51
|
Liu C, Wang W, Lai H, Chen Y, Li L, Li H, Zhan M, Chen T, Cao W, Li X. Biosynthesis of fungus-based oral selenium microcarriers for radioprotection and immuno-homeostasis shaping against radiation-induced heart disease. Bioact Mater 2024; 37:393-406. [PMID: 38689659 PMCID: PMC11059443 DOI: 10.1016/j.bioactmat.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024] Open
Abstract
Radiation-induced heart disease (RIHD), characterized by severe oxidative stress and immune dysregulation, is a serious condition affecting cancer patients undergoing thoracic radiation. Unfortunately, clinical interventions for RIHD are lacking. Selenium (Se) is a trace element with excellent antioxidant and immune-modulatory properties. However, its application in heart radioprotection remains challenging. Herein, we developed a novel bioactive Cordyceps militaris-based Se oral delivery system (Se@CM), which demonstrated superior radioprotection effects in vitro against X-ray-induced damage in H9C2 cells through suppressing excessive ROS generation, compared to the radioprotectant Amifostine. Moreover, Se@CM exhibited exceptional cardioprotective effects in vivo against X-ray irradiation, reducing cardiac dysfunction and myocardial fibrosis by balancing the redox equilibrium and modulating the expression of Mn-SOD and MDA. Additionally, Se@CM maintained immuno-homeostasis, as evidenced by the upregulated population of T cells and M2 macrophages through modulation of selenoprotein expression after irradiation. Together, these results highlight the remarkable antioxidant and immunity modulation properties of Se@CM and shed light on its promising application for cardiac protection against IR-induced disease. This research provides valuable insights into developing effective strategies for preventing and managing RIHD.
Collapse
Affiliation(s)
- Chang Liu
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd, Jinan University, Zhuhai 519000, China
| | - Weiyi Wang
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Haoqiang Lai
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Yikang Chen
- Guangdong Jinan Established Selenium Source Nano Technology Research Institute Co., Ltd., Guangzhou 510535, China
| | - Lvyi Li
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Haiwei Li
- Guangdong Jinan Established Selenium Source Nano Technology Research Institute Co., Ltd., Guangzhou 510535, China
| | - Meixiao Zhan
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
| | - Tianfeng Chen
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, 519000, PR China
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd, Jinan University, Zhuhai 519000, China
| | - Xiaoling Li
- Department of Chemistry, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
52
|
Hou Z, Brenner JS. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol 2024; 73:103185. [PMID: 38759419 PMCID: PMC11127604 DOI: 10.1016/j.redox.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
During cerebral ischemia-reperfusion conditions, the excessive reactive oxygen species in the ischemic penumbra region, resulting in neuronal oxidative stress, constitute the main pathological mechanism behind ischemia-reperfusion damage. Swiftly reinstating blood perfusion in the ischemic penumbra zone and suppressing neuronal oxidative injury are key to effective treatment. Presently, antioxidants in clinical use suffer from low bioavailability, a singular mechanism of action, and substantial side effects, severely restricting their therapeutic impact and widespread clinical usage. Recently, nanomedicines, owing to their controllable size and shape and surface modifiability, have demonstrated good application potential in biomedicine, potentially breaking through the bottleneck in developing neuroprotective drugs for ischemic strokes. This manuscript intends to clarify the mechanisms of cerebral ischemia-reperfusion injury and provides a comprehensive review of the design and synthesis of antioxidant nanomedicines, their action mechanisms and applications in reversing neuronal oxidative damage, thus presenting novel approaches for ischemic stroke prevention and treatment.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, 100700, China; The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, 150010, Heilongjiang, China
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
53
|
Hou Y, Zhu C, Ban G, Shen Z, Liang Y, Chen K, Wang C, Shi H. Advancements and Challenges in the Application of Metal-Organic Framework (MOF) Nanocomposites for Tumor Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6295-6317. [PMID: 38919774 PMCID: PMC11198007 DOI: 10.2147/ijn.s463144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Nanoscale metal-organic frameworks (MOFs) offer high biocompatibility, nanomaterial permeability, substantial specific surface area, and well-defined pores. These properties make MOFs valuable in biomedical applications, including biological targeting and drug delivery. They also play a critical role in tumor diagnosis and treatment, including tumor cell targeting, identification, imaging, and therapeutic methods such as drug delivery, photothermal effects, photodynamic therapy, and immunogenic cell death. The diversity of MOFs with different metal centers, organics, and surface modifications underscores their multifaceted contributions to tumor research and treatment. This review is a summary of these roles and mechanisms. The final section of this review summarizes the current state of the field and discusses prospects that may bring MOFs closer to pharmaceutical applications.
Collapse
Affiliation(s)
- Yingze Hou
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
- Clinical Medical College, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Can Zhu
- Department of Urology, The Second Clinical Medical College of Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Ge Ban
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Zhean Shen
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| | - Yingbing Liang
- Department of Chemistry and Biotechnology, Graduate School of Engineering Tottori University Koyama-Minami 4-101, Tottori, 680-8552, Japan
| | - Kun Chen
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Chenbo Wang
- School of Intelligent Medical Engineering, Sanquan College of Xinxiang Medical University, Xinxiang, 453003, People’s Republic of China
| | - Heng Shi
- Heart Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
54
|
Zhou H, Li Z, Jing S, Wang B, Ye Z, Xiong W, Liu Y, Liu Y, Xu C, Kumeria T, He Y, Ye Q. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. J Nanobiotechnology 2024; 22:351. [PMID: 38902789 PMCID: PMC11188197 DOI: 10.1186/s12951-024-02610-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziwei Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ben Wang
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China
| | - Zhifei Ye
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonghao Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chun Xu
- School of Dentistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, Hubei, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China.
| |
Collapse
|
55
|
Li R, Zhao W, Han Z, Feng N, Wu T, Xiong H, Jiang W. Self-Cascade Nanozyme Reactor as a Cuproptosis Inducer Synergistic Inhibition of Cellular Respiration Boosting Radioimmunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306263. [PMID: 38221757 DOI: 10.1002/smll.202306263] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Indexed: 01/16/2024]
Abstract
Intrinsic or acquired radioresistance remained an important challenge in the successful management of cancer. Herein, a novel "smart" multifunctional copper-based nanocomposite (RCL@Pd@CuZ) to improve radiotherapy (RT) sensitivity is designed and developed. In this nanoplatform, DSPE-PEG-RGD modified on the liposome surface enhanced tumor targeting and permeability; capsaicin inserted into the phospholipid bilayer improved the hypoxic conditions in the tumor microenvironment (TME) by inhibiting mitochondrial respiration; a Cu MOF porous cube encapsulated in liposome generated highly active hydroxyl radicals (OH·), consumed GSH and promoted cuproptosis by releasing Cu2+; the ultrasmall palladium (Pd) nanozyme within the cubes exhibited peroxidase activity, catalyzing toxic OH· generation and releasing oxygen from hydrogen peroxide; and lastly, Pd, as an element with a relatively high atomic number (Z) enhanced the photoelectric and Compton effects of X-rays. Therefore, RCL@Pd@CuZ enhance RT sensitivity by ameliorating hypoxia, promoting cuproptosis, depleting GSH, amplifying oxidative stress, and enhancing X-ray absorption , consequently potently magnifying immunogenic cell death (ICD). In a mouse model , RCL@Pd@CuZ combined with RT yielded >90% inhibition compared with that obtained by RT alone in addition to a greater quantity of DC maturation and CD8+ T cell infiltration. This nanoplatform offered a promising remedial modality to facilitate cuproptosis-related cancer radioimmunotherapy.
Collapse
Affiliation(s)
- Rui Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
- Department of Respiratory Intervention, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No.127, Dongming Road, Jinshui, Zhengzhou, 450008, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zhuo Han
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, Xi'an, 710000, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Wu
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Wei Jiang
- Nanozyme Medical Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450001, China
- Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
56
|
Man J, Shen Y, Song Y, Yang K, Pei P, Hu L. Biomaterials-mediated radiation-induced diseases treatment and radiation protection. J Control Release 2024; 370:318-338. [PMID: 38692438 DOI: 10.1016/j.jconrel.2024.04.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
In recent years, the intersection of the academic and medical domains has increasingly spotlighted the utilization of biomaterials in radioactive disease treatment and radiation protection. Biomaterials, distinguished from conventional molecular pharmaceuticals, offer a suite of advantages in addressing radiological conditions. These include their superior biological activity, chemical stability, exceptional histocompatibility, and targeted delivery capabilities. This review comprehensively delineates the therapeutic mechanisms employed by various biomaterials in treating radiological afflictions impacting the skin, lungs, gastrointestinal tract, and hematopoietic systems. Significantly, these nanomaterials function not only as efficient drug delivery vehicles but also as protective agents against radiation, mitigating its detrimental effects on the human body. Notably, the strategic amalgamation of specific biomaterials with particular pharmacological agents can lead to a synergistic therapeutic outcome, opening new avenues in the treatment of radiation- induced diseases. However, despite their broad potential applications, the biosafety and clinical efficacy of these biomaterials still require in-depth research and investigation. Ultimately, this review aims to not only bridge the current knowledge gaps in the application of biomaterials for radiation-induced diseases but also to inspire future innovations and research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Jianping Man
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanhua Shen
- Experimental Animal Centre of Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215005, China
| | - Yujie Song
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China..
| | - Lin Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China..
| |
Collapse
|
57
|
Ye J, Fan Y, She Y, Shi J, Yang Y, Yuan X, Li R, Han J, Liu L, Kang Y, Ji X. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310211. [PMID: 38460166 PMCID: PMC11165487 DOI: 10.1002/advs.202310211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Indexed: 03/11/2024]
Abstract
The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.
Collapse
Affiliation(s)
- Jiamin Ye
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yaoguang She
- Department of General Surgerythe First Medical CenterChinese People's Liberation Army General HospitalBeijing100853China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xue Yuan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jingwen Han
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Luntao Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin100730China
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
58
|
Huang E, Li H, Han H, Guo L, Liang Y, Huang Z, Qin K, Du X. Polydopamine-Coated Kaempferol-Loaded MOF Nanoparticles: A Novel Therapeutic Strategy for Postoperative Neurocognitive Disorder. Int J Nanomedicine 2024; 19:4569-4588. [PMID: 38799697 PMCID: PMC11127663 DOI: 10.2147/ijn.s455492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Purpose The primary objective of this study was to develop an innovative nanomedicine-based therapeutic strategy to alleviate Postoperative Neurocognitive Disorder (PND) in patients undergoing surgery. Patients and Methods To achieve this goal, polydopamine-coated Kaempferol-loaded Metal-Organic Framework nanoparticles (pDA/KAE@ZIF-8) were synthesized and evaluated. The study involved encapsulating Kaempferol (KAE) within ZIF-8 nanoparticles, followed by coating with polydopamine (PDA) to enhance biocompatibility and targeted delivery. The characterization of these nanoparticles (NPs) was conducted using various techniques including Scanning Electron Microscopy, Fourier-Transform Infrared Spectroscopy, X-ray Diffraction, and Ultraviolet-Visible spectroscopy. The efficacy of pDA/KAE@ZIF-8 NPs was tested in both in vitro and in vivo models, specifically focusing on their ability to penetrate the blood-brain barrier and protect neuronal cells against oxidative stress. Results The study found that pDA/KAE@ZIF-8 NPs efficiently penetrated the blood-brain barrier and were significantly taken up by neuronal cells. These nanoparticles demonstrated remarkable Reactive Oxygen Species (ROS) scavenging capabilities and stability under physiological conditions. In vitro studies showed that pDA/KAE@ZIF-8 NPs provided protection to HT-22 neuronal cells against H2O2-induced oxidative stress, reduced the levels of pro-inflammatory cytokines, and decreased apoptosis rates. In a PND mouse model, the treatment with pDA/KAE@ZIF-8 NPs significantly improved cognitive functions, surpassing the effects of KAE alone. This improvement was substantiated through behavioral tests and a noted reduction in hippocampal inflammation. Conclusion The findings from this study underscore the potential of pDA/KAE@ZIF-8 NPs as an effective nanotherapeutic agent for PND. This approach offers a novel direction in the postoperative care of elderly patients, with the potential to transform the therapeutic landscape for neurocognitive disorders following surgery. The application of nanotechnology in this context opens new avenues for more effective and targeted treatments, thereby improving the quality of life for patients suffering from PND.
Collapse
Affiliation(s)
- Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People’s Republic of China
- Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Huadao Li
- Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People’s Republic of China
- Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Lianshan Guo
- Department of Emergency, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People’s Republic of China
| | - Yubing Liang
- Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zijin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People’s Republic of China
| | - Ke Qin
- Guilin People’s Hospital, Guilin, Guangxi Zhuang Autonomous Region, 541100, People’s Republic of China
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530007, People’s Republic of China
| |
Collapse
|
59
|
Wang G, Li Z, Wang G, Sun Q, Lin P, Wang Q, Zhang H, Wang Y, Zhang T, Cui F, Zhong Z. Advances in Engineered Nanoparticles for the Treatment of Ischemic Stroke by Enhancing Angiogenesis. Int J Nanomedicine 2024; 19:4377-4409. [PMID: 38774029 PMCID: PMC11108071 DOI: 10.2147/ijn.s463333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/24/2024] Open
Abstract
Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Gongchen Wang
- Department of Vascular Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150086, People’s Republic of China
| | - Qixu Sun
- Department of Gastroenterology, Penglai People’s Hospital, Yantai, Shandong, 265600, People’s Republic of China
| | - Peng Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Qian Wang
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Feiyun Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
- Department of Microbiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150081, People’s Republic of China
| |
Collapse
|
60
|
Fu X, Li P, Chen X, Ma Y, Wang R, Ji W, Gu J, Sheng B, Wang Y, Zhang Z. Ceria nanoparticles: biomedical applications and toxicity. J Zhejiang Univ Sci B 2024; 25:361-388. [PMID: 38725338 PMCID: PMC11087188 DOI: 10.1631/jzus.b2300854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 05/13/2024]
Abstract
Ceria nanoparticles (CeO2 NPs) have become popular materials in biomedical and industrial fields due to their potential applications in anti-oxidation, cancer therapy, photocatalytic degradation of pollutants, sensors, etc. Many methods, including gas phase, solid phase, liquid phase, and the newly proposed green synthesis method, have been reported for the synthesis of CeO2 NPs. Due to the wide application of CeO2 NPs, concerns about their adverse impacts on human health have been raised. This review covers recent studies on the biomedical applications of CeO2 NPs, including their use in the treatment of various diseases (e.g., Alzheimer's disease, ischemic stroke, retinal damage, chronic inflammation, and cancer). CeO2 NP toxicity is discussed in terms of the different systems of the human body (e.g., cytotoxicity, genotoxicity, respiratory toxicity, neurotoxicity, and hepatotoxicity). This comprehensive review covers both fundamental discoveries and exploratory progress in CeO2 NP research that may lead to practical developments in the future.
Collapse
Affiliation(s)
- Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Peng Li
- Department of Nephrology, Yantai Yuhuangding Hospital, Qingdao University, Yantai 264005, China
| | - Xi Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yuanyuan Ma
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Wenxuan Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Jiakuo Gu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Bowen Sheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yizhou Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China. ,
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
61
|
Chen M, Qin Y, Peng Y, Mai R, Teng H, Qi Z, Mo J. Advancing stroke therapy: the potential of MOF-based nanozymes in biomedical applications. Front Bioeng Biotechnol 2024; 12:1363227. [PMID: 38798955 PMCID: PMC11119330 DOI: 10.3389/fbioe.2024.1363227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
In this study, we explored the growing use of metal-organic framework (MOF)-based Nanozymes in biomedical research, with a specific emphasis on their applications in stroke therapy. We have discussed the complex nature of stroke pathophysiology, highlighting the crucial role of reactive oxygen species (ROS), and acknowledging the limitations of natural enzymes in addressing these challenges. We have also discussed the role of nanozymes, particularly those based on MOFs, their structural similarities to natural enzymes, and their potential to improve reactivity in various biomedical applications. The categorization of MOF nanozymes based on enzyme-mimicking activities is discussed, and their applications in stroke therapy are explored. We have reported the potential of MOF in treating stroke by regulating ROS levels, alleviation inflammation, and reducing neuron apoptosis. Additionally, we have addressed the challenges in developing efficient antioxidant nanozyme systems for stroke treatment. The review concludes with the promise of addressing these challenges and highlights the promising future of MOF nanozymes in diverse medical applications, particularly in the field of stroke treatment.
Collapse
Affiliation(s)
- Meirong Chen
- The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Medical College of Guangxi University, Nanning, China
| | - Yang Qin
- Department of Graduate and Postgraduate Education Management, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yongmei Peng
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Ruyu Mai
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Huanyao Teng
- School of Clinical Medicine, Guilin Medical University, Guilin, China
| | - Zhongquan Qi
- Medical College of Guangxi University, Nanning, China
| | - Jingxin Mo
- The Guangxi Clinical Research Center for Neurological Diseases, The Affiliated Hospital of Guilin Medical University, Guilin, China
- Lab of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
62
|
Shan J, Du L, Wang X, Zhang S, Li Y, Xue S, Tang Q, Liu P. Ultrasound Trigger Ce-Based MOF Nanoenzyme For Efficient Thrombolytic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304441. [PMID: 38576170 PMCID: PMC11132072 DOI: 10.1002/advs.202304441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Indexed: 04/06/2024]
Abstract
The inflammatory damage caused by thrombus formation and dissolution can increase the risk of thrombotic complications on top of cell death and organ dysfunction caused by thrombus itself. Therefore, a rapid and precise thrombolytic therapy strategy is in urgent need to effectively dissolve thrombus and resist oxidation simultaneously. In this study, Ce-UiO-66, a cerium-based metal-organic framework (Ce-MOF) with reactive oxygen species (ROS) scavenging properties, encapsulated by low-immunogenic mesenchymal stem cell membrane with inflammation-targeting properties, is used to construct a targeted nanomedicine Ce-UiO-CM. Ce-UiO-CM is applied in combination with external ultrasound stimulation for thrombolytic therapy in rat femoral artery. Ce-UiO-66 has abundant Ce (III)/Ce (IV) coupling sites that react with hydrogen peroxide (H2O2) to produce oxygen, exhibiting catalase (CAT) activity. The multi-cavity structure of Ce-UiO-66 can generate electron holes, and its pore channels can act as micro-reactors to further enhance its ROS scavenging capacity. Additionally, the porous structure of Ce-UiO-66 and the oxygen produced by its reaction with H2O2 may enhance the cavitation effects of ultrasound, thereby improving thrombolysis efficacy.
Collapse
Affiliation(s)
- Jianggui Shan
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ling Du
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Xingang Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Sidi Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Yiping Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Shanghai University of Traditional Chinese MedicineShanghai201203China
| | - Song Xue
- Department of Cardiovascular SurgeryReiji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Qianyun Tang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| | - Peifeng Liu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
| |
Collapse
|
63
|
Zhang Q, Liu Z, Li B, Mu L, Sheng K, Xiong Y, Cheng J, Zhou J, Xiong Z, Zhou L, Jiang L, Wu J, Cai X, Zheng Y, Du W, Li Y, Zhu Y. Platinum-Loaded Cerium Oxide Capable of Repairing Neuronal Homeostasis for Cerebral Ischemia-Reperfusion Injury Therapy. Adv Healthc Mater 2024; 13:e2303027. [PMID: 38323853 DOI: 10.1002/adhm.202303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Effective neuroprotective agents are required to prevent neurological damage caused by reactive oxygen species (ROS) generated by cerebral ischemia-reperfusion injury (CIRI) following an acute ischemic stroke. Herein, it is aimed to develop the neuroprotective agents of cerium oxide loaded with platinum clusters engineered modifications (Ptn-CeO2). The density functional theory calculations show that Ptn-CeO2 could effectively scavenge ROS, including hydroxyl radicals (·OH) and superoxide anions (·O2 -). In addition, Ptn-CeO2 exhibits the superoxide dismutase- and catalase-like enzyme activities, which is capable of scavenging hydrogen peroxide (H2O2). The in vitro studies show that Ptn-CeO2 could adjust the restoration of the mitochondrial metabolism to ROS homeostasis, rebalance cytokines, and feature high biocompatibility. The studies in mice CIRI demonstrate that Ptn-CeO2 could also restore cytokine levels, reduce cysteine aspartate-specific protease (cleaved Caspase 3) levels, and induce the polarization of microglia to M2-type macrophages, thus inhibiting the inflammatory responses. As a result, Ptn-CeO2 inhibits the reperfusion-induced neuronal apoptosis, relieves the infarct volume, reduces the neurological severity score, and improves cognitive function. Overall, these findings suggest that the prominent neuroprotective effect of the engineered Ptn-CeO2 has a significant neuroprotective effect and provides a potential therapeutic alternative for CIRI.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Zihao Liu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Bo Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
| | - Liuhua Mu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Sheng
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yijia Xiong
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
| | - Jia Zhou
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Zhi Xiong
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lingling Zhou
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Wenxian Du
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yueqi Zhu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| |
Collapse
|
64
|
Cao Y, Yu Y, Pan L, Han W, Zeng F, Wang J, Mei Q, Liu C. Sulfated Polysaccharide-Based Nanocarrier Drives Microenvironment-Mediated Cerebral Neurovascular Remodeling for Ischemic Stroke Treatment. NANO LETTERS 2024; 24:5214-5223. [PMID: 38649327 DOI: 10.1021/acs.nanolett.4c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stroke is a leading cause of global mortality and severe disability. However, current strategies used for treating ischemic stroke lack specific targeting capabilities, exhibit poor immune escape ability, and have limited drug release control. Herein, we developed an ROS-responsive nanocarrier for targeted delivery of the neuroprotective agent rapamycin (RAPA) to mitigate ischemic brain damage. The nanocarrier consisted of a sulfated chitosan (SCS) polymer core modified with a ROS-responsive boronic ester enveloped by a red blood cell membrane shell incorporating a stroke homing peptide. When encountering high levels of intracellular ROS in ischemic brain tissues, the release of SCS combined with RAPA from nanoparticle disintegration facilitates effective microglia polarization and, in turn, maintains blood-brain barrier integrity, reduces cerebral infarction, and promotes cerebral neurovascular remodeling in a mouse stroke model involving transient middle cerebral artery occlusion (tMCAO). This work offers a promising strategy to treat ischemic stroke therapy.
Collapse
Affiliation(s)
- Yinli Cao
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lina Pan
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weili Han
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Feng Zeng
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Jing Wang
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qiyong Mei
- School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai 200003, People's Republic of China
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
65
|
Liu Y, You S, Ding L, Yuan F, Sun Y. Hepatotoxic effects of chronic exposure to environmentally relevant concentrations of Di-(2-ethylhexyl) phthalate (DEHP) on crucian carp: Insights from multi-omics analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171447. [PMID: 38447714 DOI: 10.1016/j.scitotenv.2024.171447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is an extensively used phthalate esters (PAEs) that raise growing ecotoxicological concerns due to detrimental effects on living organisms and ecosystems. This study performed hepatotoxic investigations on crucian carp under chronic low-dosage (CLD) exposure to DEHP at environmentally relevant concentrations (20-500 μg/L). The results demonstrated that the CLD exposure induced irreversible damage to the liver tissue. Multi-omics (transcriptomics and metabolomics) analyses revealed the predominant toxicological mechanisms underlying DEHP-induced hepatotoxicity by inhibiting energy production pathways and the up-regulation of the purine metabolism. Disruption of metabolic pathways led to excessive reactive oxygen species (ROS) production and subsequent oxidative stress. The adverse metabolic effects were exacerbated by an interplay between oxidative stress and endoplasmic reticulum stress. This study not only provides new mechanistic insights into the ecotoxicological effects of DEHP under chronic low-dosage exposure, but also suggests a potential strategy for further ecological risk assessment of PAEs.
Collapse
Affiliation(s)
- Yingjie Liu
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lu Ding
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Fangying Yuan
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China
| | - Yanchun Sun
- Heilongjiang River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Laboratory of Quality & Safety Risk Assessment for Aquatic Products (Harbin), Ministry of Agriculture and Rural Areas, Harbin 150070, China.
| |
Collapse
|
66
|
Zhang J, Chen Z, Chen Q. Advanced Nano-Drug Delivery Systems in the Treatment of Ischemic Stroke. Molecules 2024; 29:1848. [PMID: 38675668 PMCID: PMC11054753 DOI: 10.3390/molecules29081848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the frequency of strokes has been on the rise year by year and has become the second leading cause of death around the world, which is characterized by a high mortality rate, high recurrence rate, and high disability rate. Ischemic strokes account for a large percentage of strokes. A reperfusion injury in ischemic strokes is a complex cascade of oxidative stress, neuroinflammation, immune infiltration, and mitochondrial damage. Conventional treatments are ineffective, and the presence of the blood-brain barrier (BBB) leads to inefficient drug delivery utilization, so researchers are turning their attention to nano-drug delivery systems. Functionalized nano-drug delivery systems have been widely studied and applied to the study of cerebral ischemic diseases due to their favorable biocompatibility, high efficiency, strong specificity, and specific targeting ability. In this paper, we briefly describe the pathological process of reperfusion injuries in strokes and focus on the therapeutic research progress of nano-drug delivery systems in ischemic strokes, aiming to provide certain references to understand the progress of research on nano-drug delivery systems (NDDSs).
Collapse
Affiliation(s)
- Jiajie Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (J.Z.); (Z.C.)
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
67
|
Gao Y, Zhai L, Chen J, Lin D, Zhang LK, Yang H, Yang R, Mi L, Guan YQ. Focused ultrasound-mediated cerium-based nanoreactor against Parkinson's disease via ROS regulation and microglia polarization. J Control Release 2024; 368:580-594. [PMID: 38467194 DOI: 10.1016/j.jconrel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/03/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Neuronal damage caused by oxidative stress and inflammatory microenvironment dominated by microglia are the main obstacles in the treatment of Parkinson's disease (PD). In this study, we developed an integrated nanoreactor Q@CeBG by encapsulating CeO2 nanozyme and quercetin (Que) into glutathione-modified bovine serum albumin, and then selected focused ultrasound (FUS) to temporarily open the blood-brain barrier (BBB) to enhance the accumulation level of Q@CeBG in the brain. Q@CeBG exhibited superior multi-ROS scavenging activity. Under the assistance of FUS, Q@CeBG nanoreactor can penetrate the BBB and act on neurons as well as microglia, reducing the neuron's oxidative stress level and polarizing microglia's phenotype from proinflammatory M1 to anti-inflammatory M2. In vitro and In vivo experiments demonstrated that Q@CeBG nanoreactor with good biocompatibility exhibit outstanding neuroprotection and immunomodulatory effects. In short, this dual synergetic nanoreactor will become a reliable platform against PD.
Collapse
Affiliation(s)
- Yifei Gao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Limin Zhai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiapeng Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danmin Lin
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Runcai Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510623, China
| | - LinJing Mi
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
68
|
Zhou X, Zhou Q, He Z, Xiao Y, Liu Y, Huang Z, Sun Y, Wang J, Zhao Z, Liu X, Zhou B, Ren L, Sun Y, Chen Z, Zhang X. ROS Balance Autoregulating Core-Shell CeO 2@ZIF-8/Au Nanoplatform for Wound Repair. NANO-MICRO LETTERS 2024; 16:156. [PMID: 38512388 PMCID: PMC10957853 DOI: 10.1007/s40820-024-01353-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024]
Abstract
Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core-shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.
Collapse
Affiliation(s)
- Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Quan Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhaozhi He
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yi Xiao
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yan Liu
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Zhuohang Huang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yaoji Sun
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jiawei Wang
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Bin Zhou
- NO.1 Middle School Affiliated to Central China Normal University, Wuhan, 430223, People's Republic of China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
| | - Zhiwei Chen
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Xingcai Zhang
- John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
69
|
Xu Y, Lai H, Pan S, Pan L, Liu T, Yang Z, Chen T, Zhu X. Selenium promotes immunogenic radiotherapy against cervical cancer metastasis through evoking P53 activation. Biomaterials 2024; 305:122452. [PMID: 38154440 DOI: 10.1016/j.biomaterials.2023.122452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Radiotherapy is still the recommended treatment for cervical cancer. However, radioresistance and radiation-induced side effects remain one of the biggest clinical problems. Selenium (Se) has been confirmed to exhibit radiation-enhancing effects for cancer treatment. However, Se species dominate the biological activities and which form of Se possesses better radiosensitizing properties and radiation safety remains elusive. Here, different Se species (the valence state of Se ranged from - 2, 0, +4 to + 6) synergy screen was carried out to identify the potential radiosensitizing effects and radiation safety of Se against cervical cancer. We found that the therapeutic effects varied with the changes in the Se valence state. Sodium selenite (+4) displayed strong cancer-killing effects but also possessed severe cytotoxicity. Sodium selenate (+6) neither enhanced the killing effects of X-ray nor possessed anticancer activity by its alone treatment. Although nano-selenium (0), especially Let-SeNPs, has better radiosensitizing activity, the - 2 organic Se, such as selenadiazole derivative SeD (-2) exhibited more potent anticancer effects and possessed a higher safe index. Overall, the selected Se drugs were able to synergize with X-ray to inhibit cell growth, clone formation, and cell migration by triggering G2/M phase arrest and apoptosis, and SeD (-2) was found to exhibit more potent enhancing capacity. Further mechanism studies showed that SeD mediated p53 pathway activation by inducing DNA damage through promoting ROS production. Additionally, SeD combined with X-ray therapy can induce an anti-tumor immune response in vivo. More importantly, SeD combined with X-ray significantly inhibited the liver metastasis of tumor cells and alleviated the side effects caused by radiation therapy in tumor-bearing mice. Taken together, this study demonstrates the radiosensitization and radiation safety effects of different Se species, which may shed light on the application of such Se-containing drugs serving as side effects-reducing agents for cervical cancer radiation treatment.
Collapse
Affiliation(s)
- Yanchao Xu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China
| | - Haoqiang Lai
- Department of Chemistry, Jinan University, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Liuliu Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ting Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Ziyi Yang
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China
| | - Tianfeng Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China; Department of Chemistry, Jinan University, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, China.
| |
Collapse
|
70
|
Kim YG, Lee Y, Lee N, Soh M, Kim D, Hyeon T. Ceria-Based Therapeutic Antioxidants for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210819. [PMID: 36793245 DOI: 10.1002/adma.202210819] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The growing interest in nanomedicine over the last 20 years has carved out a research field called "nanocatalytic therapy," where catalytic reactions mediated by nanomaterials are employed to intervene in disease-critical biomolecular processes. Among many kinds of catalytic/enzyme-mimetic nanomaterials investigated thus far, ceria nanoparticles stand out from others owing to their unique scavenging properties against biologically noxious free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), by exerting enzyme mimicry and nonenzymatic activities. Much effort has been made to utilize ceria nanoparticles as self-regenerating antioxidative and anti-inflammatory agents for various kinds of diseases, given the detrimental effects of ROS and RNS therein that need alleviation. In this context, this review is intended to provide an overview as to what makes ceria nanoparticles merit attention in disease therapy. The introductory part describes the characteristics of ceria nanoparticles as an oxygen-deficient metal oxide. The pathophysiological roles of ROS and RNS are then presented, as well as their scavenging mechanisms by ceria nanoparticles. Representative examples of recent ceria-nanoparticle-based therapeutics are summarized by categorization into organ and disease types, followed by the discussion on the remaining challenges and future research directions.
Collapse
Affiliation(s)
- Young Geon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yunjung Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nohyun Lee
- School of Advanced Materials Engineering, Kookmin University, Seoul, 02707, Republic of Korea
| | - Min Soh
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Center for Advanced Pharmaceutical Technology, HyeonTechNBio, Inc., Seoul, 08826, Republic of Korea
| | - Dokyoon Kim
- Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
71
|
Sun L, Gao H, Wang H, Zhou J, Ji X, Jiao Y, Qin X, Ni D, Zheng X. Nanoscale Metal-Organic Frameworks-Mediated Degradation of Mutant p53 Proteins and Activation of cGAS-STING Pathway for Enhanced Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307278. [PMID: 38225693 DOI: 10.1002/advs.202307278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Indexed: 01/17/2024]
Abstract
Activating cGAS-STING pathway has great potential to achieve effective antitumor immunotherapy. However, mutant p53 (mutp53), a commonly observed genetic alteration in over 50% of human cancer, will impede the therapeutic performance of the cGAS-STING pathway. Herein, multifunctional ZIF-8@MnO2 nanoparticles are constructed to degrade mutp53 and facilitate the cGAS-STING pathway. The synthesized ZIF-8@MnO2 can release Zn2+ and Mn2+ in cancer cells to induce oxidative stress and cytoplasmic leakage of fragmented mitochondrial double-stranded DNAs (dsDNAs). Importantly, the released Zn2+ induces variable degradation of multifarious p53 mutants through proteasome ubiquitination, which can alleviate the inhibitory effects of mutp53 on the cGAS-STING pathway. In addition, the released Mn2+ further increases the sensitivity of cGAS to dsDNAs as immunostimulatory signals. Both in vitro and in vivo results demonstrate that ZIF-8@MnO2 effectively promotes the cGAS-STING pathway and synergizes with PD-L1 checkpoint blockades, leading to remarkable regression of local tumors as well as distant metastases of breast cancer. This study proposes an inorganic metal ion-based nanoplatform to enhance the cGAS-STING-mediated antitumor immunotherapy, especially to those tumors with mutp53 expression.
Collapse
Affiliation(s)
- Li Sun
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Hongbo Gao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiuru Ji
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Yuxin Jiao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Xiaojia Qin
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
72
|
Sheng J, Wu Y, Ding H, Feng K, Shen Y, Zhang Y, Gu N. Multienzyme-Like Nanozymes: Regulation, Rational Design, and Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211210. [PMID: 36840985 DOI: 10.1002/adma.202211210] [Citation(s) in RCA: 120] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Nanomaterials with more than one enzyme-like activity are termed multienzymic nanozymes, and they have received increasing attention in recent years and hold huge potential to be applied in diverse fields, especially for biosensing and therapeutics. Compared to single enzyme-like nanozymes, multienzymic nanozymes offer various unique advantages, including synergistic effects, cascaded reactions, and environmentally responsive selectivity. Nevertheless, along with these merits, the catalytic mechanism and rational design of multienzymic nanozymes are more complicated and elusive as compared to single-enzymic nanozymes. In this review, the multienzymic nanozymes classification scheme based on the numbers/types of activities, the internal and external factors regulating the multienzymatic activities, the rational design based on chemical, biomimetic, and computer-aided strategies, and recent progress in applications attributed to the advantages of multicatalytic activities are systematically discussed. Finally, current challenges and future perspectives regarding the development and application of multienzymatic nanozymes are suggested. This review aims to deepen the understanding and inspire the research in multienzymic nanozymes to a greater extent.
Collapse
Affiliation(s)
- Jingyi Sheng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yuehuang Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - He Ding
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Kaizheng Feng
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Yan Shen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yu Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
| | - Ning Gu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210009, P. R. China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, 211166, P. R. China
- Medical School, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
73
|
Yan C, Liu Z, Xie W, Zhang T, Zhang J, Li G, Xu X, Ye L, Gong J. Cornuside protects against ischemic stroke in rats by suppressing the IL-17F/TRAF6/NF-κB pathway via the brain-gut axis. Exp Neurol 2024; 373:114672. [PMID: 38169196 DOI: 10.1016/j.expneurol.2023.114672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a serious neurological disease with limited therapeutic options; thus, it is particularly important to find effective treatments. Restoration of gut microflora diversity is an important factor in the treatment of ischemic stroke, but the mechanism remains unclear. Cornuside is known for its unique anti-inflammatory and circulation-promoting effects; however, whether it can effectively treat ischemic stroke and its therapeutic mechanisms remain unknown. In this study, we used a rat middle cerebral artery occlusion-reperfusion model (MCAO/R) to mimic ischemic stroke in humans and to assess the cerebral protective effects of cornuside in rats with ischemic stroke. Using 16S rRNA sequencing and RNA sequencing, we explored the cornuside mechanism in the brain-gut axis that confers protection against ischemic stroke. In conclusion, cornuside can inhibit the IL-17F/TRAF6/NF-κB pathway by improving the dysregulation of intestinal microflora, and reduce intestinal inflammation and neuroinflammation, which treated ischemic stroke rats.
Collapse
Affiliation(s)
- Chao Yan
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Zhihao Liu
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Waner Xie
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Ting Zhang
- Key Laboratory for Genetic Hearing Disorders in Shandong, Department of human anatomy, Binzhou Medical University, Yantai 264003, PR China
| | - Jiyao Zhang
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Guodong Li
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai 264003, PR China.
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai 263003, Shandong, PR China.
| | - Jianwei Gong
- Department of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
74
|
Wang Z, Zhao Y, Hou Y, Tang G, Zhang R, Yang Y, Yan X, Fan K. A Thrombin-Activated Peptide-Templated Nanozyme for Remedying Ischemic Stroke via Thrombolytic and Neuroprotective Actions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210144. [PMID: 36730098 DOI: 10.1002/adma.202210144] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Ischemic stroke (IS) is one of the most common causes of disability and death. Thrombolysis and neuroprotection are two current major therapeutic strategies to overcome ischemic and reperfusion damage. In this work, a novel peptide-templated manganese dioxide nanozyme (PNzyme/MnO2 ) is designed that integrates the thrombolytic activity of functional peptides with the reactive oxygen species scavenging ability of nanozymes. Through self-assembled polypeptides that contain multiple functional motifs, the novel peptide-templated nanozyme is able to bind fibrin in the thrombus, cross the blood-brain barrier, and finally accumulate in the ischemic neuronal tissues, where the thrombolytic motif is "switched-on" by the action of thrombin. In mice and rat IS models, the PNzyme/MnO2 prolongs the blood-circulation time and exhibits strong thrombolytic action, and reduces the ischemic damages in brain tissues. Moreover, this peptide-templated nanozyme also effectively inhibits the activation of astrocytes and the secretion of proinflammatory cytokines. These data indicate that the rationally designed PNzyme/MnO2 nanozyme exerts both thrombolytic and neuroprotective actions. Giving its long half-life in the blood and ability to target brain thrombi, the biocompatible nanozyme may serve as a novel therapeutic agent to improve the efficacy and prevent secondary thrombosis during the treatment of IS.
Collapse
Affiliation(s)
- Zhuoran Wang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yue Zhao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Yaxin Hou
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Guoheng Tang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, 212200, P. R. China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
75
|
Xu R, Zhang S, Wang P, Zhang R, Lin P, Wang Y, Gao L, Wei H, Zhang X, Ling D, Yan X, Fan K. Nanozyme-based strategies for efficient theranostics of brain diseases. Coord Chem Rev 2024; 501:215519. [DOI: 10.1016/j.ccr.2023.215519] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
76
|
Xing G, Yu X, Zhang Y, Sheng S, Jin L, Zhu D, Mei L, Dong X, Lv F. Macrophages-Based Biohybrid Microrobots for Breast Cancer Photothermal Immunotherapy by Inducing Pyroptosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305526. [PMID: 37798678 DOI: 10.1002/smll.202305526] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Indexed: 10/07/2023]
Abstract
Pyroptosis-based immunotherapy can escape drug resistance as well as inhibit metastasis. It is urgently required to develop a delivery platform to induce targeted tumor-specific pyroptosis for cancer immunotherapy. Herein, macrophages-based biohybrid microrobots (IDN@MC) are constructed with IR-macrophage and decitabine-loaded Metal-organic frameworks (DZNPs). The integration of fluorescence photosensitizers and pH-sensitive DZNPs endow the microrobots properties such as photothermal conversion, fluorescent navigation, targeted drug delivery, and controlled drug release. In light of the inherent tumor targeting, tumor accumulation of IDN@MC is facilitated. Due to the sustained release of decitabine from packaged DZNPs, the host macrophages are differentiated into M1 phenotypes to exert the tumor phagocytosis at the tumor site, directly transporting the therapeutic agents into cancer cells. With laser control, the rapid and durable caspase 3-cleaved gasdermin E (GSDME)-related tumor pyroptosis is achieved with combined photothermal-chemotherapy, releasing inflammatory factors such as lactate dehydrogenase and interleukin-18. Subsequently, the robust and adaptive immune response is primed with dendritic cell maturation to initiate T-cell clone expansion and modulation of the immune suppressive microenvironment, thus enhancing the tumor immunotherapy to inhibit tumor proliferation and metastasis. This macrophages-based biohybrid microrobot is an efficient strategy for breast cancer treatment to trigger photo-induced pyroptosis and augment the immune response.
Collapse
Affiliation(s)
- Guozheng Xing
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xuya Yu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Yan Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Shupei Sheng
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Limin Jin
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| |
Collapse
|
77
|
Sun Y, Jiang X, Gao J. Stem cell-based ischemic stroke therapy: Novel modifications and clinical challenges. Asian J Pharm Sci 2024; 19:100867. [PMID: 38357525 PMCID: PMC10864855 DOI: 10.1016/j.ajps.2023.100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 02/16/2024] Open
Abstract
Ischemic stroke (IS) causes severe disability and high mortality worldwide. Stem cell (SC) therapy exhibits unique therapeutic potential for IS that differs from current treatments. SC's cell homing, differentiation and paracrine abilities give hope for neuroprotection. Recent studies on SC modification have enhanced therapeutic effects for IS, including gene transfection, nanoparticle modification, biomaterial modification and pretreatment. These methods improve survival rate, homing, neural differentiation, and paracrine abilities in ischemic areas. However, many problems must be resolved before SC therapy can be clinically applied. These issues include production quality and quantity, stability during transportation and storage, as well as usage regulations. Herein, we reviewed the brief pathogenesis of IS, the "multi-mechanism" advantages of SCs for treating IS, various SC modification methods, and SC therapy challenges. We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs.
Collapse
Affiliation(s)
- Yuankai Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
78
|
Guo H, Li P, Zhao J, Xin Q, Miao Y, Li L, Li X, Wang S, Mo H, Zeng L, Ju Z, Liu Z, Shen X, Cong W. Sheng Mai Yin shows anti-fatigue, anti-hypoxia and cardioprotective potential in an experimental joint model of fatigue and acute myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117338. [PMID: 37890804 DOI: 10.1016/j.jep.2023.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular disease (CVD) and fatigue are two common diseases endangering human life and health that may interact and reinforce one another. Myocardial infarction survivors frequently experience fatigue, and acute myocardial infarction (AMI) is one of the most common cardiovascular diseases that cause fatigue-induced sudden death. Sheng Mai Yin (SMY), a Chinese medicine prescription, is traditionally used for the treatment of diabetes and cardiovascular disease, and has been demonstrated to reduce fatigue and safeguard cardiac function. AIM OF THE STUDY This study aims to investigate the effects and underlying mechanisms of SMY in treating fatigue and AMI. MATERIALS AND METHODS The pharmacological mechanisms of SMY in treating fatigue and AMI were predicted by bioinformatics and network pharmacology methods. After administering SMY at high, medium and low doses, the swimming time to exhaustion, hemoglobin level, serological parameters and hypoxia tolerance time were detected in C57BL/6N mice, and the left ventricular ejection fractions (LVEF), left ventricular fractional shortening (LVFS), grasp strength, cardiac histopathology, serological parameters and the expression of PINK1 and Parkin proteins were examined in Wistar rats. RESULTS 371 core targets for SMY and 282 disease targets for fatigue and AMI were obtained using bioinformatics and network pharmacology methods. Enrichment analysis of target genes revealed that SMY might interfere with fatigue and AMI through biological processes such as mitochondrial autophagy, apoptosis, and oxidative stress. For in vivo experiments, SMY showed significant anti-fatigue and hypoxia tolerance effects in mice; It also improved the cardiac function and grasp strength, decreased their cardiac index, myocardial injury and fibrosis degree, and induced serological parameters levels and the expression of PTEN-induced putative kinase 1 (PINK1) and Parkin proteins in myocardium, suggesting that SMY may exert cardioprotective effects in a joint rat model of fatigue and AMI by inhibiting excessive mitochondrial autophagy. CONCLUSION This study revealed the anti-fatigue, anti-hypoxia and cardioprotective effects of SMY in a joint model of fatigue-AMI, and the pharmacological mechanism may be related to the inhibition of mitochondrial autophagy in cardiomyocytes through the PINK1/Parkin pathway. The discoveries may provide new ideas for the mechanism study of traditional Chinese medicine, especially complex prescriptions, in treating fatigue and AMI.
Collapse
Affiliation(s)
- Hao Guo
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing, 100091, China
| | - Jun Zhao
- Traditional Chinese Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing, 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing, 100091, China
| | - Li Li
- Chenland Research Institute, Irvine, CA, 92614, USA
| | - Xin Li
- Chenland Research Institute, Irvine, CA, 92614, USA
| | | | - Hui Mo
- Macao Health Bureau, Macao, 999078, China
| | - Li Zeng
- Macau University of Science and Technology, Macao, 999078, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Zimin Liu
- Chenland Research Institute, Irvine, CA, 92614, USA.
| | - Xiaoxu Shen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100091, China.
| | - Weihong Cong
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Beijing, 100091, China.
| |
Collapse
|
79
|
Liao J, Li Y, Fan L, Sun Y, Gu Z, Xu QQ, Wang Y, Xiong L, Xiao K, Chen ZS, Ma Z, Zhang C, Wang T, Lu Y. Bioactive Ceria Nanoenzymes Target Mitochondria in Reperfusion Injury to Treat Ischemic Stroke. ACS NANO 2024. [PMID: 38266247 DOI: 10.1021/acsnano.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Overproduction of reactive oxygen species by damaged mitochondria after ischemia is a key factor in the subsequent cascade of damage. Delivery of therapeutic agents to the mitochondria of damaged neurons in the brain is a potentially promising targeted therapeutic strategy for the treatment of ischemic stroke. In this study, we developed a ceria nanoenzymes synergistic drug-carrying nanosystem targeting mitochondria to address multiple factors of ischemic stroke. Each component of this nanosystem works individually as well as synergistically, resulting in a comprehensive therapy. Alleviation of oxidative stress and modulation of the mitochondrial microenvironment into a favorable state for ischemic tolerance are combined to restore the ischemic microenvironment by bridging mitochondrial and multiple injuries. This work also revealed the detailed mechanisms by which the proposed nanodelivery system protects the brain, which represents a paradigm shift in ischemic stroke treatment.
Collapse
Affiliation(s)
- Jun Liao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yi Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Li Fan
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yuhan Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Zhengyan Gu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qing-Qiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Zhiwei Ma
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
| | - Chuan Zhang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| |
Collapse
|
80
|
Liu Y, Wang S, Quan C, Luan S, Shi H, Wang L. Metal-organic framework-based platforms for implantation applications: recent advances and challenges. J Mater Chem B 2024; 12:637-649. [PMID: 38165820 DOI: 10.1039/d3tb02620e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of minimally invasive technology has promoted the widespread use of implant interventional materials, which play an important role in alleviating patients' pain during and after surgery. Metal-organic frameworks (MOFs) and their related hybrids formed by bridging ligands and metal nodes via covalent bonds represent one of the smart platforms in implant interventional fields due to their large surface area, adjustable compositions and structures, biodegradability, etc. Significant progresses in the implantation application of MOF-based materials have been achieved recently, but these studies are still in the initial stage. This review highlights the recent advances of MOFs and their related hybrids in orthopedic implantation, cardio-vascular implantation, neural tissue engineering, and biochemical sensing. Each correction between the structural features of MOFs and their corresponding implanted works is highlighted. Finally, the confronting challenges and future perspectives in the implant interventional field are discussed.
Collapse
Affiliation(s)
- Yifan Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuteng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chunhua Quan
- Central Laboratory, Affiliated Hospital of Yanbian University, Yanji, Jilin 133002, P. R. China.
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
81
|
Bai Q, Han Y, Khan S, Wu T, Yang Y, Wang Y, Tang H, Li Q, Jiang W. A Novel Endoplasmic Reticulum-Targeted Metal-Organic Framework-Confined Ruthenium (Ru) Nanozyme Regulation of Oxidative Stress for Central Post-Stroke Pain. Adv Healthc Mater 2024; 13:e2302526. [PMID: 37823717 DOI: 10.1002/adhm.202302526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Central post-stroke pain (CPSP) is a chronic neuropathic pain caused by cerebrovascular lesion or disfunction after stroke. Convincing evidence suggest that excessive reactive oxygen species (ROS), generated matrix metalloproteinase (MMPs) and neuroinflammation are largely involved in the development of pain. In this study, an effective strategy is reported for treating pain hypersensitivity using an endoplasmic reticulum (ER)-targeted metal-organic framework (MOF)-confined ruthenium (Ru) nanozyme. The Ru MOF is coated with a p-dodecylbenzene sulfonamide (p-DBSN) modified liposome with endoplasmic reticulum-targeted function. The experimental results reveals that ROS, Emmprin, MMP-2, and MMP-9 are upregulated in the brain of CPSP mice, along with the elevated expression of inflammation markers such as TNF-α and IL-6. Compared to vehicle, one-time intravenous administration of ER-Ru MOF significantly reduces mechanical hypersensitivity after CPSP for three days. Overall, ER-Ru MOF system can inhibit oxidative stress in the brain tissues of CPSP model, reduce MMPs expression, and suppress neuroinflammation response-induced injury, resulting in satisfactory prevention and effective treatment of CPSP during a hemorrhagic stroke. The ER-Ru MOF is expected to be useful for the treatment of neurological diseases associated with the vicious activation of ROS, based on the generality of the approach used in this study.
Collapse
Affiliation(s)
- Qian Bai
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yupeng Han
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Suliman Khan
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Tingting Wu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ying Yang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Wang
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hao Tang
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| | - Qing Li
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Wei Jiang
- Medical research center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, 450052, China
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, China
| |
Collapse
|
82
|
曹 天, 刘 青, 潘 美, 张 雪. [LncRNA SNHG8 inhibits miR-494-3p expression to alleviate cerebral ischemia-reperfusion injury in mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:2015-2022. [PMID: 38189386 PMCID: PMC10774103 DOI: 10.12122/j.issn.1673-4254.2023.12.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVE To explore the mechanism by which LncRNA SNHG8 regulates miR-494-3p expression to alleviate cerebral ischemia-reperfusion injury. METHODS A mouse model of cerebral ischemia-reperfusion injury was established, and TTC staining was used to determine the infarct area; ELISA was used to detect the contents of the inflammatory factors IL-1β, IL-6 and TNF-α in the brain tissue, and RT-qPCR was performed to detect the expression levels of LncRNA MALAT1 and miR-155-5p. A microglial cell model overexpressing LncRNA SNHG8 was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), and inflammatory reaction and apoptosis of the cells were detected using ELISA and flow cytometry. A luciferase reporter assay was used to detect the targeting relationship between LncRNA SNHG8 and miR-494-3p. We further constructed a microglial cell model overexpressing both LncRNA SNHG8 the miR-494-3p, and examined inflammatory reactions and apoptosis of the cells following OGD/R exposure. RESULTS In the mouse model of cerebral ischemia-reperfusion injury, the contents of inflammatory factors IL-1β, IL-6 and TNF-α increased significantly in the brain tissue (P < 0.001), where LncRNA SNHG8 expression was lowered (P < 0.01) and miR-494-3p expression increased significantly (P < 0.01). In the microglial cells, overexpression of LncRNA SNHG8 significantly inhibited the inflammatory reaction and apoptosis following OGD/R exposure (P < 0.01), and overexpression of LncRNA SNHG8 strongly inhibited the expression of miR-494-3p (P < 0.01). Overexpression of miR-494-3p in microglia overexpressing SNHG8 partially promoted inflammatory reaction and cell apoptosis in response to OGD/R (P < 0.05). CONCLUSION LncRNA SNHG8 can improve cerebral ischemia-reperfusion injury in mice by inhibiting the expression of miR-494-3p and suppressing inflammatory reactions and apoptosis of the microglia.
Collapse
Affiliation(s)
- 天然 曹
- 长沙市第一医院临床试验研究中心,湖南 长沙 410005Clinical Trial Research Center, Changsha First Hospital, Changsha 410005, China
| | - 青芳 刘
- 长沙市第一医院神经医学中心,湖南 长沙 410005Neurology Center, Changsha First Hospital, Changsha 410005, China
| | - 美民 潘
- 长沙市第一医院临床试验研究中心,湖南 长沙 410005Clinical Trial Research Center, Changsha First Hospital, Changsha 410005, China
| | - 雪红 张
- 长沙市第一医院临床试验研究中心,湖南 长沙 410005Clinical Trial Research Center, Changsha First Hospital, Changsha 410005, China
| |
Collapse
|
83
|
Jiang W, Li Q, Zhang R, Li J, Lin Q, Li J, Zhou X, Yan X, Fan K. Chiral metal-organic frameworks incorporating nanozymes as neuroinflammation inhibitors for managing Parkinson's disease. Nat Commun 2023; 14:8137. [PMID: 38065945 PMCID: PMC10709450 DOI: 10.1038/s41467-023-43870-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Nanomedicine-based anti-neuroinflammation strategy has become a promising dawn of Parkinson's disease (PD) treatment. However, there are significant gaps in our understanding of the therapeutic mechanisms of antioxidant nanomedicines concerning the pathways traversing the blood-brain barrier (BBB) and subsequent inflammation mitigation. Here, we report nanozyme-integrated metal-organic frameworks with excellent antioxidant activity and chiral-dependent BBB transendocytosis as anti-neuroinflammatory agents for the treatment of PD. These chiral nanozymes are synthesized by embedding ultra-small platinum nanozymes (Ptzymes) into L-chiral and D-chiral imidazolate zeolite frameworks (Ptzyme@L-ZIF and Ptzyme@D-ZIF). Compared to Ptzyme@L-ZIF, Ptzyme@D-ZIF shows higher accumulation in the brains of male PD mouse models due to longer plasma residence time and more pathways to traverse BBB, including clathrin-mediated and caveolae-mediated endocytosis. These factors contribute to the superior therapeutic efficacy of Ptzyme@D-ZIF in reducing behavioral disorders and pathological changes. Bioinformatics and biochemical analyses suggest that Ptzyme@D-ZIF inhibits neuroinflammation-induced apoptosis and ferroptosis in damaged neurons. The research uncovers the biodistribution, metabolic variances, and therapeutic outcomes of nanozymes-integrated chiral ZIF platforms, providing possibilities for devising anti-PD drugs.
Collapse
Affiliation(s)
- Wei Jiang
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qing Li
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China.
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Jianru Li
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Qianyu Lin
- Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Henan, 450052, China
| | - Jingyun Li
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| | - Xinyao Zhou
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Xiyun Yan
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| | - Kelong Fan
- Nanozyme Medical Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.
| |
Collapse
|
84
|
Luo Z, Sheng Y, Jiang C, Pan Y, Wang X, Nezamzadeh-Ejhieh A, Ouyang J, Lu C, Liu J. Recent advances and prospects of metal-organic frameworks in cancer therapies. Dalton Trans 2023; 52:17601-17622. [PMID: 37953742 DOI: 10.1039/d3dt02543h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Metal-organic frameworks (MOFs) have been broadly applied in biomedical and other fields. MOFs have high porosity, a large comparative area, and good biostability and have attracted significant attention, especially in cancer therapies. This paper presents the latest applications of MOFs in chemodynamic therapy (CDT), sonodynamic therapy (SDT), photodynamic therapy (PDT), photothermal therapy (PTT), immunotherapy (IT), and combination therapy for breast cancer. A combination therapy is the combination of two different treatment modalities, such as CDT and PDT combination therapy, and is considered more effective than separate therapies. Herein, we have also discussed the advantages and disadvantages of combination therapy in the treatment of breast cancer. This paper aims to illustrate the potential of MOFs in new cancer therapeutic approaches, discuss their potential advantages, and provide some reflections on the latest research results.
Collapse
Affiliation(s)
- Zhiying Luo
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Yu Sheng
- Tungwah High School of Dongguan City (Dongcheng Campus), 1st Guangming Road, 523125 Dongguan, Guangdong, China
| | - Chenyi Jiang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Xiaoxiong Wang
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, Guangdong, 518055, PR China
| | - Ali Nezamzadeh-Ejhieh
- Chemistry Department, Shahreza Branch, Islamic Azad University, Shahreza, Isfahan, Iran
| | - Jie Ouyang
- Key Laboratory for Breast Cancer Prevention and Treatment of Dongguan, Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan, China
| | - Chengyu Lu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Jianqiang Liu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
85
|
Shen K, Li X, Huang G, Yuan Z, Xie B, Chen T, He L. High rapamycin-loaded hollow mesoporous Prussian blue nanozyme targets lesion area of spinal cord injury to recover locomotor function. Biomaterials 2023; 303:122358. [PMID: 37951099 DOI: 10.1016/j.biomaterials.2023.122358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Scavenging free radicals and reducing inflammatory reaction to relieve the secondary damage are important issues in the spinal cord injury (SCI) therapeutic strategy. Nanozymes attract more attention in the drug development of SCI due to the high stability, long-lasting catalytic capacity, and multienzyme-like properties. Herein, we constructed a Rapamycin (Rapa)-loaded and hollow mesoporous Prussian blue (HMPB)-based nanozyme (RHPAzyme) to realize the combined antioxidation and anti-inflammation combination therapy of SCI. Furthermore, activated cell penetrating peptide (ACPP) is modified onto nanozyme to endow the effectively ability of lesion area-targeting. This RHPAzyme exhibits ROS scavenging capacity with the transformation of Fe2+/Fe3+ valance and cyanide group of HMPB to achieve multienzyme-like activity. As expected, RHPAzyme scavenges the ROS overproduction and reduces inflammation in oxygen-glucose deprivation (OGD)-induced damage via inhibiting MAPK/AKT signaling pathway. Furtherly, RHPAzyme exhibits the combined antioxidant and anti-inflammatory activity in vivo, which can effectively alleviate neuronal damage and promote motor function recovery in SCI mice. Overall, this study demonstrates the RHPAzyme induces an effective treatment of SCI by inhibiting oxygen-mediated cell apoptosis and suppressing inflammation-induced injury, thus reduces the nervous impairment and promotes motor function recovery.
Collapse
Affiliation(s)
- Kui Shen
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiaowei Li
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Guanning Huang
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China; Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Zhongwen Yuan
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Bin Xie
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Lizhen He
- Department of Orthopedics, Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510632, China.
| |
Collapse
|
86
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
87
|
Yan S, Gao Z, Ding J, Chen S, Wang Z, Jin W, Qu B, Zhang Y, Yang L, Guo D, Yin T, Yang Y, Zhang Y, Yang J. Nanocomposites based on nanoceria regulate the immune microenvironment for the treatment of polycystic ovary syndrome. J Nanobiotechnology 2023; 21:412. [PMID: 37936120 PMCID: PMC10631133 DOI: 10.1186/s12951-023-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
The immune system is closely associated with the pathogenesis of polycystic ovary syndrome (PCOS). Macrophages are one of the important immune cell types in the ovarian proinflammatory microenvironment, and ameliorate the inflammatory status mainly through M2 phenotype polarization during PCOS. Current therapeutic approaches lack efficacy and immunomodulatory capacity, and a new therapeutic method is needed to prevent inflammation and alleviate PCOS. Here, octahedral nanoceria nanoparticles with powerful antioxidative ability were bonded to the anti-inflammatory drug resveratrol (CeO2@RSV), which demonstrates a crucial strategy that involves anti-inflammatory and antioxidative efficacy, thereby facilitating the proliferation of granulosa cells during PCOS. Notably, our nanoparticles were demonstrated to possess potent therapeutic efficacy via anti-inflammatory activities and effectively alleviated endocrine dysfunction, inflammation and ovarian injury in a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Collectively, this study revealed the tremendous potential of the newly developed nanoparticles in ameliorating the proinflammatory microenvironment and promoting the function of granulosa cells, representing the first attempt to treat PCOS by using CeO2@RSV nanoparticles and providing new insights in combating clinical PCOS.
Collapse
Affiliation(s)
- Sisi Yan
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Zhipeng Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Suming Chen
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Zehao Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Wenyi Jin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Bing Qu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Lian Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China
| | - Duanying Guo
- Longgang District People's Hospital of Shenzhen, Shenzhen, China.
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| | - Yanbing Yang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, 430060, China.
| |
Collapse
|
88
|
Ni Z, Qin P, Liu H, Chen J, Cai S, Tang W, Xiao H, Wang C, Qu G, Lin C, Fan Z, Xu ZX, Li G, Huang Z. Significant Enhancement of Circular Polarization in Light Emission through Controlling Helical Pitches of Semiconductor Nanohelices. ACS NANO 2023; 17:20611-20620. [PMID: 37796740 PMCID: PMC10604094 DOI: 10.1021/acsnano.3c07663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Circularly polarized light emission (CPLE) can be potentially applied to three-dimensional displays, information storage, and biometry. However, these applications are practically limited by a low purity of circular polarization, i.e., the small optical dissymmetry factor gCPLE. Herein, glancing angle deposition (GLAD) is performed to produce inorganic nanohelices (NHs) to generate CPLE with large gCPLE values. CdSe NHs emit red CPLE with gCPLE = 0.15 at a helical pitch (P) ≈ 570 nm, having a 40-fold amplification of gCPLE compared to that at P ≈ 160 nm. Ceria NHs emit ultraviolet-blue CPLE with gCPLE ≈ 0.06 at P ≈ 830 nm, with a 103-fold amplification compared to that at P ≈ 110 nm. Both the photoluminescence and scattering among the close-packed NHs complicatedly account for the large gCPLE values, as revealed by the numerical simulations. The GLAD-based NH-fabrication platform is devised to generate CPLE with engineerable color and large gCPLE = 10-2-10-1, shedding light on the commercialization of CPLE devices.
Collapse
Affiliation(s)
- Ziyue Ni
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Ping Qin
- Department
of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Hongshuai Liu
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Jiafei Chen
- School
of Science, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Siyuan Cai
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Wenying Tang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Hui Xiao
- Department
of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical
Energy Materials and Devices, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chen Wang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Geping Qu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, People’s
Republic of China
| | - Chao Lin
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic
of China
| | - Zhiyong Fan
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Zong-Xiang Xu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Guixin Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Zhifeng Huang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic of China
| |
Collapse
|
89
|
Wang K, Mao W, Song X, Chen M, Feng W, Peng B, Chen Y. Reactive X (where X = O, N, S, C, Cl, Br, and I) species nanomedicine. Chem Soc Rev 2023; 52:6957-7035. [PMID: 37743750 DOI: 10.1039/d2cs00435f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Reactive oxygen, nitrogen, sulfur, carbonyl, chlorine, bromine, and iodine species (RXS, where X = O, N, S, C, Cl, Br, and I) have important roles in various normal physiological processes and act as essential regulators of cell metabolism; their inherent biological activities govern cell signaling, immune balance, and tissue homeostasis. However, an imbalance between RXS production and consumption will induce the occurrence and development of various diseases. Due to the considerable progress of nanomedicine, a variety of nanosystems that can regulate RXS has been rationally designed and engineered for restoring RXS balance to halt the pathological processes of different diseases. The invention of radical-regulating nanomaterials creates the possibility of intriguing projects for disease treatment and promotes advances in nanomedicine. In this comprehensive review, we summarize, discuss, and highlight very-recent advances in RXS-based nanomedicine for versatile disease treatments. This review particularly focuses on the types and pathological effects of these reactive species and explores the biological effects of RXS-based nanomaterials, accompanied by a discussion and the outlook of the challenges faced and future clinical translations of RXS nanomedicines.
Collapse
Affiliation(s)
- Keyi Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
90
|
Cao S, Long Y, Xiao S, Deng Y, Ma L, Adeli M, Qiu L, Cheng C, Zhao C. Reactive oxygen nanobiocatalysts: activity-mechanism disclosures, catalytic center evolutions, and changing states. Chem Soc Rev 2023; 52:6838-6881. [PMID: 37705437 DOI: 10.1039/d3cs00087g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Benefiting from low costs, structural diversities, tunable catalytic activities, feasible modifications, and high stability compared to the natural enzymes, reactive oxygen nanobiocatalysts (RONBCs) have become dominant materials in catalyzing and mediating reactive oxygen species (ROS) for diverse biomedical and biological applications. Decoding the catalytic mechanism and structure-reactivity relationship of RONBCs is critical to guide their future developments. Here, this timely review comprehensively summarizes the recent breakthroughs and future trends in creating and decoding RONBCs. First, the fundamental classification, activity, detection method, and reaction mechanism for biocatalytic ROS generation and elimination have been systematically disclosed. Then, the merits, modulation strategies, structure evolutions, and state-of-art characterisation techniques for designing RONBCs have been briefly outlined. Thereafter, we thoroughly discuss different RONBCs based on the reported major material species, including metal compounds, carbon nanostructures, and organic networks. In particular, we offer particular insights into the coordination microenvironments, bond interactions, reaction pathways, and performance comparisons to disclose the structure-reactivity relationships and mechanisms. In the end, the future challenge and perspectives for RONBCs are also carefully summarised. We envision that this review will provide a comprehensive understanding and guidance for designing ROS-catalytic materials and stimulate the wide utilisation of RONBCs in diverse biomedical and biological applications.
Collapse
Affiliation(s)
- Sujiao Cao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanping Long
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Sutong Xiao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Yuting Deng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Lang Ma
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
| | - Mohsen Adeli
- Department of Chemistry and Biochemistry, Freie Universitat Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Li Qiu
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Changsheng Zhao
- Department of Medical Ultrasound, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu 610041, China.
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
91
|
Qian T, Li Z, Shang L, Huang S, Li G, Zheng W, Mao Y. pH/Temperature Responsive Curcumin-Loaded Micelle Nanoparticles Promote Functional Repair after Spinal Cord Injury in Rats via Modulation of Inflammation. Tissue Eng Regen Med 2023; 20:879-892. [PMID: 37580648 PMCID: PMC10519900 DOI: 10.1007/s13770-023-00567-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND The formation of an inhibitory inflammatory microenvironment after spinal cord injury (SCI) remains a great challenge for nerve regeneration. The poor local microenvironment exacerbates nerve cell death; therefore, the reconstruction of a favorable microenvironment through small-molecule drugs is a promising strategy for promoting nerve regeneration. METHODS In the present study, we synthesized curcumin-loaded micelle nanoparticles (Cur-NPs) to increase curcumin bioavailability and analyzed the physical and chemical properties of Cur-NPs by characterization experiments. We established an in vivo SCI model in rats and examined the ability of hind limb motor recovery using Basso-Beattie-Bresnahan scoring and hind limb trajectory assays. We also analyzed neural regeneration after SCI using immunofluorescence staining. RESULTS The nanoparticles achieved the intelligent responsive release of curcumin while improving curcumin bioavailability. Most importantly, the released curcumin attenuated local inflammation by modulating the polarization of macrophages from an M1 pro-inflammatory phenotype to an M2 anti-inflammatory phenotype. M2-type macrophages can promote cell differentiation, proliferation, matrix secretion, and reorganization by secreting or expressing pro-repair cytokines to reduce the inflammatory response. The enhanced inflammatory microenvironment supported neuronal regeneration, nerve remyelination, and reduced scar formation. These effects facilitated functional repair in rats, mainly in the form of improved hindlimb movements. CONCLUSION Here, we synthesized pH/temperature dual-sensitive Cur-NPs. While improving the bioavailability of the drug, they were also able to achieve a smart responsive release in the inflammatory microenvironment that develops after SCI. The Cur-NPs promoted the regeneration and functional recovery of nerves after SCI through anti-inflammatory effects, providing a promising strategy for the repair of SCIs.
Collapse
Affiliation(s)
- Taibao Qian
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China
| | - Zhixiang Li
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China
| | - Lijun Shang
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Sutao Huang
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Guanglin Li
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China
| | - Weiwei Zheng
- Department of Orthopaedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, 242 Guangji Road, Suzhou, 215006, China
| | - Yingji Mao
- Department of Orthopedics, First Affiliated Hospital of Bengbu Medical College, 287 Changhuai Road, Bengbu, 233004, China.
- Anhui Province Key Laboratory of Tissue Transplantation and School of Life Sciences, Bengbu Medical College, 2600 Donghai Road, Bengbu, 233030, China.
| |
Collapse
|
92
|
Singh S, Rai N, Tiwari H, Gupta P, Verma A, Kumar R, Kailashiya V, Salvi P, Gautam V. Recent Advancements in the Formulation of Nanomaterials-Based Nanozymes, Their Catalytic Activity, and Biomedical Applications. ACS APPLIED BIO MATERIALS 2023; 6:3577-3599. [PMID: 37590090 DOI: 10.1021/acsabm.3c00253] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Nanozymes are nanoparticles with intrinsic enzyme-mimicking properties that have become more prevalent because of their ability to outperform conventional enzymes by overcoming their drawbacks related to stability, cost, and storage. Nanozymes have the potential to manipulate active sites of natural enzymes, which is why they are considered promising candidates to function as enzyme mimetics. Several microscopy- and spectroscopy-based techniques have been used for the characterization of nanozymes. To date, a wide range of nanozymes, including catalase, oxidase, peroxidase, and superoxide dismutase, have been designed to effectively mimic natural enzymes. The activity of nanozymes can be controlled by regulating the structural and morphological aspects of the nanozymes. Nanozymes have multifaceted benefits, which is why they are exploited on a large scale for their application in the biomedical sector. The versatility of nanozymes aids in monitoring and treating cancer, other neurodegenerative diseases, and metabolic disorders. Due to the compelling advantages of nanozymes, significant research advancements have been made in this area. Although a wide range of nanozymes act as potent mimetics of natural enzymes, their activity and specificities are suboptimal, and there is still room for their diversification for analytical purposes. Designing diverse nanozyme systems that are sensitive to one or more substrates through specialized techniques has been the subject of an in-depth study. Hence, we believe that stimuli-responsive nanozymes may open avenues for diagnosis and treatment by fusing the catalytic activity and intrinsic nanomaterial properties of nanozyme systems.
Collapse
Affiliation(s)
- Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rajiv Kumar
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sahibzada Ajit Singh Nagar 140306, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
93
|
Zhou H, Jing S, Xiong W, Zhu Y, Duan X, Li R, Peng Y, Kumeria T, He Y, Ye Q. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury. J Nanobiotechnology 2023; 21:316. [PMID: 37667307 PMCID: PMC10478386 DOI: 10.1186/s12951-023-02001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Spinal cord injury (SCI) is accompanied by loss of Zn2+, which is an important cause of glutamate excitotoxicity and death of local neurons as well as transplanted stem cells. Dental pulp stem cells (DPSCs) have the potential for neural differentiation and play an immunomodulatory role in the microenvironment, making them an ideal cell source for the repair of central nerve injury, including SCI. The zeolitic imidazolate framework 8 (ZIF-8) is usually used as a drug and gene delivery carrier, which can release Zn2+ sustainedly in acidic environment. However, the roles of ZIF-8 on neural differentiation of DPSCs and the effect of combined treatment on SCI have not been explored. ZIF-8-introduced DPSCs were loaded into gelatin methacryloyl (GelMA) hydrogel and in situ injected into the injured site of SCI rats. Under the effect of ZIF-8, axon number and axon length of DPSCs-differentiated neuro-like cells were significantly increased. In addition, ZIF-8 protected transplanted DPSCs from apoptosis in the damaged microenvironment. ZIF-8 promotes neural differentiation and angiogenesis of DPSCs by activating the Mitogen-activated protein kinase (MAPK) signaling pathway, which is a promising transport nanomaterial for nerve repair.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90095, USA
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruohan Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Youjian Peng
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yan He
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
94
|
Du W, Wang T, Hu S, Luan J, Tian F, Ma G, Xue J. Engineering of electrospun nanofiber scaffolds for repairing brain injury. ENGINEERED REGENERATION 2023; 4:289-303. [DOI: 10.1016/j.engreg.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/14/2023] Open
|
95
|
Liu C, Gui L, Zheng JJ, Xu YQ, Song B, Yi L, Jia Y, Taledaohan A, Wang Y, Gao X, Qiao ZY, Wang H, Tang Z. Intrinsic Strain-Mediated Ultrathin Ceria Nanoantioxidant. J Am Chem Soc 2023; 145:19086-19097. [PMID: 37596995 DOI: 10.1021/jacs.3c07048] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Metal oxide nanozymes have emerged as the most efficient and promising candidates to mimic antioxidant enzymes for treatment of oxidative stress-mediated pathophysiological disorders, but the current effectiveness is unsatisfactory due to insufficient catalytic performance. Here, we report for the first time an intrinsic strain-mediated ultrathin ceria nanoantioxidant. Surface strain in ceria with variable thicknesses and coordinatively unsaturated Ce sites was investigated by theoretical calculation analysis and then was validated by preparing ∼1.2 nm ultrathin nanoplates with ∼3.0% tensile strain in plane/∼10.0% tensile strain out of plane. Compared with nanocubes, surface strain in ultrathin nanoplates could enhance the covalency of the Ce-O bond, leading to increasing superoxide dismutase (SOD)-mimetic activity by ∼2.6-fold (1533 U/mg, in close proximity to that of natural SOD) and total antioxidant activity by ∼2.5-fold. As a proof of concept, intrinsic strain-mediated ultrathin ceria nanoplates could boost antioxidation for improved ischemic stroke treatment in vivo, significantly better than edaravone, a commonly used clinical drug.
Collapse
Affiliation(s)
- Cong Liu
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Lin Gui
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Yong-Qiang Xu
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Benli Song
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Li Yi
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing 100069, China
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing 100069, China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Zeng-Ying Qiao
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Hao Wang
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| | - Zhiyong Tang
- Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology of China (NCNST), Beijing 100190, China
| |
Collapse
|
96
|
Feng Y, Luo X, Li Z, Fan X, Wang Y, He RR, Liu M. A ferroptosis-targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy. Nat Commun 2023; 14:5083. [PMID: 37607944 PMCID: PMC10444825 DOI: 10.1038/s41467-023-40794-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
Radiation colitis is the leading cause of diarrhea and hematochezia in pelvic radiotherapy patients. This work advances the pathogenesis of radiation colitis from the perspective of ferroptosis. An oral Pickering emulsion is stabilized with halloysite clay nanotubes to alleviate radiation colitis by inhibiting ferroptosis. Ceria nanozyme grown in situ on nanotubes can scavenge reactive oxygen species, and deferiprone was loaded into the lumen of nanotubes to relieve iron stress. These two strategies effectively inhibit lipid peroxidation and rescue ferroptosis in the intestinal microenvironment. The clay nanotubes play a critical role as either a medicine to alleviate colitis, a nanocarrier that targets the inflamed colon by electrostatic adsorption, or an interfacial stabilizer for emulsions. This ferroptosis-based strategy was effective in vitro and in vivo, providing a prospective candidate for radiotherapy protection via rational regulation of specific oxidative stress.
Collapse
Affiliation(s)
- Yue Feng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China
| | - Xiang Luo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Zichun Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China
| | - Xinjuan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Yiting Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, Guangzhou, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, 510632, Guangzhou, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, 510632, Guangzhou, China.
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, 510632, Guangzhou, China.
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, 511443, Guangzhou, China.
| |
Collapse
|
97
|
Alinezhad V, Esmaeilzadeh K, Bagheri H, Zeighami H, Kalantari-Hesari A, Jafari R, Makvandi P, Xu Y, Mohammadi H, Shahbazi MA, Maleki A. Engineering a platelet-rich plasma-based multifunctional injectable hydrogel with photothermal, antibacterial, and antioxidant properties for skin regeneration. Biomater Sci 2023; 11:5872-5892. [PMID: 37482933 DOI: 10.1039/d3bm00881a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Wound healing remains a significant challenge worldwide, necessitating the development of new wound dressings to aid in the healing process. This study presents a novel photothermally active hydrogel that contains platelet-rich plasma (PRP) for infected wound healing. The hydrogel was formed in a one pot synthesis approach by mixing alginate (Alg), gelatin (GT), polydopamine (PDA), and PRP, followed by the addition of CaCl2 as a cross-linker to prepare a multifunctional hydrogel (AGC-PRP-PDA). The hydrogel exhibited improved strength and good swelling properties. PDA nanoparticles (NPs) within the hydrogel endowed them with high photothermal properties and excellent antibacterial and antioxidant activities. Moreover, the hydrogels sustained the release of growth factors due to their ability to protect PRP. The hydrogels also exhibited good hemocompatibility and cytocompatibility, as well as high hemostatic properties. In animal experiments, the injectable hydrogels effectively filled irregular wounds and promoted infected wound healing by accelerating re-epithelialization, facilitating collagen deposition, and enhancing angiogenesis. The study also indicated that near-infrared light improved the healing process. Overall, these hydrogels with antibacterial, antioxidant, and hemostatic properties, as well as sustained growth factor release, show significant potential for skin regeneration in full-thickness, bacteria-infected wounds.
Collapse
Affiliation(s)
- Vajihe Alinezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Bagheri
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| | - Habib Zeighami
- Department of Microbiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Ali Kalantari-Hesari
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamadan 6516738695, Iran
| | - Rahim Jafari
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Pooyan Makvandi
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK
| | - Yi Xu
- Department of Science & Technology, Department of Urology, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Toxicology/Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan 45139-56184, Iran
| |
Collapse
|
98
|
Cheng X, Jiang X, Yin S, Ji L, Yan Y, Li G, Huang R, Wang C, Liao H, Jiang Y, Sun S. Instantaneous Free Radical Scavenging by CeO 2 Nanoparticles Adjacent to the Fe-N 4 Active Sites for Durable Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202306166. [PMID: 37309017 DOI: 10.1002/anie.202306166] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
To achieve the Fe-N-C materials with both high activity and durability in proton exchange membrane fuel cells, the attack of free radicals on Fe-N4 sites must be overcome. Herein, we report a strategy to effectively eliminate radicals at the source to mitigate the degradation by anchoring CeO2 nanoparticles as radicals scavengers adjacent (Scaad-CeO2 ) to the Fe-N4 sites. Radicals such as ⋅OH and HO2 ⋅ that form at Fe-N4 sites can be instantaneously eliminated by adjacent CeO2 , which shortens the survival time of radicals and the regional space of their damage. As a result, the CeO2 scavengers in Fe-NC/Scaad-CeO2 achieved ∼80 % elimination of the radicals generated at the Fe-N4 sites. A fuel cell prepared with the Fe-NC/Scaad-CeO2 showed a smaller peak power density decay after 30,000 cycles determined with US DOE PGM-relevant AST, increasing the decay of Fe-NCPhen from 69 % to 28 % decay.
Collapse
Affiliation(s)
- Xiaoyang Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaotian Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Shuhu Yin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Lifei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Yani Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Guang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Rui Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Chongtai Wang
- College of Chemistry and Chemical Engineering, Hainan Normal University, Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Haikou, 571158, China
| | - Honggang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Yanxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| | - Shigang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Engineering Research Center of Electrochemical Technologies of Ministry of Education, College of Chemistry and Chemical Engineering Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
99
|
Wei L, Li X, Wei Q, Chen L, Xu L, Zhou P. Oxidative Stress-mediated Sprouty-related Protein with an EVH1 Domain 1 Down-regulation Contributes to Resisting Oxidative Injury in Microglia. Neuroscience 2023; 526:13-20. [PMID: 37343716 DOI: 10.1016/j.neuroscience.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Microglia play an ambiguous role in injury or repair after ischemia-reperfusion, and the induced oxidative stress serves as an important signal, mediates direct toxicity to nerve cells, and eventually simulates complex physiological processes such as activation of microglia to repair the damaged area. Herein, we show that sprouty-related protein with an EVH1 domain 1 (SPRED1) may act as a regulatory node in this phenomenon. The ischemic brain of an ischemia-reperfusion rat model constructed by middle cerebral artery occlusion (MCAO) showed an increase in oxidative stress and downregulation of SPRED1 expression. Hydrogen peroxide (H2O2)-simulated oxidative damage exerted a fluctuating regulatory effect on SPRED1 level in BV2 microglia, which is highly consistent with its regulatory effect on nuclear factor kappa B (NF-κB) transcription factor p65. Interestingly, SPRED1 overexpressed in BV2 cells did not exert any regulatory effect on p38 mitogen-activated protein kinase (MAPK), NF-κB p65, and pro-inflammatory cytokines. However, treatment of BV2 cells overexpressing SPRED1 with H2O2 led to significant changes in the above phenomena as well as their viability and apoptosis. In the absence of H2O2 induction, SPRED overexpression alone did not mediate such an effect. These findings indicate that SPRED1 tends to maintain intracellular homeostasis of signals, but the oxidative stress derived from ischemia-reperfusion can easily degrade SPRED1 and consequently re-activate these restricted signals and alter the behavior of microglia. Thus, our study reveals a novel role of SPRED1 in microglia in response to cerebral ischemia-induced oxidative stress.
Collapse
Affiliation(s)
- Li Wei
- Department of Blood Transfusion, the Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xin Li
- Department of Anesthesiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Qianfeng Wei
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lin Chen
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Xu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Peng Zhou
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
100
|
Yin H, Gao Y, Chen W, Tang C, Zhu Z, Li K, Xia S, Han C, Ding X, Ruan F, Tian H, Zhu C, Xie S, Zuo Z, Liao L, He C. Topically applied fullerenols protect against radiation dermatitis by scavenging reactive oxygen species. DISCOVER NANO 2023; 18:101. [PMID: 37581715 PMCID: PMC10427596 DOI: 10.1186/s11671-023-03869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/04/2023] [Indexed: 08/16/2023]
Abstract
Adverse skin reactions caused by ionizing radiation are collectively called radiation dermatitis (RD), and the use of nanomedicine is an attractive approach to this condition. Therefore, we designed and large-scale synthesized fullerenols that showed free radical scavenging ability in vitro. Next, we pretreated X-ray-exposed cells with fullerenols. The results showed that pretreatment with fullerenols significantly scavenged intracellular reactive oxygen species (ROS) produced and enhanced the antioxidant capacity, protecting skin cells from X-ray-induced DNA damage and apoptosis. Moreover, we induced RD in mice by applying 30 Gy of X-ray irradiation, followed by treatment with fullerenols. We found that after treatment, the RD scores dropped, and the histological results systematically demonstrated that topically applied fullerenols could reduce radiation-induced skin epidermal thickening, collagen deposition and skin appendage damage and promote hair regeneration after 35 days. Compared with Trolamine cream, a typical RD drug, fullerenols showed superior radiation protection. Overall, the in vitro and in vivo experiments proved that fullerenols agents against RD.
Collapse
Grants
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
- Nos. XDHT2020407A and 20213160A0471 Xiamen Funano New Materials Technology Co., Ltd.
Collapse
Affiliation(s)
- Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - You Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Weiguang Chen
- School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Chen Tang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Zihan Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Kun Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Siyu Xia
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Xiaoyan Ding
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Hanrui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changfeng Zhu
- Xiamen Funano New Materials Technology Co., Ltd., Xiamen, China
| | - Suyuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China
| | - Lixin Liao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China.
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, The Plastic and Aesthetic Burn Department, The First Affiliated Hospital, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|