51
|
Wang Y, Huang Y, Bai H, Wang G, Hu X, Kumar S, Min R. Biocompatible and Biodegradable Polymer Optical Fiber for Biomedical Application: A Review. BIOSENSORS 2021; 11:472. [PMID: 34940229 PMCID: PMC8699361 DOI: 10.3390/bios11120472] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 05/09/2023]
Abstract
This article discusses recent advances in biocompatible and biodegradable polymer optical fiber (POF) for medical applications. First, the POF material and its optical properties are summarized. Then, several common optical fiber fabrication methods are thoroughly discussed. Following that, clinical applications of biocompatible and biodegradable POFs are discussed, including optogenetics, biosensing, drug delivery, and neural recording. Following that, biomedical applications expanded the specific functionalization of the material or fiber design. Different research or clinical applications necessitate the use of different equipment to achieve the desired results. Finally, the difficulty of implanting flexible fiber varies with its flexibility. We present our article in a clear and logical manner that will be useful to researchers seeking a broad perspective on the proposed topic. Overall, the content provides a comprehensive overview of biocompatible and biodegradable POFs, including previous breakthroughs, as well as recent advancements. Biodegradable optical fibers have numerous applications, opening up new avenues in biomedicine.
Collapse
Affiliation(s)
- Yue Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Yu Huang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| | - Hongyi Bai
- College of Electronic Engineering, Heilongjiang University, Harbin 150080, China;
| | - Guoqing Wang
- College of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518172, China;
| | - Xuehao Hu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou 515063, China;
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China;
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University at Zhuhai, Zhuhai 519087, China; (Y.W.); (Y.H.)
| |
Collapse
|
52
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
53
|
Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021; 15:749465. [PMID: 34720867 PMCID: PMC8551759 DOI: 10.3389/fnins.2021.749465] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is a major disability that results in motor and sensory impairment and extensive complications for the affected individuals which not only affect the quality of life of the patients but also result in a heavy burden for their families and the health care system. Although there are few clinically effective treatments for SCI, research over the past few decades has resulted in several novel treatment strategies which are related to neuromodulation. Neuromodulation-the use of neuromodulators, electrical stimulation or optogenetics to modulate neuronal activity-can substantially promote the recovery of sensorimotor function after SCI. Recent studies have shown that neuromodulation, in combination with other technologies, can allow paralyzed patients to carry out intentional, controlled movement, and promote sensory recovery. Although such treatments hold promise for completely overcoming SCI, the mechanisms by which neuromodulation has this effect have been difficult to determine. Here we review recent progress relative to electrical neuromodulation and optogenetics neuromodulation. We also examine potential mechanisms by which these methods may restore sensorimotor function. We then highlight the strengths of these approaches and remaining challenges with respect to its application.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaping Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
54
|
Antonini MJ, Sahasrabudhe A, Tabet A, Schwalm M, Rosenfeld D, Garwood I, Park J, Loke G, Khudiyev T, Kanik M, Corbin N, Canales A, Jasanoff AP, Fink Y, Anikeeva P. Customizing MRI-Compatible Multifunctional Neural Interfaces through Fiber Drawing. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2104857. [PMID: 34924913 PMCID: PMC8673858 DOI: 10.1002/adfm.202104857] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 05/11/2023]
Abstract
Fiber drawing enables scalable fabrication of multifunctional flexible fibers that integrate electrical, optical and microfluidic modalities to record and modulate neural activity. Constraints on thermomechanical properties of materials, however, have prevented integrated drawing of metal electrodes with low-loss polymer waveguides for concurrent electrical recording and optical neuromodulation. Here we introduce two fabrication approaches: (1) an iterative thermal drawing with a soft, low melting temperature (Tm) metal indium, and (2) a metal convergence drawing with traditionally non-drawable high Tm metal tungsten. Both approaches deliver multifunctional flexible neural interfaces with low-impedance metallic electrodes and low-loss waveguides, capable of recording optically-evoked and spontaneous neural activity in mice over several weeks. We couple these fibers with a light-weight mechanical microdrive (1g) that enables depth-specific interrogation of neural circuits in mice following chronic implantation. Finally, we demonstrate the compatibility of these fibers with magnetic resonance imaging (MRI) and apply them to visualize the delivery of chemical payloads through the integrated channels in real time. Together, these advances expand the domains of application of the fiber-based neural probes in neuroscience and neuroengineering.
Collapse
Affiliation(s)
- Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anthony Tabet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miriam Schwalm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Dekel Rosenfeld
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Indie Garwood
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, 02139, USA
| | - Jimin Park
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gabriel Loke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tural Khudiyev
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mehmet Kanik
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Kinetik Therapeutics LLC, Newton, MA, 02459, USA
| | - Nathan Corbin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - Alan P. Jasanoff
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Advanced Functional Fabrics of America, Cambridge, MA, 02139 USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
55
|
Domínguez-Bajo A, Rosa JM, González-Mayorga A, Rodilla BL, Arché-Núñez A, Benayas E, Ocón P, Pérez L, Camarero J, Miranda R, González MT, Aguilar J, López-Dolado E, Serrano MC. Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials 2021; 279:121186. [PMID: 34700221 DOI: 10.1016/j.biomaterials.2021.121186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
Progress in the clinical application of recording and stimulation devices for neural diseases is still limited, mainly because of suboptimal material engineering and unfavorable interactions with biological entities. Nanotechnology is providing upgraded designs of materials to better mimic the native extracellular environment and attain more intimate contacts with individual neurons, besides allowing for the miniaturization of the electrodes. However, little progress has been done to date on the understanding of the biological impact that such neural interfaces have on neural network maturation and functionality. In this work, we elucidate the effect of a gold (Au) highly ordered nanostructure on the morphological and functional interactions with neural cells and tissues. Alumina-templated Au nanostructured electrodes composed of parallel nanowires of 160 nm in diameter and 1.2 μm in length (Au-NWs), with 320 nm of pitch, are designed and characterized. Equivalent non-structured Au electrodes (Au-Flat) are used for comparison. By using diverse techniques in in vitro cell cultures including live calcium imaging, we found that Au-NWs interfaced with primary neural cortical cells for up to 14 days allow neural networks growth and increase spontaneous activity and ability of neuronal synchronization, thus indicating that nanostructured features favor neuronal network. The enhancement in the number of glial cells found is hypothesized to be behind these beneficial functional effects. The in vivo effect of the implantation of these nanostructured electrodes and its potential relevance for future clinical applicability has been explored in an experimental model of rat spinal cord injury. Subacute responses to implanted Au-NWs show no overt reactive or toxic biological reactions besides those triggered by the injury itself. These results highlight the translational potential of Au-NWs electrodes for in vivo applications as neural interfaces in contact with central nervous tissues including the injured spinal cord.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Juliana M Rosa
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | | | - Beatriz L Rodilla
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - M Teresa González
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| |
Collapse
|
56
|
Kathe C, Michoud F, Schönle P, Rowald A, Brun N, Ravier J, Furfaro I, Paggi V, Kim K, Soloukey S, Asboth L, Hutson TH, Jelescu I, Philippides A, Alwahab N, Gandar J, Huber D, De Zeeuw CI, Barraud Q, Huang Q, Lacour SP, Courtine G. Wireless closed-loop optogenetics across the entire dorsoventral spinal cord in mice. Nat Biotechnol 2021; 40:198-208. [PMID: 34580478 PMCID: PMC7612390 DOI: 10.1038/s41587-021-01019-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
Optoelectronic systems can exert precise control over targeted neurons and pathways throughout the brain in untethered animals, but similar technologies for the spinal cord are not well established. In the present study, we describe a system for ultrafast, wireless, closed-loop manipulation of targeted neurons and pathways across the entire dorsoventral spinal cord in untethered mice. We developed a soft stretchable carrier, integrating microscale light-emitting diodes (micro-LEDs), that conforms to the dura mater of the spinal cord. A coating of silicone-phosphor matrix over the micro-LEDs provides mechanical protection and light conversion for compatibility with a large library of opsins. A lightweight, head-mounted, wireless platform powers the micro-LEDs and performs low-latency, on-chip processing of sensed physiological signals to control photostimulation in a closed loop. We use the device to reveal the role of various neuronal subtypes, sensory pathways and supraspinal projections in the control of locomotion in healthy and spinal-cord injured mice.
Collapse
Affiliation(s)
- Claudia Kathe
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Frédéric Michoud
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Philipp Schönle
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Andreas Rowald
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Noé Brun
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Jimmy Ravier
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ivan Furfaro
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Kyungjin Kim
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Department of Neurosurgery, Erasmus MC, Rotterdam, The Netherlands
| | - Leonie Asboth
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Thomas H Hutson
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Ileana Jelescu
- Centre d'Imagerie Biomedicale, EPFL, Lausanne, Switzerland
| | - Antoine Philippides
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Noaf Alwahab
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland
| | - Jérôme Gandar
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Daniel Huber
- Department of Fundamental Neuroscience, University of Geneva, Geneva, Switzerland
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute of Neuroscience, Royal Dutch Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Quentin Barraud
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland
| | - Qiuting Huang
- Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, Swiss Institute of Technology Zurich, Zurich, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microenginnering, Institute of Bioengineering, Centre for Neuroprosthetics, EPFL, Geneva, Switzerland.
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland. .,Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne and EPFL, Lausanne, Switzerland. .,Department of Neurosurgery, CHUV, Lausanne, Switzerland.
| |
Collapse
|
57
|
Yan S, Wang K, Xing G, Xu J, Su S, Tang Z, Wang S, Ng KW. Robust Ultralong Lead Halide Perovskite Microwire Lasers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38458-38466. [PMID: 34348459 DOI: 10.1021/acsami.1c08287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid organic-inorganic lead halide perovskite microwires are potential building blocks for realizing on-chip integrated optoelectronic devices. However, the length-controllable synthesis of one-dimensional hybrid perovskite microwires has been rarely reported, especially the ones with lengths in the millimeter scale. Herein, methylammonium lead bromide (MAPbBr3) and formamidinium lead bromide (FAPbBr3) micro and milliwires are demonstrated using single-crystal PbBr2 microwires synthesized via template-free solution-phase growth as the lattice framework. Following the PbBr2 template, the as-converted perovskite microwires possess controllable lengths ranging from tens to thousands of micrometers. In addition, Fabry-Perot (FP) lasing was realized in both MAPbBr3 and FAPbBr3 microwires, attesting to their excellent crystal quality and the efficient optical confinement of the natural cavity. These unique properties result in the first demonstration of FP perovskite microwire lasers with submillimeter lengths. More interestingly, the microwire lasers show excellent photostability under repetitive pulsed laser excitation for over 8 × 106 cycles. Such findings demonstrate that the solution-converted hybrid lead bromide microwires have excellent optoelectronic performances promising for practical applications, and the size controllability indicates that this novel fabrication process may be feasible for large-scale industrial production.
Collapse
Affiliation(s)
- Shanshan Yan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Kaiyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Jincheng Xu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Shichen Su
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., Qingyuan 511517, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| | - Kar Wei Ng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
| |
Collapse
|
58
|
Liu D, Mun J, Chen G, Schuster NJ, Wang W, Zheng Y, Nikzad S, Lai JC, Wu Y, Zhong D, Lin Y, Lei Y, Chen Y, Gam S, Chung JW, Yun Y, Tok JBH, Bao Z. A Design Strategy for Intrinsically Stretchable High-Performance Polymer Semiconductors: Incorporating Conjugated Rigid Fused-Rings with Bulky Side Groups. J Am Chem Soc 2021; 143:11679-11689. [PMID: 34284578 DOI: 10.1021/jacs.1c04984] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.
Collapse
Affiliation(s)
- Deyu Liu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Gan Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Nathaniel J Schuster
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Weichen Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yu Zheng
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Shayla Nikzad
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jian-Cheng Lai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yilei Wu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Donglai Zhong
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yangju Lin
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yusheng Lei
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Yuelang Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sangah Gam
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jong Won Chung
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Youngjun Yun
- Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, South Korea
| | - Jeffrey B-H Tok
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
59
|
Zhang W, Liu P, Yang G, Lei H. Single Polylactic Acid Nanowire for Highly Sensitive and Multifunctional Optical Biosensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27983-27990. [PMID: 34110765 DOI: 10.1021/acsami.1c08074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanowire-based optical biosensors with high sensitivity are highly desired for the detection of biological microenvironments and analysis of cellular processes. However, the current nanowire biosensors are mostly fabricated with metal and semiconductor materials, which are not suitable for long-term use in biological environments due to their incompatible and nondegradable properties. Biosensors based on biofriendly materials (e.g., spider silk) often do not have high enough sensitivity due to high losses or micron sizes. Here, polylactic acid (PLA), a polymer with high optical transparency, good biocompatibility, biodegradability, and flexibility, is used to fabricate nanowires using a directly drawing method for the first time. Because of the strong evanescent wave and abundant carboxyl groups on the surface of nanowires, an ultralow concentration sensing of cytochrome c is achieved with a limit of detection of 1.38 × 10-17 M, which is much lower than other detection results using semiconductor/metal-based nanosensors (10-6 to 10-12 M). On this basis, a label-free and real-time monitoring of cell apoptosis is realized. In addition, by doping quantum dots, the functionalized PLA nanowires can also sense a change in pH. These results are suggestive of the potential for PLA nanowires applied in multifunctional biosensing and biodetection, pushing forward the photomedicine field.
Collapse
Affiliation(s)
- Weina Zhang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Pu Liu
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Guowei Yang
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
60
|
Surgical implantation of wireless, battery-free optoelectronic epidural implants for optogenetic manipulation of spinal cord circuits in mice. Nat Protoc 2021; 16:3072-3088. [PMID: 34031611 PMCID: PMC9273129 DOI: 10.1038/s41596-021-00532-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
The use of optogenetics to regulate neuronal activity has revolutionized the study of the neural circuitry underlying a number of complex behaviors in rodents. Advances have been particularly evident in the study of brain circuitry and related behaviors, while advances in the study of spinal circuitry have been less striking because of technical hurdles. We have developed and characterized a wireless and fully implantable optoelectronic device that enables optical manipulation of spinal cord circuitry in mice via a microscale light-emitting diode (µLED) placed in the epidural space (NeuroLux spinal optogenetic device). This protocol describes how to surgically implant the device into the epidural space and then analyze light-induced behavior upon µLED activation. We detail optimized optical parameters for in vivo stimulation and demonstrate typical behavioral effects of optogenetic activation of nociceptive spinal afferents using this device. This fully wireless spinal µLED system provides considerable versatility for behavioral assays compared with optogenetic approaches that require tethering of animals, and superior temporal and spatial resolution when compared with other methods used for circuit manipulation such as chemogenetics. The detailed surgical approach and improved functionality of these spinal optoelectronic devices substantially expand the utility of this approach for the study of spinal circuitry and behaviors related to mechanical and thermal sensation, pruriception and nociception. The surgical implantation procedure takes ~1 h. The time required for the study of behaviors that are modulated by the light-activated circuit is variable and will depend upon the nature of the study.
Collapse
|
61
|
Wu C, Liu X, Ying Y. Soft and Stretchable Optical Waveguide: Light Delivery and Manipulation at Complex Biointerfaces Creating Unique Windows for On-Body Sensing. ACS Sens 2021; 6:1446-1460. [PMID: 33611914 DOI: 10.1021/acssensors.0c02566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over the past few decades, optical waveguides have been increasingly used in wearable/implantable devices for on-body sensing. However, conventional optical waveguides are stiff, rigid, and brittle. A mismatch between conventional optical waveguides and complex biointerfaces makes wearable/implantable devices uncomfortable to wear and potentially unsafe. Soft and stretchable polymer optical waveguides not only inherit many advantages of conventional optical waveguides (e.g., immunity to electromagnetic interference and without electrical hazards) but also provide a new perspective for solving the mismatch between conventional optical waveguides and complex biointerfaces, which is essential for the development of light-based wearable/implantable sensors. In this review, polymer optical waveguides' unique properties, including flexibility, biocompatibility and biodegradability, porosity, and stimulus responsiveness, and their applications in the wearable/implantable field in recent years are summarized. Then, we briefly discuss the current challenges of high optical loss, unstable signal transmission, low manufacturing efficiency, and difficulty in deployment during implantation of flexible polymer optical waveguides, and propose some possible solutions to these problems.
Collapse
Affiliation(s)
- Chenjian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- College of Mechanical and Electrical Engineering, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
62
|
Lee JM, Lin D, Kim HR, Pyo YW, Hong G, Lieber CM, Park HG. All-Tissue-like Multifunctional Optoelectronic Mesh for Deep-Brain Modulation and Mapping. NANO LETTERS 2021; 21:3184-3190. [PMID: 33734716 DOI: 10.1021/acs.nanolett.1c00425] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of a multifunctional device that achieves optogenetic neuromodulation and extracellular neural mapping is crucial for understanding neural circuits and treating brain disorders. Although various devices have been explored for this purpose, it is challenging to develop biocompatible optogenetic devices that can seamlessly interface with the brain. Herein, we present a tissue-like optoelectronic mesh with a compact interface that enables not only high spatial and temporal resolutions of optical stimulation but also the sampling of optically evoked neural activities. An in vitro experiment in hydrogel showed efficient light propagation through a freestanding SU-8 waveguide that was integrated with flexible mesh electronics. Additionally, an in vivo implantation of the tissue-like optoelectronic mesh in the brain of a live transgenic mouse enabled the sampling of optically evoked neural signals. Therefore, this multifunctional device can aid the chronic modulation of neural circuits and behavior studies for developing biological and therapeutic applications.
Collapse
Affiliation(s)
- Jung Min Lee
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | | | - Ha-Reem Kim
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Young-Woo Pyo
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
| |
Collapse
|
63
|
Kim K, Sung C, Lee J, Won J, Jeon W, Seo S, Yoon K, Park S. Computational and Histological Analyses for Investigating Mechanical Interaction of Thermally Drawn Fiber Implants with Brain Tissue. MICROMACHINES 2021; 12:mi12040394. [PMID: 33918390 PMCID: PMC8067235 DOI: 10.3390/mi12040394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 01/24/2023]
Abstract
The development of a compliant neural probe is necessary to achieve chronic implantation with minimal signal loss. Although fiber-based neural probes fabricated by the thermal drawing process have been proposed as a solution, their long-term effect on the brain has not been thoroughly investigated. Here, we examined the mechanical interaction of thermally drawn fiber implants with neural tissue through computational and histological analyses. Specifically, finite element analysis and immunohistochemistry were conducted to evaluate the biocompatibility of various fiber implants made with different base materials (steel, silica, polycarbonate, and hydrogel). Moreover, the effects of the coefficient of friction and geometric factors including aspect ratio and the shape of the cross-section on the strain were investigated with the finite element model. As a result, we observed that the fiber implants fabricated with extremely softer material such as hydrogel exhibited significantly lower strain distribution and elicited a reduced immune response. In addition, the implants with higher coefficient of friction (COF) and/or circular cross-sections showed a lower strain distribution and smaller critical volume. This work suggests the materials and design factors that need to be carefully considered to develop future fiber-based neural probes to minimize mechanical invasiveness.
Collapse
Affiliation(s)
- Kanghyeon Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (K.K.); (C.S.); (W.J.)
| | - Changhoon Sung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (K.K.); (C.S.); (W.J.)
| | - Jungjoon Lee
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (J.L.); (J.W.)
| | - Joonhee Won
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (J.L.); (J.W.)
| | - Woojin Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (K.K.); (C.S.); (W.J.)
| | - Seungbeom Seo
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea;
| | - Kyungho Yoon
- Center for Healthcare Robotics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
- Correspondence: (K.Y.); (S.P.)
| | - Seongjun Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (K.K.); (C.S.); (W.J.)
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology (KAIST), Deajeon 34141, Korea; (J.L.); (J.W.)
- KAIST Institute of Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Correspondence: (K.Y.); (S.P.)
| |
Collapse
|
64
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
65
|
Multimode Optical Fibers for Optical Neural Interfaces. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33398843 DOI: 10.1007/978-981-15-8763-4_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Although multiphoton microscopy enables optical control and monitoring of neural activity with single cells resolution over a depth of several hundreds of micrometers, the scattering nature of the brain tissue requires implantable optical neural interfaces to access subcortical structures. If micro light-emitting devices (μLEDs) and solid-state waveguides represent important technological advancements for the field, multimodal optical fibers (MMFs) are still the most diffused tool in neuroscience labs to interface with deep regions of the brain. At a first glance, MMFs can be seen as very limited systems. However, new studies and discoveries in optics, photonics, and technological solutions for their application to neuroscience research have enabled applications of MMF where competing technologies fail. In this framework, the chapter starts with a description of optical neural interfaces based on MMF, with specific reference on recent works analyzing the performances of this approach to deliver and collect light from scattering tissue. The discussion then focuses on how peculiar features of MMFs can be exploited to obtain unconventional applications, including brain imaging through a single multimode fiber, multifunctional neural interfaces, and depth-resolved light delivery and functional fluorescence collection.
Collapse
|
66
|
Llerena Zambrano B, Renz AF, Ruff T, Lienemann S, Tybrandt K, Vörös J, Lee J. Soft Electronics Based on Stretchable and Conductive Nanocomposites for Biomedical Applications. Adv Healthc Mater 2021; 10:e2001397. [PMID: 33205564 DOI: 10.1002/adhm.202001397] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Research on the field of implantable electronic devices that can be directly applied in the body with various functionalities is increasingly intensifying due to its great potential for various therapeutic applications. While conventional implantable electronics generally include rigid and hard conductive materials, their surrounding biological objects are soft and dynamic. The mechanical mismatch between implanted devices and biological environments induces damages in the body especially for long-term applications. Stretchable electronics with outstanding mechanical compliance with biological objects effectively improve such limitations of existing rigid implantable electronics. In this article, the recent progress of implantable soft electronics based on various conductive nanocomposites is systematically described. In particular, representative fabrication approaches of conductive and stretchable nanocomposites for implantable soft electronics and various in vivo applications of implantable soft electronics are focused on. To conclude, challenges and perspectives of current implantable soft electronics that should be considered for further advances are discussed.
Collapse
Affiliation(s)
- Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Aline F. Renz
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Tobias Ruff
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Samuel Lienemann
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - Klas Tybrandt
- Laboratory of Organic Electronics Department of Science and Technology Linköping University Norrköping 601 74 Sweden
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics ETH Zurich Gloriastrasse 35 Zurich 8092 Switzerland
| | - Jaehong Lee
- Department of Robotics Engineering Daegu Gyeongbuk Institute of Science and Technology (DGIST) 333 Techno jungan‐dareo Daegu 42988 South Korea
| |
Collapse
|
67
|
Kim CY, Ku MJ, Qazi R, Nam HJ, Park JW, Nam KS, Oh S, Kang I, Jang JH, Kim WY, Kim JH, Jeong JW. Soft subdermal implant capable of wireless battery charging and programmable controls for applications in optogenetics. Nat Commun 2021; 12:535. [PMID: 33483493 PMCID: PMC7822865 DOI: 10.1038/s41467-020-20803-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/17/2020] [Indexed: 11/08/2022] Open
Abstract
Optogenetics is a powerful technique that allows target-specific spatiotemporal manipulation of neuronal activity for dissection of neural circuits and therapeutic interventions. Recent advances in wireless optogenetics technologies have enabled investigation of brain circuits in more natural conditions by releasing animals from tethered optical fibers. However, current wireless implants, which are largely based on battery-powered or battery-free designs, still limit the full potential of in vivo optogenetics in freely moving animals by requiring intermittent battery replacement or a special, bulky wireless power transfer system for continuous device operation, respectively. To address these limitations, here we present a wirelessly rechargeable, fully implantable, soft optoelectronic system that can be remotely and selectively controlled using a smartphone. Combining advantageous features of both battery-powered and battery-free designs, this device system enables seamless full implantation into animals, reliable ubiquitous operation, and intervention-free wireless charging, all of which are desired for chronic in vivo optogenetics. Successful demonstration of the unique capabilities of this device in freely behaving rats forecasts its broad and practical utilities in various neuroscience research and clinical applications.
Collapse
Affiliation(s)
- Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Jeong Ku
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Raza Qazi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO, USA
| | - Hong Jae Nam
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jong Woo Park
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Shane Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Inho Kang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wha Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong-Hoon Kim
- Department of Physiology, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
68
|
Yu J, Ling W, Li Y, Ma N, Wu Z, Liang R, Pan H, Liu W, Fu B, Wang K, Li C, Wang H, Peng H, Ning B, Yang J, Huang X. A Multichannel Flexible Optoelectronic Fiber Device for Distributed Implantable Neurological Stimulation and Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005925. [PMID: 33372299 DOI: 10.1002/smll.202005925] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Optical fibers made of polymeric materials possess high flexibility that can potentially integrate with flexible electronic devices to realize complex functions in biology and neurology. Here, a multichannel flexible device based on four individually addressable optical fibers transfer-printed with flexible electronic components and controlled by a wireless circuit is developed. The resulting device offers excellent mechanics that is compatible with soft and curvilinear tissues, and excellent diversity through switching different light sources. The combined configuration of optical fibers and flexible electronics allows optical stimulation in selective wavelengths guided by the optical fibers, while conducting distributed, high-throughput biopotential sensing using the flexible microelectrode arrays. The device has been demonstrated in vivo with rats through optical stimulation and simultaneously monitoring of spontaneous/evoked spike signals and local field potentials using 32 microelectrodes in four brain regions. Biocompatibility of the device has been characterized by behavior and immunohistochemistry studies, demonstrating potential applications of the device in long-term animal studies. The techniques to integrate flexible electronics with optical fibers may inspire the development of more flexible optoelectronic devices for sophisticated applications in biomedicine and biology.
Collapse
Affiliation(s)
- Jingxian Yu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ya Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ning Ma
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ziyue Wu
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Rong Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Huizhuo Pan
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wentao Liu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Bo Fu
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Kun Wang
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Chenxi Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hanjie Wang
- Department of Life Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hui Peng
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Baoan Ning
- Tianjin Institute of Environmental & Operational Medicine, 1 Dali Road, Tianjin, 300050, China
| | - Jiajia Yang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Center of Flexible Wearable Technology, Institute of Flexible Electronic Technology of Tsinghua, 906 Asia-Pacific Road, Zhejiang, Jiaxing, 314006, China
| |
Collapse
|
69
|
Vandekerckhove B, Missinne J, Vonck K, Bauwens P, Verplancke R, Boon P, Raedt R, Vanfleteren J. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. MICROMACHINES 2020; 12:38. [PMID: 33396287 PMCID: PMC7824489 DOI: 10.3390/mi12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.
Collapse
Affiliation(s)
- Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Pieter Bauwens
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Rik Verplancke
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| |
Collapse
|
70
|
How is flexible electronics advancing neuroscience research? Biomaterials 2020; 268:120559. [PMID: 33310538 DOI: 10.1016/j.biomaterials.2020.120559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Innovative neurotechnology must be leveraged to experimentally answer the multitude of pressing questions in modern neuroscience. Driven by the desire to address the existing neuroscience problems with newly engineered tools, we discuss in this review the benefits of flexible electronics for neuroscience studies. We first introduce the concept and define the properties of flexible and stretchable electronics. We then categorize the four dimensions where flexible electronics meets the demands of modern neuroscience: chronic stability, interfacing multiple structures, multi-modal compatibility, and neuron-type-specific recording. Specifically, with the bending stiffness now approaching that of neural tissue, implanted flexible electronic devices produce little shear motion, minimizing chronic immune responses and enabling recording and stimulation for months, and even years. The unique mechanical properties of flexible electronics also allow for intimate conformation to the brain, the spinal cord, peripheral nerves, and the retina. Moreover, flexible electronics enables optogenetic stimulation, microfluidic drug delivery, and neural activity imaging during electrical stimulation and recording. Finally, flexible electronics can enable neuron-type identification through analysis of high-fidelity recorded action potentials facilitated by its seamless integration with the neural circuitry. We argue that flexible electronics will play an increasingly important role in neuroscience studies and neurological therapies via the fabrication of neuromorphic devices on flexible substrates and the development of enhanced methods of neuronal interpenetration.
Collapse
|
71
|
Behrens A, Stieghorst J, Doll T, Froriep UP. Laser-Facilitated Additive Manufacturing Enables Fabrication of Biocompatible Neural Devices. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20226614. [PMID: 33227962 PMCID: PMC7699266 DOI: 10.3390/s20226614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 05/16/2023]
Abstract
Current personalized treatment of neurological diseases is limited by availability of appropriate manufacturing methods suitable for long term sensors for neural electrical activities in the brain. An additive manufacturing process for polymer-based biocompatible neural sensors for chronic application towards individualized implants is here presented. To process thermal crosslinking polymers, the developed extrusion process enables, in combination with an infrared (IR)-Laser, accelerated curing directly after passing the outlet of the nozzle. As a result, no additional curing steps are necessary during the build-up. Furthermore, the minimal structure size can be achieved using the laser and, in combination with the extrusion parameters, provide structural resolutions desired. Active implant components fabricated using biocompatible materials for both conductive pathways and insulating cladding keep their biocompatible properties even after the additive manufacturing process. In addition, first characterization of the electric properties in terms of impedance towards application in neural tissues are shown. The printing toolkit developed enables processing of low-viscous, flexible polymeric thermal curing materials for fabrication of individualized neural implants.
Collapse
Affiliation(s)
- Ailke Behrens
- Cluster of Excellence Hearing4All, 30627 Hannover, Germany; (A.B.); (T.D.)
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Jan Stieghorst
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
| | - Theodor Doll
- Cluster of Excellence Hearing4All, 30627 Hannover, Germany; (A.B.); (T.D.)
- BioMaterial Engineering, Department of Otorhinolaryngology, Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany;
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
| | - Ulrich P. Froriep
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5350-294
| |
Collapse
|
72
|
Frank JA, Antonini MJ, Chiang PH, Canales A, Konrad DB, Garwood IC, Rajic G, Koehler F, Fink Y, Anikeeva P. In Vivo Photopharmacology Enabled by Multifunctional Fibers. ACS Chem Neurosci 2020; 11:3802-3813. [PMID: 33108719 DOI: 10.1021/acschemneuro.0c00577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoswitchable ligands can add an optical switch to a target receptor or signaling cascade and enable reversible control of neural circuits. The application of this approach, termed photopharmacology, to behavioral experiments has been impeded by a lack of integrated hardware capable of delivering both light and compounds to deep brain regions in moving subjects. Here, we devise a hybrid photochemical genetic approach to target neurons using a photoswitchable agonist of the capsaicin receptor TRPV1, red-AzCA-4. Using multifunctional fibers with optical and microfluidic capabilities, we delivered a transgene coding for TRPV1 into the ventral tegmental area (VTA). This sensitized excitatory VTA neurons to red-AzCA-4, allowing us to optically control conditioned place preference in mice, thus extending applications of photopharmacology to behavioral experiments. Applied to endogenous receptors, our approach may accelerate future studies of molecular mechanisms underlying animal behavior.
Collapse
Affiliation(s)
- James A. Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Po-Han Chiang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Institute of Biomedical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
| | - Andres Canales
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David B. Konrad
- Department of Pharmacy, Ludwig Maximilian University, D-81377 Munich, Germany
| | - Indie C. Garwood
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, Massachusetts 02139, United States
| | - Gabriela Rajic
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Florian Koehler
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
73
|
Abstract
The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.
Collapse
|
74
|
Yan W, Richard I, Kurtuldu G, James ND, Schiavone G, Squair JW, Nguyen-Dang T, Das Gupta T, Qu Y, Cao JD, Ignatans R, Lacour SP, Tileli V, Courtine G, Löffler JF, Sorin F. Structured nanoscale metallic glass fibres with extreme aspect ratios. NATURE NANOTECHNOLOGY 2020; 15:875-882. [PMID: 32747740 DOI: 10.1038/s41565-020-0747-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Micro- and nanoscale metallic glasses offer exciting opportunities for both fundamental research and applications in healthcare, micro-engineering, optics and electronics. The scientific and technological challenges associated with the fabrication and utilization of nanoscale metallic glasses, however, remain unresolved. Here, we present a simple and scalable approach for the fabrication of metallic glass fibres with nanoscale architectures based on their thermal co-drawing within a polymer matrix with matched rheological properties. Our method yields well-ordered and uniform metallic glasses with controllable feature sizes down to a few tens of nanometres, and aspect ratios greater than 1010. We combine fluid dynamics and advanced in situ transmission electron microscopy analysis to elucidate the interplay between fluid instability and crystallization kinetics that determines the achievable feature sizes. Our approach yields complex fibre architectures that, combined with other functional materials, enable new advanced all-in-fibre devices. We demonstrate in particular an implantable metallic glass-based fibre probe tested in vivo for a stable brain-machine interface that paves the way towards innovative high-performance and multifunctional neuro-probes.
Collapse
Affiliation(s)
- Wei Yan
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Inès Richard
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Güven Kurtuldu
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Nicholas D James
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jordan W Squair
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tung Nguyen-Dang
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Tapajyoti Das Gupta
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Yunpeng Qu
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jake D Cao
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Reinis Ignatans
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Vasiliki Tileli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), University Hospital Lausanne (CHUV), University of Lausanne (UNIL) and École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jörg F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Fabien Sorin
- Laboratory of Photonic Materials and Fibre Devices (FIMAP), Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
75
|
Mondello SE, Pedigo BD, Sunshine MD, Fischedick AE, Horner PJ, Moritz CT. A micro-LED implant and technique for optogenetic stimulation of the rat spinal cord. Exp Neurol 2020; 335:113480. [PMID: 32991934 DOI: 10.1016/j.expneurol.2020.113480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 11/17/2022]
Abstract
To date, relatively few studies have used optogenetic stimulation to address basic science and therapeutic questions within the spinal cord. Even less have reported optogenetic stimulation in the rat spinal cord. This is likely due to a lack of accessible optogenetic implants. The development of a device that can be fabricated and operated by most laboratories, requiring no special equipment, would allow investigators to begin dissecting the functions of specific neuronal cell-types and circuitry within the spinal cord, as well as investigate therapies for spinal ailments like spinal cord injury. Here, we describe a long-term implantable μLED device designed for optogenetic stimulation of the spinal cord in awake, freely moving rats that is simple enough to be fabricated, implanted and operated by most laboratories. This device, which sits above the dorsal cord, can induce robust movements for at least 6 weeks without causing physical or thermal damage to the underlying spinal cord. In this regard, the presented μLED device could help tease apart the complexities of the spinal cord and uncover potential future therapeutics.
Collapse
Affiliation(s)
- S E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA; Center for Neurotechnology, Seattle, Washington 98195, USA
| | - B D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - M D Sunshine
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - A E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA
| | - P J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - C T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington 98195, USA; University of Washington Institute for Neuroengineering, University of Washington, Seattle, Washington 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA; Graduate Program in Neuroscience, University of Washington, Seattle, Washington 98195, USA; Center for Neurotechnology, Seattle, Washington 98195, USA; Department of Electrical & Computer Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
76
|
Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng 2020; 4:1010-1022. [DOI: 10.1038/s41551-020-00615-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
|
77
|
Jeong YC, Lee HE, Shin A, Kim DG, Lee KJ, Kim D. Progress in Brain-Compatible Interfaces with Soft Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907522. [PMID: 32297395 DOI: 10.1002/adma.201907522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 06/11/2023]
Abstract
Neural interfaces facilitating communication between the brain and machines must be compatible with the soft, curvilinear, and elastic tissues of the brain and yet yield enough power to read and write information across a wide range of brain areas through high-throughput recordings or optogenetics. Biocompatible-material engineering has facilitated the development of brain-compatible neural interfaces to support built-in modulation of neural circuits and neurological disorders. Recent developments in brain-compatible neural interfaces that use soft nanomaterials more suitable for complex neural circuit analysis and modulation are reviewed. Preclinical tests of the compatibility and specificity of these interfaces in animal models are also discussed.
Collapse
Affiliation(s)
- Yong-Cheol Jeong
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Eol Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Anna Shin
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dae-Gun Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Daesoo Kim
- Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
78
|
Luo Y, Wang M, Wan C, Cai P, Loh XJ, Chen X. Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001903. [PMID: 32743815 DOI: 10.1002/adma.202001903] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.
Collapse
Affiliation(s)
- Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
79
|
Wang W, Ouaras K, Rutz AL, Li X, Gerigk M, Naegele TE, Malliaras GG, Huang YYS. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. SCIENCE ADVANCES 2020; 6:eaba0931. [PMID: 32998891 PMCID: PMC7527227 DOI: 10.1126/sciadv.aba0931] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 08/14/2020] [Indexed: 05/18/2023]
Abstract
Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-μm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area-to-volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.
Collapse
Affiliation(s)
- Wenyu Wang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Karim Ouaras
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Alexandra L Rutz
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Xia Li
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Magda Gerigk
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| | - Tobias E Naegele
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - George G Malliaras
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK.
- The Nanoscience Centre, University of Cambridge, Cambridge CB3 0FF, UK
| |
Collapse
|
80
|
Xu Q, Liu H, Zhong X, Jiang B, Ma Z. Permeable Weldable Elastic Fiber Conductors for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36609-36619. [PMID: 32693569 DOI: 10.1021/acsami.0c08939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Elastic fiber conductors are advantageous for applications in wearable electronics due to their small size, light weight, and excellent integration ability. Here, we report the fabrication of elastic fiber conductors with a three-dimensional (3D) porous structure using electrospun thermoplastic elastomer (TPE) microfibers and silver nanoparticles (AgNPs) as the building blocks. With the 3D porous structure, such a fiber is highly permeable to gases and liquids. As such, the performance of the fiber in many applications of wearable electronics (especially wearable sensors and detectors) can be improved significantly. Benefitting from the excellent processability of TPE and dispersibility of AgNPs, the fiber is highly compatible with thermal and solvent welding. In addition, the fiber also possesses super stretchability, high conductivity, and robust endurance to deformation. As a proof-of-concept application, we demonstrate that a rope-shaped capacitor made by plying one pair of such fibers can detect the volume change of artificial sweat with 17-times higher sensitivity than the capacitor using nonporous fibers as electrodes. We further demonstrate that, by integrating two groups of perpendicularly arranged fibers into a monolithic porous mat, sensitive matrix-addressed monitoring of artificial sweat can be realized.
Collapse
Affiliation(s)
- Qi Xu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Haojun Liu
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Xinrong Zhong
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Bofan Jiang
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| | - Zhijun Ma
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Wushan Road No. 381, Tianhe District, Guangzhou 510640, China
| |
Collapse
|
81
|
Du M, Huang L, Zheng J, Xi Y, Dai Y, Zhang W, Yan W, Tao G, Qiu J, So K, Ren C, Zhou S. Flexible Fiber Probe for Efficient Neural Stimulation and Detection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001410. [PMID: 32775173 PMCID: PMC7404151 DOI: 10.1002/advs.202001410] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 05/24/2023]
Abstract
Functional probes are a leading contender for the recognition and manipulation of nervous behavior and are characterized by substantial scientific and technological potential. Despite the recent development of functional neural probes, a flexible biocompatible probe unit that allows for long-term simultaneous stimulation and signaling is still an important task. Here, a category of flexible tiny multimaterial fiber probes (<0.3 g) is described in which the metal electrodes are regularly embedded inside a biocompatible polymer fiber with a double-clad optical waveguide by thermal drawing. Significantly, this arrangement enables great improvement in mechanical properties, achieves high optical transmission (>90%), and effectively minimizes the impedance (by up to one order of magnitude) of the probe. This ability allows to realize long-term (at least 10 weeks) simultaneous optical stimulation and neural recording at the single-cell level in behaving mice with signal-to-noise ratio (SNR = 30 dB) that is more than 6 times that of the benchmark probe such as an all-polymer fiber.
Collapse
Affiliation(s)
- Minghui Du
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Lu Huang
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
- Department of Neurology and Stroke CenterThe First Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Jiajun Zheng
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Yue Xi
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Yi Dai
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Weida Zhang
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| | - Wei Yan
- Research Laboratory of ElectronicsMassachusetts Institute of Technology (MIT)CambridgeMA02139USA
| | - Guangming Tao
- School of Optical and Electronic InformationWuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Jianrong Qiu
- College of Optical Science and EngineeringState Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhou310027China
| | - Kwok‐Fai So
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
| | - Chaoran Ren
- Guangdong‐Hongkong‐Macau Institute of CNS RegenerationMinistry of Education CNS Regeneration Collaborative Joint LaboratoryJinan UniversityGuangzhou510632China
- Guangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510530China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Center for Brain Science and Brain‐Inspired IntelligenceGuangdong‐Hong Kong‐Macao Greater Bay AreaGuangzhou510000China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and DevicesSchool of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Guangdong Provincial Key Laboratory of Fibre Laser Materials and Applied TechniquesGuangdong Engineering Technology Research and Development Center of Special Optical Fibre Materials and DevicesGuangzhou510640China
| |
Collapse
|
82
|
Optical Waveguides and Integrated Optical Devices for Medical Diagnosis, Health Monitoring and Light Therapies. SENSORS 2020; 20:s20143981. [PMID: 32709072 PMCID: PMC7411870 DOI: 10.3390/s20143981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/26/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
Optical waveguides and integrated optical devices are promising solutions for many applications, such as medical diagnosis, health monitoring and light therapies. Despite the many existing reviews focusing on the materials that these devices are made from, a systematic review that relates these devices to the various materials, fabrication processes, sensing methods and medical applications is still seldom seen. This work is intended to link these multidisciplinary fields, and to provide a comprehensive review of the recent advances of these devices. Firstly, the optical and mechanical properties of optical waveguides based on glass, polymers and heterogeneous materials and fabricated via various processes are thoroughly discussed, together with their applications for medical purposes. Then, the fabrication processes and medical implementations of integrated passive and active optical devices with sensing modules are introduced, which can be used in many medical fields such as drug delivery and cardiovascular healthcare. Thirdly, wearable optical sensing devices based on light sensing methods such as colorimetry, fluorescence and luminescence are discussed. Additionally, the wearable optical devices for light therapies are introduced. The review concludes with a comprehensive summary of these optical devices, in terms of their forms, materials, light sources and applications.
Collapse
|
83
|
Harding EK, Fung SW, Bonin RP. Insights Into Spinal Dorsal Horn Circuit Function and Dysfunction Using Optical Approaches. Front Neural Circuits 2020; 14:31. [PMID: 32595458 PMCID: PMC7303281 DOI: 10.3389/fncir.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Somatosensation encompasses a variety of essential modalities including touch, pressure, proprioception, temperature, pain, and itch. These peripheral sensations are crucial for all types of behaviors, ranging from social interaction to danger avoidance. Somatosensory information is transmitted from primary afferent fibers in the periphery into the central nervous system via the dorsal horn of the spinal cord. The dorsal horn functions as an intermediary processing center for this information, comprising a complex network of excitatory and inhibitory interneurons as well as projection neurons that transmit the processed somatosensory information from the spinal cord to the brain. It is now known that there can be dysfunction within this spinal cord circuitry in pathological pain conditions and that these perturbations contribute to the development and maintenance of pathological pain. However, the complex and heterogeneous network of the spinal dorsal horn has hampered efforts to further elucidate its role in somatosensory processing. Emerging optical techniques promise to illuminate the underlying organization and function of the dorsal horn and provide insights into the role of spinal cord sensory processing in shaping the behavioral response to somatosensory input that we ultimately observe. This review article will focus on recent advances in optogenetics and fluorescence imaging techniques in the spinal cord, encompassing findings from both in vivo and in vitro preparations. We will also discuss the current limitations and difficulties of employing these techniques to interrogate the spinal cord and current practices and approaches to overcome these challenges.
Collapse
Affiliation(s)
- Erika K Harding
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
| | - Samuel Wanchi Fung
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Robert P Bonin
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.,University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
84
|
Jamali V, Niroui F, Taylor LW, Dewey OS, Koscher BA, Pasquali M, Alivisatos AP. Perovskite-Carbon Nanotube Light-Emitting Fibers. NANO LETTERS 2020; 20:3178-3184. [PMID: 32353239 DOI: 10.1021/acs.nanolett.9b05225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Active fibers with electro-optic functionalities are promising building blocks for the emerging and rapidly growing field of fiber and textile electronics. Yet, there remains significant challenges that require improved understanding of the principles of active fiber assembly to enable the development of fiber-shaped devices characterized by having a small diameter, being lightweight, and having high mechanical strength. To this end, the current frameworks are insufficient, and new designs and fabrication approaches are essential to accommodate this unconventional form factor. Here, we present a first demonstration of a pathway that effectively integrates the foundational components meeting such requirements, with the use of a flexible and robust conductive core carbon nanotube fiber and an organic-inorganic emissive composite layer as the two critical elements. We introduce an active fiber design that can be realized through an all solution-processed approach. We have implemented this technique to demonstrate a three-layered light-emitting fiber with a coaxially coated design.
Collapse
Affiliation(s)
- Vida Jamali
- Kavli Energy Nanoscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Farnaz Niroui
- Miller Research Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | - Brent A Koscher
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | | | - A Paul Alivisatos
- Kavli Energy Nanoscience Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
85
|
Jung YH, Kim JU, Lee JS, Shin JH, Jung W, Ok J, Kim TI. Injectable Biomedical Devices for Sensing and Stimulating Internal Body Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907478. [PMID: 32104960 DOI: 10.1002/adma.201907478] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/15/2020] [Indexed: 06/10/2023]
Abstract
The rapid pace of progress in implantable electronics driven by novel technology has created devices with unconventional designs and features to reduce invasiveness and establish new sensing and stimulating techniques. Among the designs, injectable forms of biomedical electronics are explored for accurate and safe targeting of deep-seated body organs. Here, the classes of biomedical electronics and tools that have high aspect ratio structures designed to be injected or inserted into internal organs for minimally invasive monitoring and therapy are reviewed. Compared with devices in bulky or planar formats, the long shaft-like forms of implantable devices are easily placed in the organs with minimized outward protrusions via injection or insertion processes. Adding flexibility to the devices also enables effortless insertions through complex biological cavities, such as the cochlea, and enhances chronic reliability by complying with natural body movements, such as the heartbeat. Diverse types of such injectable implants developed for different organs are reviewed and the electronic, optoelectronic, piezoelectric, and microfluidic devices that enable stimulations and measurements of site-specific regions in the body are discussed. Noninvasive penetration strategies to deliver the miniscule devices are also considered. Finally, the challenges and future directions associated with deep body biomedical electronics are explained.
Collapse
Affiliation(s)
- Yei Hwan Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Uk Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ju Seung Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Joo Hwan Shin
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Woojin Jung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jehyung Ok
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Tae-Il Kim
- School of Chemical Engineering, Department of Biomedical Engineering, and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
86
|
Fallegger F, Schiavone G, Lacour SP. Conformable Hybrid Systems for Implantable Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903904. [PMID: 31608508 DOI: 10.1002/adma.201903904] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/20/2019] [Indexed: 05/27/2023]
Abstract
Conformable bioelectronic systems are promising tools that may aid the understanding of diseases, alleviate pathological symptoms such as chronic pain, heart arrhythmia, and dysfunctions, and assist in reversing conditions such as deafness, blindness, and paralysis. Combining reduced invasiveness with advanced electronic functions, hybrid bioelectronic systems have evolved tremendously in the last decade, pushed by progress in materials science, micro- and nanofabrication, system assembly and packaging, and biomedical engineering. Hybrid integration refers here to a technological approach to embed within mechanically compliant carrier substrates electronic components and circuits prepared with traditional electronic materials. This combination leverages mechanical and electronic performance of polymer substrates and device materials, respectively, and offers many opportunities for man-made systems to communicate with the body with unmet precision. However, trade-offs between materials selection, manufacturing processes, resolution, electrical function, mechanical integrity, biointegration, and reliability should be considered. Herein, prominent trends in manufacturing conformable hybrid systems are analyzed and key design, function, and validation principles are outlined together with the remaining challenges to produce reliable conformable, hybrid bioelectronic systems.
Collapse
Affiliation(s)
- Florian Fallegger
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Giuseppe Schiavone
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| |
Collapse
|
87
|
Lee J, Llerena Zambrano B, Woo J, Yoon K, Lee T. Recent Advances in 1D Stretchable Electrodes and Devices for Textile and Wearable Electronics: Materials, Fabrications, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902532. [PMID: 31495991 DOI: 10.1002/adma.201902532] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/01/2019] [Indexed: 05/18/2023]
Abstract
Research on wearable electronic devices that can be directly integrated into daily textiles or clothes has been explosively grown holding great potential for various practical wearable applications. These wearable electronic devices strongly demand 1D electronic devices that are light-weight, weavable, highly flexible, stretchable, and adaptable to comport to frequent deformations during usage in daily life. To this end, the development of 1D electrodes with high stretchability and electrical performance is fundamentally essential. Herein, the recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1D stretchable electrodes with high performance, and designs and applications of various 1D stretchable electronic devices. To conclude, discussions are presented regarding limitations and perspectives of current materials and devices in terms of performance and scientific understanding that should be considered for further advances.
Collapse
Affiliation(s)
- Jaehong Lee
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Byron Llerena Zambrano
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, 8092, Zurich, Switzerland
| | - Janghoon Woo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Kukro Yoon
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
88
|
Loke G, Yan W, Khudiyev T, Noel G, Fink Y. Recent Progress and Perspectives of Thermally Drawn Multimaterial Fiber Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904911. [PMID: 31657053 DOI: 10.1002/adma.201904911] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Indexed: 05/08/2023]
Abstract
Fibers are the building blocks of a broad spectrum of products from textiles to composites, and waveguides to wound dressings. While ubiquitous, the capabilities of fibers have not rapidly increased compared to semiconductor chip technology, for example. Recognizing that fibers lack the composition, geometry, and feature sizes for more functions, exploration of the boundaries of fiber functionality began some years ago. The approach focuses on a particular form of fiber production, thermal-drawing from a preform. This process has been used for producing single material fibers, but by combining metals, insulators, and semiconductors all within a single strand of fiber, an entire world of functionality in fibers has emerged. Fibers with optical, electrical, acoustic, or optoelectronic functionalities can be produced at scale from relatively easy-to-assemble macroscopic preforms. Two significant opportunities now present themselves. First, can one expect that fiber functions escalate in a predictable manner, creating the context for a "Moore's Law" analog in fibers? Second, as fabrics occupy an enormous surface around the body, could fabrics offer a valuable service to augment the human body? Toward answering these questions, the materials, performance, and limitations of thermally drawn fibers in different electronic applications are detailed and their potential in new fields is envisioned.
Collapse
Affiliation(s)
- Gabriel Loke
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Soldier Nanotechnology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wei Yan
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tural Khudiyev
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Grace Noel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Institute of Soldier Nanotechnology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Advanced Functional Fabrics of America (AFFOA), Cambridge, MA, 02139, USA
| |
Collapse
|
89
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
90
|
Abstract
Monkeys are a premier model organism for neuroscience research. Activity in the central nervous systems of monkeys can be recorded and manipulated while they perform complex perceptual, motor, or cognitive tasks. Conventional techniques for manipulating neural activity in monkeys are too coarse to address many of the outstanding questions in primate neuroscience, but optogenetics holds the promise to overcome this hurdle. In this article, we review the progress that has been made in primate optogenetics over the past 5 years. We emphasize the use of gene regulatory sequences in viral vectors to target specific neuronal types, and we present data on vectors that we engineered to target parvalbumin-expressing neurons. We conclude with a discussion of the utility of optogenetics for treating sensorimotor hearing loss and Parkinson's disease, areas of translational neuroscience in which monkeys provide unique leverage for basic science and medicine.
Collapse
|
91
|
Jung J, Cho H, Yuksel R, Kim D, Lee H, Kwon J, Lee P, Yeo J, Hong S, Unalan HE, Han S, Ko SH. Stretchable/flexible silver nanowire Electrodes for energy device applications. NANOSCALE 2019; 11:20356-20378. [PMID: 31403636 DOI: 10.1039/c9nr04193a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Research on sustainable and high-efficiency energy devices has recently emerged as an important global issue. These devices are now moving beyond the form of a bulk, rigid platform to a portable, flexible/stretchable format that is easily available in our daily lives. Similar to the development of an active layer for the production of next-generation energy devices, the fabrication of flexible/stretchable electrodes for the easy flow of electrons is also very important. Silver nanowire electrodes have high electronic conductivity even in a flexible/stretchable state due to their high aspect ratio and percolation network structures compared to conventional electrodes. Herein, we summarize the research in the field of flexible/stretchable electronics on energy devices fabricated using silver nanowires as the electrodes. Additionally, for a systematic presentation of the current research trends, this review classifies the surveyed research efforts into the categories of energy production, storage, and consumption.
Collapse
Affiliation(s)
- Jinwook Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunmin Cho
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea and Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Recep Yuksel
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS) Ulsan, 44919, Republic of Korea
| | - Dongkwan Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Habeom Lee
- School of Mechanical Engineering, Pusan National University, 2 Busandaehag-ro, 63Beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jinhyeong Kwon
- Manufacturing System R&BD Group, Korea Institute of Industrial Technology (KITECH), 89 Yangdaegiro-gil, Ipjang-myon, Seobuk-gu, Cheonan, Chungcheongnam-do 31056, Republic of Korea
| | - Phillip Lee
- Photoelectronic Hybrid Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Junyeob Yeo
- Novel Applied Nano Optics Lab, Department of Physics, Kyungpook National University, 80 Daehak-ro, Pookgu, Daegu 41566, Republic of Korea
| | - Sukjoon Hong
- Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Husnu Emrah Unalan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - Seungyong Han
- Multiscale Bio-inspired Technology Lab, Department of Mechanical Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, Gyeonggi-do 16499, Republic of Korea.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea and Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea and Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
92
|
Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904765. [PMID: 31538370 DOI: 10.1002/adma.201904765] [Citation(s) in RCA: 566] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Indexed: 05/17/2023]
Abstract
Recent progress in electronic skin or e-skin research is broadly reviewed, focusing on technologies needed in three main applications: skin-attachable electronics, robotics, and prosthetics. First, since e-skin will be exposed to prolonged stresses of various kinds and needs to be conformally adhered to irregularly shaped surfaces, materials with intrinsic stretchability and self-healing properties are of great importance. Second, tactile sensing capability such as the detection of pressure, strain, slip, force vector, and temperature are important for health monitoring in skin attachable devices, and to enable object manipulation and detection of surrounding environment for robotics and prosthetics. For skin attachable devices, chemical and electrophysiological sensing and wireless signal communication are of high significance to fully gauge the state of health of users and to ensure user comfort. For robotics and prosthetics, large-area integration on 3D surfaces in a facile and scalable manner is critical. Furthermore, new signal processing strategies using neuromorphic devices are needed to efficiently process tactile information in a parallel and low power manner. For prosthetics, neural interfacing electrodes are of high importance. These topics are discussed, focusing on progress, current challenges, and future prospects.
Collapse
Affiliation(s)
- Jun Chang Yang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jaewan Mun
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seongjun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305-5025, USA
| | - Steve Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
93
|
Frank JA, Antonini MJ, Anikeeva P. Next-generation interfaces for studying neural function. Nat Biotechnol 2019; 37:1013-1023. [PMID: 31406326 PMCID: PMC7243676 DOI: 10.1038/s41587-019-0198-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
Monitoring and modulating the diversity of signals used by neurons and glia in a closed-loop fashion is necessary to establish causative links between biochemical processes within the nervous system and observed behaviors. As developments in neural-interface hardware strive to keep pace with rapid progress in genetically encoded and synthetic reporters and modulators of neural activity, the integration of multiple functional features becomes a key requirement and a pressing challenge in the field of neural engineering. Electrical, optical and chemical approaches have been used to manipulate and record neuronal activity in vivo, with a recent focus on technologies that both integrate multiple modes of interaction with neurons into a single device and enable bidirectional communication with neural circuits with enhanced spatiotemporal precision. These technologies not only are facilitating a greater understanding of the brain, spinal cord and peripheral circuits in the context of health and disease, but also are informing the development of future closed-loop therapies for neurological, neuro-immune and neuroendocrine conditions.
Collapse
Affiliation(s)
- James A Frank
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marc-Joseph Antonini
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard/MIT Health Science & Technology Graduate Program, Cambridge, MA, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Material Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
94
|
Zhao Y, Wang X, Yang S, Kuttner E, Taylor AA, Salemmilani R, Liu X, Moskovits M, Wu B, Dehestani A, Li JF, Chisholm MF, Tian ZQ, Fan FR, Jiang J, Stucky GD. Protecting the Nanoscale Properties of Ag Nanowires with a Solution-Grown SnO2 Monolayer as Corrosion Inhibitor. J Am Chem Soc 2019; 141:13977-13986. [DOI: 10.1021/jacs.9b07172] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yang Zhao
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shize Yang
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | | - Aidan A. Taylor
- Materials Department, University of California Santa Barbara, Santa Barbara, California United States
| | - Reza Salemmilani
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xin Liu
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, P. R. China
| | - Martin Moskovits
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Binghui Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Ahmad Dehestani
- California Research Alliance (CARA), BASF Corporation, Berkeley, California 94720-1460, United States
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Matthew F. Chisholm
- Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Feng-Ru Fan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Galen D. Stucky
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Materials Department, University of California Santa Barbara, Santa Barbara, California United States
| |
Collapse
|
95
|
Zhang Y, Ding J, Qi B, Tao W, Wang J, Zhao C, Peng H, Shi J. Multifunctional Fibers to Shape Future Biomedical Devices. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201902834] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Indexed: 05/14/2025]
Abstract
AbstractFiber‐based configurations are highly desirable for wearable and implantable biomedical devices due to their unique properties, such as ultra‐flexibility, weavability, minimal invasiveness, and tissue adaptability. Recent developments have focused on the fabrication of fibrous devices with multiple biomedical functions, such as noninvasively or minimally invasively monitoring of physiological signals, delivering drugs, transplanting cells, and recording and stimulating nerves. In this Review, the recent progress of these multifunctional fiber‐based devices in terms of their composite materials, fabrication techniques, structural designs, device‐tissue interfaces, and biomedical applications is carefully described. The remaining challenges and future directions in this emerging and exciting research field are also highlighted.
Collapse
Affiliation(s)
- Ye Zhang
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Baowen Qi
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Wei Tao
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Junqing Wang
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Caiyan Zhao
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science and Laboratory of Advanced Materials Fudan University Shanghai 200438 China
| | - Jinjun Shi
- Center for Nanomedicine, Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
96
|
Na D, Choi J, Lee J, Jeon JW, Kim BH. Commercial Silk-Based Electronic Yarns Fabricated Using Microwave Irradiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27353-27357. [PMID: 31287645 DOI: 10.1021/acsami.9b08873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Electronic textiles (e-textiles) are being developed because of their potential applications in wearable and flexible electronics. However, complex procedures and chemical agents are required to synthesize carbon-based e-textiles. Pyroprotein-based e-textiles, obtained by the pyrolysis of silk proteins, consume large amounts of time and energy due to the high-temperature process (from 800 to 2800 °C). In this study, we report a novel method of fabricating pyroprotein-based electronic yarns (e-yarns) using microwave irradiation. Microwaves were applied to pyroprotein treated at 650 °C to remove numerous heteroatoms in a short time without the high-temperature process and chemical agents. The structural modulation was confirmed by Raman spectroscopy and X-ray photoelectron spectroscopy. We found a reduction in heteroatoms and enlargement of the carbon region. The temperature-dependent resistance was well explained by the fluctuation-induced tunneling model, which also showed structural modification. The electrical conductivity of the fabricated e-yarns was comparable to that of pyroprotein-based e-textiles heat-treated at 1000 °C (order of 102 S/cm) and showed electrical stability under bending.
Collapse
|
97
|
Kanik M, Orguc S, Varnavides G, Kim J, Benavides T, Gonzalez D, Akintilo T, Tasan CC, Chandrakasan AP, Fink Y, Anikeeva P. Strain-programmable fiber-based artificial muscle. Science 2019; 365:145-150. [PMID: 31296764 PMCID: PMC7262675 DOI: 10.1126/science.aaw2502] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
Artificial muscles may accelerate the development of robotics, haptics, and prosthetics. Although advances in polymer-based actuators have delivered unprecedented strengths, producing these devices at scale with tunable dimensions remains a challenge. We applied a high-throughput iterative fiber-drawing technique to create strain-programmable artificial muscles with dimensions spanning three orders of magnitude. These fiber-based actuators are thermally and optically controllable, can lift more than 650 times their own weight, and withstand strains of >1000%. Integration of conductive nanowire meshes within these fiber-based muscles offers piezoresistive strain feedback and demonstrates long-term resilience across >105 deformation cycles. The scalable dimensions of these fiber-based actuators and their strength and responsiveness may extend their impact from engineering fields to biomedical applications.
Collapse
Affiliation(s)
- Mehmet Kanik
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Sirma Orguc
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Georgios Varnavides
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Jinwoo Kim
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Thomas Benavides
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Dani Gonzalez
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| | - Timothy Akintilo
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - C Cem Tasan
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Anantha P Chandrakasan
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA
| | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
- Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
98
|
Zhang X, Li J, Yang W, Leng B, Niu P, Jiang X, Liu B. High-Performance Flexible Ultraviolet Photodetectors Based on AZO/ZnO/PVK/PEDOT:PSS Heterostructures Integrated on Human Hair. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24459-24467. [PMID: 31246388 DOI: 10.1021/acsami.9b07423] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Flexible optoelectronics is an emerging research field that has attracted a great deal of interest in recent years due to the special functions and potential applications of these devices in flexible image sensors, optical computing, energy conversion devices, the Internet of Things, and other technologies. Here, we examine the high-performance ultraviolet (UV) photodetectors using AZO/ZnO nanorods/PVK/PEDOT:PSS heterostructures integrated on human hair. Due to the precise interfacial energy-level alignment among all layers and superior mechanical characteristics of human hair, the as-obtained photodetector shows a fast response time, high photoresponsivity, and excellent flexibility. According to integrate 7 heterostructures as 7 display pixels, the flexible UV-image sensor has superior device performance and outstanding flexibility and can produce vivid and accurate images of Arabic numerals from 0 to 9. Different combinations of the two heterostructures can also be used to achieve flexible photon-triggered logic functions, including AND, OR, and NAND gates. Our findings indicate the possibility of using human hair as a fiber-shaped flexible substrate and will allow the use of hair-based hierarchical heterostructures as building blocks to create exciting opportunities for next-generation high-performance, multifunctional, low-cost, and flexible optoelectronic devices.
Collapse
Affiliation(s)
- Xinglai Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR) , Chinese Academy of Sciences (CAS) , No. 72 Wenhua Road , Shenyang 110016 , China
| | - Jing Li
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR) , Chinese Academy of Sciences (CAS) , No. 72 Wenhua Road , Shenyang 110016 , China
| | - Wenjin Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR) , Chinese Academy of Sciences (CAS) , No. 72 Wenhua Road , Shenyang 110016 , China
| | - Bing Leng
- Department of Plastic Surgery , The First Affiliated Hospital of China Medical University , No. 155 North Nanjing Street , Shenyang 110001 , China
| | - Pingjuan Niu
- School of Electrical Engineering and Automation , Tianjin Polytechnic University , No. 399 Binshuixi Road , Tianjin 300387 , China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR) , Chinese Academy of Sciences (CAS) , No. 72 Wenhua Road , Shenyang 110016 , China
| | - Baodan Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR) , Chinese Academy of Sciences (CAS) , No. 72 Wenhua Road , Shenyang 110016 , China
- State Key Laboratory of Optoelectronic Materials and Technologies and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
99
|
|
100
|
Abstract
Neural recording electrode technologies have contributed considerably to neuroscience by enabling the extracellular detection of low-frequency local field potential oscillations and high-frequency action potentials of single units. Nevertheless, several long-standing limitations exist, including low multiplexity, deleterious chronic immune responses and long-term recording instability. Driven by initiatives encouraging the generation of novel neurotechnologies and the maturation of technologies to fabricate high-density electronics, novel electrode technologies are emerging. Here, we provide an overview of recently developed neural recording electrode technologies with high spatial integration, long-term stability and multiple functionalities. We describe how these emergent neurotechnologies can approach the ultimate goal of illuminating chronic brain activity with minimal disruption of the neural environment, thereby providing unprecedented opportunities for neuroscience research in the future.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Center for Brain Science, Harvard University, Cambridge, MA, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|