to the collaboration axis, but in opposite directions, as arbuscular mycorrhizal fungi might provide pathogen protection. To test these hypotheses, we sequenced rhizosphere fungal communities and measured root traits in monocultures of 25 grassland plant species, differing in age. Within the fungal guilds, we evaluated fungal species richness, relative abundance and community composition. Contrary to our hypotheses, fungal diversity and relative abundance were not strongly related to the root trait axes. However, saprotrophic fungal community composition was affected by the conservation gradient and pathogenic community composition by the collaboration gradient. The rhizosphere AMF community composition did not change along the collaboration gradient, even though the root trait axis was in line with the root mycorrhizal colonization rate. Overall, our results indicate that in the long term, the root trait axes are linked with fungal community composition.
Collapse
Affiliation(s)
- Justus Hennecke
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Leonardo Bassi
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| | - Liesje Mommer
- Forest Ecology and Forest Management Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Cynthia Albracht
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, 06120, Halle, Germany
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), 14641, Paulinenaue, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, 04103, Leipzig, Germany
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, 06108, Halle (Saale), Germany
| | - Anna Heintz-Buschart
- Biosystems Data Analysis, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Thomas W Kuyper
- Soil Biology Group, Wageningen University, 6708 PB, Wageningen, the Netherlands
| | - Markus Lange
- Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, 07745, Jena, Germany
| | - Marcel Dominik Solbach
- Terrestrial Ecology Group, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
65
|
Liu Y, Cordero I, Bardgett RD. Defoliation and fertilisation differentially moderate root trait effects on soil abiotic and biotic properties. THE JOURNAL OF ECOLOGY 2023; 111:2733-2749. [PMID: 38516387 PMCID: PMC10952586 DOI: 10.1111/1365-2745.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 09/15/2023] [Indexed: 03/23/2024]
Abstract
Root functional traits are known to influence soil properties that underpin ecosystem functioning. Yet few studies have explored how root traits simultaneously influence physical, chemical, and biological properties of soil, or how these responses are modified by common grassland perturbations that shape roots, such as defoliation and fertilisation.Here, we explored how root traits of a wide range of grassland plant species with contrasting resource acquisition strategies (i.e. conservative vs. exploitative strategy plant species) respond to defoliation and fertilisation individually and in combination, and examined cascading impacts on a range of soil abiotic and biotic properties that underpin ecosystem functioning.We found that the amplitude of the response of root traits to defoliation and fertilisation varied among plant species, in most cases independently of plant resource acquisition strategies. However, the direction of the root trait responses (increase or decrease) to perturbations was consistent across all plant species, with defoliation and fertilisation exerting opposing effects on root traits. Specific root length increased relative to non-perturbed control in response to defoliation, while root biomass, root mass density, and root length density decreased. Fertilisation induced the opposite responses. We also found that both defoliation and fertilisation individually enhanced the role of root traits in regulating soil biotic and abiotic properties, especially soil aggregate stability. Synthesis: Our results indicate that defoliation and fertilisation, two common grassland perturbations, have contrasting impacts on root traits of grassland plant species, with direct and indirect short-term consequences for a wide range of soil abiotic and biotic properties that underpin ecosystem functioning.
Collapse
Affiliation(s)
- Yan Liu
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| | - Irene Cordero
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
- Department of Community EcologySwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Richard D. Bardgett
- Department of Earth and Environmental SciencesThe University of ManchesterManchesterUK
| |
Collapse
|
66
|
Luo H, Wang C, Zhang K, Ming L, Chu H, Wang H. Elevational changes in soil properties shaping fungal community assemblages in terrestrial forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165840. [PMID: 37516167 DOI: 10.1016/j.scitotenv.2023.165840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023]
Abstract
Environmental variables shifted by climate change act as driving factors in determining plant-associated microbial communities in terrestrial ecosystems. However, how elevation-induced changes in soil properties shape the microbial community in forest ecosystems remains less understood. Thus, the Pinus tabuliformis forests at elevations of 1500 m, 1900 m, and 2300 m above sea level were investigated to explore the effect of environmental factors on microbial assemblage. Significant changes in the soil physicochemical properties were found across the investigated elevations, such as soil moisture, temperature, pH, nitrogen (N), and phosphorus (P). Soil enzymatic activities, including soil sucrase, phosphatase, and dehydrogenase, were significantly affected by elevation, and sucrase showed a linear correlation with soil organic matter. Furthermore, the richness of fungal communities in the rhizosphere was decreased as elevation increased, while a humpback pattern was found for roots. Certain core microbiota members, such as Agaricomycetes, Leotiomycetes, and Pezizomycetes, were crucial in maintaining a stable ecological niche in both the root and rhizosphere. We also found that shifting of fungal communities in the rhizosphere were more related to physical properties (e.g., pH, soil moisture, and soil temperature), while changes in root fungal communities along elevation gradient were related mostly to soil nutrients (e.g., soil N and P). Overall, this study demonstrates that the assemblage of the root and rhizosphere fungal communities in P. tabuliformis forest primarily depends on elevation-induced changes in environmental variables and highlights the importance of predicting fungal responses to future climate change.
Collapse
Affiliation(s)
- Huan Luo
- College of Forestry, Northwest A&F University, Yangling, China; Department of Applied Biology, Chungnam National University, Daejeon, South Korea
| | - Chunyan Wang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Kaile Zhang
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA
| | - Li Ming
- College of Forestry, Northwest A&F University, Yangling, China; China University of Mining and Technology, School of Mechanics and Civil Engineering, China
| | - Honglong Chu
- College of Forestry, Northwest A&F University, Yangling, China; College of Biological Resource and Food Engineering, Center for Yunnan Plateau Biological Resources Protection and Utilization, Qujing Normal University, Qujing, China
| | - Haihua Wang
- College of Forestry, Northwest A&F University, Yangling, China; North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, USA.
| |
Collapse
|
67
|
Baykalov P, Bussmann B, Nair R, Smith AG, Bodner G, Hadar O, Lazarovitch N, Rewald B. Semantic segmentation of plant roots from RGB (mini-) rhizotron images-generalisation potential and false positives of established methods and advanced deep-learning models. PLANT METHODS 2023; 19:122. [PMID: 37932745 PMCID: PMC10629126 DOI: 10.1186/s13007-023-01101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/27/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Manual analysis of (mini-)rhizotron (MR) images is tedious. Several methods have been proposed for semantic root segmentation based on homogeneous, single-source MR datasets. Recent advances in deep learning (DL) have enabled automated feature extraction, but comparisons of segmentation accuracy, false positives and transferability are virtually lacking. Here we compare six state-of-the-art methods and propose two improved DL models for semantic root segmentation using a large MR dataset with and without augmented data. We determine the performance of the methods on a homogeneous maize dataset, and a mixed dataset of > 8 species (mixtures), 6 soil types and 4 imaging systems. The generalisation potential of the derived DL models is determined on a distinct, unseen dataset. RESULTS The best performance was achieved by the U-Net models; the more complex the encoder the better the accuracy and generalisation of the model. The heterogeneous mixed MR dataset was a particularly challenging for the non-U-Net techniques. Data augmentation enhanced model performance. We demonstrated the improved performance of deep meta-architectures and feature extractors, and a reduction in the number of false positives. CONCLUSIONS Although correction factors are still required to match human labelled root lengths, neural network architectures greatly reduce the time required to compute the root length. The more complex architectures illustrate how future improvements in root segmentation within MR images can be achieved, particularly reaching higher segmentation accuracies and model generalisation when analysing real-world datasets with artefacts-limiting the need for model retraining.
Collapse
Affiliation(s)
- Pavel Baykalov
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
- Vienna Scientific Instruments GmbH, Alland, Austria
| | - Bart Bussmann
- IDLab, Department of Computer Science, University of Antwerp - Imec, Antwerp, Belgium
| | - Richard Nair
- Dept. Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- Discipline of Botany, School of Natural Sciences, Trinity College, Dublin, Ireland
| | | | - Gernot Bodner
- Institute of Agronomy, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Ofer Hadar
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Naftali Lazarovitch
- Wyler Department for Dryland Agriculture, French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Beersheba, Israel
| | - Boris Rewald
- Institute of Forest Ecology, Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria.
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
68
|
Betekhtina AA, Tukova DE, Veselkin DV. Root structure syndromes of four families of monocots in the Middle Urals. PLANT DIVERSITY 2023; 45:722-731. [PMID: 38197004 PMCID: PMC10772101 DOI: 10.1016/j.pld.2023.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/11/2024]
Abstract
The present article tests the following general assumption: plant taxa with different specializations towards mycorrhizal interactions should have different root syndromes. Roots of 61 species common in boreal zone were studied: 16 species of Poaceae, 24 species of Cyperaceae, 14 species of Orchidaceae, and 7 species of Iridaceae. Using a fixed material of 5 individuals of each species, the following was determined: number of orders of branching roots; transverse dimensions of root, stele and cortex; number of primary xylem vessels and exodermis layers; length of root hairs; abundance of mycorrhiza. Species of each family had well-defined syndromes. Roots of Orchidaceae and Iridaceae were thick with a large stele and developed exodermis. Orchidaceae had no branching roots and had long root hairs. In Iridaceae, roots were branched, and root hairs were short. Roots of Poaceae and Cyperaceae were thin with a relatively thin stele. Root hairs were short in Poaceae and long in Cyperaceae. Our finding that root syndromes of four families of monocots differed is a new and unexpected discovery. The high specificity of root syndromes in Cyperaceae, Iridaceae, Poaceae, and Orchidaceae indicates that species of these families use different strategies to obtain water and soil nutrients.
Collapse
Affiliation(s)
- Anna A. Betekhtina
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia
| | - Daria E. Tukova
- Ural Federal University Named After the First President of Russia B. N. Yeltsin, 19 Mira Street, Ekaterinburg 620002, Russia
| | - Denis V. Veselkin
- Ural Branch of the Russian Academy of Sciences, Institute of Plant and Animal Ecology, 8 Marta Street, Ekaterinburg 620144, Russia
| |
Collapse
|
69
|
Fan R, Huang Y, Liu W, Jiang S, Ji W. Dauciform roots affect the position of the neighboring plants on the economic spectrum in degraded alpine meadows. FRONTIERS IN PLANT SCIENCE 2023; 14:1277013. [PMID: 37936938 PMCID: PMC10627033 DOI: 10.3389/fpls.2023.1277013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Background and aims Special root structures that can dissolve insoluble phosphorus locked in soil are supposed to contribute not only to the growing status of themselves but also to the neighbouring plants. However, whether dauciform roots have any effect on the neighbouring plants and how does it respond to meadow degradation had not been studied. Methods Alpine meadows with different degradation statuses were selected and the functional traits of Carex filispica and the co-occurring species Polygonum viviparum were measured to explore their response to degradation, as well as the response of Polygonum viviparum to the dauciform roots of Carex filispica. Results The results showed that 1) the number of dauciform roots decreased with the intensifying degradation, positively related to available phosphorus in the soil and negatively related to the aboveground phosphorus of Carex filispica. 2) Carex filispica and Polygonum viviparum are similar in specific leaf area and specific root area, yet different in the phosphorus content. The available phosphorus in the soil was negatively related to the aboveground phosphorus of Carex filispica and positively related to that of Polygonum viviparum. 3) When lightly degraded, the proportion of dauciform roots had positive effects on the aboveground resource-acquiring traits of Polygonum viviparum, which were no longer significant at heavy degradation. 4) Polygonum viviparum and Carex filispica without dauciform roots have similar performance: a decrease of belowground carbon with the increasing degradation, and a trend toward resource conservation with the increasing proportion of dauciform roots, which did not exist in Carex filispica with dauciform roots. Conclusion Our study found that dauciform roots had a beneficial effect on the resource acquisition of their neighbouring plants. However, due to the uncontrollable nature of natural habitats, whether this effect is stable and strong enough to be performed in ecological restoration requires further lab-controlled studies.
Collapse
Affiliation(s)
| | | | | | | | - Wenli Ji
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
70
|
Ray T, Delory BM, Beugnon R, Bruelheide H, Cesarz S, Eisenhauer N, Ferlian O, Quosh J, von Oheimb G, Fichtner A. Tree diversity increases productivity through enhancing structural complexity across mycorrhizal types. SCIENCE ADVANCES 2023; 9:eadi2362. [PMID: 37801499 PMCID: PMC10558120 DOI: 10.1126/sciadv.adi2362] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Tree species diversity and mycorrhizal associations play a central role for forest productivity, but factors driving positive biodiversity-productivity relationships remain poorly understood. In a biodiversity experiment manipulating tree diversity and mycorrhizal associations, we examined the roles of above- and belowground processes in modulating wood productivity in young temperate tree communities and potential underlying mechanisms. We found that tree species richness, but not mycorrhizal associations, increased forest productivity by enhancing aboveground structural complexity within communities. Structurally complex communities were almost twice as productive as structurally simple stands, particularly when light interception was high. We further demonstrate that overyielding was largely explained by positive net biodiversity effects on structural complexity with functional variation in shade tolerance and taxonomic diversity being key drivers of structural complexity in mixtures. Consideration of stand structural complexity appears to be a crucial element in predicting carbon sequestration in the early successional stages of mixed-species forests.
Collapse
Affiliation(s)
- Tama Ray
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Benjamin M. Delory
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig Institute for Meteorology, Universität Leipzig, Stephanstraße 3, 04103 Leipzig, Germany
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, 1919, route de Mende, F-34293 Montpellier Cedex 5, France
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Goddert von Oheimb
- Institute of General Ecology and Environmental Protection, Technische Universität Dresden, Tharandt, Germany
| | - Andreas Fichtner
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| |
Collapse
|
71
|
Yang Y, Shi Y, Wei X, Han J, Wang J, Mu C, Zhang J. Changes in mass allocation play a more prominent role than morphology in resource acquisition of the rhizomatous Leymus chinensis under drought stress. ANNALS OF BOTANY 2023; 132:121-132. [PMID: 37279964 PMCID: PMC10550271 DOI: 10.1093/aob/mcad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/05/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND AIMS Plants can respond to drought by changing their relative investments in the biomass and morphology of each organ. The aims of this study were to quantify the relative contribution of changes in morphology vs. allocation and determine how they affect each other. These results should help us understand the mechanisms that plants use to respond to drought events. METHODS In a glasshouse experiment, we applied a drought treatment (well-watered vs. drought) at early and late stages of plant growth, leading to four treatment combinations (well-watered in both early and late periods, WW; drought in the early period and well-watered in the late period, DW; well-watered in the early period and drought in the late period, WD; drought in both early and late periods, DD). We used the variance partitioning method to compare the contribution of organ (leaf and root) biomass allocation and morphology to the leaf area ratio, root length ratio and root area ratio, for the rhizomatous grass Leymus chinensis (Trin.) Tzvelev. KEY RESULTS Compared with the continuously well-watered treatment, the leaf area ratio, root length ratio and root area ratio showed increasing trends under various drought treatments. The contribution of leaf mass allocation to leaf area ratio differed among the drought treatments and was 2.1- to 5.3-fold greater than leaf morphology, and the contribution of root mass allocation to root length ratio was ~2-fold greater than that of root morphology. In contrast, root morphology contributed more to the root area ratio than biomass allocation under drought in both the early and late periods. There was a negative correlation between the ratio of leaf mass fraction to root mass fraction and the ratio of specific leaf area to specific root length (or specific root area). CONCLUSIONS This study suggested that organ biomass allocation drove a larger proportion of variation than morphological traits for the absorption of resources in this rhizomatous grass. These findings should help us understand the adaptive mechanisms of plants when they are confronted with drought stress.
Collapse
Affiliation(s)
- Yuheng Yang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Yujie Shi
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Xiaowei Wei
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jiayu Han
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Junfeng Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Chunsheng Mu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| | - Jinwei Zhang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
72
|
Chen J, Wang L, Liang X, Li B, He Y, Zhan F. An arbuscular mycorrhizal fungus differentially regulates root traits and cadmium uptake in two maize varieties. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115458. [PMID: 37690173 DOI: 10.1016/j.ecoenv.2023.115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are symbiotic fungi that colonize plant roots, and they are more common in Cd-polluted habitats. However, there is limited understanding of the response of root traits and cadmium (Cd) uptake to AMF in different crop varieties. Two maize varieties, Panyu 3 and Ludan 8, with high and low Cd uptake capacities, respectively, were cultivated as host plants in a pot experiment with Cd-polluted soil (17.1 mg/kg Cd). The effects of AMF on the growth, mineral nutrient concentration, root traits, phytohormone concentrations and Cd uptake of the two maize varieties and their comprehensive response to AMF fungal inoculation were investigated. AMF improved growth, mineral nutrient levels and root morphology and increased lignin and phytohormone concentrations in roots and Cd uptake in the two maize varieties. However, the two maize varieties, Panyu 3 and Ludan 8, had different responses to AMF, and their comprehensive response indices were 753.6% and 389.4%, respectively. The root biomass, branch number, abscisic acid concentrations, lignin concentrations and Cd uptake of maize Panyu 3 increased by 151.1%, 28.6%, 139.7%, 99.5% and 84.7%, respectively. The root biomass, average diameter, auxin concentration, lignin concentration and Cd uptake of maize Ludan 8 increased by 168.7%, 31.8%, 31.4%, 41.7% and 136.7%, respectively. Moreover, Cd uptake in roots presented very significant positive correlations with the average root diameter and abscisic acid concentration. A structural equation model indicated that the root abscisic acid concentration and root surface area had positive effects on Cd uptake by the Panyu 3 maize roots; the root abscisic acid concentration and root tip number had positive effects on Cd uptake by the Ludan 8 maize roots. Thus, AMF differentially regulated Cd uptake in the two maize varieties, and the regulatory effect was closely related to root traits and phytohormone concentrations.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Lei Wang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xinran Liang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Bo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
73
|
Zhang W, Gong J, Zhang Z, Song L, Lambers H, Zhang S, Dong J, Dong X, Hu Y. Soil phosphorus availability alters the correlations between root phosphorus-uptake rates and net photosynthesis of dominant C 3 and C 4 species in a typical temperate grassland of Northern China. THE NEW PHYTOLOGIST 2023; 240:157-172. [PMID: 37547950 DOI: 10.1111/nph.19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Phosphorus (P) fertilization can alleviate a soil P deficiency in grassland ecosystems. Understanding plant functional traits that enhance P uptake can improve grassland management. We measured impacts of P addition on soil chemical and microbial properties, net photosynthetic rate (Pn ) and nonstructural carbohydrate concentrations ([NSC]), and root P-uptake rate (PUR), morphology, anatomy, and exudation of two dominant grass species: Leymus chinensis (C3 ) and Cleistogenes squarrosa (C4 ). For L. chinensis, PUR and Pn showed a nonlinear correlation. Growing more adventitious roots compensated for the decrease in P transport per unit root length, so that it maintained a high PUR. For C. squarrosa, PUR and Pn presented a linear correlation. Increased Pn was associated with modifications in root morphology, which further enhanced its PUR and a greater surplus of photosynthate and significantly stimulated root exudation (proxied by leaf [Mn]), which had a greater impact on rhizosheath micro-environment and microbial PLFAs. Our results present correlations between the PUR and the Pn of L. chinensis and C. squarrosa and reveal that NSC appeared to drive the modifications of root morphology and exudation; they provide more objective basis for more efficient P-input in grasslands to address the urgent problem of P deficiency.
Collapse
Affiliation(s)
- Weiyuan Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jirui Gong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Zihe Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Liangyuan Song
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Crawley, Perth, WA, 6009, Australia
| | - Siqi Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiaojiao Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Xuede Dong
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Yuxia Hu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, MOE Engineering Research Center of Desertification and Blown-Sand Control, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
74
|
Ren H, Gao G, Ma Y, Li Z, Wang S, Gu J. Shift of root nitrogen-acquisition strategy with tree age is mediated by root functional traits along the collaboration gradient of the root economics space. TREE PHYSIOLOGY 2023; 43:1341-1353. [PMID: 37073458 DOI: 10.1093/treephys/tpad047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Root nitrogen (N)-uptake rate and uptake preference, and their association with root morphological and chemical traits are important to characterize root N-acquisition strategies of trees. However, how the root N-acquisition strategy varies with tree age, especially for those species that coexist at a common site, remains unknown. In this study, a field isotopic hydroponic method was used to determine the uptake rate and contribution of NH4+, NO3- and glycine, for three coexisting ectomycorrhizal coniferous species [Pinus koraiensis (Korean pine), Picea koraiensis (Korean spruce) and Abies nephrolepis (smelly fir)] at three age classes (young, middle-aged and mature) in a temperate forest. Concurrently, root morphological and chemical traits, as well as mycorrhizal colonization rate were determined. Our results show that the root uptake rate of total N and NH4+ gradually decreased across all three species with increasing tree age. The three species at all age classes preferred NH4+, except for middle-aged Korean spruce and mature smelly fir, which preferred glycine. In contrast, all three species showed the lowest acquisition of NO3-. According to the conceptual framework of 'root economics space', only a 'collaboration' gradient (i.e. dimension of root diameter vs specific root length or area) was identified for each species, in which root N-uptake rate loaded heavily on the side of 'do-it-yourself' (i.e. foraging N more by roots). Young trees of all species tended to exhibit the 'do-it-yourself' strategy for N uptake, and mature trees had an 'outsourcing' strategy (i.e. foraging N by a mycorrhizal partner), whereas middle-aged trees showed a balanced strategy. These findings suggest that shifts of root N-acquisition strategy with tree age in these species are mainly mediated by root traits along the 'collaboration' gradient, which advances our understanding of belowground competition, species coexistence and N cycling in temperate forests.
Collapse
Affiliation(s)
- Hao Ren
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Guoqiang Gao
- Sichuan Collegiate Engineering Research Center for Chuanxibei RHS Construction, Mianyang Normal University, Mianyang 621000, China
| | - Yaoyuan Ma
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zuwang Li
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Siyuan Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiacun Gu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
75
|
Nie W, Dong Y, Liu Y, Tan C, Wang Y, Yuan Y, Ma J, An S, Liu J, Xiao W, Jiang Z, Jia Z, Wang J. Climatic responses and variability in bark anatomical traits of 23 Picea species. FRONTIERS IN PLANT SCIENCE 2023; 14:1201553. [PMID: 37528988 PMCID: PMC10388546 DOI: 10.3389/fpls.2023.1201553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
In woody plants, bark is an important protective tissue which can participate in photosynthesis, manage water loss, and transport assimilates. Studying the bark anatomical traits can provide insight into plant environmental adaptation strategies. However, a systematic understanding of the variability in bark anatomical traits and their drivers is lacking in woody plants. In this study, the bark anatomical traits of 23 Picea species were determined in a common garden experiment. We analyzed interspecific differences and interpreted the patterns in bark anatomical traits in relation to phylogenetic relationships and climatic factors of each species according to its global distribution. The results showed that there were interspecific differences in bark anatomical traits of Picea species. Phloem thickness was positively correlated with parenchyma cell size, possibly related to the roles of parenchyma cells in the radial transport of assimilates. Sieve cell size was negatively correlated with the radial diameter of resin ducts, and differences in sieve cells were possibly related to the formation and expansion of resin ducts. There were no significant phylogenetic signals for any bark anatomical trait, except the tangential diameter of resin ducts. Phloem thickness and parenchyma cell size were affected by temperature-related factors of their native range, while sieve cell size was influenced by precipitation-related factors. Bark anatomical traits were not significantly different under wet and dry climates. This study makes an important contribution to our understanding of variability in bark anatomical traits among Picea species and their ecological adaptations.
Collapse
Affiliation(s)
- Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yao Dong
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Ya Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jianwei Ma
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, China
| | - Sanping An
- Research Institute of Forestry of Xiaolong Mountain, Gansu Provincial Key Laboratory of Secondary Forest Cultivation, Tianshui, China
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zeping Jiang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
76
|
Wang C, Hou Y, Hu Y, Zheng R, Li X. Plant diversity increases above- and below-ground biomass by regulating multidimensional functional trait characteristics. ANNALS OF BOTANY 2023; 131:1001-1010. [PMID: 37119271 PMCID: PMC10332393 DOI: 10.1093/aob/mcad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIMS Nitrogen enrichment affects biodiversity, plant functional traits and ecosystem functions. However, the direct and indirect effects of nitrogen addition and biodiversity on the links between plant traits and ecosystem functions have been largely overlooked, even though multidimensional characteristics of plant functional traits are probably critical predictors of ecosystem functions. METHODS To investigate the mechanism underlying the links between plant trait identity, diversity, network topology and above- and below-ground biomass along a plant species richness gradient under different nitrogen addition levels, a common garden experiment was conducted in which those driving factors were manipulated. KEY RESULTS The study found that nitrogen addition increased above-ground biomass but not below-ground biomass, while species richness was positively associated with above- and below-ground biomass. Nitrogen addition had minor effects on plant trait identity and diversity, and on the connectivity and complexity of the trait networks. However, species richness increased above-ground biomass mainly by increasing leaf trait diversity and network modularity, and enhanced below-ground biomass through an increase in root nitrogen concentration and network modularity. CONCLUSIONS The results demonstrate the mechanistic links between community biomass and plant trait identity, diversity and network topology, and show that the trait network architecture could be an indicator of the effects of global changes on ecosystem functions as importantly as trait identity and diversity.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanhui Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yanxia Hu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
77
|
Rathore N, Hanzelková V, Dostálek T, Semerád J, Schnablová R, Cajthaml T, Münzbergová Z. Species phylogeny, ecology, and root traits as predictors of root exudate composition. THE NEW PHYTOLOGIST 2023. [PMID: 37421208 DOI: 10.1111/nph.19060] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/04/2023] [Indexed: 07/10/2023]
Abstract
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Collapse
Affiliation(s)
- Nikita Rathore
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Věra Hanzelková
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Tomáš Dostálek
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Renáta Schnablová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, Czech Republic
| | - Zuzana Münzbergová
- Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| |
Collapse
|
78
|
Eon P, Robert T, Goutouly JP, Aurelle V, Cornu JY. Cover crop response to increased concentrations of copper in vineyard soils: Implications for copper phytoextraction. CHEMOSPHERE 2023; 329:138604. [PMID: 37028730 DOI: 10.1016/j.chemosphere.2023.138604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
The use of cover crops (CCs) in viticulture is threatened by the contamination of vineyard soils by copper (Cu). This study investigated the response of CCs to increased concentrations of Cu in soil as a way to assess their sensitivity to Cu and their Cu phytoextraction ability. Our first experiment used microplots to compare the effect of increasing soil Cu content from 90 to 204 mg kg-1 on the growth, Cu accumulation level, and elemental profile of six CC species (Brassicaceae, Fabaceae and Poaceae) commonly sown in vineyard inter-row. The second experiment quantified the amount of Cu exported by a mixture of CCs in vineyards with contrasted soil characteristics. Experiment 1 showed that increasing the soil Cu content from 90 to 204 mg kg-1 was detrimental to the growth of Brassicaceae and faba bean. The elemental composition of plant tissues was specific to each CC and almost no change in composition resulted from the increase in soil Cu content. Crimson clover was the most promising CC for Cu phytoextraction as it produced the most aboveground biomass, and, along with faba bean, accumulated the highest concentration of Cu in its shoots. Experiment 2 showed that the amount of Cu extracted by CCs depended on the availability of Cu in the topsoil and CC growth in the vineyard, and ranged from 25 to 166 g per hectare. Taken together, these results emphasize the fact that the use of CCs in vineyards may be jeopardised by the contamination of soils by Cu, and that the amount of Cu exported by CCs is not sufficiently high to offset the amount of Cu supplied by Cu-based fungicides. Recommendations are provided for maximizing the environmental benefits provided by CCs in Cu-contaminated vineyard soils.
Collapse
Affiliation(s)
- Pierre Eon
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France.
| | - Thierry Robert
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| | - Jean-Pascal Goutouly
- UEVB, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France; EGFV, Univ. Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, F-33882, Villenave d'Ornon, France
| | - Violette Aurelle
- Chambre d'Agriculture de Gironde, Vinopôle Bordeaux Aquitaine, 33295, Blanquefort Cedex, France
| | - Jean-Yves Cornu
- ISPA, Bordeaux Sciences Agro, INRAE, 33140, Villenave d'Ornon, France
| |
Collapse
|
79
|
Da R, Fan C, Zhang C, Zhao X, von Gadow K. Are absorptive root traits good predictors of ecosystem functioning? A test in a natural temperate forest. THE NEW PHYTOLOGIST 2023; 239:75-86. [PMID: 36978285 DOI: 10.1111/nph.18915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 06/02/2023]
Abstract
Trait-based approaches provide a useful framework to predict ecosystem functions under intensifying global change. However, our current understanding of trait-functioning relationships mainly relies on aboveground traits. Belowground traits (e.g. absorptive root traits) are rarely studied although these traits are related to important plant functions. We analyzed four pairs of analogous leaf and absorptive root traits of woody plants in a temperate forest and examined how these traits are coordinated at the community-level, and to what extent the trait covariation depends on local-scale environmental conditions. We then quantified the contributions of leaf and absorptive root traits and the environmental conditions in determining two important forest ecosystem functions, aboveground carbon storage, and woody biomass productivity. The results showed that both morphological trait pairs and chemical trait pairs exhibited positive correlations at the community level. Absorptive root traits show a strong response to environmental conditions compared to leaf traits. We also found that absorptive root traits were better predictors of the two forest ecosystem functions than leaf traits and environmental conditions. Our study confirms the important role of belowground traits in modulating ecosystem functions and deepens our understanding of belowground responses to changing environmental conditions.
Collapse
Affiliation(s)
- Rihan Da
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chunyu Fan
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Klaus von Gadow
- Faculty of Forestry and Forest Ecology, Georg-August-University Göttingen, Büsgenweg 5, D-37077, Göttingen, Germany
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, 7600, South Africa
| |
Collapse
|
80
|
Wang B, McCormack ML, Ricciuto DM, Yang X, Iversen CM. Embracing fine-root system complexity in terrestrial ecosystem modeling. GLOBAL CHANGE BIOLOGY 2023; 29:2871-2885. [PMID: 36861355 DOI: 10.1111/gcb.16659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/15/2023] [Indexed: 05/03/2023]
Abstract
Projecting the dynamics and functioning of the biosphere requires a holistic consideration of whole-ecosystem processes. However, biases toward leaf, canopy, and soil modeling since the 1970s have constantly left fine-root systems being rudimentarily treated. As accelerated empirical advances in the last two decades establish clearly functional differentiation conferred by the hierarchical structure of fine-root orders and associations with mycorrhizal fungi, a need emerges to embrace this complexity to bridge the data-model gap in still extremely uncertain models. Here, we propose a three-pool structure comprising transport and absorptive fine roots with mycorrhizal fungi (TAM) to model vertically resolved fine-root systems across organizational and spatial-temporal scales. Emerging from a conceptual shift away from arbitrary homogenization, TAM builds upon theoretical and empirical foundations as an effective and efficient approximation that balances realism and simplicity. A proof-of-concept demonstration of TAM in a big-leaf model both conservatively and radically shows robust impacts of differentiation within fine-root systems on simulating carbon cycling in temperate forests. Theoretical and quantitative support warrants exploiting its rich potentials across ecosystems and models to confront uncertainties and challenges for a predictive understanding of the biosphere. Echoing a broad trend of embracing ecological complexity in integrative ecosystem modeling, TAM may offer a consistent framework where modelers and empiricists can work together toward this grand goal.
Collapse
Affiliation(s)
- Bin Wang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Daniel M Ricciuto
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Xiaojuan Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Colleen M Iversen
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
81
|
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Freschet GT, Guerrero-Ramírez NR, Kattge J, Kuyper TW, Laughlin DC, Meier IC, van der Plas F, Poorter H, Roumet C, van Ruijven J, Sabatini FM, Semchenko M, Sweeney CJ, Valverde-Barrantes OJ, York LM, McCormack ML. The importance of trait selection in ecology. Nature 2023; 618:E29-E30. [PMID: 37380696 DOI: 10.1038/s41586-023-06148-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/28/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Alexandra Weigelt
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Liesje Mommer
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | - Karl Andraczek
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Colleen M Iversen
- Oak Ridge National Laboratory, Climate Change Science Institute and Environmental Sciences Division, Oak Ridge, TN, USA
| | - Joana Bergmann
- Sustainable Grassland Systems, Leibniz Centre for Agricultural Landscape Research (ZALF), Paulinenaue, Germany
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Grégoire T Freschet
- Theoretical and Experimental Ecology Station (SETE), National Center for Scientific Research (CNRS), Moulis, France
| | - Nathaly R Guerrero-Ramírez
- Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Functional Biogeography, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Thom W Kuyper
- Soil Biology Group, Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | | | - Ina C Meier
- Functional Forest Ecology, Department of Biology, University of Hamburg, Barsbüttel-Willinghusen, Germany
| | - Fons van der Plas
- Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich, Jülich, Germany
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Catherine Roumet
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Department of Environmental Sciences, Wageningen University, Wageningen, the Netherlands
| | - Francesco Maria Sabatini
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Marina Semchenko
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Christopher J Sweeney
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
- Jealott's Hill International Research Centre, Syngenta, Bracknell, UK
| | - Oscar J Valverde-Barrantes
- Institute of Environment, Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Larry M York
- Oak Ridge National Laboratory, Center for Bioenergy Innovation and Biosciences Division, Oak Ridge, TN, USA
| | - M Luke McCormack
- The Root Lab, Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| |
Collapse
|
82
|
Chandregowda MH, Tjoelker MG, Pendall E, Zhang H, Churchill AC, Power SA. Belowground carbon allocation, root trait plasticity, and productivity during drought and warming in a pasture grass. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2127-2145. [PMID: 36640126 PMCID: PMC10084810 DOI: 10.1093/jxb/erad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Sustaining grassland production in a changing climate requires an understanding of plant adaptation strategies, including trait plasticity under warmer and drier conditions. However, our knowledge to date disproportionately relies on aboveground responses, despite the importance of belowground traits in maintaining aboveground growth, especially in grazed systems. We subjected a perennial pasture grass, Festuca arundinacea, to year-round warming (+3 °C) and cool-season drought (60% rainfall reduction) in a factorial field experiment to test the hypotheses that: (i) drought and warming increase carbon allocation belowground and shift root traits towards greater resource acquisition and (ii) increased belowground carbon reserves support post-drought aboveground recovery. Drought and warming reduced plant production and biomass allocation belowground. Drought increased specific root length and reduced root diameter in warmed plots but increased root starch concentrations under ambient temperature. Higher diameter and soluble sugar concentrations of roots and starch storage in crowns explained aboveground production under climate extremes. However, the lack of association between post-drought aboveground biomass and belowground carbon and nitrogen reserves contrasted with our predictions. These findings demonstrate that root trait plasticity and belowground carbon reserves play a key role in aboveground production during climate stress, helping predict pasture responses and inform management decisions under future climates.
Collapse
Affiliation(s)
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Elise Pendall
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Haiyang Zhang
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Amber C Churchill
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- Department of Ecology, Evolution and Behaviour, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| |
Collapse
|
83
|
Glass NT, Yun K, Dias de Oliveira EA, Zare A, Matamala R, Kim SH, Gonzalez-Meler M. Perennial grass root system specializes for multiple resource acquisitions with differential elongation and branching patterns. FRONTIERS IN PLANT SCIENCE 2023; 14:1146681. [PMID: 37008471 PMCID: PMC10064013 DOI: 10.3389/fpls.2023.1146681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Roots optimize the acquisition of limited soil resources, but relationships between root forms and functions have often been assumed rather than demonstrated. Furthermore, how root systems co-specialize for multiple resource acquisitions is unclear. Theory suggests that trade-offs exist for the acquisition of different resource types, such as water and certain nutrients. Measurements used to describe the acquisition of different resources should then account for differential root responses within a single system. To demonstrate this, we grew Panicum virgatum in split-root systems that vertically partitioned high water availability from nutrient availability so that root systems must absorb the resources separately to fully meet plant demands. We evaluated root elongation, surface area, and branching, and we characterized traits using an order-based classification scheme. Plants allocated approximately 3/4th of primary root length towards water acquisition, whereas lateral branches were progressively allocated towards nutrients. However, root elongation rates, specific root length, and mass fraction were similar. Our results support the existence of differential root functioning within perennial grasses. Similar responses have been recorded in many plant functional types suggesting a fundamental relationship. Root responses to resource availability can be incorporated into root growth models via maximum root length and branching interval parameters.
Collapse
Affiliation(s)
- Nicholas T. Glass
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyungdahm Yun
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | | | - Alina Zare
- Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL, United States
| | - Roser Matamala
- Environmental Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Soo-Hyung Kim
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, United States
| | - Miquel Gonzalez-Meler
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
84
|
Chao L, Liu Y, Zhang W, Wang Q, Guan X, Yang Q, Chen L, Zhang J, Hu B, Liu Z, Wang S, Freschet GT. Root functional traits determine the magnitude of the rhizosphere priming effect among eight tree species. OIKOS 2023. [DOI: 10.1111/oik.09638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Lin Chao
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
- Univ. of Chinese Academy of Sciences Beijing China
| | - Yanyan Liu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Weidong Zhang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Qingkui Wang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Xin Guan
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Qingpeng Yang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Longchi Chen
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | - Jianbing Zhang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal Univ. Nanning China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences Guangzhou China
| | - Silong Wang
- Inst. of Applied Ecology, Chinese Academy of Sciences, Key Laboratory of Forest Ecology and Management Shenyang China
- Huitong Experimental Station of Forest Ecology, Chinese Academy of Sciences Huitong China
| | | |
Collapse
|
85
|
Higher productivity in forests with mixed mycorrhizal strategies. Nat Commun 2023; 14:1377. [PMID: 36914630 PMCID: PMC10011551 DOI: 10.1038/s41467-023-36888-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests.
Collapse
|
86
|
Zhou Y. Root traits in response to frequent fires: Implications for belowground carbon dynamics in fire-prone savannas. FRONTIERS IN PLANT SCIENCE 2023; 14:1106531. [PMID: 36959938 PMCID: PMC10028150 DOI: 10.3389/fpls.2023.1106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Predicting how belowground carbon storage reflects changes in aboveground vegetation biomass is an unresolved challenge in most ecosystems. This is especially true for fire-prone savannas, where frequent fires shape the fraction of carbon allocated to root traits for post-fire vegetation recovery. Here I review evidence on how root traits may respond to frequent fires and propose to leverage root traits to infer belowground carbon dynamics in fire-prone savannas. Evidently, we still lack an understanding of trade-offs in root acquisitive vs. conservative traits in response to frequent fires, nor have we determined which root traits are functionally important to mediate belowground carbon dynamics in a frequently burned environment. Focusing research efforts along these topics should improve our understanding of savanna carbon cycling under future changes in fire regimes.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Wildland Resources, Utah State University, Logan, UT, United States
- Ecology Center, Utah State University, Logan, UT, United States
| |
Collapse
|
87
|
de la Riva EG, Borden K, Ostonen I, Saengwilai P, Prieto I. Editorial: Root functional traits: From fine root to community-level variation. FRONTIERS IN PLANT SCIENCE 2023; 14:1152174. [PMID: 36875572 PMCID: PMC9977287 DOI: 10.3389/fpls.2023.1152174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Enrique G. de la Riva
- Ecology Department, Faculty of Biology and Environmental Sciences, Universidad de León, León, Spain
| | - Kira Borden
- School of the Environment, Trent University, Peterborough, ON, Canada
| | - Ivika Ostonen
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Patompong Saengwilai
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Iván Prieto
- Ecology Department, Faculty of Biology and Environmental Sciences, Universidad de León, León, Spain
| |
Collapse
|
88
|
Griffin-Nolan RJ, Felton AJ, Slette IJ, Smith MD, Knapp AK. Traits that distinguish dominant species across aridity gradients differ from those that respond to soil moisture. Oecologia 2023; 201:311-322. [PMID: 36640197 DOI: 10.1007/s00442-023-05315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Many plant traits respond to changes in water availability and might be useful for understanding ecosystem properties such as net primary production (NPP). This is especially evident in grasslands where NPP is water-limited and primarily determined by the traits of dominant species. We measured root and shoot morphology, leaf hydraulic traits, and NPP of four dominant North American prairie grasses in response to four levels of soil moisture in a greenhouse experiment. We expected that traits of species from drier regions would be more responsive to reduced water availability and that this would make these species more resistant to low soil moisture than species from wetter regions. All four species grew taller, produced more biomass, and increased total root length in wetter treatments. Each species reduced its leaf turgor loss point (TLP) in drier conditions, but only two species (one xeric, one mesic) maintained leaf water potential above TLP. We identified a suite of traits that clearly distinguished species from one another, but, surprisingly, these traits were relatively unresponsive to reduced soil moisture. Specifically, more xeric species produced thinner roots with higher specific root length and had a lower root mass fraction. This suggest that root traits are critical for distinguishing species from one another but might not respond strongly to changing water availability, though this warrants further investigation in the field. Overall, we found that NPP of these dominant grass species responded similarly to varying levels of soil moisture despite differences in species morphology, physiology, and habitat of origin.
Collapse
Affiliation(s)
- Robert J Griffin-Nolan
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA. .,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA. .,Department of Biology, Santa Clara University, Santa Clara, CA, 95053, USA.
| | - Andrew J Felton
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Schmid College of Science and Technology, Chapman University, Orange, CA, 92866, USA.,Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, 59717, USA
| | - Ingrid J Slette
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA.,Long Term Ecological Research Network Office, National Center for Ecological Analysis and Synthesis, University of California Santa Barbara, Santa Barbara, CA, 93101, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Alan K Knapp
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
89
|
Vahsen ML, Blum MJ, Megonigal JP, Emrich SJ, Holmquist JR, Stiller B, Todd-Brown KEO, McLachlan JS. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise. Science 2023; 379:393-398. [PMID: 36701449 DOI: 10.1126/science.abq0595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rapid evolution remains a largely unrecognized factor in models that forecast the fate of ecosystems under scenarios of global change. In this work, we quantified the roles of heritable variation in plant traits and of trait evolution in explaining variability in forecasts of the state of coastal wetland ecosystems. A common garden study of genotypes of the dominant sedge Schoenoplectus americanus, "resurrected" from time-stratified seed banks, revealed that heritable variation and evolution explained key ecosystem attributes such as the allocation and distribution of belowground biomass. Incorporating heritable trait variation and evolution into an ecosystem model altered predictions of carbon accumulation and soil surface accretion (a determinant of marsh resilience to sea level rise), demonstrating the importance of accounting for evolutionary processes when forecasting ecosystem dynamics.
Collapse
Affiliation(s)
- M L Vahsen
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - M J Blum
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - J P Megonigal
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - S J Emrich
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, USA.,Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - J R Holmquist
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - B Stiller
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - K E O Todd-Brown
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL, USA
| | - J S McLachlan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
90
|
Ogrodowicz P, Mikołajczak K, Kempa M, Mokrzycka M, Krajewski P, Kuczyńska A. Genome-wide association study of agronomical and root-related traits in spring barley collection grown under field conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1077631. [PMID: 36760640 PMCID: PMC9902773 DOI: 10.3389/fpls.2023.1077631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
The root system is a key component for plant survival and productivity. In particular, under stress conditions, developing plants with a better root architecture can ensure productivity. The objectives of this study were to investigate the phenotypic variation of selected root- and yield-related traits in a diverse panel of spring barley genotypes. By performing a genome-wide association study (GWAS), we identified several associations underlying the variations occurring in root- and yield-related traits in response to natural variations in soil moisture. Here, we report the results of the GWAS based on both individual single-nucleotide polymorphism markers and linkage disequilibrium (LD) blocks of markers for 11 phenotypic traits related to plant morphology, grain quality, and root system in a group of spring barley accessions grown under field conditions. We also evaluated the root structure of these accessions by using a nondestructive method based on electrical capacitance. The results showed the importance of two LD-based blocks on chromosomes 2H and 7H in the expression of root architecture and yield-related traits. Our results revealed the importance of the region on the short arm of chromosome 2H in the expression of root- and yield-related traits. This study emphasized the pleiotropic effect of this region with respect to heading time and other important agronomic traits, including root architecture. Furthermore, this investigation provides new insights into the roles played by root traits in the yield performance of barley plants grown under natural conditions with daily variations in soil moisture content.
Collapse
|
91
|
Weemstra M, Valverde‐Barrantes OJ, McCormack ML, Kong D. Root traits and functioning: from individual plants to ecosystems. OIKOS 2023. [DOI: 10.1111/oik.09924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Monique Weemstra
- Dept of Biological Sciences, International Center for Tropical Biodiversity, Florida International Univ. Miami FL USA
| | - Oscar J. Valverde‐Barrantes
- Dept of Biological Sciences, International Center for Tropical Biodiversity, Florida International Univ. Miami FL USA
| | | | - Deliang Kong
- College of Forestry, Henan Agricultural Univ. Zhengzhou China
| |
Collapse
|
92
|
Sparks EE. Maize plants and the brace roots that support them. THE NEW PHYTOLOGIST 2023; 237:48-52. [PMID: 36102037 DOI: 10.1111/nph.18489] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Brace roots are a unique but poorly understood set of organs found in some large cereal crops such as maize. These roots develop from aerial stem nodes and can remain aerial or grow into the ground. Despite their name, the function of these roots to brace the plant was only recently shown. In this article, I discuss the current understanding of brace root function and development, as well as the multitude of open questions that remain about these fascinating organs.
Collapse
Affiliation(s)
- Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, Newark, DE, 19713, USA
| |
Collapse
|
93
|
Iordache V, Neagoe A. Conceptual methodological framework for the resilience of biogeochemical services to heavy metals stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116401. [PMID: 36279774 DOI: 10.1016/j.jenvman.2022.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The idea of linking stressors, services providing units (SPUs), and ecosystem services (ES) is ubiquitous in the literature, although is currently not applied in areas contaminated with heavy metals (HMs), This integrative literature review introduces the general form of a deterministic conceptual model of the cross-scale effect of HMs on biogeochemical services by SPUs with a feedback loop, a cross-scale heuristic concept of resilience, and develops a method for applying the conceptual model. The objectives are 1) to identify the clusters of existing research about HMs effects on ES, biodiversity, and resilience to HMs stress, 2) to map the scientific fields needed for the conceptual model's implementation, identify institutional constraints for inter-disciplinary cooperation, and propose solutions to surpass them, 3) to describe how the complexity of the cause-effect chain is reflected in the research hypotheses and objectives and extract methodological consequences, and 4) to describe how the conceptual model can be implemented. A nested analysis by CiteSpace of a set of 16,176 articles extracted from the Web of Science shows that at the highest level of data aggregation there is a clear separation between the topics of functional traits, stoichiometry, and regulating services from the typical issues of the literature about HMs, biodiversity, and ES. Most of the resilience to HMs stress agenda focuses on microbial communities. General topics such as the biodiversity-ecosystem function relationship in contaminated areas are no longer dominant in the current research, as well as large-scale problems like watershed management. The number of Web of Science domains that include the analyzed articles is large (26 up to 87 domains with at least ten articles, depending on the sub-set), but thirteen domains account for 70-80% of the literature. The complexity of approaches regarding the cause-effect chain, the stressors, the biological and ecological hierarchical level and the management objectives was characterized by a detailed analysis of 60 selected reviews and 121 primary articles. Most primary articles approach short causal chains, and the number of hypotheses or objectives by article tends to be low, pointing out the need for portfolios of complementary research projects in coherent inter-disciplinary programs and innovation ecosystems to couple the ES and resilience problems in areas contaminated with HMs. One provides triggers for developing innovation ecosystems, examples of complementary research hypotheses, and an example of technology transfer. Finally one proposes operationalizing the conceptual methodological model in contaminated socio-ecological systems by a calibration, a sensitivity analysis, and a validation phase.
Collapse
Affiliation(s)
- Virgil Iordache
- University of Bucharest, Department of Systems Ecology and Sustainability, and "Dan Manoleli" Research Centre for Ecological Services - CESEC, Romania.
| | - Aurora Neagoe
- University of Bucharest, "Dan Manoleli" Research Centre for Ecological Services - CESEC and "Dimitrie Brândză" Botanical Garden, Romania.
| |
Collapse
|
94
|
Wen X, Wang X, Ye M, Liu H, He W, Wang Y, Li T, Zhao K, Hou G, Chen G, Li X, Fan C. Response strategies of fine root morphology of Cupressus funebris to the different soil environment. FRONTIERS IN PLANT SCIENCE 2022; 13:1077090. [PMID: 36618632 PMCID: PMC9811150 DOI: 10.3389/fpls.2022.1077090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Understanding fine root morphology is crucial to uncover water and nutrient acquisition and transposition of fine roots. However, there is still a lack of knowledge regarding how the soil environment affects the fine root morphology of various root orders in the stable forest ecosystem. Therefore, this experiment assessed the response strategies of fine root morphology (first- to fifth -order fine roots) in four different soil environments. The results showed that fine root morphology was related to soil environment, and there were significant differences in specific root length (SRL), specific surface area (SRA), diameter (D), and root tissue density (RTD) of first- and second -order fine roots. Soil total nitrogen (TN), alkaline nitrogen (AN) and available phosphorus (AP) were positively correlated with SRL and SRA and negatively correlated with D and RTD. Soil moisture (SW) was positively correlated with the D and RTD of first- and second-order fine roots and negatively correlated with the SRL and SRA. Soil temperature (ST), organic carbon (OC), soil bulk density (SBD) and soil porosity (SP) were not significantly correlated with the D, SRL, SRA, and RTD of the first- and second -order fine roots. AN was positively correlated with SRL and SRA and negatively correlated with both D and RTD in the first- and second -order fine roots, and the correlation coefficient was very significant. Therefore, we finally concluded that soil AN was the most critical factor affecting root D, SRL, SRA and RTD of fine roots, and mainly affected the morphology of first- and second -order fine roots. In conclusion, our research provides support for understanding the relationship between fine root morphology and soil environment, and indicates that soil nutrient gradient forms good root morphology at intraspecific scale.
Collapse
Affiliation(s)
- Xiaochen Wen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xiao Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Mengting Ye
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hai Liu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenchun He
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yu Wang
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Kuangji Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Guirong Hou
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Gang Chen
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Xianwei Li
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Chuan Fan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River and Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
95
|
Streit RP, Bellwood DR. To harness traits for ecology, let’s abandon ‘functionality’. Trends Ecol Evol 2022; 38:402-411. [PMID: 36522192 DOI: 10.1016/j.tree.2022.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022]
Abstract
Traits are measurable features of organisms. Functional traits aspire to more. They quantify an organism's ecology and, ultimately, predict ecosystem functions based on local communities. Such predictions are useful, but only if 'functional' really means 'ecologically relevant'. Unfortunately, many 'functional' traits seem to be characterized primarily by availability and implied importance - not by their ecological information content. Better traits are needed, but a prevailing trend is to 'functionalize' existing traits. The key may be to invert the process, that is, to identify functions of interest first and then identify traits as quantifiable proxies. We propose two distinct, yet complementary, perspectives on traits and provide a 'taxonomy of traits', a conceptual compass to navigate the diverse applications of traits in ecology.
Collapse
|
96
|
Francioli D, Cid G, Hajirezaei MR, Kolb S. Response of the wheat mycobiota to flooding revealed substantial shifts towards plant pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:1028153. [PMID: 36518495 PMCID: PMC9742542 DOI: 10.3389/fpls.2022.1028153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
Rainfall extremes are intensifying as a result of climate change, leading to increased flood risk. Flooding affects above- and belowground ecosystem processes, representing a substantial threat to crop productivity under climate change. Plant-associated fungi play important roles in plant performance, but their response to abnormal rain events is unresolved. Here, we established a glasshouse experiment to determine the effects of flooding stress on the spring wheat-mycobiota complex. Since plant phenology could be an important factor in the response to hydrological stress, flooding was induced only once and at different plant growth stages, such as tillering, booting and flowering. We assessed the wheat mycobiota response to flooding in three soil-plant compartments (phyllosphere, roots and rhizosphere) using metabarcoding. Key soil and plant traits were measured to correlate physiological plant and edaphic changes with shifts in mycobiota structure and functional guilds. Flooding reduced plant fitness, and caused dramatic shifts in mycobiota assembly across the entire plant. Notably, we observed a functional transition consisting of a decline in mutualist abundance and richness with a concomitant increase in plant pathogens. Indeed, fungal pathogens associated with important cereal diseases, such as Gibberella intricans, Mycosphaerella graminicola, Typhula incarnata and Olpidium brassicae significantly increased their abundance under flooding. Overall, our study demonstrate the detrimental effect of flooding on the wheat mycobiota complex, highlighting the urgent need to understand how climate change-associated abiotic stressors alter plant-microbe interactions in cereal crops.
Collapse
Affiliation(s)
- Davide Francioli
- Institute of Crop Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
| | - Geeisy Cid
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mohammad-Reza Hajirezaei
- Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Center for Agricultural Landscape Research e.V. (ZALF), Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
97
|
Dalle Fratte M, Montagnoli A, Anelli S, Armiraglio S, Beatrice P, Ceriani A, Lipreri E, Miali A, Nastasio P, Cerabolini BEL. Mulching in lowland hay meadows drives an adaptive convergence of above- and below-ground traits reducing plasticity and improving biomass: A possible tool for enhancing phytoremediation. FRONTIERS IN PLANT SCIENCE 2022; 13:1062911. [PMID: 36523619 PMCID: PMC9746715 DOI: 10.3389/fpls.2022.1062911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
We aimed to understand the effect of mulching (i.e., cutting and leaving the crushed biomass to decompose in situ) on above- and below-ground plant functional traits and whether this practice may be a potential tool for enhancing the phytoremediation of lowland hay meadows. To this aim, we evaluated at the community level seven years of mulching application in a PCBs and HMs soil-polluted Site of National Interest (SIN Brescia-Caffaro) through the analysis of the floristic composition and the above- and below-ground plant traits. We found that the abandonment of agricultural activities led to a marked increase in the soil organic carbon and pH, and the over-imposed mulching additionally induced a slight increase in soil nutrients. Mulching favored the establishment of a productive plant community characterized by a more conservative-resource strategy, a higher biomass development, and lower plasticity through an adaptative convergence between above- and below-ground organs. In particular, the analysis of the root depth distribution highlighted the key role of roots living in the upper soil layer (10 cm). Mulching did not show a significant effect on plant species known to be effective in terms of PCB phytoremediation. However, the mulching application appears to be a promising tool for enhancing the root web that functions as the backbone for the proliferation of microbes devoted to organic contaminants' degradation and selects a two-fold number of plant species known to be metal-tolerant. However, besides these potential positive effects of the mulching application, favoring species with a higher biomass development, in the long term, may lead to a biodiversity reduction and thus to potential consequences also on the diversity of native species important for the phytoremediation.
Collapse
Affiliation(s)
- Michele Dalle Fratte
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Simone Anelli
- Ente Regionale per i Serivizi all’Agricoltura e alle Foreste della Lombardia (ERSAF), Milan, Italy
| | | | - Peter Beatrice
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Alex Ceriani
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Elia Lipreri
- Municipality of Brescia - Museum of Natural Sciences, Brescia, Italy
| | - Alessio Miali
- Department of Biotechnologies and Life Sciences (DBSV), University of Insubria, Varese, Italy
| | - Paolo Nastasio
- Ente Regionale per i Serivizi all’Agricoltura e alle Foreste della Lombardia (ERSAF), Milan, Italy
| | | |
Collapse
|
98
|
Krauss L, Rippy MA. Adaptive strategy biases in engineered ecosystems: Implications for plant community dynamics and the provisioning of ecosystem services to people. PEOPLE AND NATURE 2022. [DOI: 10.1002/pan3.10413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Lauren Krauss
- Occoquan Watershed Monitoring Laboratory, Department of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Manassas Virginia USA
| | - Megan A. Rippy
- Occoquan Watershed Monitoring Laboratory, Department of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Manassas Virginia USA
- Center for Coastal Studies Virginia Tech Blacksburg Virginia USA
- Disaster Resilience and Risk Management (DRRM) Blacksburg Virginia USA
| |
Collapse
|
99
|
MacTavish R, Anderson JT. Water and nutrient availability exert selection on reproductive phenology. AMERICAN JOURNAL OF BOTANY 2022; 109:1702-1716. [PMID: 36031862 DOI: 10.1002/ajb2.16057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Global change has changed resource availability to plants, which could shift the adaptive landscape. We hypothesize that novel water and nutrient availability combinations alter patterns of natural selection on reproductive phenology in Boechera stricta (Brassicaceae) and influence the evolution of local adaptation. METHODS We conducted a multifactorial greenhouse study using 35 accessions of B. stricta sourced from a broad elevational gradient in the Rocky Mountains. We exposed full siblings to three soil water and two nutrient availability treatment levels, reflecting current and projected future conditions. In addition, we quantified fitness (seed count) and four phenological traits: the timing of first flowering, the duration of flowering, and height and leaf number at flowering. RESULTS Selection favored early flowering and longer duration of flowering, and the genetic correlation between these traits accorded with the direction of selection. In most treatments, we found selection for increased height, but selection on leaf number depended on water availability, with selection favoring more leaves in well-watered conditions and fewer leaves under severe drought. Low-elevation genotypes had the greatest fitness under drought stress, consistent with local adaptation. CONCLUSIONS We found evidence of strong selection on these heritable traits. Furthermore, the direction and strength of selection on size at flowering depended on the variable measured (height vs. leaf number). Finally, selection often favored both early flowering and a longer duration of flowering. Selection on these two components of phenology can be difficult to disentangle due to tight genetic correlations.
Collapse
Affiliation(s)
- Rachel MacTavish
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Jill T Anderson
- Department of Genetics and Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
100
|
Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. Breeding toward improved ecological plant-microbiome interactions. TRENDS IN PLANT SCIENCE 2022; 27:1134-1143. [PMID: 35803843 DOI: 10.1016/j.tplants.2022.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Domestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario. Here we discuss the exploitation of customized synthetic microbial communities in agricultural systems to develop more sustainable breeding strategies based on the implementation of multiple interactions between plants and their beneficial associated microorganisms.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Loredana Moffa
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
| | - Raffaella Balestrini
- National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy.
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| |
Collapse
|