51
|
Beretta M, Migraine J, Moreau A, Essat A, Goujard C, Chaix ML, Drouin A, Bouvin-Pley M, Meyer L, Barin F, Braibant M. Common evolutionary features of the envelope glycoprotein of HIV-1 in patients belonging to a transmission chain. Sci Rep 2020; 10:16744. [PMID: 33028961 PMCID: PMC7541522 DOI: 10.1038/s41598-020-73975-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022] Open
Abstract
The diversity of the HIV-1 envelope glycoproteins (Env) is largely a consequence of the pressure exerted by the adaptive immune response to infection. While it was generally assumed that the neutralizing antibody (NAb) response depended mainly on the infected individual, the concept that virus-related factors could be important in inducing this response has recently emerged. Here, we analyzed the influence of the infecting viral strain in shaping NAb responses in four HIV-1 infected subjects belonging to a transmission chain. We also explored the impact of NAb responses on the functional evolution of the viral quasispecies. The four patients developed a strong autologous neutralizing antibody response that drove viral escape and coincided with a parallel evolution of their infecting quasispecies towards increasing infectious properties, increasing susceptibility to T20 and increasing resistance to both CD4 analogs and V3 loop-directed NAbs. This evolution was associated with identical Env sequence changes at several positions in the V3 loop, the fusion peptide and the HR2 domain of gp41. The common evolutionary pattern of Env in different hosts suggests that the capacity of a given Env to adapt to changing environments may be restricted by functional constraints that limit its evolutionary landscape.
Collapse
Affiliation(s)
- Maxime Beretta
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,Laboratory of Humoral Immunology, Department of Immunology, Institut Pasteur, Paris, France
| | - Julie Migraine
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Alain Moreau
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | - Asma Essat
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France
| | - Cécile Goujard
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Marie-Laure Chaix
- Université de Paris, Inserm U944, Paris, France.,Laboratoire de Virologie, AP-HP, Hôpital Saint Louis, Paris, France
| | - Aurélie Drouin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France
| | | | - Laurence Meyer
- Université Paris Sud, Université Paris Saclay, CESP Inserm U1018, Le Kremlin-Bicêtre, France.,AP-HP Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Francis Barin
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.,CHRU de Tours, CNR VIH, Tours, France
| | - Martine Braibant
- Université de Tours et CHRU de Tours, Inserm U1259, Tours, France.
| |
Collapse
|
52
|
Kumar S, Ju B, Shapero B, Lin X, Ren L, Zhang L, Li D, Zhou Z, Feng Y, Sou C, Mann CJ, Hao Y, Sarkar A, Hou J, Nunnally C, Hong K, Wang S, Ge X, Su B, Landais E, Sok D, Zwick MB, He L, Zhu J, Wilson IA, Shao Y. A V H1-69 antibody lineage from an infected Chinese donor potently neutralizes HIV-1 by targeting the V3 glycan supersite. SCIENCE ADVANCES 2020; 6:eabb1328. [PMID: 32938661 PMCID: PMC7494343 DOI: 10.1126/sciadv.abb1328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 07/31/2020] [Indexed: 05/03/2023]
Abstract
An oligomannose patch around the V3 base of HIV-1 envelope glycoprotein (Env) is recognized by multiple classes of broadly neutralizing antibodies (bNAbs). Here, we investigated the bNAb response to the V3 glycan supersite in an HIV-1-infected Chinese donor by Env-specific single B cell sorting, structural and functional studies, and longitudinal analysis of antibody and virus repertoires. Monoclonal antibodies 438-B11 and 438-D5 were isolated that potently neutralize HIV-1 with moderate breadth, are encoded by the VH1-69 germline gene, and have a disulfide-linked long HCDR3 loop. Crystal structures of Env-bound and unbound antibodies revealed heavy chain-mediated recognition of the glycan supersite with a unique angle of approach and a critical role of the intra-HCDR3 disulfide. The mechanism of viral escape was examined via single-genome amplification/sequencing and glycan mutations around the N332 supersite. Our findings further emphasize the V3 glycan supersite as a prominent target for Env-based vaccine design.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bin Ju
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Benjamin Shapero
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Li Ren
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Lei Zhang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dan Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Zehua Zhou
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Cindy Sou
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Colin J Mann
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yanling Hao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Anita Sarkar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiali Hou
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Christian Nunnally
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kunxue Hong
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Shuo Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Xiangyang Ge
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China
| | - Bin Su
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui Province 230601, China
| | - Elise Landais
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Devin Sok
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- International AIDS Vaccine Initiative, New York, NY 10004, USA
| | - Michael B Zwick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Changping District, Beijing 102206, China.
- School of Medicine, Nankai University, Nankai District, Tianjin 300071, China
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| |
Collapse
|
53
|
Nanoparticles presenting clusters of CD4 expose a universal vulnerability of HIV-1 by mimicking target cells. Proc Natl Acad Sci U S A 2020; 117:18719-18728. [PMID: 32690692 PMCID: PMC7414181 DOI: 10.1073/pnas.2010320117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CD4-based decoy approaches against HIV-1 are attractive options for long-term viral control, but initial designs, including soluble CD4 (sCD4) and CD4-Ig, were ineffective. To evaluate a therapeutic that more accurately mimics HIV-1 target cells compared with monomeric sCD4 and dimeric CD4-Ig, we generated virus-like nanoparticles that present clusters of membrane-associated CD4 (CD4-VLPs) to permit high-avidity binding of trimeric HIV-1 envelope spikes. In neutralization assays, CD4-VLPs were >12,000-fold more potent than sCD4 and CD4-Ig and >100-fold more potent than the broadly neutralizing antibody (bNAb) 3BNC117, with >12,000-fold improvements against strains poorly neutralized by 3BNC117. CD4-VLPs also neutralized patient-derived viral isolates that were resistant to 3BNC117 and other bNAbs. Intraperitoneal injections of CD4-CCR5-VLP produced only subneutralizing plasma concentrations in HIV-1-infected humanized mice but elicited CD4-binding site mutations that reduced viral fitness. All mutant viruses showed reduced sensitivity to sCD4 and CD4-Ig but remained sensitive to neutralization by CD4-VLPs in vitro. In vitro evolution studies demonstrated that CD4-VLPs effectively controlled HIV-1 replication at neutralizing concentrations, and viral escape was not observed. Moreover, CD4-VLPs potently neutralized viral swarms that were completely resistant to CD4-Ig, suggesting that escape pathways that confer resistance against conventional CD4-based inhibitors are ineffective against CD4-VLPs. These findings suggest that therapeutics that mimic HIV-1 target cells could prevent viral escape by exposing a universal vulnerability of HIV-1: the requirement to bind CD4 on a target cell. We propose that therapeutic and delivery strategies that ensure durable bioavailability need to be developed to translate this concept into a clinically feasible functional cure therapy.
Collapse
|
54
|
Cao W, Li B, Liu H, Cheng X, Liu Y, Zhao X, Qiao Y. CD4 binding loop responsible for the neutralization of human monoclonal neutralizing antibody Y498. Virus Res 2020; 285:198001. [PMID: 32413370 DOI: 10.1016/j.virusres.2020.198001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Broad and potent human monoclonal neutralizing antibodies have considerable potential in the prevention and treatment of acquired immunodeficiency syndrome (AIDS). To identify the key amino acid recognition site contacted with neutralizing antibody Y498, peptides were panned from the PhD-12 peptide library and predicted using online software. Then, four key amino acid sites, G367, D368, E370, and V372 located on the CD4 binding loop on gp120 of envelope of human immunodeficiency virus-1 (HIV-1), were found to determine the neutralization of antibody Y498. Residue E370 is in the deep part of the CD4 binding loop, which affects Y498-mediated neutralization. This form of recognition leads to a somewhat limiting neutralization spectrum of neutralizing antibody Y498, although it has some neutralization ability. Further study of the interactions between the neutralizing antibody Y498 and its epitope on the surface of the virus may facilitate vaccine development and so prevent new AIDS cases.
Collapse
Affiliation(s)
- Weiyou Cao
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Boqing Li
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Huan Liu
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Xue Cheng
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Yezi Liu
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Xueqing Zhao
- Binzhou Medical University, Yantai, Shandong Province, China.
| | - Yuanyuan Qiao
- Binzhou Medical University, Yantai, Shandong Province, China; MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
55
|
Hastie KM, Cross RW, Harkins SS, Zandonatti MA, Koval AP, Heinrich ML, Rowland MM, Robinson JE, Geisbert TW, Garry RF, Branco LM, Saphire EO. Convergent Structures Illuminate Features for Germline Antibody Binding and Pan-Lassa Virus Neutralization. Cell 2020; 178:1004-1015.e14. [PMID: 31398326 DOI: 10.1016/j.cell.2019.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 05/01/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
Lassa virus (LASV) causes hemorrhagic fever and is endemic in West Africa. Protective antibody responses primarily target the LASV surface glycoprotein (GPC), and GPC-B competition group antibodies often show potent neutralizing activity in humans. However, which features confer potent and broadly neutralizing antibody responses is unclear. Here, we compared three crystal structures of LASV GPC complexed with GPC-B antibodies of varying neutralization potency. Each GPC-B antibody recognized an overlapping epitope involved in binding of two adjacent GPC monomers and preserved the prefusion trimeric conformation. Differences among GPC-antibody interactions highlighted specific residues that enhance neutralization. Using structure-guided amino acid substitutions, we increased the neutralization potency and breadth of these antibodies to include all major LASV lineages. The ability to define antibody residues that allow potent and broad neutralizing activity, together with findings from analyses of inferred germline precursors, is critical to develop potent therapeutics and for vaccine design and assessment.
Collapse
Affiliation(s)
- Kathryn M Hastie
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert W Cross
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Stephanie S Harkins
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle A Zandonatti
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | - James E Robinson
- Department of Pediatrics, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Thomas W Geisbert
- University of Texas Medical Branch, Galveston National Laboratory, Galveston, TX, USA
| | - Robert F Garry
- Zalgen Labs, Germantown, MD, USA; Department of Microbiology and Immunology, Tulane University, New Orleans, LA, USA
| | | | - Erica Ollmann Saphire
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
56
|
Cohen-Dvashi H, Zehner M, Ehrhardt S, Katz M, Elad N, Klein F, Diskin R. Structural Basis for a Convergent Immune Response against Ebola Virus. Cell Host Microbe 2020; 27:418-427.e4. [DOI: 10.1016/j.chom.2020.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/31/2019] [Accepted: 01/14/2020] [Indexed: 11/29/2022]
|
57
|
Puchol Tarazona AA, Lobner E, Taubenschmid Y, Paireder M, Torres Acosta JA, Göritzer K, Steinkellner H, Mach L. Steric Accessibility of the Cleavage Sites Dictates the Proteolytic Vulnerability of the Anti-HIV-1 Antibodies 2F5, 2G12, and PG9 in Plants. Biotechnol J 2020; 15:e1900308. [PMID: 31657528 DOI: 10.1002/biot.201900308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Indexed: 12/26/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) to human immunodeficiency virus type 1 (HIV-1) hold great promise for immunoprophylaxis and the suppression of viremia in HIV-positive individuals. Several studies have demonstrated that plants as Nicotiana benthamiana are suitable hosts for the generation of protective anti-HIV-1 antibodies. However, the production of the anti-HIV-1 bNAbs 2F5 and PG9 in N. benthamiana is associated with their processing by apoplastic proteases in the complementarity-determining-region (CDR) H3 loops of the heavy chains. Here, it is shown that apoplastic proteases can also cleave the CDR H3 loop of the bNAb 2G12 when the unusual domain exchange between its heavy chains is prevented by the replacement of Ile19 with Arg. It is demonstrated that CDR H3 proteolysis leads to a strong reduction of the antigen-binding potencies of 2F5, PG9, and 2G12-I19R. Inhibitor profiling experiments indicate that different subtilisin-like serine proteases account for bNAb fragmentation in the apoplast. Differential scanning calorimetry experiments corroborate that the antigen-binding domains of wild-type 2G12 and 4E10 are more compact than those of proteolysis-sensitive antibodies, thus shielding their CDR H3 regions from proteolytic attack. This suggests that the extent of proteolytic inactivation of bNAbs in plants is primarily dictated by the steric accessibility of their CDR H3 loops.
Collapse
Affiliation(s)
- Alejandro A Puchol Tarazona
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Elisabeth Lobner
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190, Vienna, Austria
| | - Yvonne Taubenschmid
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Melanie Paireder
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Juan A Torres Acosta
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Kathrin Göritzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190, Vienna, Austria
| |
Collapse
|
58
|
Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, Gristick HB, Barnes CO, Schoofs T, Schlotz M, Vanshylla K, Kreer C, Weiland D, Holtick U, Scheid C, Valter MM, van Gils MJ, Sanders RW, Vehreschild JJ, Cornely OA, Lehmann C, Fätkenheuer G, Seaman MS, Bloom JD, Bjorkman PJ, Klein F. Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell 2020; 180:471-489.e22. [PMID: 32004464 PMCID: PMC7042716 DOI: 10.1016/j.cell.2020.01.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.
Collapse
Affiliation(s)
- Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Morgan E Abernathy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - My-Kim Tran
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Till Schoofs
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Kanika Vanshylla
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Udo Holtick
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christof Scheid
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Markus M Valter
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Jörg J Vehreschild
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Medical Department 2, University Hospital of Frankfurt, 60590 Frankfurt, Germany
| | - Oliver A Cornely
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, 50935 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Clara Lehmann
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Gerd Fätkenheuer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
59
|
Mutual population-shift driven antibody-peptide binding elucidated by molecular dynamics simulations. Sci Rep 2020; 10:1406. [PMID: 31996730 PMCID: PMC6989527 DOI: 10.1038/s41598-020-58320-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022] Open
Abstract
Antibody based bio-molecular drugs are an exciting, new avenue of drug development as an alternative to the more traditional small chemical compounds. However, the binding mechanism and the effect on the conformational ensembles of a therapeutic antibody to its peptide or protein antigen have not yet been well studied. We have utilized dynamic docking and path sampling simulations based on all-atom molecular dynamics to study the binding mechanism between the antibody solanezumab and the peptide amyloid-β (Aβ). Our docking simulations reproduced the experimental structure and gave us representative binding pathways, from which we accurately estimated the binding free energy. Not only do our results show why solanezumab has an explicit preference to bind to the monomeric form of Aβ, but that upon binding, both molecules are stabilized towards a specific conformation, suggesting that their complex formation follows a novel, mutual population-shift model, where upon binding, both molecules impact the dynamics of their reciprocal one.
Collapse
|
60
|
Liu Y, Cao W, Sun M, Li T. Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 2020; 9:194-206. [PMID: 31985356 PMCID: PMC7040474 DOI: 10.1080/22221751.2020.1713707] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (cART) is effective but not curative, and no successful vaccine is currently available for human immunodeficiency virus-1 (HIV-1). Broadly neutralizing antibodies (bNAbs) provide a new approach to HIV-1 prevention and treatment, and these promising candidates advancing into clinical trials have shown certain efficacies in infected individuals. In addition, bNAbs have the potential to kill HIV-1-infected cells and to affect the course of HIV-1 infection by directly engaging host immunity. Nonetheless, challenges accompany the use of bNAbs, including transient suppression of viraemia, frequent emergence of resistant viruses in rebound viraemia, suboptimal efficacy in virus cell-to-cell transmission, and unclear effects on the cell-associated HIV-1 reservoir. In this review, we discuss opportunities and potential strategies to address current challenges to promote the future use of immunotherapy regimens.
Collapse
Affiliation(s)
- Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
61
|
Antibody-Dependent Cellular Cytotoxicity-Competent Antibodies against HIV-1-Infected Cells in Plasma from HIV-Infected Subjects. mBio 2019; 10:mBio.02690-19. [PMID: 31848282 PMCID: PMC6918083 DOI: 10.1128/mbio.02690-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Measuring Envelope (Env)-specific antibody (Ab)-dependent cellular cytotoxicity (ADCC)-competent Abs in HIV+ plasma is challenging because Env displays distinctive epitopes when present in a native closed trimeric conformation on infected cells or in a CD4-bound conformation on uninfected bystander cells. We developed an ADCC model which distinguishes Env-specific ADCC-competent Abs based on their capacity to eliminate infected, bystander, or Env rgp120-coated cells as a surrogate for shed gp120 on bystander cells. A panel of monoclonal Abs (MAbs), used to opsonize these target cells, showed that infected cells were preferentially recognized/eliminated by MAbs to CD4 binding site, V3 loop, and viral spike epitopes whereas bystander/coated cells were preferentially recognized/eliminated by Abs to CD4-induced (CD4i) epitopes. In HIV-positive (HIV+) plasma, Env-specific Abs recognized and supported ADCC of infected cells, though a majority were directed toward CD4i epitopes on bystander cells. For ADCC activity to be effective in HIV control, ADCC-competent Abs need to target genuinely infected cells.IMPORTANCE HIV Env-specific nonneutralizing Abs (NnAbs) able to mediate ADCC have been implicated in protection from HIV infection. However, Env-specific NnAbs have the capacity to support ADCC of both HIV-infected and HIV-uninfected bystander cells, potentially leading to misinterpretations when the assay used to measure ADCC does not distinguish between the two target cell types present in HIV cultures. Using a novel ADCC assay, which simultaneously quantifies the killing activity of Env-specific Abs on both infected and uninfected bystander cells, we observed that only a minority of Env-specific Abs in HIV+ plasma mediated ADCC of genuinely HIV-infected cells displaying Env in its native closed conformation. This assay can be used for the development of vaccine strategies aimed at eliciting Env-specific Ab responses capable of controlling HIV infection.
Collapse
|
62
|
Bjorkman PJ. Can we use structural knowledge to design a protective vaccine against HIV-1? HLA 2019; 95:95-103. [PMID: 31721469 DOI: 10.1111/tan.13759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) remains one of the most important current threats to global public health. Since its identification in the early 1980s, at least 75 million people have been infected with HIV-1, the virus that causes AIDS. Although antiretroviral drugs are effective at prolonging life after infection in the developed world, they are associated with significant side effects and are not in widespread use in the developing world. The best way to control the AIDS epidemic would be a vaccine that protects against infection by HIV-1. Most vaccines work by inducing antibodies in serum or mucosa that block infection or prevent invasion of the bloodstream. Here, I describe background related to my laboratory's attempts to develop an immunogen that would elicit protective antibodies against HIV-1.
Collapse
Affiliation(s)
- Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| |
Collapse
|
63
|
Prigent J, Jarossay A, Planchais C, Eden C, Dufloo J, Kök A, Lorin V, Vratskikh O, Couderc T, Bruel T, Schwartz O, Seaman MS, Ohlenschläger O, Dimitrov JD, Mouquet H. Conformational Plasticity in Broadly Neutralizing HIV-1 Antibodies Triggers Polyreactivity. Cell Rep 2019; 23:2568-2581. [PMID: 29847789 PMCID: PMC5990490 DOI: 10.1016/j.celrep.2018.04.101] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
Human high-affinity antibodies to pathogens often recognize unrelated ligands. The molecular origin and the role of this polyreactivity are largely unknown. Here, we report that HIV-1 broadly neutralizing antibodies (bNAbs) are frequently polyreactive, cross-reacting with non-HIV-1 molecules, including self-antigens. Mutating bNAb genes to increase HIV-1 binding and neutralization also results in de novo polyreactivity. Unliganded paratopes of polyreactive bNAbs with improved HIV-1 neutralization exhibit a conformational flexibility, which contributes to enhanced affinity of bNAbs to various HIV-1 envelope glycoproteins and non-HIV antigens. Binding adaptation of polyreactive bNAbs to the divergent ligands mainly involves hydrophophic interactions. Plasticity of bNAbs' paratopes may, therefore, facilitate accommodating divergent viral variants, but it simultaneously triggers promiscuous binding to non-HIV-1 antigens. Thus, a certain level of polyreactivity can be a mark of adaptable antibodies displaying optimal pathogens' recognition.
Collapse
Affiliation(s)
- Julie Prigent
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Annaëlle Jarossay
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Cyril Planchais
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Caroline Eden
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jérémy Dufloo
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Ayrin Kök
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Valérie Lorin
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Oxana Vratskikh
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France
| | - Thérèse Couderc
- Biology of Infection Unit, INSERM U1117, Department of Cell Biology and Infection, Institut Pasteur, Paris 75015, France
| | - Timothée Bruel
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | - Olivier Schwartz
- Virus & Immunity Unit, Department of Virology, Institut Pasteur, Paris 75015, France; CNRS URA3015, Paris 75015, France
| | | | | | - Jordan D Dimitrov
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France; Université Paris Descartes, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris 75006, France.
| | - Hugo Mouquet
- Laboratory of Humoral Response to Pathogens, Department of Immunology, Institut Pasteur, Paris 75015, France; INSERM U1222, Paris 75015, France.
| |
Collapse
|
64
|
Lindesmith LC, McDaniel JR, Changela A, Verardi R, Kerr SA, Costantini V, Brewer-Jensen PD, Mallory ML, Voss WN, Boutz DR, Blazeck JJ, Ippolito GC, Vinje J, Kwong PD, Georgiou G, Baric RS. Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity 2019; 50:1530-1541.e8. [PMID: 31216462 PMCID: PMC6591005 DOI: 10.1016/j.immuni.2019.05.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Rapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood. Here, we report the GII.4-serological antibody repertoire—pre- and post-vaccination—and select several antibody clonotypes for epitope and structural analysis. The humoral response was dominated by GII.4-specific antibodies that blocked ancestral strains or by antibodies that bound to divergent genotypes and did not block viral-entry-ligand interactions. However, one antibody, A1431, showed broad blockade toward tested GII.4 strains and neutralized the pandemic GII.P16-GII.4 Sydney strain. Structural mapping revealed conserved epitopes, which were occluded on the virion or partially exposed, allowing for broad blockade with neutralizing activity. Overall, our results provide high-resolution molecular information on humoral immune responses after HuNoV vaccination and demonstrate that infection-derived and vaccine-elicited antibodies can exhibit broad blockade and neutralization against this prevalent human pathogen. Serum vaccine response is dominated by a small number of abundant antibody clonotypes Vaccine-boosted antibodies predominantly target conserved norovirus epitopes Identified cross-genogroup and strain-specific epitopes Discovered a pandemic-genotype neutralizing antibody recognizing a conserved epitope
Collapse
Affiliation(s)
- Lisa C Lindesmith
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan R McDaniel
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raffaello Verardi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott A Kerr
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Veronica Costantini
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Paul D Brewer-Jensen
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Michael L Mallory
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - William N Voss
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Daniel R Boutz
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - John J Blazeck
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Jan Vinje
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
65
|
Dosenovic P, Pettersson AK, Wall A, Thientosapol ES, Feng J, Weidle C, Bhullar K, Kara EE, Hartweger H, Pai JA, Gray MD, Parks KR, Taylor JJ, Pancera M, Stamatatos L, Nussenzweig MC, McGuire AT. Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses. J Exp Med 2019; 216:2316-2330. [PMID: 31345931 PMCID: PMC6780999 DOI: 10.1084/jem.20190446] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
Human anti-HIV-1 broadly neutralizing antibodies (bNAbs) protect against infection in animal models. However, bNAbs have not been elicited by vaccination in diverse wild-type animals or humans, in part because B cells expressing the precursors of these antibodies do not recognize most HIV-1 envelopes (Envs). Immunogens have been designed that activate these B cell precursors in vivo, but they also activate competing off-target responses. Here we report on a complementary approach to expand specific B cells using an anti-idiotypic antibody, iv8, that selects for naive human B cells expressing immunoglobulin light chains with 5-amino acid complementarity determining region 3s, a key feature of anti-CD4 binding site (CD4bs)-specific VRC01-class antibodies. In mice, iv8 induced target cells to expand and mature in the context of a polyclonal immune system and produced serologic responses targeting the CD4bs on Env. In summary, the results demonstrate that an anti-idiotypic antibody can specifically recognize and expand rare B cells that express VRC01-class antibodies against HIV-1.
Collapse
Affiliation(s)
- Pia Dosenovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | | | - Abigail Wall
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Eddy S Thientosapol
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Junli Feng
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Connor Weidle
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Komal Bhullar
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ervin E Kara
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Matthew D Gray
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - K Rachael Parks
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Justin J Taylor
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
- University of Washington University of Washington, Department of Immunology, Seattle, WA
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington University of Washington, Department of Global Health, Seattle, WA
| |
Collapse
|
66
|
Havenar-Daughton C, Sarkar A, Kulp DW, Toy L, Hu X, Deresa I, Kalyuzhniy O, Kaushik K, Upadhyay AA, Menis S, Landais E, Cao L, Diedrich JK, Kumar S, Schiffner T, Reiss SM, Seumois G, Yates JR, Paulson JC, Bosinger SE, Wilson IA, Schief WR, Crotty S. The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen. Sci Transl Med 2019; 10:10/448/eaat0381. [PMID: 29973404 DOI: 10.1126/scitranslmed.aat0381] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022]
Abstract
Traditional vaccine development to prevent some of the worst current pandemic diseases has been unsuccessful so far. Germline-targeting immunogens have potential to prime protective antibodies (Abs) via more targeted immune responses. Success of germline-targeting vaccines in humans will depend on the composition of the human naive B cell repertoire, including the frequencies and affinities of epitope-specific B cells. However, the human naive B cell repertoire remains largely undefined. Assessment of antigen-specific human naive B cells among hundreds of millions of B cells from multiple donors may be used as pre-phase 1 ex vivo human testing to potentially forecast B cell and Ab responses to new vaccine designs. VRC01 is an HIV broadly neutralizing Ab (bnAb) against the envelope CD4-binding site (CD4bs). We characterized naive human B cells recognizing eOD-GT8, a germline-targeting HIV-1 vaccine candidate immunogen designed to prime VRC01-class Abs. Several distinct subclasses of VRC01-class naive B cells were identified, sharing sequence characteristics with inferred precursors of known bnAbs VRC01, VRC23, PCIN63, and N6. Multiple naive B cell clones exactly matched mature VRC01-class bnAb L-CDR3 sequences. Non-VRC01-class B cells were also characterized, revealing recurrent public light chain sequences. Unexpectedly, we also identified naive B cells related to the IOMA-class CD4bs bnAb. These different subclasses within the human repertoire had strong initial affinities (KD) to the immunogen, up to 13 nM, and represent encouraging indications that multiple independent pathways may exist for vaccine-elicited VRC01-class bnAb development in most individuals. The frequencies of these distinct eOD-GT8 B cell specificities give insights into antigen-specific compositional features of the human naive B cell repertoire and provide actionable information for vaccine design and advancement.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anita Sarkar
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Daniel W Kulp
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.,Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Laura Toy
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaozhen Hu
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaiah Deresa
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Oleksandr Kalyuzhniy
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Amit A Upadhyay
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Sergey Menis
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Elise Landais
- International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Liwei Cao
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sonu Kumar
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Torben Schiffner
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James C Paulson
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven E Bosinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ian A Wilson
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William R Schief
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,International AIDS Vaccine Initiative Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA. .,Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.,Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
67
|
Engineered HIV antibody passes muster. Lancet HIV 2019; 6:e641-e642. [PMID: 31473166 DOI: 10.1016/s2352-3018(19)30231-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022]
|
68
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
69
|
Seber Kasinger LE, Dent MW, Mahajan G, Hamorsky KT, Matoba N. A novel anti-HIV-1 bispecific bNAb-lectin fusion protein engineered in a plant-based transient expression system. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1646-1656. [PMID: 30729651 PMCID: PMC6662308 DOI: 10.1111/pbi.13090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The discovery of broadly neutralizing antibodies (bNAbs) has been a major step towards better prophylactic and therapeutic agents against human immunodeficiency virus type 1 (HIV-1). However, effective therapy will likely require a combination of anti-HIV agents to avoid viral evasion. One possible solution to this problem is the creation of bispecific molecules that can concurrently target two vulnerable sites providing synergistic inhibitory effects. Here, we describe the production in plants and anti-HIV activity of a novel bispecific fusion protein consisting of the antigen-binding fragment (Fab) of the CD4 binding site-specific bNAb VRC01 and the antiviral lectin Avaren, which targets the glycan shield of the HIV-1 envelope (VRC01Fab -Avaren). This combination was justified by a preliminary experiment demonstrating the synergistic HIV-1 neutralization activity of VRC01 and Fc-fused Avaren dimer (Avaren-Fc). Using the GENEWARE® tobacco mosaic virus vector, VRC01Fab -Avaren was expressed in Nicotiana benthamiana and purified using a three-step chromatography procedure. Surface plasmon resonance and ELISA demonstrated that both the Avaren and VRC01Fab moieties retain their individual binding specificities. VRC01Fab -Avaren demonstrated enhanced neutralizing activity against representative HIV-1 strains from A, B and C clades, compared to equimolar combinations of VRC01Fab and Avaren. Notably, VRC01Fab -Avaren showed significantly stronger neutralizing effects than the bivalent parent molecules VRC01 IgG and Avaren-Fc, with IC50 values ranging from 48 to 310 pm. These results support the continued development of bispecific anti-HIV proteins based on Avaren and bNAbs, to which plant-based transient overexpression systems will provide an efficient protein engineering and production platform.
Collapse
Affiliation(s)
| | - Matthew W. Dent
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Garima Mahajan
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Krystal Teasley Hamorsky
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Nobuyuki Matoba
- James Graham Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
70
|
Schoofs T, Barnes CO, Suh-Toma N, Golijanin J, Schommers P, Gruell H, West AP, Bach F, Lee YE, Nogueira L, Georgiev IS, Bailer RT, Czartoski J, Mascola JR, Seaman MS, McElrath MJ, Doria-Rose NA, Klein F, Nussenzweig MC, Bjorkman PJ. Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope. Immunity 2019; 50:1513-1529.e9. [PMID: 31126879 PMCID: PMC6591006 DOI: 10.1016/j.immuni.2019.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/20/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.
Collapse
Affiliation(s)
- Till Schoofs
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nina Suh-Toma
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Westridge High School, 324 Madeline Drive, Pasadena, CA 91105, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Franziska Bach
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Yu Erica Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie Czartoski
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany; German Center for Infection Research, partner site Bonn-Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
71
|
Kwon YD, Chuang GY, Zhang B, Bailer RT, Doria-Rose NA, Gindin TS, Lin B, Louder MK, McKee K, O'Dell S, Pegu A, Schmidt SD, Asokan M, Chen X, Choe M, Georgiev IS, Jin V, Pancera M, Rawi R, Wang K, Chaudhuri R, Kueltzo LA, Manceva SD, Todd JP, Scorpio DG, Kim M, Reinherz EL, Wagh K, Korber BM, Connors M, Shapiro L, Mascola JR, Kwong PD. Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Rep 2019; 22:1798-1809. [PMID: 29444432 PMCID: PMC5889116 DOI: 10.1016/j.celrep.2018.01.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Highly effective HIV-1-neutralizing antibodies could have utility in the prevention or treatment of HIV-1 infection. To improve the potency of 10E8, an antibody capable of near pan-HIV-1 neutralization, we engineered 10E8-surface mutants and screened for improved neutralization. Variants with the largest functional enhancements involved the addition of hydrophobic or positively charged residues, which were positioned to interact with viral membrane lipids or viral glycan-sialic acids, respectively. In both cases, the site of improvement was spatially separated from the region of antibody mediating molecular contact with the protein component of the antigen, thereby improving peripheral semi-specific interactions while maintaining unmodified dominant contacts responsible for broad recognition. The optimized 10E8 antibody, with mutations to phenylalanine and arginine, retained the extraordinary breadth of 10E8 but with ~10-fold increased potency. We propose surface-matrix screening as a general method to improve antibodies, with improved semi-specific interactions between antibody and antigen enabling increased potency without compromising breadth.
Collapse
Affiliation(s)
- Young D Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Tatyana S Gindin
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Bob Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Vivian Jin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Rajoshi Chaudhuri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Lisa A Kueltzo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Slobodanka D Manceva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA
| | - Mikyung Kim
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ellis L Reinherz
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bette M Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
72
|
Differential Antibody-Based Immune Response against Isolated GP1 Receptor-Binding Domains from Lassa and Junín Viruses. J Virol 2019; 93:JVI.00090-19. [PMID: 30728269 DOI: 10.1128/jvi.00090-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 01/30/2019] [Indexed: 01/10/2023] Open
Abstract
There are two predominant subgroups in the Arenaviridae family of viruses, the Old World and the New World viruses, that use distinct cellular receptors for entry. While New World viruses typically elicit good neutralizing antibody responses, the Old World viruses generally evade such responses. Antibody-based immune responses are directed against the glycoprotein spike complexes that decorate the viruses. A thick coat of glycans reduces the accessibility of antibodies to the surface of spike complexes from Old World viruses, but other mechanisms may further hamper the development of efficient humoral responses. Specifically, it was suggested that the GP1 receptor-binding module of the Old World Lassa virus might help with evasion of the humoral response. Here we investigated the immunogenicity of the GP1 domain from Lassa virus and compared it to that of the GP1 domain from the New World Junín virus. We found striking differences in the ability of antibodies that were developed against these immunogens to target the same GP1 receptor-binding domains in the context of the native spike complexes. Whereas GP1 from Junín virus elicited productive neutralizing responses, GP1 from Lassa virus elicited only nonproductive responses. These differences can be rationalized by the conformational changes that GP1 from Lassa virus but not GP1 from Junín virus undergoes after dissociating from the trimeric spike complex. Hence, shedding of GP1 in the case of Lassa virus can indeed serve as a mechanism to subvert the humoral immune response. Moreover, the realization that a recombinant protein may be used to elicit a productive response against the New World Junín virus may suggest a novel and safe way to design future vaccines.IMPORTANCE Some viruses that belong to the Arenaviridae family, like Lassa and Junín viruses, are notorious human pathogens, which may lead to fatal outcomes when they infect people. It is thus important to develop means to combat these viruses. For developing effective vaccines, it is vital to understand the basic mechanisms that these viruses utilize in order to evade or overcome host immune responses. It was previously noted that the GP1 receptor-binding domain from Lassa virus is shed and accumulates in the serum of infected individuals. This raised the possibility that Lassa virus GP1 may function as an immunological decoy. Here we demonstrate that mice develop nonproductive immune responses against GP1 from Lassa virus, which is in contrast to the effective neutralizing responses that GP1 from Junín virus elicits. Thus, GP1 from Lassa virus is indeed an immunological decoy and GP1 from Junín virus may serve as a constituent of a future vaccine.
Collapse
|
73
|
Structure-guided design fine-tunes pharmacokinetics, tolerability, and antitumor profile of multispecific frizzled antibodies. Proc Natl Acad Sci U S A 2019; 116:6812-6817. [PMID: 30894493 DOI: 10.1073/pnas.1817246116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aberrant activation of Wnt/β-catenin signaling occurs frequently in cancer. However, therapeutic targeting of this pathway is complicated by the role of Wnt in stem cell maintenance and tissue homeostasis. Here, we evaluated antibodies blocking 6 of the 10 human Wnt/Frizzled (FZD) receptors as potential therapeutics. Crystal structures revealed a common binding site for these monoclonal antibodies (mAbs) on FZD, blocking the interaction with the Wnt palmitoleic acid moiety. However, these mAbs displayed gastrointestinal toxicity or poor plasma exposure in vivo. Structure-guided engineering was used to refine the binding of each mAb for FZD receptors, resulting in antibody variants with improved in vivo tolerability and developability. Importantly, the lead variant mAb significantly inhibited tumor growth in the HPAF-II pancreatic tumor xenograft model. Taken together, our data demonstrate that anti-FZD cancer therapeutic antibodies with broad specificity can be fine-tuned to navigate in vivo exposure and tolerability while driving therapeutic efficacy.
Collapse
|
74
|
Bricault CA, Yusim K, Seaman MS, Yoon H, Theiler J, Giorgi EE, Wagh K, Theiler M, Hraber P, Macke JP, Kreider EF, Learn GH, Hahn BH, Scheid JF, Kovacs JM, Shields JL, Lavine CL, Ghantous F, Rist M, Bayne MG, Neubauer GH, McMahan K, Peng H, Chéneau C, Jones JJ, Zeng J, Ochsenbauer C, Nkolola JP, Stephenson KE, Chen B, Gnanakaran S, Bonsignori M, Williams LD, Haynes BF, Doria-Rose N, Mascola JR, Montefiori DC, Barouch DH, Korber B. HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. Cell Host Microbe 2019; 25:59-72.e8. [PMID: 30629920 PMCID: PMC6331341 DOI: 10.1016/j.chom.2018.12.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
Abstract
Eliciting HIV-1-specific broadly neutralizing antibodies (bNAbs) remains a challenge for vaccine development, and the potential of passively delivered bNAbs for prophylaxis and therapeutics is being explored. We used neutralization data from four large virus panels to comprehensively map viral signatures associated with bNAb sensitivity, including amino acids, hypervariable region characteristics, and clade effects across four different classes of bNAbs. The bNAb signatures defined for the variable loop 2 (V2) epitope region of HIV-1 Env were then employed to inform immunogen design in a proof-of-concept exploration of signature-based epitope targeted (SET) vaccines. V2 bNAb signature-guided mutations were introduced into Env 459C to create a trivalent vaccine, and immunization of guinea pigs with V2-SET vaccines resulted in increased breadth of NAb responses compared with Env 459C alone. These data demonstrate that bNAb signatures can be utilized to engineer HIV-1 Env vaccine immunogens capable of eliciting antibody responses with greater neutralization breadth. HIV-1 bNAb sensitivity signatures from 4 large virus panels mapped across 4 Ab classes Non-contact hypervariable region characteristics are critical for bNAb sensitivity HIV-1 Env 459C used alone as a vaccine can elicit modest tier 2 NAbs in guinea pigs V2 bNAb signature-guided modifications in 459C enhanced neutralization breadth
Collapse
Affiliation(s)
- Christine A Bricault
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Karina Yusim
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hyejin Yoon
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - James Theiler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Elena E Giorgi
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | | | - Peter Hraber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Edward F Kreider
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gerald H Learn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02114, USA
| | - James M Kovacs
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Departments of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | - Jennifer L Shields
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Christy L Lavine
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Fadi Ghantous
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Michael Rist
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Madeleine G Bayne
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - George H Neubauer
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Katherine McMahan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hanqin Peng
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Coraline Chéneau
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jennifer J Jones
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jie Zeng
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christina Ochsenbauer
- Department of Medicine and CFAR, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA
| | - Bing Chen
- Division of Molecular Medicine, Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - S Gnanakaran
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA
| | - Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - LaTonya D Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of Massachusetts General Hospital, MIT, and Harvard, Boston, MA 02114, USA.
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; New Mexico Consortium, Los Alamos, NM 87545, USA.
| |
Collapse
|
75
|
Doi N, Yokoyama M, Koma T, Kotani O, Sato H, Adachi A, Nomaguchi M. Concomitant Enhancement of HIV-1 Replication Potential and Neutralization-Resistance in Concert With Three Adaptive Mutations in Env V1/C2/C4 Domains. Front Microbiol 2019; 10:2. [PMID: 30705669 PMCID: PMC6344430 DOI: 10.3389/fmicb.2019.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/04/2019] [Indexed: 12/23/2022] Open
Abstract
HIV-1 Env protein functions in the entry process and is the target of neutralizing antibodies. Its intrinsically high mutation rate is certainly one of driving forces for persistence/survival in hosts. For optimal replication in various environments, HIV-1 Env must continue to adapt and evolve through balancing sometimes incompatible function, replication fitness, and neutralization sensitivity. We have previously reported that adapted viruses emerge in repeated and prolonged cultures of cells originally infected with a macaque-tropic HIV-1NL4-3 derivative. We have also shown that the adapted viral clones exhibit enhanced growth potentials both in macaque PBMCs and individuals, and that three single-amino acid mutations are present in their Env V1/C2/C4 domains. In this study, we investigated how lab-adapted and highly neutralization-sensitive HIV-1NL4-3 adapts its Env to macaque cells with strongly replication-restrictive nature for HIV-1. While a single and two mutations gave a significantly enhanced replication phenotype in a macaque cell line and also in human cell lines that stably express either human CD4 or macaque CD4, the virus simultaneously carrying the three adaptive mutations always grew best. Entry kinetics of parental and triple mutant viruses were similar, whereas the mutant was significantly more readily inhibited for its infectivity by soluble CD4 than parental virus. Furthermore, molecular dynamics simulations of the Env ectodomain (gp120 and gp41 ectodomain) bound with CD4 suggest that the three mutations increase binding affinity of Env for CD4 in solution. Thus, it is quite likely that the affinity for CD4 of the mutant Env is enhanced relative to the parental Env. Neutralization sensitivity of the triple mutant to CD4 binding site antibodies was not significantly different from that of parental virus, whereas the mutant exhibited a considerably higher resistance against neutralization by a CD4-induced epitope antibody and Env trimer-targeting V1/V2 antibodies. These results suggest that the three adaptive mutations cooperatively promote viral growth via increased CD4 affinity, and also that they enhance viral resistance to several neutralization antibodies by changing the Env-trimer conformation. In total, we have verified here an HIV-1 adaptation pathway in host cells and individuals involving Env derived from a lab-adapted and highly neutralization-sensitive clone.
Collapse
Affiliation(s)
- Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Osamu Kotani
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| |
Collapse
|
76
|
Sensitivity to Broadly Neutralizing Antibodies of Recently Transmitted HIV-1 Clade CRF02_AG Viruses with a Focus on Evolution over Time. J Virol 2019; 93:JVI.01492-18. [PMID: 30404804 DOI: 10.1128/jvi.01492-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are promising agents for prevention and/or treatment of HIV-1 infection. However, the diversity among HIV-1 envelope (Env) glycoproteins impacts bnAb potency and breadth. Neutralization data on the CRF02_AG clade are scarce although it is highly prevalent in West Africa and Europe. We assessed the sensitivity to bnAbs of a panel of 33 early transmitted CRF02_AG viruses over a 15-year period of the French epidemic (1997 to 2012). Env pseudotyped CRF02_AG viruses were best neutralized by the CD4 binding site (CD4bs)-directed bnAbs (VRC01, 3BNC117, NIH45-46G54W, and N6) and the gp41 membrane-proximal external region (MPER)-directed bnAb 10E8 in terms of both potency and breadth. We observed a higher resistance to bnAbs targeting the V1V2-glycan region (PG9 and PGT145) and the V3-glycan region (PGT121 and 10-1074). Combinations were required to achieve full coverage across this subtype. We observed increased resistance to bnAbs targeting the CD4bs linked to the diversification of CRF02_AG Env over the course of the epidemic, a phenomenon which was previously described for subtypes B and C. These data on the sensitivity to bnAbs of CRF02_AG viruses, including only recently transmitted viruses, will inform future passive immunization studies. Considering the drift of the HIV-1 species toward higher resistance to neutralizing antibodies, it appears necessary to keep updating existing panels for evaluation of future vaccine and passive immunization studies.IMPORTANCE Major progress occurred during the last decade leading to the isolation of human monoclonal antibodies, termed broadly neutralizing antibodies (bnAbs) due to their capacity to neutralize various strains of HIV-1. Several clinical trials are under way in order to evaluate their efficacy in preventive or therapeutic strategies. However, no single bnAb is active against 100% of strains. It is important to gather data on the sensitivity to neutralizing antibodies of all genotypes, especially those more widespread in regions where the prevalence of HIV-1 infection is high. Here, we assembled a large panel of clade CRF02_AG viruses, the most frequent genotype circulating in West Africa and the second most frequent found in several European countries. We evaluated their sensitivities to bnAbs, including those most advanced in clinical trials, and looked for the best combinations. In addition, we observed a trend toward increased resistance to bnAbs over the course of the epidemic.
Collapse
|
77
|
Bonsignori M, Scott E, Wiehe K, Easterhoff D, Alam SM, Hwang KK, Cooper M, Xia SM, Zhang R, Montefiori DC, Henderson R, Nie X, Kelsoe G, Moody MA, Chen X, Joyce MG, Kwong PD, Connors M, Mascola JR, McGuire AT, Stamatatos L, Medina-Ramírez M, Sanders RW, Saunders KO, Kepler TB, Haynes BF. Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity 2018; 49:1162-1174.e8. [PMID: 30552024 PMCID: PMC6303191 DOI: 10.1016/j.immuni.2018.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 10/19/2018] [Indexed: 01/15/2023]
Abstract
Elicitation of VRC01-class broadly neutralizing antibodies (bnAbs) is an appealing approach for a preventative HIV-1 vaccine. Despite extensive investigations, strategies to induce VRC01-class bnAbs and overcome the barrier posed by the envelope N276 glycan have not been successful. Here, we inferred a high-probability unmutated common ancestor (UCA) of the VRC01 lineage and reconstructed the stages of lineage maturation. Env immunogens designed on reverted VRC01-class bnAbs bound to VRC01 UCA with affinity sufficient to activate naive B cells. Early mutations defined maturation pathways toward limited or broad neutralization, suggesting that focusing the immune response is likely required to steer B cell maturation toward the development of neutralization breadth. Finally, VRC01 lineage bnAbs with long CDR H3s overcame the HIV-1 N276 glycan barrier without shortening their CDR L1, revealing a solution for broad neutralization in which the heavy chain, not CDR L1, is the determinant to accommodate the N276 glycan. A high-probability VRC01 lineage UCA was inferred and CDRH3 evolution defined Env immunogens bind to VRC01 UCA with affinity sufficient to activate naive B cells Early mutations defined maturation pathways toward limited or broad neutralization Antibodies with long CDRH3s achieved neutralization breadth without shortening CDRL1s
Collapse
Affiliation(s)
- Mattia Bonsignori
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA.
| | - Eric Scott
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Kevin Wiehe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - S Munir Alam
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA
| | - Kwan-Ki Hwang
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Melissa Cooper
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Ruijun Zhang
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - David C Montefiori
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Rory Henderson
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | - Xiaoyan Nie
- Department of Immunology, Duke University, Durham, NC, USA
| | - Garnett Kelsoe
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Immunology, Duke University, Durham, NC, USA
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Pediatrics, Duke University, Durham, NC, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Max Medina-Ramírez
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, USA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA; Department of Medicine, Duke University, Durham, NC, USA; Department of Immunology, Duke University, Durham, NC, USA.
| |
Collapse
|
78
|
Falkenhagen A, Joshi S. Genetic Strategies for HIV Treatment and Prevention. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:514-533. [PMID: 30388625 PMCID: PMC6205348 DOI: 10.1016/j.omtn.2018.09.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 08/28/2018] [Accepted: 09/02/2018] [Indexed: 01/02/2023]
Abstract
Conventional HIV gene therapy approaches are based on engineering HIV target cells that are non-permissive to viral replication. However, expansion of gene-modified HIV target cells has been limited in patients. Alternative genetic strategies focus on generating gene-modified producer cells that secrete antiviral proteins (AVPs). The secreted AVPs interfere with HIV entry, and, therefore, they extend the protection against infection to unmodified HIV target cells. Since any cell type can potentially secrete AVPs, hematopoietic and non-hematopoietic cell lineages can function as producer cells. Secretion of AVPs from non-hematopoietic cells opens the possibility of using a genetic approach for HIV prevention. Another strategy aims at modifying cytotoxic T cells to selectively target and eliminate infected cells. This review provides an overview of the different genetic approaches for HIV treatment and prevention.
Collapse
Affiliation(s)
- Alexander Falkenhagen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Sadhna Joshi
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
79
|
LaBranche CC, McGuire AT, Gray MD, Behrens S, Zhou T, Sattentau QJ, Peacock J, Eaton A, Greene K, Gao H, Tang H, Perez LG, Saunders KO, Mascola JR, Haynes BF, Stamatatos L, Montefiori DC. HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathog 2018; 14:e1007431. [PMID: 30395637 PMCID: PMC6237427 DOI: 10.1371/journal.ppat.1007431] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/15/2018] [Accepted: 10/24/2018] [Indexed: 01/11/2023] Open
Abstract
Broadly neutralizing antibody (bnAb) induction is a high priority for effective HIV-1 vaccination. VRC01-class bnAbs that target the CD4 binding site (CD4bs) of trimeric HIV-1 envelope (Env) glycoprotein spikes are particularly attractive to elicit because of their extraordinary breadth and potency of neutralization in vitro and their ability to protect against infection in animal models. Glycans bordering the CD4bs impede the binding of germline-reverted forms of VRC01-class bnAbs and therefore constitute a barrier to early events in initiating the correct antibody lineages. Deleting a subset of these glycans permits Env antigen binding but not virus neutralization, suggesting that additional barriers impede germline-reverted VRC01-class antibody binding to functional Env trimers. We investigated the requirements for functional Env trimer engagement of VRC01-class naïve B cell receptors by using virus neutralization and germline-reverted antibodies as surrogates for the interaction. Targeted deletion of a subset of N-glycans bordering the CD4bs, combined with Man5 enrichment of remaining N-linked glycans that are otherwise processed into larger complex-type glycans, rendered HIV-1 426c Env-pseudotyped virus (subtype C, transmitted/founder) highly susceptible to neutralization by near germline forms of VRC01-class bnAbs. Neither glycan modification alone rendered the virus susceptible to neutralization. The potency of neutralization in some cases rivaled the potency of mature VRC01 against wildtype viruses. Neutralization by the germline-reverted antibodies was abrogated by the known VRC01 resistance mutation, D279K. These findings improve our understanding of the restrictions imposed by glycans in eliciting VRC01-class bnAbs and enable a neutralization-based strategy to monitor vaccine-elicited early precursors of this class of bnAbs. Activation of appropriate naïve B cells is a critical initial step in the elicitation of broadly neutralizing antibodies (bnAbs) by HIV-1 vaccines. Germline-reverted forms of bnAbs partially mimic naïve B cell receptors, making them useful for designing and identifying immunogens that can initiate early stages of bnAb development. Here we identify a combination of glycan-modifications on the HIV-1 envelope glycoproteins that preserve native structure and facilitate interactions with germline-reverted forms of the VRC01-class of bnAbs. These modifications included the complete removal of certain N-glycans, combined with Man5-enrichment of remaining N-glycans that otherwise are processed into larger complex-type glycans. HIV-1 Env-pseudotyped viruses modified in this way were highly susceptible to neutralization by germline-reverted forms of several VRC01-class bnAbs, and this neutralization could be blocked by a known VRC01 resistance mutation. These findings provide new insights for the design and testing of novel immunogens that aim to elicit VRC01-like bnAbs.
Collapse
Affiliation(s)
- Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Andrew T. McGuire
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
| | - Matthew D. Gray
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
| | - Shay Behrens
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Quentin J. Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, United Kingdom
| | - James Peacock
- Duke University School of Medicine, Departments of Medicine and Immunology, Duke Human Vaccine Institute, Durham, NC, United States of America
| | - Amanda Eaton
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Haili Tang
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Lautaro G. Perez
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - Kevin O. Saunders
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Barton F. Haynes
- Duke University School of Medicine, Departments of Medicine and Immunology, Duke Human Vaccine Institute, Durham, NC, United States of America
| | - Leonidas Stamatatos
- Fred Hutchinson Cancer Research Center, Department of Global Health, Seattle, WA, United States of America
- University of Washington, Department of Global Health, Seattle, Washington, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
80
|
Carrillo J, Clotet B, Blanco J. Antibodies and Antibody Derivatives: New Partners in HIV Eradication Strategies. Front Immunol 2018; 9:2429. [PMID: 30405624 PMCID: PMC6205993 DOI: 10.3389/fimmu.2018.02429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/02/2018] [Indexed: 12/25/2022] Open
Abstract
Promptly after primoinfection, HIV generates a pool of infected cells carrying transcriptionally silent integrated proviral DNA, the HIV-1 reservoir. These cells are not cleared by combined antiretroviral therapy (cART), and persist lifelong in treated HIV-infected individuals. Defining clinical strategies to eradicate the HIV reservoir and cure HIV-infected individuals is a major research field that requires a deep understanding of the mechanisms of seeding, maintenance and destruction of latently infected cells. Although CTL responses have been classically associated with the control of HIV replication, and hence with the size of HIV reservoir, broadly neutralizing antibodies (bNAbs) have emerged as new players in HIV cure strategies. Several reasons support this potential role: (i) over the last years a number of bNAbs with high potency and ability to cope with the extreme variability of HIV have been identified; (ii) antibodies not only block HIV replication but mediate effector functions that may contribute to the removal of infected cells and to boost immune responses against HIV; (iii) a series of new technologies have allowed for the in vitro design of improved antibodies with increased antiviral and effector functions. Recent studies in non-human primate models and in HIV-infected individuals have shown that treatment with recombinant bNAbs isolated from HIV-infected individuals is safe and may have a beneficial effect both on the seeding of the HIV reservoir and on the inhibition of HIV replication. These promising data and the development of antibody technology have paved the way for treating HIV infection with engineered monoclonal antibodies with high potency of neutralization, wide coverage of HIV diversity, extended plasma half-life in vivo and improved effector functions. The exciting effects of these newly designed antibodies in vivo, either alone or in combination with other cure strategies (latency reversing agents or therapeutic vaccines), open a new hope in HIV eradication.
Collapse
Affiliation(s)
- Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Institut de Recerca Germans Trias i Pujol, Badalona, Spain.,Chair in AIDS and Related Illnesses, Centre for Health and Social Care Research (CEES), Faculty of Medicine, Universitat de Vic - Universitat Central de Catalunya, Vic, Spain
| |
Collapse
|
81
|
Lin A, Balazs AB. Adeno-associated virus gene delivery of broadly neutralizing antibodies as prevention and therapy against HIV-1. Retrovirology 2018; 15:66. [PMID: 30285769 PMCID: PMC6167872 DOI: 10.1186/s12977-018-0449-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/19/2018] [Indexed: 01/23/2023] Open
Abstract
Vectored gene delivery of HIV-1 broadly neutralizing antibodies (bNAbs) using recombinant adeno-associated virus (rAAV) is a promising alternative to conventional vaccines for preventing new HIV-1 infections and for therapeutically suppressing established HIV-1 infections. Passive infusion of single bNAbs has already shown promise in initial clinical trials to temporarily decrease HIV-1 load in viremic patients, and to delay viral rebound from latent reservoirs in suppressed patients during analytical treatment interruptions of antiretroviral therapy. Long-term, continuous, systemic expression of such bNAbs could be achieved with a single injection of rAAV encoding antibody genes into muscle tissue, which would bypass the challenges of eliciting such bNAbs through traditional vaccination in naïve patients, and of life-long repeated passive transfers of such biologics for therapy. rAAV delivery of single bNAbs has already demonstrated protection from repeated HIV-1 vaginal challenge in humanized mouse models, and phase I clinical trials of this approach are underway. Selection of which individual, or combination of, bNAbs to deliver to counter pre-existing resistance and the rise of escape mutations in the virus remains a challenge, and such choices may differ depending on use of this technology for prevention versus therapy.
Collapse
Affiliation(s)
- Allen Lin
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, 02139, USA.,Department of Systems Biology, Harvard University, Boston, MA, 02115, USA
| | | |
Collapse
|
82
|
Jaworski JP, Cahn P. Preventive and therapeutic features of broadly neutralising monoclonal antibodies against HIV-1. Lancet HIV 2018; 5:e723-e731. [PMID: 30245003 DOI: 10.1016/s2352-3018(18)30174-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/25/2022]
Abstract
The viral plasticity and the vast diversity of HIV-1 circulating strains necessitates the identification of new approaches to control this global pandemic. New generation broadly neutralising monoclonal antibodies (bnMAbs) against the HIV-1 viral envelope protein (Env) can prevent virus acquisition, reduce viraemia, enhance immunity, and induce the killing of infected cells in animal models of HIV-1 infection. Most importantly, passively administered bnMAbs are effective at decreasing viraemia and delaying viral rebound in people chronically infected with HIV-1. Single antibody treatment is associated with the emergence of viral escape mutants, and virus suppression is not maintained in the long term. However, a combination of bnMAbs and bioengineered multivalent antibodies that target different sites on Env might increase the efficacy of immunotherapy, adding a new relevant tool for clinical use. The aim of this Review is to highlight the potential benefits of this novel prophylactic and therapeutic approach to fight HIV-1.
Collapse
Affiliation(s)
- Juan P Jaworski
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Instituto Nacional de Tecnología Agropecuaria, Buenos Aires, Argentina.
| | - Pedro Cahn
- Fundación Huésped, Buenos Aires, Argentina
| |
Collapse
|
83
|
Phenotypic properties of envelope glycoproteins of transmitted HIV-1 variants from patients belonging to transmission chains. AIDS 2018; 32:1917-1926. [PMID: 29927786 DOI: 10.1097/qad.0000000000001906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Transmission of HIV-1 involves a bottleneck in which generally a single HIV-1 variant from a diverse viral population in the transmitting partner establishes infection in the new host. It is still unclear to what extent this event is driven by specific properties of the transmitted viruses or the result of a stochastic process. Our study aimed to better characterize this phenomenon and define properties shared by transmitted viruses. DESIGN We compared antigenic and functional properties of envelope glycoproteins of viral variants found during primary infection in 27 patients belonging to eight transmission chains. METHODS We generated pseudotyped viruses expressing Env variants of the viral quasispecies infecting each patient and compared their sensitivity to neutralization by eight human monoclonal broadly neutralizing antibodies (HuMoNAbs). We also compared their infectious properties by measuring their infectivity and sensitivity to various entry inhibitors. RESULTS Transmitted viruses from the same transmission chain shared many properties, including similar neutralization profiles, sensitivity to inhibitors, and infectivity, providing evidence that the transmission bottleneck is mainly nonstochastic. Transmitted viruses were CCR5-tropic, sensitive to MVC, and resistant to soluble forms of CD4, irrespective of the cluster to which they belonged. They were also sensitive to HuMoNAbs that target V3, the CD4-binding site, and the MPER region, suggesting that the loss of these epitopes may compromise their capacity to be transmitted. CONCLUSION Our data suggest that the transmission bottleneck is governed by selective forces. How these forces confer an advantage to the transmitted virus has yet to be determined.
Collapse
|
84
|
Wang H, Yuan T, Li T, Li Y, Qian F, Zhu C, Liang S, Hoffmann D, Dittmer U, Sun B, Yang R. Evaluation of susceptibility of HIV-1 CRF01_AE variants to neutralization by a panel of broadly neutralizing antibodies. Arch Virol 2018; 163:3303-3315. [PMID: 30196320 DOI: 10.1007/s00705-018-4011-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
Broadly neutralizing antibodies (bNAbs) are very promising agents for HIV-1 prophylaxis and AIDS treatment. However, the neutralization susceptibility of circulating recombinants such as CRF01_AE, which is becoming increasingly prevalent, has not been studied in detail until now. Here, we focused on CRF01_AE in China and aimed to find bNAbs that can be used for neutralization of CRF01_AE. Full-length env clones were obtained from the plasma samples of 22 HIV-1-infected individuals sampled in 2009 and 2015. An env-pseudovirus-based neutralization assay was conducted using five categories of bNAbs: VRC01, NIH45-46G54W, and 3BNC117 (targeting the CD4 binding site); PG9 and PG16 (targeting the V1V2 loop); 2G12 (glycan specific), PGT121 and 10-1074 (targeting the V3 glycan); 2F5, 4E10, and 10E8 (targeting the membrane-proximal external region (MPER)). The neutralizing efficiency was compared, and features of the escape pseudoviruses were analyzed. The CRF01_AE pseudoviruses exhibited different susceptibility to these bNAbs. Overall, 4E10, 10E8, and 3BNC117 neutralized all 22 env-pseudotyped viruses, followed by NIH45-46G54W and VRC01, which neutralized more than 90% of the viruses. 2F5, PG9, and PG16 showed only moderate breadth, while the other three bNAbs neutralized none of these pseudoviruses. Specifically, 10E8, NIH45-46G54Wand 3BNC117 showed the highest efficiency, combining neutralization potency and breadth. Mutations at position 160, 169, 171 were associated with resistance to PG9 and PG16, while loss of a potential glycan at position 332 conferred insensitivity to V3-glycan-targeting bNAbs. Our results may help for choosing bNAbs that can be used preferentially for prophylactic or therapeutic approaches in China.
Collapse
Affiliation(s)
- Hongye Wang
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Yuan
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tingting Li
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanpeng Li
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Feng Qian
- Division of HIV-1/AIDS, The Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Chuanwu Zhu
- Division of HIV-1/AIDS, The Fifth People's Hospital of Suzhou, Suzhou, 215000, China
| | - Shujia Liang
- Department of HIV/AIDS Control and Prevention, Guangxi Center for Disease Control and Prevention, Nanning, 530023, China
| | - Daniel Hoffmann
- Faculty of Biology, Center for Medical Biotechnology, Center for Computational Sciences and Simulation, University of Duisburg-Essen, Essen, 45122, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Binlian Sun
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China. .,Department of Immunology, School of Medicine, Jianghan University, Wuhan, 430000, China.
| | - Rongge Yang
- Research Group of HIV-1 Molecular Epidemiology and Virology, The State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
85
|
Padte NN, Yu J, Huang Y, Ho DD. Engineering multi-specific antibodies against HIV-1. Retrovirology 2018; 15:60. [PMID: 30157871 PMCID: PMC6114543 DOI: 10.1186/s12977-018-0439-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/11/2018] [Indexed: 01/05/2023] Open
Abstract
As increasing numbers of broadly neutralizing monoclonal antibodies (mAbs) against HIV-1 enter clinical trials, it is becoming evident that combinations of mAbs are necessary to block infection by the diverse array of globally circulating HIV-1 strains and to limit the emergence of resistant viruses. Multi-specific antibodies, in which two or more HIV-1 entry-targeting moieties are engineered into a single molecule, have expanded rapidly in recent years and offer an attractive solution that can improve neutralization breadth and erect a higher barrier against viral resistance. In some unique cases, multi-specific HIV-1 antibodies have demonstrated vastly improved antiviral potency due to increased avidity or enhanced spatiotemporal functional activity. This review will describe the recent advancements in the HIV-1 field in engineering monoclonal, bispecific and trispecific antibodies with enhanced breadth and potency against HIV-1. A case study will also be presented as an example of the developmental challenges these multi-specific antibodies may face on their path to the clinic. The tremendous potential of multi-specific antibodies against the HIV-1 epidemic is readily evident. Creativity in their discovery and engineering, and acumen during their development, will be the true determinant of their success in reducing HIV-1 infection and disease.
Collapse
Affiliation(s)
- Neal N Padte
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY, 10016, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY, 10016, USA
| | - Yaoxing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY, 10016, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, The Rockefeller University, 455 First Avenue, New York, NY, 10016, USA.
| |
Collapse
|
86
|
Virnik K, Nesti E, Dail C, Scanlan A, Medvedev A, Vassell R, McGuire AT, Stamatatos L, Berkower I. Live rubella vectors can express native HIV envelope glycoproteins targeted by broadly neutralizing antibodies and prime the immune response to an envelope protein boost. Vaccine 2018; 36:5166-5172. [PMID: 30037665 DOI: 10.1016/j.vaccine.2018.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
Abstract
Following HIV infection, most people make antibodies to gp120 and gp41, yet only a few make broadly neutralizing antibodies that target key antigenic sites on the envelope glycoproteins. The induction of broadly neutralizing antibodies by immunization remains a major challenge of HIV vaccine research. Difficulties include: variable protein sequence, epitopes that depend on the native conformation, glycosylation that conceals key antigenic determinants, and the assembly of Env trimers that mimic viral spikes. In addition, more potent immunogens may be needed to initiate the response of germline antibody precursors and drive B cell maturation toward antibodies with broad neutralizing activity. We have expressed HIV Env glycoproteins by incorporation into live attenuated rubella viral vectors. The rubella vaccine strain RA27/3 has demonstrated its safety and potency in millions of children. As a vector, it has elicited potent and durable immune responses in macaques to SIV Gag vaccine inserts. We now find that rubella/env vectors can stably express Env core derived glycoproteins ranging in size up to 363 amino acids from HIV clade C strain 426c. The expressed Env glycoproteins bind broadly neutralizing antibodies that target the native CD4 binding site. The vectors grew well in rhesus macaques, and they elicited a vaccine "take" in all animals, as measured by anti-rubella antibodies. By themselves, the vectors elicited modest antibody titers to the Env insert. But the combination of rubella/env prime followed by a homologous protein boost gave a strong response. Neutralizing antibodies appeared gradually after multiple vaccine doses. The vectors will be useful for testing new vaccine inserts and immunization strategies under optimized conditions of vector growth and protein expression.
Collapse
Affiliation(s)
- Konstantin Virnik
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Edmund Nesti
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Cody Dail
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Aaron Scanlan
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Alexei Medvedev
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Russell Vassell
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Andrew T McGuire
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA, USA
| | - Ira Berkower
- Lab of Immunoregulation, DVP, Office of Vaccines, Center for Biologics, FDA, Bldg 72, Room 1212, White Oak Campus, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA.
| |
Collapse
|
87
|
Patil SU, Shreffler WG. Novel vaccines: Technology and development. J Allergy Clin Immunol 2018; 143:844-851. [PMID: 29970235 DOI: 10.1016/j.jaci.2018.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 05/04/2018] [Accepted: 05/25/2018] [Indexed: 11/17/2022]
Abstract
The development and widespread use of vaccines, which are defined by the World Health Organization as "biological preparations that improve immunity to a particular disease," represents one of the most significant strides in medicine. Vaccination was first applied to reduce mortality and morbidity from infectious diseases. The World Health Organization estimates that vaccines prevent 2 to 3 million human deaths annually, and these numbers would increase by at least 6 million if all children received the recommended vaccination schedule. However, the origins of allergen immunotherapy share the same intellectual paradigm, and subsequent innovations in vaccine technology have been applied beyond the prevention of infection, including in the treatment of cancer and allergic diseases. This review will focus on how new and more rational approaches to vaccine development use novel biotechnology, target new mechanisms, and shape the immune system response, with an emphasis on discoveries that have direct translational relevance to the treatment of allergic diseases.
Collapse
Affiliation(s)
- Sarita U Patil
- Department of Pediatrics, Division of Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Center for Inflammatory and Immunological Diseases, Harvard Medical School, Boston, Mass.
| | - Wayne G Shreffler
- Department of Pediatrics, Division of Allergy and Immunology, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Division of Rheumatology, Allergy, and Immunology, Center for Inflammatory and Immunological Diseases, Harvard Medical School, Boston, Mass
| |
Collapse
|
88
|
Imkeller K, Wardemann H. Assessing human B cell repertoire diversity and convergence. Immunol Rev 2018; 284:51-66. [DOI: 10.1111/imr.12670] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Hedda Wardemann
- German Cancer Research Center; B Cell Immunology; Heidelberg Germany
| |
Collapse
|
89
|
eCD4-Ig Variants That More Potently Neutralize HIV-1. J Virol 2018; 92:JVI.02011-17. [PMID: 29593050 DOI: 10.1128/jvi.02011-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 02/28/2018] [Indexed: 12/23/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) entry inhibitor eCD4-Ig is a fusion of CD4-Ig and a coreceptor-mimetic peptide. eCD4-Ig is markedly more potent than CD4-Ig, with neutralization efficiencies approaching those of HIV-1 broadly neutralizing antibodies (bNAbs). However, unlike bNAbs, eCD4-Ig neutralized all HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates that it has been tested against, suggesting that it may be useful in clinical settings, where antibody escape is a concern. Here, we characterize three new eCD4-Ig variants, each with a different architecture and each utilizing D1.22, a stabilized form of CD4 domain 1. These variants were 10- to 20-fold more potent than our original eCD4-Ig variant, with a construct bearing four D1.22 domains (eD1.22-HL-Ig) exhibiting the greatest potency. However, this variant mediated less efficient antibody-dependent cell-mediated cytotoxicity (ADCC) activity than eCD4-Ig itself or several other eCD4-Ig variants, including the smallest variant (eD1.22-Ig). A variant with the same architecture as the original eCD4-Ig (eD1.22-D2-Ig) showed modestly higher thermal stability and best prevented the promotion of infection of CCR5-positive, CD4-negative cells. All three variants, and eCD4-Ig itself, mediated more efficient shedding of the HIV-1 envelope glycoprotein gp120 than did CD4-Ig. Finally, we show that only three D1.22 mutations contributed to the potency of eD1.22-D2-Ig and that introduction of these changes into eCD4-Ig resulted in a variant 9-fold more potent than eCD4-Ig and 2-fold more potent than eD1.22-D2-Ig. These studies will assist in developing eCD4-Ig variants with properties optimized for prophylaxis, therapy, and cure applications.IMPORTANCE HIV-1 bNAbs have properties different from those of antiretroviral compounds. Specifically, antibodies can enlist immune effector cells to eliminate infected cells, whereas antiretroviral compounds simply interfere with various steps in the viral life cycle. Unfortunately, HIV-1 is adept at evading antibody recognition, limiting the utility of antibodies as a treatment for HIV-1 infection or as part of an effort to eradicate latently infected cells. eCD4-Ig is an antibody-like entry inhibitor that closely mimics HIV-1's obligate receptors. eCD4-Ig appears to be qualitatively different from antibodies, since it neutralizes all HIV-1, HIV-2, and SIV isolates. Here, we characterize three new structurally distinct eCD4-Ig variants and show that each excels in a key property useful to prevent, treat, or cure an HIV-1 infection. For example, one variant neutralized HIV-1 most efficiently, while others best enlisted natural killer cells to eliminate infected cells. These observations will help generate eCD4-Ig variants optimized for different clinical applications.
Collapse
|
90
|
Next-generation antibodies for post-translational modifications. Curr Opin Struct Biol 2018; 51:141-148. [PMID: 29753204 DOI: 10.1016/j.sbi.2018.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/24/2018] [Indexed: 01/08/2023]
Abstract
Despite increasing demands for antibodies to post-translational modifications (PTMs), fundamental difficulties in molecular recognition of PTMs hinder the generation of highly functional anti-PTM antibodies using conventional methods. Recently, advanced approaches in protein engineering and design that have been established for biologics development were applied to successfully generating highly functional anti-PTM antibodies. Furthermore, structural analyses of anti-PTM antibodies revealed unprecedented binding modes that substantially increased the antigen-binding surface. These features deepen the understanding of mechanisms underlying specific recognition of PTMs, which may lead to more effective approaches for generating anti-PTM antibodies with exquisite specificity and high affinity.
Collapse
|
91
|
Identification of Near-Pan-neutralizing Antibodies against HIV-1 by Deconvolution of Plasma Humoral Responses. Cell 2018; 173:1783-1795.e14. [PMID: 29731169 DOI: 10.1016/j.cell.2018.03.061] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 11/20/2022]
Abstract
Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.
Collapse
|
92
|
Wu X, Guo J, Niu M, An M, Liu L, Wang H, Jin X, Zhang Q, Lam KS, Wu T, Wang H, Wang Q, Du Y, Li J, Cheng L, Tang HY, Shang H, Zhang L, Zhou P, Chen Z. Tandem bispecific neutralizing antibody eliminates HIV-1 infection in humanized mice. J Clin Invest 2018; 128:2239-2251. [PMID: 29461979 DOI: 10.1172/jci96764] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/16/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery of an HIV-1 cure remains a medical challenge because the virus rebounds quickly after the cessation of combination antiretroviral therapy (cART). Here, we investigate the potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb) as an innovative product for HIV-1 prophylactic and therapeutic interventions. We discovered that by preserving 2 single-chain variable fragment (scFv) binding domains of each parental bnAb, a single gene-encoded tandem bs-bnAb, BiIA-SG, displayed substantially improved breadth and potency. BiIA-SG neutralized all 124 HIV-1-pseudotyped viruses tested, including global subtypes/recombinant forms, transmitted/founder viruses, variants not susceptible to parental bnAbs and to many other bnAbs with an average IC50 value of 0.073 μg/ml (range < 0.001-1.03 μg/ml). In humanized mice, an injection of BiIA-SG conferred sterile protection when administered prior to challenges with diverse live HIV-1 stains. Moreover, whereas BiIA-SG delayed viral rebound in a short-term therapeutic setting when combined with cART, a single injection of adeno-associated virus-transferred (AAV-transferred) BiIA-SG gene resulted dose-dependently in prolonged in vivo expression of BiIA-SG, which was associated with complete viremia control and subsequent elimination of infected cells in humanized mice. These results warrant the clinical development of BiIA-SG as a promising bs-bnAb-based biomedical intervention for the prevention and treatment of HIV-1 infection.
Collapse
Affiliation(s)
- Xilin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Jia Guo
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Minghui An
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Li Liu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hui Wang
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Xia Jin
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Ka Shing Lam
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Tongjin Wu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hua Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Qian Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Jingjing Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Lin Cheng
- The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| | - Hang Ying Tang
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Paul Zhou
- Unit of Antiviral Immunity and Genetic Therapy, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China.,The University of Hong Kong AIDS Institute Shenzhen Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases and Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
93
|
Hallen MA, Donald BR. CATS (Coordinates of Atoms by Taylor Series): protein design with backbone flexibility in all locally feasible directions. Bioinformatics 2018; 33:i5-i12. [PMID: 28882005 PMCID: PMC5870559 DOI: 10.1093/bioinformatics/btx277] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Motivation When proteins mutate or bind to ligands, their backbones often move significantly, especially in loop regions. Computational protein design algorithms must model these motions in order to accurately optimize protein stability and binding affinity. However, methods for backbone conformational search in design have been much more limited than for sidechain conformational search. This is especially true for combinatorial protein design algorithms, which aim to search a large sequence space efficiently and thus cannot rely on temporal simulation of each candidate sequence. Results We alleviate this difficulty with a new parameterization of backbone conformational space, which represents all degrees of freedom of a specified segment of protein chain that maintain valid bonding geometry (by maintaining the original bond lengths and angles and ω dihedrals). In order to search this space, we present an efficient algorithm, CATS, for computing atomic coordinates as a function of our new continuous backbone internal coordinates. CATS generalizes the iMinDEE and EPIC protein design algorithms, which model continuous flexibility in sidechain dihedrals, to model continuous, appropriately localized flexibility in the backbone dihedrals ϕ and ψ as well. We show using 81 test cases based on 29 different protein structures that CATS finds sequences and conformations that are significantly lower in energy than methods with less or no backbone flexibility do. In particular, we show that CATS can model the viability of an antibody mutation known experimentally to increase affinity, but that appears sterically infeasible when modeled with less or no backbone flexibility. Availability and implementation Our code is available as free software at https://github.com/donaldlab/OSPREY_refactor. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mark A Hallen
- Department of Computer Science, Duke University, Durham, NC, USA.,Toyota Technological Institute at Chicago, Chicago, IL, USA
| | - Bruce R Donald
- Department of Computer Science, Duke University, Durham, NC, USA.,Department of Chemistry, Duke University, Durham, NC, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
94
|
Nishimura Y, Martin MA. Of Mice, Macaques, and Men: Broadly Neutralizing Antibody Immunotherapy for HIV-1. Cell Host Microbe 2018; 22:207-216. [PMID: 28799906 DOI: 10.1016/j.chom.2017.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neutralizing antibodies targeting the HIV-1 envelope protein have been a major focus for HIV therapy. Early studies with anti-HIV-1 neutralizing monoclonal antibodies (mAbs) administered to infected individuals showed some promise, as they resulted in transient reductions in plasma viremia in some recipients. However, resistant viral variants rapidly emerged. A major development during the past 6 to 7 years has been the isolation and characterization of highly potent and broadly neutralizing mAbs (bNAbs) from infected individuals known as "elite neutralizers." These "next-generation" bNAbs have been tested in animal model systems and shown to effectively control virus replication, particularly following combination immunotherapy. The success of these preclinical animal studies has led to human clinical trials using an individual bNAb for therapy. This review examines recent findings from animal models and human clinical trials and discusses the future use of bNAbs for HIV-1 treatment.
Collapse
Affiliation(s)
- Yoshiaki Nishimura
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892
| | - Malcolm A Martin
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda MD 20892.
| |
Collapse
|
95
|
Barnes CO, Gristick HB, Freund NT, Escolano A, Lyubimov AY, Hartweger H, West AP, Cohen AE, Nussenzweig MC, Bjorkman PJ. Structural characterization of a highly-potent V3-glycan broadly neutralizing antibody bound to natively-glycosylated HIV-1 envelope. Nat Commun 2018; 9:1251. [PMID: 29593217 PMCID: PMC5871869 DOI: 10.1038/s41467-018-03632-y] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/01/2018] [Indexed: 01/16/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) isolated from HIV-1-infected individuals inform HIV-1 vaccine design efforts. Developing bNAbs with increased efficacy requires understanding how antibodies interact with the native oligomannose and complex-type N-glycan shield that hides most protein epitopes on HIV-1 envelope (Env). Here we present crystal structures, including a 3.8-Å X-ray free electron laser dataset, of natively glycosylated Env trimers complexed with BG18, the most potent V3/N332gp120 glycan-targeting bNAb reported to date. Our structures show conserved contacts mediated by common D gene-encoded residues with the N332gp120 glycan and the gp120 GDIR peptide motif, but a distinct Env-binding orientation relative to PGT121/10-1074 bNAbs. BG18's binding orientation provides additional contacts with N392gp120 and N386gp120 glycans near the V3-loop base and engages protein components of the V1-loop. The BG18-natively-glycosylated Env structures facilitate understanding of bNAb-glycan interactions critical for using V3/N332gp120 bNAbs therapeutically and targeting their epitope for immunogen design.
Collapse
Affiliation(s)
- Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Natalia T Freund
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Department of Clinical Immunology and Microbiology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Amelia Escolano
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Artem Y Lyubimov
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Harald Hartweger
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
96
|
Sevy AM, Panda S, Crowe JE, Meiler J, Vorobeychik Y. Integrating linear optimization with structural modeling to increase HIV neutralization breadth. PLoS Comput Biol 2018; 14:e1005999. [PMID: 29451898 PMCID: PMC5833279 DOI: 10.1371/journal.pcbi.1005999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/01/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Computational protein design has been successful in modeling fixed backbone proteins in a single conformation. However, when modeling large ensembles of flexible proteins, current methods in protein design have been insufficient. Large barriers in the energy landscape are difficult to traverse while redesigning a protein sequence, and as a result current design methods only sample a fraction of available sequence space. We propose a new computational approach that combines traditional structure-based modeling using the Rosetta software suite with machine learning and integer linear programming to overcome limitations in the Rosetta sampling methods. We demonstrate the effectiveness of this method, which we call BROAD, by benchmarking the performance on increasing predicted breadth of anti-HIV antibodies. We use this novel method to increase predicted breadth of naturally-occurring antibody VRC23 against a panel of 180 divergent HIV viral strains and achieve 100% predicted binding against the panel. In addition, we compare the performance of this method to state-of-the-art multistate design in Rosetta and show that we can outperform the existing method significantly. We further demonstrate that sequences recovered by this method recover known binding motifs of broadly neutralizing anti-HIV antibodies. Finally, our approach is general and can be extended easily to other protein systems. Although our modeled antibodies were not tested in vitro, we predict that these variants would have greatly increased breadth compared to the wild-type antibody. In this article, we report a new approach for protein design, which combines traditional structural modeling with machine learning and integer programming. Using this method, we are able to design antibodies that are predicted to bind large panels of antigenically diverse HIV variants. The combination of methods from these fields allows us to surpass protein design limitations that have been seen up to this point. We predict that if we tested these modified antibodies against HIV variants they would have greater neutralization breadth than any antibodies seen to this point.
Collapse
Affiliation(s)
- Alexander M. Sevy
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
| | - Swetasudha Panda
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States of America
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Yevgeniy Vorobeychik
- Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
97
|
Freund NT, Wang H, Scharf L, Nogueira L, Horwitz JA, Bar-On Y, Golijanin J, Sievers SA, Sok D, Cai H, Cesar Lorenzi JC, Halper-Stromberg A, Toth I, Piechocka-Trocha A, Gristick HB, van Gils MJ, Sanders RW, Wang LX, Seaman MS, Burton DR, Gazumyan A, Walker BD, West AP, Bjorkman PJ, Nussenzweig MC. Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Sci Transl Med 2018; 9:9/373/eaal2144. [PMID: 28100831 DOI: 10.1126/scitranslmed.aal2144] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/14/2016] [Accepted: 12/08/2016] [Indexed: 12/13/2022]
Abstract
Some HIV-1-infected patients develop broad and potent HIV-1 neutralizing antibodies (bNAbs) that when passively transferred to mice or macaques can treat or prevent infection. However, bNAbs typically fail to neutralize coexisting autologous viruses due to antibody-mediated selection against sensitive viral strains. We describe an HIV-1 controller expressing HLA-B57*01 and HLA-B27*05 who maintained low viral loads for 30 years after infection and developed broad and potent serologic activity against HIV-1. Neutralization was attributed to three different bNAbs targeting nonoverlapping sites on the HIV-1 envelope trimer (Env). One of the three, BG18, an antibody directed against the glycan-V3 portion of Env, is the most potent member of this class reported to date and, as revealed by crystallography and electron microscopy, recognizes HIV-1 Env in a manner that is distinct from other bNAbs in this class. Single-genome sequencing of HIV-1 from serum samples obtained over a period of 9 years showed a diverse group of circulating viruses, 88.5% (31 of 35) of which remained sensitive to at least one of the temporally coincident autologous bNAbs and the individual's serum. Thus, bNAb-sensitive strains of HIV-1 coexist with potent neutralizing antibodies that target the virus and may contribute to control in this individual. When administered as a mix, the three bNAbs controlled viremia in HIV-1YU2-infected humanized mice. Our finding suggests that combinations of bNAbs may contribute to control of HIV-1 infection.
Collapse
Affiliation(s)
- Natalia T Freund
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Haoqing Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Louise Scharf
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Joshua A Horwitz
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Stuart A Sievers
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Devin Sok
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hui Cai
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | | | | | - Ildiko Toth
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Alicja Piechocka-Trocha
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Harry B Gristick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dennis R Burton
- Department of Immunology and Microbial Science, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, and International AIDS Vaccine Initiative Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02129, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
98
|
Upadhyay C, Feyznezhad R, Yang W, Zhang H, Zolla-Pazner S, Hioe CE. Alterations of HIV-1 envelope phenotype and antibody-mediated neutralization by signal peptide mutations. PLoS Pathog 2018; 14:e1006812. [PMID: 29370305 PMCID: PMC5800646 DOI: 10.1371/journal.ppat.1006812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 02/06/2018] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
HIV-1 envelope glycoprotein (Env) mediates virus attachment and entry into the host cells. Like other membrane-bound and secreted proteins, HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the nascent Env to the endoplasmic reticulum (ER) where Env synthesis and post-translational modifications take place. SP is cleaved during Env biosynthesis but potentially influences the phenotypic traits of the Env protein. The Env SP sequences of HIV-1 isolates display high sequence variability, and the significance of such variability is unclear. We postulate that changes in the Env SP influence Env transport through the ER-Golgi secretory pathway and Env folding and/or glycosylation that impact on Env incorporation into virions, receptor binding and antibody recognition. We first evaluated the consequences of mutating the charged residues in the Env SP in the context of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 affected Env incorporation into virions that correlated with reduction of virus infectivity and DC-SIGN-mediated virus capture and transmission. Mutations at positions 8, 12, and 15 also rendered the virus more resistant to neutralization by monoclonal antibodies against the Env V1V2 region. These mutations affected the oligosaccharide composition of N-glycans as shown by changes in Env reactivity with specific lectins and by mass spectrometry. Increased neutralization resistance and N-glycan composition changes were also observed when analogous mutations were introduced to another HIV-1 strain, JRFL. To the best of our knowledge, this is the first study showing that certain residues in the HIV-1 Env SP can affect virus neutralization sensitivity by modulating oligosaccharide moieties on the Env N-glycans. The HIV-1 Env SP sequences thus may be under selective pressure to balance virus infectiousness with virus resistance to the host antibody responses. (289 words) HIV-1 envelope glycoprotein (Env) is indispensable for virus infection. HIV-1 Env contains at its N terminus a signal peptide (SP) that directs the protein to the endoplasmic reticulum. The SP sequences exhibits high variability among HIV-1 isolates, and the significance of such variability is unclear. We hypothesize that changes in the Env SP influence the Env biogenesis, Env folding and/or glycosylation and the phenotypic traits of the virus. This study evaluated the consequences of mutations in the Env SP of infectious molecular clone HIV-1 REJO.c/2864. Results show that three different mutations affecting histidine at position 12 impacted on the Env incorporation into virions that correlated with virus infectivity and transmission. Additionally, Env SP mutations at positions 8, 12, and 15 increased virus resistance to neutralization by Env monoclonal antibodies. These mutations also altered the oligosaccharide composition of N-glycans on Env as shown by changes in the Env reactivity with lectins and by mass spectrometry. Similar phenotypic changes were observed when analogous SP mutations were introduced to another virus strain, JRFL. Thus, the HIV-1 Env SP controls Env expression and glycosylation that affect virus infectivity, transmission, and sensitivity to neutralization by antibodies. (191 words)
Collapse
Affiliation(s)
- Chitra Upadhyay
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
- * E-mail: (CU); (CEH)
| | - Roya Feyznezhad
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
| | - Weiming Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Susan Zolla-Pazner
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
| | - Catarina E. Hioe
- Icahn School of Medicine at Mount Sinai, Division of Infectious Diseases, New York, New York, United States of America
- James J. Peters Veterans Affairs Medical Center, Research Service, Bronx, New York, United States of America
- * E-mail: (CU); (CEH)
| |
Collapse
|
99
|
Zhou T, Doria-Rose NA, Cheng C, Stewart-Jones GBE, Chuang GY, Chambers M, Druz A, Geng H, McKee K, Kwon YD, O'Dell S, Sastry M, Schmidt SD, Xu K, Chen L, Chen RE, Louder MK, Pancera M, Wanninger TG, Zhang B, Zheng A, Farney SK, Foulds KE, Georgiev IS, Joyce MG, Lemmin T, Narpala S, Rawi R, Soto C, Todd JP, Shen CH, Tsybovsky Y, Yang Y, Zhao P, Haynes BF, Stamatatos L, Tiemeyer M, Wells L, Scorpio DG, Shapiro L, McDermott AB, Mascola JR, Kwong PD. Quantification of the Impact of the HIV-1-Glycan Shield on Antibody Elicitation. Cell Rep 2018; 19:719-732. [PMID: 28445724 DOI: 10.1016/j.celrep.2017.04.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
While the HIV-1-glycan shield is known to shelter Env from the humoral immune response, its quantitative impact on antibody elicitation has been unclear. Here, we use targeted deglycosylation to measure the impact of the glycan shield on elicitation of antibodies against the CD4 supersite. We engineered diverse Env trimers with select glycans removed proximal to the CD4 supersite, characterized their structures and glycosylation, and immunized guinea pigs and rhesus macaques. Immunizations yielded little neutralization against wild-type viruses but potent CD4-supersite neutralization (titers 1: >1,000,000 against four-glycan-deleted autologous viruses with over 90% breadth against four-glycan-deleted heterologous strains exhibiting tier 2 neutralization character). To a first approximation, the immunogenicity of the glycan-shielded protein surface was negligible, with Env-elicited neutralization (ID50) proportional to the exponential of the protein-surface area accessible to antibody. Based on these high titers and exponential relationship, we propose site-selective deglycosylated trimers as priming immunogens to increase the frequency of site-targeting antibodies.
Collapse
Affiliation(s)
- Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cheng Cheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guillaume B E Stewart-Jones
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Chambers
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aliaksandr Druz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hui Geng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mallika Sastry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kai Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lei Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rita E Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Timothy G Wanninger
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anqi Zheng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - S Katie Farney
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivelin S Georgiev
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Lemmin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cinque Soto
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Leonidas Stamatatos
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N, P.O. Box 19024, Seattle, WA 98109, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Diana G Scorpio
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lawrence Shapiro
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
100
|
Marks C, Nowak J, Klostermann S, Georges G, Dunbar J, Shi J, Kelm S, Deane CM. Sphinx: merging knowledge-based and ab initio approaches to improve protein loop prediction. Bioinformatics 2018; 33:1346-1353. [PMID: 28453681 PMCID: PMC5408792 DOI: 10.1093/bioinformatics/btw823] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/09/2017] [Indexed: 01/31/2023] Open
Abstract
Motivation Loops are often vital for protein function, however, their irregular structures make them difficult to model accurately. Current loop modelling algorithms can mostly be divided into two categories: knowledge-based, where databases of fragments are searched to find suitable conformations and ab initio, where conformations are generated computationally. Existing knowledge-based methods only use fragments that are the same length as the target, even though loops of slightly different lengths may adopt similar conformations. Here, we present a novel method, Sphinx, which combines ab initio techniques with the potential extra structural information contained within loops of a different length to improve structure prediction. Results We show that Sphinx is able to generate high-accuracy predictions and decoy sets enriched with near-native loop conformations, performing better than the ab initio algorithm on which it is based. In addition, it is able to provide predictions for every target, unlike some knowledge-based methods. Sphinx can be used successfully for the difficult problem of antibody H3 prediction, outperforming RosettaAntibody, one of the leading H3-specific ab initio methods, both in accuracy and speed. Availability and Implementation Sphinx is available at http://opig.stats.ox.ac.uk/webapps/sphinx. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Claire Marks
- Department of Statistics, University of Oxford, Oxford, UK
| | - Jaroslaw Nowak
- Department of Statistics, University of Oxford, Oxford, UK
| | | | - Guy Georges
- Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, DE, Germany
| | - James Dunbar
- Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, DE, Germany
| | - Jiye Shi
- Department of Informatics, UCB Pharma, Slough, UK
| | | | | |
Collapse
|