51
|
Bertels S, Jaggy M, Richter B, Keppler S, Weber K, Genthner E, Fischer AC, Thiel M, Wegener M, Greiner AM, Autenrieth TJ, Bastmeyer M. Geometrically defined environments direct cell division rate and subcellular YAP localization in single mouse embryonic stem cells. Sci Rep 2021; 11:9269. [PMID: 33927254 PMCID: PMC8084931 DOI: 10.1038/s41598-021-88336-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/01/2021] [Indexed: 01/09/2023] Open
Abstract
Mechanotransduction via yes-associated protein (YAP) is a central mechanism for decision-making in mouse embryonic stem cells (mESCs). Nuclear localization of YAP is tightly connected to pluripotency and increases the cell division rate (CDR). How the geometry of the extracellular environment influences mechanotransduction, thereby YAP localization, and decision-making of single isolated mESCs is largely unknown. To investigate this relation, we produced well-defined 2D and 2.5D microenvironments and monitored CDR and subcellular YAP localization in single mESCs hence excluding cell–cell interactions. By systematically varying size and shape of the 2D and 2.5D substrates we observed that the geometry of the growth environment affects the CDR. Whereas CDR increases with increasing adhesive area in 2D, CDR is highest in small 2.5D micro-wells. Here, mESCs attach to all four walls and exhibit a cross-shaped cell and nuclear morphology. This observation indicates that changes in cell shape are linked to a high CDR. Inhibition of actomyosin activity abrogate these effects. Correspondingly, nuclear YAP localization decreases in inhibitor treated cells, suggesting a relation between cell shape, intracellular forces, and cell division rate. The simplicity of our system guarantees high standardization and reproducibility for monitoring stem cell reactions and allows addressing a variety of fundamental biological questions on a single cell level.
Collapse
Affiliation(s)
- Sarah Bertels
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Mona Jaggy
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Benjamin Richter
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Stephan Keppler
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Kerstin Weber
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Elisa Genthner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Andrea C Fischer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany
| | - Michael Thiel
- Nanoscribe GmbH, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Wegener
- Institute of Applied Physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Straße 1, 76131, Karlsruhe, Germany.,Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany
| | - Alexandra M Greiner
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany. .,Institute of Functional Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,3DMM2O - Cluster of Excellence (EXC-2082/1 - 390761711), Karlsruhe, Germany. .,Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
52
|
Celastrol and Triptolide Suppress Stemness in Triple Negative Breast Cancer: Notch as a Therapeutic Target for Stem Cells. Biomedicines 2021; 9:biomedicines9050482. [PMID: 33924995 PMCID: PMC8146582 DOI: 10.3390/biomedicines9050482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Triple negative breast cancer (TNBC) is observed in ~15% of breast cancers and results in poor survival and increased distant metastases. Within the tumor are present a small portion of cancer stem cells that drive tumorigenesis and metastasis. In this study, we aimed to elucidate whether the two natural compounds, celastrol and triptolide, inhibit stemness in TNBC. MDA-MB-231, BT20, and a patient-derived primary cells (PD-TNBC) were used in the study. Mammosphere assay was performed to assess the stemness. Both celastrol and triptolide treatment suppressed mammosphere formation. Furthermore, the compound suppressed expression of cancer stem cell marker proteins DCLK1, ALDH1, and CD133. Notch signaling plays a critical role in stem cells renewal. Both celastrol or triptolide reduced Notch -1 activation and expression of its downstream target proteins HES-1 and HEY-1. However, when NICD 1 was ectopically overexpressed in the cells, it partially rescued proliferation and mammosphere formation of the cells, supporting the role of notch signaling. Together, these data demonstrate that targeting stem cells and the notch signaling pathway may be an effective strategy for curtailing TNBC progression.
Collapse
|
53
|
New Insights into YES-Associated Protein Signaling Pathways in Hematological Malignancies: Diagnostic and Therapeutic Challenges. Cancers (Basel) 2021; 13:cancers13081981. [PMID: 33924049 PMCID: PMC8073623 DOI: 10.3390/cancers13081981] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary YES-associated protein (YAP) is a co-transcriptional activator that binds to transcriptional factors to increase the rate of transcription of a set of genes, and it can intervene in the onset and progression of different tumors. Most of the data in the literature refer to the effects of the YAP system in solid neoplasms. In this review, we analyze the possibility that YAP can also intervene in hematological neoplasms such as lymphomas, multiple myeloma, and acute and chronic leukemias, modifying the phenomena of cell proliferation and cell death. The possibilities of pharmacological intervention related to the YAP system in an attempt to use its modulation therapeutically are also discussed. Abstract The Hippo/YES-associated protein (YAP) signaling pathway is a cell survival and proliferation-control system with its main activity that of regulating cell growth and organ volume. YAP operates as a transcriptional coactivator in regulating the onset, progression, and treatment response in numerous human tumors. Moreover, there is evidence suggesting the involvement of YAP in the control of the hematopoietic system, in physiological conditions rather than in hematological diseases. Nevertheless, several reports have proposed that the effects of YAP in tumor cells are cell-dependent and cell-type-determined, even if YAP usually interrelates with extracellular signaling to stimulate the onset and progression of tumors. In the present review, we report the most recent findings in the literature on the relationship between the YAP system and hematological neoplasms. Moreover, we evaluate the possible therapeutic use of the modulation of the YAP system in the treatment of malignancies. Given the effects of the YAP system in immunosurveillance, tumorigenesis, and chemoresistance, further studies on interactions between the YAP system and hematological malignancies will offer very relevant information for the targeting of these diseases employing YAP modifiers alone or in combination with chemotherapy drugs.
Collapse
|
54
|
Maroni G, Bassal MA, Krishnan I, Fhu CW, Savova V, Zilionis R, Maymi VA, Pandell N, Csizmadia E, Zhang J, Storti B, Castaño J, Panella R, Li J, Gustafson CE, Fox S, Levy RD, Meyerovitz CV, Tramontozzi PJ, Vermilya K, De Rienzo A, Crucitta S, Bassères DS, Weetall M, Branstrom A, Giorgetti A, Ciampi R, Del Re M, Danesi R, Bizzarri R, Yang H, Kocher O, Klein AM, Welner RS, Bueno R, Magli MC, Clohessy JG, Ali A, Tenen DG, Levantini E. Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer. Commun Biol 2021; 4:370. [PMID: 33854168 PMCID: PMC8046784 DOI: 10.1038/s42003-021-01897-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 02/23/2021] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencing in aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas.
Collapse
Affiliation(s)
- Giorgia Maroni
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, Pisa, Italy
| | - Mahmoud A Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Harvard Medical School, Boston, MA, USA
| | | | - Chee Wai Fhu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Virginia Savova
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Rapolas Zilionis
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Valerie A Maymi
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana Farber/Harvard Cancer Center, Boston, MA, USA
| | - Nicole Pandell
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana Farber/Harvard Cancer Center, Boston, MA, USA
| | - Eva Csizmadia
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Barbara Storti
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
| | - Julio Castaño
- Platform for Immunotherapy BST-Hospital Clinic, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Riccardo Panella
- Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Corinne E Gustafson
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Sam Fox
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Rachel D Levy
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Claire V Meyerovitz
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Tramontozzi
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Kimberly Vermilya
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Assunta De Rienzo
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Daniela S Bassères
- Biochemistry Department, Chemistry Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Marla Weetall
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, USA
| | - Art Branstrom
- PTC Therapeutics, 100 Corporate Court, South Plainfield, NJ, USA
| | - Alessandra Giorgetti
- Cell Biology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Stem Cell Biology and Leukemiogenesis Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raffaele Ciampi
- Endocrine Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ranieri Bizzarri
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Department of Surgical, Medical and Molecular Pathology, and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Olivier Kocher
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Robert S Welner
- University of Alabama at Birmingham, Department of Medicine, Hemathology/Oncology, Birmingham, AL, USA
| | - Raphael Bueno
- Harvard Medical School, Boston, MA, USA
- Division of Thoracic Surgery, The Lung Center and the International Mesothelioma Program, Brigham and Women's Hospital, Boston, MA, USA
| | - Maria Cristina Magli
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, Pisa, Italy
| | - John G Clohessy
- Harvard Medical School, Boston, MA, USA
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Preclinical Murine Pharmacogenetics Core, Beth Israel Deaconess Cancer Center, Dana Farber/Harvard Cancer Center, Boston, MA, USA
| | - Azhar Ali
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Elena Levantini
- Harvard Medical School, Boston, MA, USA.
- Institute of Biomedical Technologies, National Research Council (CNR), Area della Ricerca di Pisa, Pisa, Italy.
- Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
55
|
Gu X, Li X, Jin Y, Zhang Z, Li M, Liu D, Wei F. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med 2021; 25:4501-4515. [PMID: 33837664 PMCID: PMC8093972 DOI: 10.1111/jcmm.16541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/01/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
CDR1as is a well‐identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness. Knockdown of CDR1as decreases the expression levels of stemness‐related genes and impairs the cell's multi‐differentiation and cell migration abilities, while overexpression of CDR1as increases the expression levels of stemness‐related genes and enhances these abilities. Furthermore, our results indicate that the RNA‐binding protein hnRNPM directly interacts with CDR1as and regulates its expression in PDLSCs. In addition, we show that CDR1as promotes the expression of stemness‐related genes in PDLSCs by inhibiting miR‐7‐mediated suppression of KLF4 expression. Collectively, our results demonstrate that CDR1as participates in the molecular circuitry that regulates PDLSC stemness.
Collapse
Affiliation(s)
- Xiuge Gu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Xiaoyu Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ye Jin
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Mengying Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongxu Liu
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
56
|
Macrae TA, Ramalho-Santos M. The deubiquitinase Usp9x regulates PRC2-mediated chromatin reprogramming during mouse development. Nat Commun 2021; 12:1865. [PMID: 33767158 PMCID: PMC7994559 DOI: 10.1038/s41467-021-21910-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Pluripotent cells of the mammalian embryo undergo extensive chromatin rewiring to prepare for lineage commitment after implantation. Repressive H3K27me3, deposited by Polycomb Repressive Complex 2 (PRC2), is reallocated from large blankets in pre-implantation embryos to mark promoters of developmental genes. The regulation of this global redistribution of H3K27me3 is poorly understood. Here we report a post-translational mechanism that destabilizes PRC2 to constrict H3K27me3 during lineage commitment. Using an auxin-inducible degron system, we show that the deubiquitinase Usp9x is required for mouse embryonic stem (ES) cell self-renewal. Usp9x-high ES cells have high PRC2 levels and bear a chromatin and transcriptional signature of the pre-implantation embryo, whereas Usp9x-low ES cells resemble the post-implantation, gastrulating epiblast. We show that Usp9x interacts with, deubiquitinates and stabilizes PRC2. Deletion of Usp9x in post-implantation embryos results in the derepression of genes that normally gain H3K27me3 after gastrulation, followed by the appearance of morphological abnormalities at E9.5, pointing to a recurrent link between Usp9x and PRC2 during development. Usp9x is a marker of "stemness" and is mutated in various neurological disorders and cancers. Our results unveil a Usp9x-PRC2 regulatory axis that is critical at peri-implantation and may be redeployed in other stem cell fate transitions and disease states.
Collapse
Affiliation(s)
- Trisha A Macrae
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
- Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
57
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
58
|
Tatebayashi R, Nakamura S, Minabe S, Furusawa T, Abe R, Kajisa M, Morita Y, Ohkura S, Kimura K, Matsuyama S. Gene-expression profile and postpartum transition of bovine endometrial side population cells†. Biol Reprod 2021; 104:850-860. [PMID: 33438005 DOI: 10.1093/biolre/ioab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
The mechanism of bovine endometrial regeneration after parturition remains unclear. Here, we hypothesized that bovine endometrial stem/progenitor cells participate in the postpartum regeneration of the endometrium. Flow cytometry analysis identified the presence of side population (SP) cells among endometrial stromal cells. Endometrial SP cells were shown to differentiate into osteoblasts and adipocytes. RNA-seq data showed that the gene expression pattern was different between bovine endometrial SP cells and main population cells. Gene Set Enrichment Analysis identified the enrichment of stemness genes in SP cells. Significantly (false discovery rate < 0.01) upregulated genes in SP cells contained several stem cell marker genes. Gene ontology (GO) analysis of the upregulated genes in SP cells showed enrichment of terms related to RNA metabolic process and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of upregulated genes in SP cells revealed enrichment of signaling pathways associated with maintenance and differentiation of stem/progenitor cells. The terms involved in TCA cycles were enriched in GO and KEGG pathway analysis of downregulated genes in SP cells. These results support the assumption that bovine endometrial SP cells exhibit characteristics of somatic stem/progenitor cells. The ratio of SP cells to endometrial cells was lowest on days 9-11 after parturition, which gradually increased thereafter. SP cells were shown to differentiate into epithelial cells. Collectively, these results suggest that bovine endometrial SP cells were temporarily reduced immediately after calving possibly due to their differentiation to provide new endometrial cells.
Collapse
Affiliation(s)
- Ryoki Tatebayashi
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Sho Nakamura
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shiori Minabe
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Tadashi Furusawa
- Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Ryoya Abe
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Miki Kajisa
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Yasuhiro Morita
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan.,Asian Satellite Campuses Institute, Nagoya University, Nagoya, Japan
| | - Satoshi Ohkura
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Shuichi Matsuyama
- Laboratory of Animal Production Science, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| |
Collapse
|
59
|
Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance. Commun Biol 2021; 4:22. [PMID: 33398073 PMCID: PMC7782543 DOI: 10.1038/s42003-020-01549-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
Nerve growth factor (NGF) contributes to the progression of malignancy. However, the functional role and regulatory mechanisms of NGF in the development of neuroendocrine prostate cancer (NEPC) are unclear. Here, we show that an androgen-deprivation therapy (ADT)-stimulated transcription factor, ZBTB46, upregulated NGF via ZBTB46 mediated-transcriptional activation of NGF. NGF regulates NEPC differentiation by physically interacting with a G-protein-coupled receptor, cholinergic receptor muscarinic 4 (CHRM4), after ADT. Pharmacologic NGF blockade and NGF knockdown markedly inhibited CHRM4-mediated NEPC differentiation and AKT-MYCN signaling activation. CHRM4 stimulation was associated with ADT resistance and was significantly correlated with increased NGF in high-grade and small-cell neuroendocrine prostate cancer (SCNC) patient samples. Our results reveal a role of the NGF in the development of NEPC that is linked to ZBTB46 upregulation and CHRM4 accumulation. Our study provides evidence that the NGF-CHRM4 axis has potential to be considered as a therapeutic target to impair NEPC progression. Here, the authors discover that NGF, upregulated by transcription factor ZBTB46 in prostate cancer exposed to androgen therapy, promotes neuroendocrine differentiation. They show that NGF interacts with the GPCR CHRM4, that both NGF and CHRM4 are upregulated in highly metastatic prostate cancer and that targeting NGF reduces therapy resistance in a mouse xenograft model.
Collapse
|
60
|
Riether C, Radpour R, Kallen NM, Bürgin DT, Bachmann C, Schürch CM, Lüthi U, Arambasic M, Hoppe S, Albers CE, Baerlocher GM, Ochsenbein AF. Metoclopramide treatment blocks CD93-signaling-mediated self-renewal of chronic myeloid leukemia stem cells. Cell Rep 2021; 34:108663. [PMID: 33503440 DOI: 10.1016/j.celrep.2020.108663] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/20/2020] [Accepted: 12/28/2020] [Indexed: 12/17/2022] Open
Abstract
Self-renewal is a key characteristic of leukemia stem cells (LSCs) responsible for the development and maintenance of leukemia. In this study, we identify CD93 as an important regulator of self-renewal and proliferation of murine and human LSCs, but not hematopoietic stem cells (HSCs). The intracellular domain of CD93 promotes gene transcription via the transcriptional regulator SCY1-like pseudokinase 1 independently of ligation of the extracellular domain. In a drug library screen, we identify the anti-emetic agent metoclopramide as an efficient blocker of CD93 signaling. Metoclopramide treatment reduces murine and human LSCs in vitro and prolongs survival of chronic myeloid leukemia (CML) mice through downregulation of pathways related to stemness and proliferation in LSCs. Overall, these results identify CD93 signaling as an LSC-specific regulator of self-renewal and proliferation and a targetable pathway to eliminate LSCs in CML.
Collapse
Affiliation(s)
- Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| | - Ramin Radpour
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nils M Kallen
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Damian T Bürgin
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Chantal Bachmann
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ursina Lüthi
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Miroslav Arambasic
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Wirbelsäulenmedizin Bern, Hirslanden Salem-Spital, Bern, Switzerland; Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph E Albers
- Department of Orthopedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gabriela M Baerlocher
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland; Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Adrian F Ochsenbein
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.
| |
Collapse
|
61
|
Capo V, Penna S, Merelli I, Barcella M, Scala S, Basso-Ricci L, Draghici E, Palagano E, Zonari E, Desantis G, Uva P, Cusano R, Sergi LS, Crisafulli L, Moshous D, Stepensky P, Drabko K, Kaya Z, Unal E, Gezdiric A, Menna G, Serafini M, Aiuti A, Locatelli SL, Carlo-Stella C, Schulz AS, Ficara F, Sobacchi C, Gentner B, Villa A. Expanded circulating hematopoietic stem/progenitor cells as novel cell source for the treatment of TCIRG1 osteopetrosis. Haematologica 2021; 106:74-86. [PMID: 31949009 PMCID: PMC7776247 DOI: 10.3324/haematol.2019.238261] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation is the treatment of choice for autosomal recessive osteopetrosis caused by defects in the TCIRG1 gene. Despite recent progress in conditioning, a relevant number of patients are not eligible for allogeneic stem cell transplantation because of the severity of the disease and significant transplant-related morbidity. We exploited peripheral CD34+ cells, known to circulate at high frequency in the peripheral blood of TCIRG1-deficient patients, as a novel cell source for autologous transplantation of gene corrected cells. Detailed phenotypical analysis showed that circulating CD34+ cells have a cellular composition that resembles bone marrow, supporting their use in gene therapy protocols. Transcriptomic profile revealed enrichment in genes expressed by hematopoietic stem and progenitor cells (HSPCs). To overcome the limit of bone marrow harvest/ HSPC mobilization and serial blood drawings in TCIRG1 patients, we applied UM171-based ex-vivo expansion of HSPCs coupled with lentiviral gene transfer. Circulating CD34+ cells from TCIRG1-defective patients were transduced with a clinically-optimized lentiviral vector (LV) expressing TCIRG1 under the control of phosphoglycerate promoter and expanded ex vivo. Expanded cells maintained long-term engraftment capacity and multi-lineage repopulating potential when transplanted in vivo both in primary and secondary NSG recipients. Moreover, when CD34+ cells were differentiated in vitro, genetically corrected osteoclasts resorbed the bone efficiently. Overall, we provide evidence that expansion of circulating HSPCs coupled to gene therapy can overcome the limit of stem cell harvest in osteopetrotic patients, thus opening the way to future gene-based treatment of skeletal diseases caused by bone marrow fibrosis.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- DIMET, University of Milano-Bicocca, Monza, Italy
| | - Ivan Merelli
- Institute for Biomedical Technologies, National Research Council, Segrate, Italy
| | - Matteo Barcella
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Basso-Ricci
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Draghici
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eleonora Palagano
- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Erika Zonari
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giacomo Desantis
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Pula, Italy
| | | | - Lucia Sergi Sergi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Crisafulli
- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Despina Moshous
- Unite d'Immunologie, Hematologie et Rhumatologie Pediatriques (UIHR), Assistance Publique-Hopitaux de Paris, Hopital Necker-Enfants Malades, Paris, France
- INSERM UMR1163, Institut Imagine, Universite Paris Descartes-Sorbonne Paris Cite, Paris, France
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah University Hospital, Jerusalem, Israel
| | | | - Zühre Kaya
- Department of Pediatric Hematology, Gazi University, School of Medicine, Ankara, Turkey
| | - Ekrem Unal
- Erciyes University, Pediatric Hematology Oncology, Kayseri, Turkey
- Molecular Biology and Genetic Department, Gevher Nesibe Genom and Stem Cell Institution, Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Alper Gezdiric
- Department of Medical Genetics, Istanbul Health Science University, Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Giuseppe Menna
- Hemato-Oncology Unit, Department of Oncology, Pausilipon Hospital, Naples, Italy
| | | | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Laura Locatelli
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Ansgar S. Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Francesca Ficara
- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Cristina Sobacchi
- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- CNR-IRGB, Milan Unit, Milan, Italy
| |
Collapse
|
62
|
Xu Y, Liu L, Wang X, Huang Y, Cheng Y, Zhang J, Wang J, Tian Y, Xiong J, Yang Y, Ren B, Wu W, He P, Zhang Y, Zhao B, Wang J, Yu M, Wang J, Jian R, Liu Y, Ruan Y. Identification of novel Taz isoforms and functional comparison in pluripotency maintenance of mouse embryonic stem cells. Gene 2020; 773:145383. [PMID: 33383118 DOI: 10.1016/j.gene.2020.145383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/19/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022]
Abstract
Alternative splicing (AS) is a key process to expand the diversity of mRNA and protein from the genome and it is crucial for fate determination of embryonic stem cells (ESCs) by encoding isoforms with different functions to regulate the balance between pluripotency maintenance and differentiation. Since the role of the Hippo pathway in ESCs is controversial, there may be novel isoforms of Taz, a key effector of the Hippo pathway, previously unknown to us. Here, we identified three variants of Taz in mESCs. Apart from the canonical Taz1185, there were also two novel variants, Taz402 and Taz1086. We found their structure and subcellular localization to be different, while they could all interact with TEAD2 with similar binding affinities and activate transcription. Under the LIFlow condition, overexpression of them all induced apoptosis and differentiation of mESCs, among which the phenotype of Taz1086 was the most dramatic. Taken together, we discovered novel variants of Taz and compared their structure and functional differences in mESC pluripotency maintenance. These findings will help us to understand the Taz gene and clarify its role in mESC.
Collapse
Affiliation(s)
- Yixiao Xu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yuyan Huang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, the First Hospital Affiliated to Army Medical University, Chongqing 400038, China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, the First Hospital Affiliated to Army Medical University, Chongqing 400038, China
| | - Yue Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China
| | - Binyu Zhao
- Department of Physiology, Army Medical University, Chongqing 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing 400038, China.
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
63
|
Jabbari N, Kenerson HL, Lausted C, Yan X, Meng C, Sullivan KM, Baloni P, Bergey D, Pillarisetty VG, Hood LE, Yeung RS, Tian Q. Modulation of Immune Checkpoints by Chemotherapy in Human Colorectal Liver Metastases. CELL REPORTS MEDICINE 2020; 1:100160. [PMID: 33377131 PMCID: PMC7762777 DOI: 10.1016/j.xcrm.2020.100160] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/14/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022]
Abstract
Metastatic colorectal cancer (CRC) is a major cause of cancer-related death, and incidence is rising in younger populations (younger than 50 years). Current chemotherapies can achieve response rates above 50%, but immunotherapies have limited value for patients with microsatellite-stable (MSS) cancers. The present study investigates the impact of chemotherapy on the tumor immune microenvironment. We treat human liver metastases slices with 5-fluorouracil (5-FU) plus either irinotecan or oxaliplatin, then perform single-cell transcriptome analyses. Results from eight cases reveal two cellular subtypes with divergent responses to chemotherapy. Susceptible tumors are characterized by a stemness signature, an activated interferon pathway, and suppression of PD-1 ligands in response to 5-FU+irinotecan. Conversely, immune checkpoint TIM-3 ligands are maintained or upregulated by chemotherapy in CRC with an enterocyte-like signature, and combining chemotherapy with TIM-3 blockade leads to synergistic tumor killing. Our analyses highlight chemomodulation of the immune microenvironment and provide a framework for combined chemo-immunotherapies. CRLM slice culture can assess immune response to chemotherapy Single-cell analysis identifies cancer subtypes with differing response to chemotherapy 5-FU+irinotecan modulates interferon and PD-L1 pathways in stem-like CRLM Combining chemotherapy with TIM-3 blockade is synergistic in enterocyte-like CRLM
Collapse
Affiliation(s)
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | - Xiaowei Yan
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Kevin M Sullivan
- Department of Surgery, University of Washington, Seattle, WA, USA
| | | | - Dani Bergey
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Qiang Tian
- Institute for Systems Biology, Seattle, WA, USA
| |
Collapse
|
64
|
Alsuliman T, Humaidan D, Sliman L. Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality? Curr Res Transl Med 2020; 68:245-251. [DOI: 10.1016/j.retram.2020.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/22/2019] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
|
65
|
Mo J, Au DWT, Wan MT, Shi J, Zhang G, Winkler C, Kong RYC, Seemann F. Multigenerational Impacts of Benzo[ a]pyrene on Bone Modeling and Remodeling in Medaka ( Oryzias latipes). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12271-12284. [PMID: 32840350 DOI: 10.1021/acs.est.0c02416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ancestral benzo[a]pyrene (BaP) (1 μg/L, 21 days) exposure has previously been shown to cause skeletal deformities in medaka (Oryzias latipes) larvae in the F1-F3 generation. However, when and how this deformity is induced during bone development remain to be elucidated. The col10a1:nlGFP/osx:mCherry double transgenic medaka model was employed to determine the temporal and spatial changes of col10a1:nlGFP- positive osteochondral progenitor cells (OPCs) and osx:mCherry-positive premature osteoblasts (POBs) [8 days postfertilization (dpf)-31 dpf] in combination with changes in bone mineralization at the tissue level. Ancestral BaP exposure delayed the development of col10a1:nlGFP- and osx:mCherry-positive osteoblasts and reduced the abundance of col10a1:nlGFP-positive osteoblast progenitors and col10a1:nlGFP/osx:mCherry double-positive premature osteoblasts during critical windows of early vertebral bone formation, associated with reduced bone mineralization in embryos (14 dpf) and larvae (31 dpf), compressed vertebral segments in larvae (31 dpf), and reduced bone thickness in adult male medaka (6 months old) of the F1-F3 generations. Both Col10a1:nlGFP and osx:mCherry were identified as potential targets of epigenetic modifications underlying the transgenerational inheritance of BaP bone toxicity. The present study provides novel knowledge of the underlying mechanisms of transgenerational toxicity of BaP at the cellular level.
Collapse
Affiliation(s)
- Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Doris Wai-Ting Au
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Miles Teng Wan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Jingchun Shi
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Christoph Winkler
- Department of Biological Sciences, National University of Singapore, 119077, Singapore
| | - Richard Yuen-Chong Kong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Hong Kong Branch of the Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong SAR, China
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Frauke Seemann
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Center for Coastal Studies and Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas 78412, United States
| |
Collapse
|
66
|
Hong G, Yan Y, Zhong Y, Chen J, Tong F, Ma Q. Combined Ischemic Preconditioning and Resveratrol Improved Bloodbrain Barrier Breakdown via Hippo/YAP/TAZ Signaling Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:713-722. [PMID: 31642795 DOI: 10.2174/1871527318666191021144126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transient Ischemia/Reperfusion (I/R) is the main reason for brain injury and results in disruption of the Blood-Brain Barrier (BBB). It had been reported that BBB injury is one of the main risk factors for early death in patients with cerebral ischemia. Numerous investigations focus on the study of BBB injury which have been carried out. OBJECTIVE The objective of this study was to investigate the treatment function of the activation of the Hippo/Yes-Associated Protein (YAP) signaling pathway by combined Ischemic Preconditioning (IPC) and resveratrol (RES) before brain Ischemia/Reperfusion (BI/R) improves Blood-Brain Barrier (BBB) disruption in rats. METHODS Sprague-Dawley (SD) rats were pretreated with 20 mg/kg RES and IPC and then subjected to 2 h of ischemia and 22 h of reperfusion. The cerebral tissues were collected; the cerebral infarct volume was determined; the Evans Blue (EB) level, the brain Water Content (BWC), and apoptosis were assessed; and the expressions of YAP and TAZ were investigated in cerebral tissues. RESULTS Both IPC and RES preconditioning reduced the cerebral infarct size, improved BBB permeability, lessened apoptosis, and upregulated expressions of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) compared to the Ischemia/Reperfusion (I/R) group, while combined IPC and RES significantly enhanced this action. CONCLUSION combined ischemic preconditioning and resveratrol improved blood-brain barrier breakdown via Hippo/YAP/TAZ signaling pathway.
Collapse
Affiliation(s)
- Ganji Hong
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Jianer Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fei Tong
- School of Pharmaceutical Science, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China.,Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.,Department of Endocrinology and Diabetes, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Qilin Ma
- Department of Neurology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
67
|
Lorenzo-Martín LF, Menacho-Márquez M, Bustelo XR. Drug Vulnerabilities and Disease Prognosis Linked to the Stem Cell-Like Gene Expression Program Triggered by the RHO GTPase Activator VAV2 in Hyperplastic Keratinocytes and Head and Neck Cancer. Cancers (Basel) 2020; 12:cancers12092498. [PMID: 32899210 PMCID: PMC7563609 DOI: 10.3390/cancers12092498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Head and neck squamous cell carcinoma are epithelial tumors with a very poor prognosis. They are also in high need of new targeted and immune-based therapeutics to limit tumor recurrence and improve long-term survival. The poor prognosis of patients with head and neck tumors is usually associated with histological features associated with poor differentiation and high proliferative activity found in their tumor biopsies. Therefore, it is of paramount importance to identify vulnerabilities associated with such pathobiological programs. In this work, the authors utilize a stem cell-like program linked to the deregulated activity of VAV2, a protein frequently overexpressed in this type of tumors, to identify new therapeutic targets that can discriminate tumors from healthy cells. The authors also show that this gene expression program can be used to stratify patients according to long-term prognosis. Abstract We have recently shown that VAV2, a guanosine nucleotide exchange factor that catalyzes the stimulation step of RHO GTPases, is involved in a stem cell-like (SCL) regenerative proliferation program that is important for the development and subsequent maintenance of the tumorigenesis of both cutaneous (cSCC) and head and neck squamous cell carcinomas (hnSCC). In line with this, we have observed that the levels of the VAV2 mRNA and VAV2-regulated gene signatures are associated with poor prognosis in the case of human papillomavirus-negative hnSCC patients. These results suggest that the SCL program elicited by VAV2 in those cells can harbor therapeutically actionable downstream targets. We have addressed this issue using a combination of both in silico and wet-lab approaches. Here, we show that the VAV2-regulated SCL program does harbor a number of cell cycle- and signaling-related kinases that are essential for the viability of undifferentiated keratinocytes and hnSCC patient-derived cells endowed with high levels of VAV2 activity. Our results also show that the VAV2-regulated SCL gene signature is associated with poor hnSCC patient prognosis. Collectively, these data underscore the critical role of this VAV2-regulated SCL program for the viability of both preneoplastic and fully transformed keratinocytes.
Collapse
Affiliation(s)
- Luis Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| | - Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain;
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: (L.F.L.-M.); (X.R.B.)
| |
Collapse
|
68
|
Guo W, Li L, He J, Liu Z, Han M, Li F, Xia X, Zhang X, Zhu Y, Wei Y, Li Y, Aji R, Dai H, Wei H, Li C, Chen Y, Chen L, Gao D. Single-cell transcriptomics identifies a distinct luminal progenitor cell type in distal prostate invagination tips. Nat Genet 2020; 52:908-918. [PMID: 32807988 PMCID: PMC8383310 DOI: 10.1038/s41588-020-0642-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
The identification of prostate stem/progenitor cells and characterization of the prostate epithelial cell lineage hierarchy are critical for understanding prostate cancer initiation. Here, we characterized 35,129 cells from mouse prostates, and identified a unique luminal cell type (termed type C luminal cell (Luminal-C)) marked by Tacstd2, Ck4 and Psca expression. Luminal-C cells located at the distal prostate invagination tips (termed Dist-Luminal-C) exhibited greater capacity for organoid formation in vitro and prostate epithelial duct regeneration in vivo. Lineage tracing of Luminal-C cells indicated that Dist-Luminal-C cells reconstituted distal prostate luminal lineages through self-renewal and differentiation. Deletion of Pten in Dist-Luminal-C cells resulted in prostatic intraepithelial neoplasia. We further characterized 11,374 human prostate cells and confirmed the existence of h-Luminal-C cells. Our study provides insights into the prostate lineage hierarchy, identifies Dist-Luminal-C cells as the luminal progenitor cell population in invagination tips and suggests one of the potential cellular origins of prostate cancer.
Collapse
Affiliation(s)
- Wangxin Guo
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuang Liu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Shanghai, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rebiguli Aji
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Dai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Wei
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY, USA.
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
69
|
Chen L, Wang CT, Forsyth NR, Wu P. Transcriptional profiling reveals altered biological characteristics of chorionic stem cells from women with gestational diabetes. Stem Cell Res Ther 2020; 11:319. [PMID: 32711583 PMCID: PMC7382800 DOI: 10.1186/s13287-020-01828-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gestational diabetes (GDM) is a common complication of pregnancy. The impact of pregnancy complications on placental function suggests that extraembryonic stem cells in the placenta may also be affected during pregnancy. Neonatal tissue-derived stem cells, with the advantages of their differentiation capacity and non-invasive isolation processes, have been proposed as a promising therapeutic avenue for GDM management through potential cell therapy approaches. However, the influence of GDM on autologous stem cells remains unclear. Thus, studies that provide comprehensive understanding of stem cells isolated from women with GDM are essential to guide future clinical applications. Methods Human chorionic membrane-derived stem cells (CMSCs) were isolated from placentas of healthy and GDM pregnancies. Transcriptional profiling was performed by DNA microarray, and differentially regulated genes between GDM- and Healthy-CMSCs were used to analyse molecular functions, differentiation, and pathway enrichment. Altered genes and biological functions were validated via real-time PCR and in vitro assays. Results GDM-CMSCs displayed, vs. Healthy-CMSCs, 162 upregulated genes associated with increased migration ability, epithelial development, and growth factor-associated signal transduction while the 269 downregulated genes were strongly linked to angiogenesis and cellular metabolic processes. Notably, significantly reduced expression of detoxification enzymes belonging to the aldehyde dehydrogenase gene families (ALDH1A1/1A2, ALDH2, ALDH3) accounted for downregulation across several metabolic pathways. ALDH activity and inhibitor assays indicated that reduced gene expression of ALDHs affected ALDH enzymatic functions and resulted in oxidative stress dysregulation in GDM-CMSCs. Conclusion Our combined transcriptional analysis and in vitro functional characterisation have provided novel insights into fundamental biological differences in GDM- and Healthy-CMSCs. Enhanced mobility of GDM-CMSCs may promote MSC migration toward injured sites; however, impaired cellular metabolic activity may negatively affect any perceived benefit.
Collapse
Affiliation(s)
- Liyun Chen
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Chung-Teng Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK. .,School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Pensee Wu
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, UK.,Keele Cardiovascular Research Group, School of Primary, Community, and Social Care, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
70
|
Azad T, Rezaei R, Surendran A, Singaravelu R, Boulton S, Dave J, Bell JC, Ilkow CS. Hippo Signaling Pathway as a Central Mediator of Receptors Tyrosine Kinases (RTKs) in Tumorigenesis. Cancers (Basel) 2020; 12:cancers12082042. [PMID: 32722184 PMCID: PMC7463967 DOI: 10.3390/cancers12082042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The Hippo pathway plays a critical role in tissue and organ growth under normal physiological conditions, and its dysregulation in malignant growth has made it an attractive target for therapeutic intervention in the fight against cancer. To date, its complex signaling mechanisms have made it difficult to identify strong therapeutic candidates. Hippo signaling is largely carried out by two main activated signaling pathways involving receptor tyrosine kinases (RTKs)—the RTK/RAS/PI3K and the RTK-RAS-MAPK pathways. However, several RTKs have also been shown to regulate this pathway to engage downstream Hippo effectors and ultimately influence cell proliferation. In this text, we attempt to review the diverse RTK signaling pathways that influence Hippo signaling in the context of oncogenesis.
Collapse
Affiliation(s)
- Taha Azad
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Reza Rezaei
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Abera Surendran
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Ragunath Singaravelu
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Stephen Boulton
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jaahnavi Dave
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John C. Bell
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Carolina S. Ilkow
- Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada; (T.A.); (R.R.); (A.S.); (R.S.); (S.B.); (J.D.); (J.C.B.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-737-8899 (ext. 75208)
| |
Collapse
|
71
|
He Y, Sun X, Rong W, Yang R, Liang H, Qi Y, Li L, Zen K. CD47 is a negative regulator of intestinal epithelial cell self-renewal following DSS-induced experimental colitis. Sci Rep 2020; 10:10180. [PMID: 32576895 PMCID: PMC7311394 DOI: 10.1038/s41598-020-67152-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
CD47 deficient mice are resistant to dextran sulfate sodium (DSS)-induced experimental colitis. The underlying mechanism, however, remains incompletely understood. In this study, we characterized the role of CD47 in modulating homeostasis of gastrointestinal tract. We found that CD47 expression in both human and mouse intestinal epithelium was upregulated in colitic condition compared to that under normal condition. In line with this, CD47 deficiency protected mice from DSS-induced colitis. Analysis based on both intestinal organoid and cultured cell assays showed that CD47 deficiency accelerated intestinal epithelial cell proliferation and migration. Mechanistically, western blot and functional assays indicated that CD47 deficiency promoting mouse intestinal epithelial cell proliferation and migration follow cell injury is likely through upregulating expression of four Yamanaka transcriptional factors Oct4, Sox2, Klf4 and c-Myc (OSKM in abbreviation). Our studies thus reveal CD47 as a negative regulator in intestinal epithelial cell renewal during colitis through downregulating OSKM transcriptional factors.
Collapse
Affiliation(s)
- Yueqin He
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Xinlei Sun
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Weiwei Rong
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Rong Yang
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Hongwei Liang
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Ying Qi
- Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Limin Li
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China.
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Ke Zen
- Nanjing University Advanced Institute of Life Sciences, Nanjing, China.
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
72
|
|
73
|
Cao X, Wang C, Liu J, Zhao B. Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochim Biophys Sin (Shanghai) 2020; 52:736-748. [DOI: 10.1093/abbs/gmaa048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
Abstract
The Hippo pathway plays important roles in organ development, tissue regeneration, and human diseases, such as cancer. In the canonical Hippo pathway, the MST1/2-LATS1/2 kinase cascade phosphorylates and inhibits transcription coactivators Yes-associated protein and transcription coactivator with PDZ-binding motif and thus regulates transcription of genes important for cell proliferation and apoptosis. However, recent studies have depicted a much more complicate picture of the Hippo pathway with many new components and regulatory stimuli involving both chemical and mechanical signals. Furthermore, accumulating evidence indicates that the Hippo pathway also plays important roles in the determination of cell fates, such as self-renewal and differentiation. Here, we review regulations of the Hippo pathway and its functions in stemness and differentiation emphasizing recent discoveries.
Collapse
Affiliation(s)
- Xiaolei Cao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Chenliang Wang
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Jiyang Liu
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
| | - Bin Zhao
- MOE key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China, and
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
74
|
Lipinski M, Muñoz-Viana R, Del Blanco B, Marquez-Galera A, Medrano-Relinque J, Caramés JM, Szczepankiewicz AA, Fernandez-Albert J, Navarrón CM, Olivares R, Wilczyński GM, Canals S, Lopez-Atalaya JP, Barco A. KAT3-dependent acetylation of cell type-specific genes maintains neuronal identity in the adult mouse brain. Nat Commun 2020; 11:2588. [PMID: 32444594 PMCID: PMC7244750 DOI: 10.1038/s41467-020-16246-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
The lysine acetyltransferases type 3 (KAT3) family members CBP and p300 are important transcriptional co-activators, but their specific functions in adult post-mitotic neurons remain unclear. Here, we show that the combined elimination of both proteins in forebrain excitatory neurons of adult mice resulted in a rapidly progressing neurological phenotype associated with severe ataxia, dendritic retraction and reduced electrical activity. At the molecular level, we observed the downregulation of neuronal genes, as well as decreased H3K27 acetylation and pro-neural transcription factor binding at the promoters and enhancers of canonical neuronal genes. The combined deletion of CBP and p300 in hippocampal neurons resulted in the rapid loss of neuronal molecular identity without de- or transdifferentiation. Restoring CBP expression or lysine acetylation rescued neuronal-specific transcription in cultured neurons. Together, these experiments show that KAT3 proteins maintain the excitatory neuron identity through the regulation of histone acetylation at cell type-specific promoter and enhancer regions. Neuronal identity maintenance is highly regulated. Here, the authors showed that CBP and p300 safeguard neuronal identity through histone acetylation at promoters and enhancers of neuronal specific genes. The loss of both CBP and p300 impairs gene expression, circuit activity, and behavior in mice.
Collapse
Affiliation(s)
- Michal Lipinski
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Rafael Muñoz-Viana
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Marquez-Galera
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Juan Medrano-Relinque
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - José M Caramés
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Andrzej A Szczepankiewicz
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Jordi Fernandez-Albert
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Carmen M Navarrón
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Grzegorz M Wilczyński
- Nencki Institute of Experimental Biology, Polish Academy of Science, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Santiago Canals
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Angel Barco
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Avenida Santiago Ramón y Cajal, s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
75
|
Moloudizargari M, Asghari MH, Nabavi SF, Gulei D, Berindan-Neagoe I, Bishayee A, Nabavi SM. Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Semin Cancer Biol 2020; 80:183-194. [PMID: 32428716 DOI: 10.1016/j.semcancer.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The current era of cancer research has been continuously advancing upon identifying novel aspects of tumorigenesis and the principal mechanisms behind the unleashed proliferation, invasion, drug resistance and immortality of cancer cells in hopes of exploiting these findings to achieve a more effective treatment for cancer. In pursuit of this goal, the identification of the first components of an extremely important regulatory pathway in Drosophila melanogaster that largely determines cell fate during the developmental stages, ended up in the discovery of the highly sophisticated Hippo signaling cascade. Soon after, it was revealed that deregulation of the components of this pathway either via mutations or through epigenetic alterations can be observed in a vast variety of tumors and these alterations greatly contribute to the neoplastic transformation of cells, their survival, growth and resistance to therapy. As more hidden aspects of this pathway such as its widespread entanglement with other major cellular signaling pathways are continuously being uncovered, many researchers have sought over the past decade to find ways of therapeutic interventions targeting the major components of the Hippo cascade. To date, various approaches such as the use of exogenous targeting miRNAs and different molecular inhibitors have been recruited herein, among which naturally occurring compounds have shown a great promise. On such a basis, in the present work we review the current understanding of Hippo pathway and the most recent evidence on targeting its components using natural plant-derived phytochemicals.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717647745, Iran.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Diana Gulei
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca 400337, Romania
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| |
Collapse
|
76
|
Singh RP, Jeyaraju DV, Voisin V, Hurren R, Xu C, Hawley JR, Barghout SH, Khan DH, Gronda M, Wang X, Jitkova Y, Sharon D, Liyanagae S, MacLean N, Seneviratene AK, Mirali S, Borenstein A, Thomas GE, Soriano J, Orouji E, Minden MD, Arruda A, Chan SM, Bader GD, Lupien M, Schimmer AD. Disrupting Mitochondrial Copper Distribution Inhibits Leukemic Stem Cell Self-Renewal. Cell Stem Cell 2020; 26:926-937.e10. [PMID: 32416059 DOI: 10.1016/j.stem.2020.04.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 02/27/2020] [Accepted: 04/15/2020] [Indexed: 12/14/2022]
Abstract
Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitive to targeting mitochondrial pathways, which spares normal hematopoietic cells. A subset of mitochondrial proteins is folded in the intermembrane space via the mitochondrial intermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathway substrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated the effects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALR reduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation. ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copper chaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increases mitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase (SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatin accessibility to lower LSC viability. These results provide insight into mechanisms through which mitochondrial copper controls epigenetic status and viability of LSCs.
Collapse
Affiliation(s)
- Rashim Pal Singh
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Danny V Jeyaraju
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Rose Hurren
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Changjiang Xu
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - James R Hawley
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dilshad H Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marcela Gronda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xiaoming Wang
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Yulia Jitkova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - David Sharon
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sanduni Liyanagae
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil MacLean
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Sara Mirali
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Adina Borenstein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geethu E Thomas
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Joelle Soriano
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Elias Orouji
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mark D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Andrea Arruda
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Steven M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
77
|
Abbas MN, Liang H, Kausar S, Dong Z, Cui H. Zinc finger protein RP-8, the Bombyx mori ortholog of programmed cell death 2, regulates cell proliferation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103542. [PMID: 31730828 DOI: 10.1016/j.dci.2019.103542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Programmed cell death 2 (PDCD2) is a highly conserved eukaryotic protein indispensable for various physiological processes such as cell proliferation, development, and apoptosis. In the present study, we identified a Zinc finger protein RP-8 from the silkworm, Bombyx mori (BmZfrp8), the ortholog of PDCD2 protein. The quantitative real-time PCR analysis revealed the ubiquitous distribution of BmZfrp8 in the different tissues; however, the gene's transcription level was highest in those of the silk gland, testis, and ovary. Additionally, the expression levels of BmZfrp8 were unequal on different days of embryonic development, and it reached the highest level on the 5th day of early development. The challenge with pathogens influenced the expression level of BmZfrp8 in both hemocyte and fat body when compared with the control. Administration of 20-hydroxyecdysone significantly enhanced the BmZfrp8 expression in hemocyte. The knock-down of BmZfrp8 by double-stranded RNA suppressed the expression of developmental pathway associated genes as well as cell cycle-associated genes. Furthermore, the RNAi treated cells also showed cell cycle arrest compared to the control group. Taken together, BmZfrp8 may have a critical biological role in of B. mori, since it regulates the expression of the developmental pathway and cell cycle-associated genes.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Hanghua Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Saima Kausar
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, 400715, China; Cancer Center, Medical Research Institute, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
78
|
Wu J, Tian WJ, Liu Y, Wang HJ, Zheng J, Wang X, Pan H, Li J, Luo J, Yang X, Lau LF, Ghashghaei HT, Shen Q. Ependyma-expressed CCN1 restricts the size of the neural stem cell pool in the adult ventricular-subventricular zone. EMBO J 2020; 39:e101679. [PMID: 32009252 DOI: 10.15252/embj.2019101679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 11/19/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Adult neural stem cells (NSCs) reside in specialized niches, which hold a balanced number of NSCs, their progeny, and other cells. How niche capacity is regulated to contain a specific number of NSCs remains unclear. Here, we show that ependyma-derived matricellular protein CCN1 (cellular communication network factor 1) negatively regulates niche capacity and NSC number in the adult ventricular-subventricular zone (V-SVZ). Adult ependyma-specific deletion of Ccn1 transiently enhanced NSC proliferation and reduced neuronal differentiation in mice, increasing the numbers of NSCs and NSC units. Although proliferation of NSCs and neurogenesis seen in Ccn1 knockout mice eventually returned to normal, the expanded NSC pool was maintained in the V-SVZ until old age. Inhibition of EGFR signaling prevented expansion of the NSC population observed in CCN1 deficient mice. Thus, ependyma-derived CCN1 restricts NSC expansion in the adult brain to maintain the proper niche capacity of the V-SVZ.
Collapse
Affiliation(s)
- Jun Wu
- School of Medicine, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wen-Jia Tian
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China.,MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Huanhuan J Wang
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiangli Zheng
- School of Medicine, Tsinghua University, Beijing, China.,IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xin Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Han Pan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ji Li
- School of Medicine, Tsinghua University, Beijing, China
| | - Junyu Luo
- Peking University-Tsinghua University-National Institute of Biological Sciences (PTN) Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Lester F Lau
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
| | - H Troy Ghashghaei
- WM Keck Center for Behavioral Biology, Program in Genetics, Program in Comparative Biomedical Sciences, Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Qin Shen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Frontier Science Center for Stem Cell Research, Ministry of Education, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Tongji University Brain and Spinal Cord Clinical Research Center, Shanghai, China
| |
Collapse
|
79
|
Dai X, Yan X, Wintergerst KA, Cai L, Keller BB, Tan Y. Nrf2: Redox and Metabolic Regulator of Stem Cell State and Function. Trends Mol Med 2020; 26:185-200. [PMID: 31679988 DOI: 10.1016/j.molmed.2019.09.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is ubiquitously expressed in most eukaryotic cells and functions to induce a broad range of cellular defenses against exogenous and endogenous stresses, including oxidants, xenobiotics, and excessive nutrient/metabolite supply. Because the production and fate of stem cells are often modulated by cellular redox and metabolic homeostasis, important roles of Nrf2 have emerged in the regulation of stem cell quiescence, survival, self-renewal, proliferation, senescence, and differentiation. In a rapidly advancing field, this review summarizes Nrf2 signaling in the context of stem cell state and function and provides a rationale for Nrf2 as a therapeutic target in stem cell-based regenerative medicine.
Collapse
Affiliation(s)
- Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xiaoqing Yan
- Chinese-American Research Institute for Diabetic Complications, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kupper A Wintergerst
- Division of Endocrinology, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Lu Cai
- Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA; Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, USA.
| | - Yi Tan
- Wendy Novak Diabetes Center, Louisville, KY, USA; Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
80
|
de Dieuleveult M, Miotto B. Ubiquitin Dynamics in Stem Cell Biology: Current Challenges and Perspectives. Bioessays 2020; 42:e1900129. [PMID: 31967345 DOI: 10.1002/bies.201900129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/18/2019] [Indexed: 11/09/2022]
Abstract
Ubiquitination plays a central role in the regulation of stem cell self-renewal, propagation, and differentiation. In this review, the functions of ubiquitin dynamics in a myriad of cellular processes, acting along side the pluripotency network, to regulate embryonic stem cell identity are highlighted. The implication of deubiquitinases (DUBs) and E3 Ubiquitin (Ub) ligases in cellular functions beyond protein degradation is reported, including key functions in the regulation of mRNA stability, protein translation, and intra-cellular trafficking; and how it affects cell metabolism, the micro-environment, and chromatin organization is discussed. Finally, unsolved issues in the field are emphasized and will need to be tackled in order to fully understand the contribution of ubiquitin dynamics to stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Maud de Dieuleveult
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| | - Benoit Miotto
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, F-75014, Paris, France
| |
Collapse
|
81
|
Li QV, Rosen BP, Huangfu D. Decoding pluripotency: Genetic screens to interrogate the acquisition, maintenance, and exit of pluripotency. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1464. [PMID: 31407519 PMCID: PMC6898739 DOI: 10.1002/wsbm.1464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/31/2019] [Accepted: 07/17/2019] [Indexed: 01/25/2023]
Abstract
Pluripotent stem cells have the ability to unlimitedly self-renew and differentiate to any somatic cell lineage. A number of systems biology approaches have been used to define this pluripotent state. Complementary to systems level characterization, genetic screens offer a unique avenue to functionally interrogate the pluripotent state and identify the key players in pluripotency acquisition and maintenance, exit of pluripotency, and lineage differentiation. Here we review how genetic screens have helped us decode pluripotency regulation. We will summarize results from RNA interference (RNAi) based screens, discuss recent advances in CRISPR/Cas-based genetic perturbation methods, and how these advances have made it possible to more comprehensively interrogate pluripotency and differentiation through genetic screens. Such investigations will not only provide a better understanding of this unique developmental state, but may enhance our ability to use pluripotent stem cells as an experimental model to study human development and disease progression. Functional interrogation of pluripotency also provides a valuable roadmap for utilizing genetic perturbation to gain systems level understanding of additional cellular states, from later stages of development to pathological disease states. This article is categorized under: Developmental Biology > Stem Cell Biology and Regeneration Developmental Biology > Developmental Processes in Health and Disease Biological Mechanisms > Cell Fates.
Collapse
Affiliation(s)
- Qing V. Li
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Bess P. Rosen
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University, 1300 York Avenue, New York, New York 10065, USA
- These authors contributed equally
| | - Danwei Huangfu
- Sloan Kettering Institute, 1275 York Avenue, New York, New York 10065, USA
| |
Collapse
|
82
|
Tang J, Wang H, Huang X, Li F, Zhu H, Li Y, He L, Zhang H, Pu W, Liu K, Zhao H, Bentzon JF, Yu Y, Ji Y, Nie Y, Tian X, Zhang L, Gao D, Zhou B. Arterial Sca1 + Vascular Stem Cells Generate De Novo Smooth Muscle for Artery Repair and Regeneration. Cell Stem Cell 2019; 26:81-96.e4. [PMID: 31883835 DOI: 10.1016/j.stem.2019.11.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 11/18/2019] [Indexed: 01/09/2023]
Abstract
Rapid regeneration of smooth muscle after vascular injury is essential for maintaining arterial function. The existence and putative roles of resident vascular stem cells (VSCs) in artery repair are controversial, and vessel regeneration is thought to be mediated by proliferative expansion of pre-existing smooth muscle cells (SMCs). Here, we performed cell fate mapping and single-cell RNA sequencing to identify Sca1+ VSCs in the adventitial layer of artery walls. After severe injury, Sca1+ VSCs migrate into the medial layer and generate de novo SMCs, which subsequently expand more efficiently compared with pre-existing smooth muscle. Genetic lineage tracing using dual recombinases distinguished a Sca1+PDGFRa+ VSC subpopulation that generates SMCs, and genetic ablation of Sca1+ VSCs or specific knockout of Yap1 in Sca1+ VSCs significantly impaired artery repair. These findings provide genetic evidence of a bona fide Sca1+ VSC population that produces SMCs and delineates their critical role in vessel repair.
Collapse
Affiliation(s)
- Juan Tang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haixiao Wang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiuzhen Huang
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huan Zhu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lingjuan He
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wenjuan Pu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kuo Liu
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huan Zhao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jacob Fog Bentzon
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain; Deparment of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ying Yu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammatory Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Nanjing Medical University, Nanjing 211100, China; The Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211100, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueying Tian
- Key Laboratory of Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- The Department of Cardiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Dong Gao
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou 510632, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
83
|
Syed SM, Kumar M, Ghosh A, Tomasetig F, Ali A, Whan RM, Alterman D, Tanwar PS. Endometrial Axin2 + Cells Drive Epithelial Homeostasis, Regeneration, and Cancer following Oncogenic Transformation. Cell Stem Cell 2019; 26:64-80.e13. [PMID: 31883834 DOI: 10.1016/j.stem.2019.11.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/09/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023]
Abstract
The remarkable regenerative capacity of the endometrium (the inner lining of the uterus) is essential for the sustenance of mammalian life. Over the years, the role of stem cells in endometrial functions and their pathologies has been suggested; however, the identity and location of such stem cells remain unclear. Here, we used in vivo lineage tracing to show that endometrial epithelium self-renews during development, growth, and regeneration and identified Axin2, a classical Wnt reporter gene, as a marker of long-lived bipotent epithelial progenitors that reside in endometrial glands. Axin2-expressing cells are responsible for epithelial regeneration in vivo and for endometrial organoid development in vitro. Ablation of Axin2+ cells severely impairs endometrial homeostasis and compromises its regeneration. More important, upon oncogenic transformation, these cells can lead to endometrial cancer. These findings provide valuable insights into the cellular basis of endometrial functions and diseases.
Collapse
Affiliation(s)
- Shafiq M Syed
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Manish Kumar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Arnab Ghosh
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Florence Tomasetig
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ayesha Ali
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Renee M Whan
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Dariusz Alterman
- School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Pradeep S Tanwar
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
84
|
Spheroid Culture System Methods and Applications for Mesenchymal Stem Cells. Cells 2019; 8:cells8121620. [PMID: 31842346 PMCID: PMC6953111 DOI: 10.3390/cells8121620] [Citation(s) in RCA: 306] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Owing to the importance of stem cell culture systems in clinical applications, researchers have extensively studied them to optimize the culture conditions and increase efficiency of cell culture. A spheroid culture system provides a similar physicochemical environment in vivo by facilitating cell–cell and cell–matrix interaction to overcome the limitations of traditional monolayer cell culture. In suspension culture, aggregates of adjacent cells form a spheroid shape having wide utility in tumor and cancer research, therapeutic transplantation, drug screening, and clinical study, as well as organic culture. There are various spheroid culture methods such as hanging drop, gel embedding, magnetic levitation, and spinner culture. Lately, efforts are being made to apply the spheroid culture system to the study of drug delivery platforms and co-cultures, and to regulate differentiation and pluripotency. To study spheroid cell culture, various kinds of biomaterials are used as building forms of hydrogel, film, particle, and bead, depending upon the requirement. However, spheroid cell culture system has limitations such as hypoxia and necrosis in the spheroid core. In addition, studies should focus on methods to dissociate cells from spheroid into single cells.
Collapse
|
85
|
Hao S, Matsui Y, Lai ZC, Paulson RF. Yap1 promotes proliferation of transiently amplifying stress erythroid progenitors during erythroid regeneration. Exp Hematol 2019; 80:42-54.e4. [PMID: 31756359 DOI: 10.1016/j.exphem.2019.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/18/2022]
Abstract
In contrast to steady-state erythropoiesis, which generates new erythrocytes at a constant rate, stress erythropoiesis rapidly produces a large bolus of new erythrocytes in response to anemic stress. In this study, we illustrate that Yes-associated protein (Yap1) promotes the rapid expansion of a transit-amplifying population of stress erythroid progenitors in vivo and in vitro. Yap1-mutated erythroid progenitors failed to proliferate in the spleen after transplantation into lethally irradiated recipient mice. Additionally, loss of Yap1 impaired the growth of actively proliferating erythroid progenitors in vitro. This role in proliferation is supported by gene expression profiles showing that transiently amplifying stress erythroid progenitors express high levels of genes associated with Yap1 activity and genes induced by Yap1. Furthermore, Yap1 promotes the proliferation of stress erythroid progenitors in part by regulating the expression of key glutamine-metabolizing enzymes. Thus, Yap1 acts as an erythroid regulator that coordinates the metabolic status with the proliferation of erythroid progenitors to promote stress erythropoiesis.
Collapse
Affiliation(s)
- Siyang Hao
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA; Center for Molecular Immunology and Infectious Disease at Penn State University, University Park, PA
| | - Yurika Matsui
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA
| | - Zhi-Chun Lai
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA; Graduate Program in Biochemistry, Microbiology and Molecular Biology, Penn State University, University Park, PA; Department of Biology, Penn State University, University Park, PA
| | - Robert F Paulson
- Graduate Program in Molecular, Cellular and Integrative Biosciences, Penn State University, University Park, PA; Center for Molecular Immunology and Infectious Disease at Penn State University, University Park, PA; Graduate Program in Biochemistry, Microbiology and Molecular Biology, Penn State University, University Park, PA; Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA.
| |
Collapse
|
86
|
Monear NC, Xhabija B. The effect of lead during the Flint water crisis on mouse embryonic stem cells self-renewal and differentiation markers. Toxicol In Vitro 2019; 63:104719. [PMID: 31715224 DOI: 10.1016/j.tiv.2019.104719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/05/2019] [Accepted: 11/07/2019] [Indexed: 01/28/2023]
Abstract
During the Flint water crisis, the residents of Flint, Michigan experienced a significant increase in blood lead levels. For some this resulted in an increase as high as 40 μg/dL from 5 μg/dL, which is considered to be safe by the Center for Disease Control and Prevention. Since the extent of the effect of the lead exposure in early embryonic development is not greatly investigated, the aim of this study is to explore the effect of lead exposure at concentrations present in Flint, MI during the Flint water crisis in the embryonic development. The expression of pluripotency and self-renewal markers (Oct4, Sox2, Nanog and Zfp-42) coupled with morphological and alkaline phosphatase assays revealed that mouse embryonic stem cells (mESC) pluripotency and self-renewal capabilities are perturbed following exposure in a lead acetate concentration dependent manner. Moreover, mouse embryoid bodies (mEB), which provide ideal models for testing toxicity in vitro, revealed that lead acetate exposure induces fewer but larger mEBs, whereas gene expression analysis of lineage specific transcription factors showed an increased mRNA level of endodermal (Gata 4, Gata 6, Sox 7) and mesodermal markers (Eomes, Hand 1, Slug 1) while the mRNA level of ectodermal markers (Otx 2, Noggin, Sox 1) decreased. Taken all together, these results indicate that lead acetate disturbs the pluripotency of mESC and differentiation potential of mEBs by inhibiting differentiation towards ectodermal lineages and inducing it towards endodermal and mesodermal lineages.
Collapse
Affiliation(s)
- Nicodemus C Monear
- Department of Chemistry and Biochemistry, University of Michigan- Flint, Flint, MI 48502, United States of America
| | - Besa Xhabija
- Department of Chemistry and Biochemistry, University of Michigan- Flint, Flint, MI 48502, United States of America.
| |
Collapse
|
87
|
Lin H, Li S, Shu HB. The Membrane-Associated MARCH E3 Ligase Family: Emerging Roles in Immune Regulation. Front Immunol 2019; 10:1751. [PMID: 31404274 PMCID: PMC6669941 DOI: 10.3389/fimmu.2019.01751] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/10/2019] [Indexed: 01/13/2023] Open
Abstract
The membrane-associated RING-CH-type finger (MARCH) proteins of E3 ubiquitin ligases have emerged as critical regulators of immune responses. MARCH proteins target immune receptors, viral proteins as well as components in innate immune response for polyubiquitination and degradations via distinct routes. This review summarizes the current progress about MARCH proteins and their regulation on immune responses.
Collapse
Affiliation(s)
- Heng Lin
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Shu Li
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
88
|
Zhou L, Che Z, Zhang X, Zhou P, Li X, Xu X, Shi Q, Li D, Ju X. Influence of neonatal gender on cord blood CD34 + cell amplification and gene expression. Exp Ther Med 2019; 18:105-118. [PMID: 31258643 PMCID: PMC6566080 DOI: 10.3892/etm.2019.7549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
The present study attempted to evaluate whether neonatal gender affects the hematopoietic potential of cord blood (CB) transplants and, if so, to determine the underlying molecular mechanisms. CD34+ cells from CB were isolated and divided into male and female groups. CD34+CD38− cell populations were then compared using fluorescence-assisted cell sorting (FACS) and a colony formation assay was performed. Next, a Genechip microarray analysis was used to identify differentially expressed genes (DEGs). Finally, the Genechip results were validated by FACS analysis. It was revealed that the male group had higher amplification efficiency. Gene ontology analysis indicated differences in the biological function of the DEGs between the two groups. Kyoto Encyclopedia of Genes and Genomes analysis suggested that the hematopoietic cell lineage signaling pathway was upregulated in the male group along with high expression levels of genes including interleukin (IL) 6 signal transducer (glycoprotein 130), IL-7 and IL-7 receptor. It was speculated that this may be partially due to numerous upregulated DEGs being involved in chromosomal segregation and hematopoietic cell lineage signaling pathways in CD34+ cells from the male group.
Collapse
Affiliation(s)
- Liping Zhou
- Department of Pediatrics, The Sixth People's Hospital of Ji'nan, Jinan, Shandong 250200, P.R. China.,Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhe Che
- Health and Family Planning Inspection Agency of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Xiaowei Zhang
- Department of Pediatrics, The Sixth People's Hospital of Ji'nan, Jinan, Shandong 250200, P.R. China
| | - Panpan Zhou
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xue Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuejing Xu
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qing Shi
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Li
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Stem Cell and Regenerative Medicine Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiuli Ju
- Cryomedicine Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Stem Cell and Regenerative Medicine Research Center, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
89
|
Abed M, Verschueren E, Budayeva H, Liu P, Kirkpatrick DS, Reja R, Kummerfeld SK, Webster JD, Gierke S, Reichelt M, Anderson KR, Newman RJ, Roose-Girma M, Modrusan Z, Pektas H, Maltepe E, Newton K, Dixit VM. The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification. PLoS One 2019; 14:e0214110. [PMID: 30951545 PMCID: PMC6450627 DOI: 10.1371/journal.pone.0214110] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 03/15/2019] [Indexed: 01/03/2023] Open
Abstract
Peg10 (paternally expressed gene 10) is an imprinted gene that is essential for placental development. It is thought to derive from a Ty3-gyspy LTR (long terminal repeat) retrotransposon and retains Gag and Pol-like domains. Here we show that the Gag domain of PEG10 can promote vesicle budding similar to the HIV p24 Gag protein. Expressed in a subset of mouse endocrine organs in addition to the placenta, PEG10 was identified as a substrate of the deubiquitinating enzyme USP9X. Consistent with PEG10 having a critical role in placental development, PEG10-deficient trophoblast stem cells (TSCs) exhibited impaired differentiation into placental lineages. PEG10 expressed in wild-type, differentiating TSCs was bound to many cellular RNAs including Hbegf (Heparin-binding EGF-like growth factor), which is known to play an important role in placentation. Expression of Hbegf was reduced in PEG10-deficient TSCs suggesting that PEG10 might bind to and stabilize RNAs that are critical for normal placental development.
Collapse
Affiliation(s)
- Mona Abed
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Erik Verschueren
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Hanna Budayeva
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Peter Liu
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Donald S. Kirkpatrick
- Protein Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Rohit Reja
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah K. Kummerfeld
- Bioinformatics and Computational Biology Department, Genentech, South San Francisco, California, United States of America
| | - Joshua D. Webster
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Sarah Gierke
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Mike Reichelt
- Pathology Department, Genentech, South San Francisco, California, United States of America
| | - Keith R. Anderson
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Robert J. Newman
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Merone Roose-Girma
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Zora Modrusan
- Molecular Biology Department, Genentech, South San Francisco, California, United States of America
| | - Hazal Pektas
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Emin Maltepe
- The Center for Reproductive Sciences, Division of Neonatology, University of California, San Francisco, California, United States of America
| | - Kim Newton
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
| | - Vishva M. Dixit
- Physiological Chemistry Department, Genentech, South San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
90
|
Kim BC, Song JI, So KH, Hyun SH. Effects of lysophosphatidic acid on human periodontal ligament stem cells from teeth extracted from dental patients. J Biomed Res 2019; 33:122-130. [PMID: 31010961 PMCID: PMC6477173 DOI: 10.7555/jbr.32.20170123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite their potential applications in future regenerative medicine, periodontal ligament stem cells (PDLSCs) are difficult to obtain in large amounts from patients. Therefore, maintaining stemness while expanding the cell numbers for medical use is the key to transitioning PDLSCs from the bench to the clinic. Lysophosphatidic acid (LPA), which is present in the human body and saliva, is a signaling molecule derived from phospholipids. In this study, we examined the effects of LPA on stemness maintenance in human PDLSCs. Several spindle-shaped and fibroblast-like periodontal ligament stem-like cell lines were established from PDLSC isolation. Among these cell lines, the most morphologically appropriate cell line was characterized. The expression levels of OCT4, NANOG (a stem cell marker), and CD90 (a mesenchymal stem cell marker) were high. However, CD73 (a negative marker of mesenchymal stem cells) expression was not observed. Notably, immunofluorescence analysis identified the expression of STRO-1, CD146 (a mesenchymal stem cell marker), and sex determining region Y-box 2 at the protein level. In addition, lipid droplets were stained by Oil red O after the induction of adipogenesis for 21 days, and mineralized nodules were stained by Alizarin Red S after the induction of osteogenesis for 14 days. Alkaline phosphate staining also demonstrated the occurrence of osteogenesis. In summary, we established a human PDLSC line, which could be applied as a cell source for tissue regeneration in dental patients. However, further studies are needed to determine the detailed effects of LPA on PDLSCs.
Collapse
Affiliation(s)
- Byung Cheol Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Jae-In Song
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Kyoung-Ha So
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea.,Institute of Stem Cell & Regenerative Medicine, Chungbuk National University, Seowon-gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
91
|
Acharya AB, Chandrashekar A, Acharya S, Shettar L, Thakur S. Serum sTWEAK levels in chronic periodontitis and type 2 diabetes mellitus. Diabetes Metab Syndr 2019; 13:1609-1613. [PMID: 31336529 DOI: 10.1016/j.dsx.2019.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/14/2019] [Indexed: 01/19/2023]
Abstract
AIM The two-way relationship between diabetes mellitus and periodontitis has been extensively studied with various interconnected biomarkers sharing a link. Soluble Tumour Necrosis Factor-like Weak inducer of apoptosis (sTWEAK) is gaining attention as an important mediator in chronic inflammatory diseases. Thus, the aim of this study was to detect, estimate and compare the levels of sTWEAK in the serum of health, chronic periodontitis (CP), and CP with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Forty-five participants between 18 and 65 years were divided into groups of 15 each as Group 1: healthy, Group 2: CP, and Group 3: CP + T2DM. Clinical periodontal parameters and glycemic status were assessed. sTWEAK in serum was estimated using a commercially available ELISA kit. The data was statistically analyzed. RESULTS sTWEAK was detected in all participants. Significant differences were observed between the groups for sTWEAK; highest in health, lower in CP and lowest in CP + T2DM. In the diseased groups, the clinical and glycemic parameters correlated positively with each other, whereas sTWEAK correlated negatively with each of the parameters. CONCLUSION The literature reports lower concentrations of systemic sTWEAK in T2DM which may be comparable to our observations in CP + T2DM when compared to health and its negative correlation with all the parameters suggesting an association with both clinical periodontal parameters and glycemic levels. However, serum sTWEAK levels may not be necessarily elevated in periodontitis as previously reported, and hence has the potential to be studied extensively for clarification with its association with T2DM.
Collapse
Affiliation(s)
- Anirudh B Acharya
- Department of Periodontics, S.D.M. College of Dental Sciences & Hospital, Dharwad, 580009, Karnataka, India.
| | - Apoorva Chandrashekar
- Department of Periodontics, A.J. Shetty Institute of Dental Sciences, Mangalore, 575004, Karnataka, India
| | - Swetha Acharya
- Department of Oral Pathology & Microbiology, S.D.M. College of Dental Sciences & Hospital, Dharwad, 580009, Karnataka, India
| | - Leena Shettar
- Department of Periodontics, S.D.M. College of Dental Sciences & Hospital, Dharwad, 580009, Karnataka, India
| | - Srinath Thakur
- Department of Periodontics, S.D.M. College of Dental Sciences & Hospital, Dharwad, 580009, Karnataka, India
| |
Collapse
|
92
|
Isomursu A, Lerche M, Taskinen ME, Ivaska J, Peuhu E. Integrin signaling and mechanotransduction in regulation of somatic stem cells. Exp Cell Res 2019; 378:217-225. [PMID: 30817927 DOI: 10.1016/j.yexcr.2019.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/10/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
Somatic stem cells are characterized by their capacity for self-renewal and differentiation, making them integral for normal tissue homeostasis. Different stem cell functions are strongly affected by the specialized microenvironment surrounding the cells. Consisting of soluble signaling factors, extracellular matrix (ECM) ligands and other cells, but also biomechanical cues such as the viscoelasticity and topography of the ECM, these factors are collectively known as the niche. Cell-ECM interactions are mediated largely by integrins, a class of heterodimeric cell adhesion molecules. Integrins bind their ligands in the extracellular space and associate with the cytoskeleton inside the cell, forming a direct mechanical link between the cells and their surroundings. Indeed, recent findings have highlighted the importance of integrins in translating biophysical cues into changes in cell signaling and function, a multistep process known as mechanotransduction. The mechanical properties of the stem cell niche are important, yet the underlying molecular details of integrin-mediated mechanotransduction in stem cells, especially the roles of the different integrin heterodimers, remain elusive. Here, we introduce the reader to the concept of integrin-mediated mechanotransduction, summarize current knowledge on the role of integrin signaling and mechanotransduction in regulation of somatic stem cell functions, and discuss open questions in the field.
Collapse
Affiliation(s)
- Aleksi Isomursu
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Martina Lerche
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Maria E Taskinen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland; Department of Biochemistry and Food Chemistry, University of Turku, 20520 Turku, Finland.
| | - Emilia Peuhu
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland; FICAN West Cancer Research Laboratory, University of Turku and Turku University Hospital, 20520 Turku, Finland.
| |
Collapse
|
93
|
Tahmasebi S, Amiri M, Sonenberg N. Translational Control in Stem Cells. Front Genet 2019; 9:709. [PMID: 30697227 PMCID: PMC6341023 DOI: 10.3389/fgene.2018.00709] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Simultaneous measurements of mRNA and protein abundance and turnover in mammalian cells, have revealed that a significant portion of the cellular proteome is controlled by mRNA translation. Recent studies have demonstrated that both embryonic and somatic stem cells are dependent on low translation rates to maintain an undifferentiated state. Conversely, differentiation requires increased protein synthesis and failure to do so prevents differentiation. Notably, the low translation in stem cell populations is independent of the cell cycle, indicating that stem cells use unique strategies to decouple these fundamental cellular processes. In this chapter, we discuss different mechanisms used by stem cells to control translation, as well as the developmental consequences of translational deregulation.
Collapse
Affiliation(s)
- Soroush Tahmasebi
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mehdi Amiri
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Nahum Sonenberg
- Goodman Cancer Research Center, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
94
|
Vassalli G. Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells. Stem Cells Int 2019; 2019:3904645. [PMID: 30733805 PMCID: PMC6348814 DOI: 10.1155/2019/3904645] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022] Open
Abstract
Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.
Collapse
Affiliation(s)
- Giuseppe Vassalli
- Laboratory of Cellular and Molecular Cardiology, Cardiocentro Ticino, Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland
- Center for Molecular Cardiology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
95
|
Kaneko T, Gu B, Sone PP, Zaw SYM, Murano H, Zaw ZCT, Okiji T. Dental Pulp Tissue Engineering Using Mesenchymal Stem Cells: a Review with a Protocol. Stem Cell Rev Rep 2018; 14:668-676. [PMID: 29804171 DOI: 10.1007/s12015-018-9826-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that can be isolated from human and animal sources such as rats. Recently, an in vivo protocol for pulp tissue engineering using implantation of bone marrow MSCs into rat pulpotomized molars was established by our research group. This coronal pulp regeneration model showed almost complete regeneration/healing with dentin bridge formation when the cavity was sealed with mineral trioxide aggregate (MTA) to create a biocompatible seal of the pulp. This method is a powerful tool for elucidating the processes of dental pulp tissue regeneration following implantation of MSCs. In the present review, we discuss the literature in the field of dental pulp tissue engineering using MSCs including dental pulp stem cells and stem cells from exfoliated deciduous teeth. In addition, we present a brief step-by-step protocol of the coronal pulp regeneration model focusing on the implantation of rat bone marrow MSCs, biodegradable scaffolds, and hydrogels in pulpotomized rat molars. The protocol may lay the foundation for studies aiming at defining further histological and molecular mechanism of the rat pulp tissue engineering.
Collapse
Affiliation(s)
- Tomoatsu Kaneko
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan.
| | - Bin Gu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Phyo Pyai Sone
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Su Yee Myo Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Hiroki Murano
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Zar Chi Thein Zaw
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-Ku, Tokyo, 113-8549, Japan
| |
Collapse
|
96
|
Al Abbar A, Nordin N, Ghazalli N, Abdullah S. Generation of induced pluripotent stem cells by a polycistronic lentiviral vector in feeder- and serum- free defined culture. Tissue Cell 2018; 55:13-24. [DOI: 10.1016/j.tice.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/08/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022]
|
97
|
Chu WK, Hung LM, Hou CW, Chen JK. Heterogeneous ribonucleoprotein F regulates YAP expression via a G-tract in 3'UTR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:12-24. [PMID: 30312683 DOI: 10.1016/j.bbagrm.2018.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
Abstract
The Yes-associated protein (YAP) is a transcription coactivator that plays crucial roles in organ size control and tumorigenesis, and was demonstrated to be inhibited by the Hippo signaling pathway. To date, the molecular mechanisms regulating the expression of YAP in human cells remain unknown. In the present study, we found that hnRNP F and hnRNP U negatively regulate YAP expression. We also showed that downregulation of YAP expression by hnRNP F and hnRNP U was not at the transcriptional level. Knockdown of hnRNP F or hnRNP U increased YAP mRNA stability, suggesting the downregulation of YAP expression was by a post-transcriptional mechanism. A putative hnRNP F binding site was identified in the YAP 3'UTR at 685 to 698, and deletion of this putative hnRNP F element abolished the down-regulation effect of YAP mRNA stability by hnRNP F. Binding of the hnRNP F to the YAP 3'UTR was demonstrated by Cross-linked RNA Immunoprecipitation. mRNA stability is a possible secondary effect of alternative splicing or other nuclear process. Understanding the regulation of YAP expression would provide insights into the mechanisms underlying the maintenance of tissue size homeostasis and tumorigenesis.
Collapse
Affiliation(s)
- Wing-Keung Chu
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Li-Man Hung
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wei Hou
- Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jan-Kan Chen
- Department of Physiology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Healthy and Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
98
|
Florian MC, Klose M, Sacma M, Jablanovic J, Knudson L, Nattamai KJ, Marka G, Vollmer A, Soller K, Sakk V, Cabezas-Wallscheid N, Zheng Y, Mulaw MA, Glauche I, Geiger H. Aging alters the epigenetic asymmetry of HSC division. PLoS Biol 2018; 16:e2003389. [PMID: 30235201 PMCID: PMC6168157 DOI: 10.1371/journal.pbio.2003389] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/02/2018] [Accepted: 08/23/2018] [Indexed: 01/01/2023] Open
Abstract
Hematopoietic stem cells (HSCs) balance self-renewal and differentiation to maintain homeostasis. With aging, the frequency of polar HSCs decreases. Cell polarity in HSCs is controlled by the activity of the small RhoGTPase cell division control protein 42 (Cdc42). Here we demonstrate—using a comprehensive set of paired daughter cell analyses that include single-cell 3D confocal imaging, single-cell transplants, single-cell RNA-seq, and single-cell transposase-accessible chromatin sequencing (ATAC-seq)—that the outcome of HSC divisions is strongly linked to the polarity status before mitosis, which is in turn determined by the level of the activity Cdc42 in stem cells. Aged apolar HSCs undergo preferentially self-renewing symmetric divisions, resulting in daughter stem cells with reduced regenerative capacity and lymphoid potential, while young polar HSCs undergo preferentially asymmetric divisions. Mathematical modeling in combination with experimental data implies a mechanistic role of the asymmetric sorting of Cdc42 in determining the potential of daughter cells via epigenetic mechanisms. Therefore, molecules that control HSC polarity might serve as modulators of the mode of stem cell division regulating the potential of daughter cells. Stem cells are unique cells that can differentiate to produce more stem cells or other types of cells and can divide both symmetrically (to produce daughter cells with the same fate) and asymmetrically (to produce one daughter cell that retains stem cell potential and one that differentiates). The mechanisms that control the outcome of stem cell divisions have been the focus of many studies; however, they remain mainly unknown. Here, we have analyzed these mechanisms in murine hematopoietic stem cells (HSCs) by directly comparing the epigenetic signature, the transcriptome, and the function of the two daughter cells stemming from the first division of either a young or an aged HSC. We observe that, while young HSCs divide mainly asymmetrically, aged HSCs divide primarily symmetrically. We find that the mode of division is tightly linked to stem cell polarity and is regulated by the activity level of the small RhoGTPase cell division control protein 42 (Cdc42). In addition, we show that the potential of daughter cells is further linked to the amount of the epigenetic mark H4K16ac and also to the amount of open chromatin allocated to a daughter cell, but it is not linked to its transcriptome. In summary, our study suggests that HSC polarity linked to Cdc42 activity drives the mode of division, while epigenetic mechanisms determine the functional outcome of the stem cell division.
Collapse
Affiliation(s)
- M. Carolina Florian
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
- * E-mail: (MCF); (HG)
| | - Markus Klose
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mehmet Sacma
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Jelena Jablanovic
- Max Planck Institute (MPI) of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luke Knudson
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Kalpana J. Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Gina Marka
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Angelika Vollmer
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Karin Soller
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | - Vadim Sakk
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
| | | | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Medhanie A. Mulaw
- Institute of Experimental Cancer Research, Medical Faculty, University of Ulm, Ulm, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine and Stem Cell Aging, University of Ulm, Ulm, Germany
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail: (MCF); (HG)
| |
Collapse
|
99
|
Gong P, Zhang Z, Zou C, Tian Q, Chen X, Hong M, Liu X, Chen Q, Xu Z, Li M, Wang J. Hippo/YAP signaling pathway mitigates blood-brain barrier disruption after cerebral ischemia/reperfusion injury. Behav Brain Res 2018; 356:8-17. [PMID: 30092249 DOI: 10.1016/j.bbr.2018.08.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 08/03/2018] [Indexed: 12/12/2022]
Abstract
Ischemia/reperfusion (I/R) injuries commonly lead to breakdown of the blood-brain barrier (BBB). Restoration of the BBB can relieve neurologic damage caused by I/R injuries. The Hippo/YAP signaling pathway mediates cell proliferation, regulated cell death, and differentiation in various organisms and has been shown to participate in the restoration of the heart after I/R. In this study, we investigated whether the Hippo/YAP pathway plays a role in I/R injury in brain, especially in regard to I/R-induced BBB breakdown. The results of our study indicate that I/R injury led to an overall decrease in activity of the core proteins, YAP and TAZ, over a 24-h period. The most dramatic change was observed 1.5 h after reperfusion. In rats that underwent 1.5 h of reperfusion, intraperitoneal injection of YAP agonist dexamethasone activated YAP and TAZ and led to improved neurologic function, smaller brain infarct sizes, increased levels of tight junction proteins, decreased BBB permeability, decreased cerebral edema, and less apoptosis. Our results suggest that YAP exerts neuroprotective effects on the damaged brain that are likely related to restoration of the BBB.
Collapse
Affiliation(s)
- Pian Gong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhan Zhang
- Department of Respiratory Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Changlin Zou
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, PR China
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xi Liu
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, PR China.
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
100
|
Heitman N, Saxena N, Rendl M. Advancing insights into stem cell niche complexities with next-generation technologies. Curr Opin Cell Biol 2018; 55:87-95. [PMID: 30031324 DOI: 10.1016/j.ceb.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Adult tissue-specific stem cells are essential for homeostatic tissue maintenance and key to regeneration during injury repair or disease. Many critical stem cell functions rely on the presence of well-timed cues from the microenvironment or niche, which includes a diverse range of components, including neuronal, circulating and extracellular matrix inputs as well as an array of neighboring niche cells directly interacting with the stem cells. However, studies of stem cells and their niche have been challenging due to the complexity of adult stem cell functions, their intrinsic controls and the multiple regulatory niche components. Here, we review recent major advances in our understanding of the complex interplay between stem cells and their niche that were enabled by the tremendous technological leaps in single-cell transcriptome analyses, 3D in vitro cultures and 4D in vivo microscopy of stem cell niches.
Collapse
Affiliation(s)
- Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Box 1047, One Gustave L. Levy Place, New York, NY 10029, USA,; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|