51
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
52
|
Langton PF, Baumgartner ME, Logeay R, Piddini E. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status. PLoS Genet 2021; 17:e1009946. [PMID: 34914692 PMCID: PMC8675655 DOI: 10.1371/journal.pgen.1009946] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cell competition induces the elimination of less-fit "loser" cells by fitter "winner" cells. In Drosophila, cells heterozygous mutant in ribosome genes, Rp/+, known as Minutes, are outcompeted by wild-type cells. Rp/+ cells display proteotoxic stress and the oxidative stress response, which drive the loser status. Minute cell competition also requires the transcription factors Irbp18 and Xrp1, but how these contribute to the loser status is partially understood. Here we provide evidence that initial proteotoxic stress in RpS3/+ cells is Xrp1-independent. However, Xrp1 is sufficient to induce proteotoxic stress in otherwise wild-type cells and is necessary for the high levels of proteotoxic stress found in RpS3/+ cells. Surprisingly, Xrp1 is also induced downstream of proteotoxic stress, and is required for the competitive elimination of cells suffering from proteotoxic stress or overexpressing Nrf2. Our data suggests that a feed-forward loop between Xrp1, proteotoxic stress, and Nrf2 drives Minute cells to become losers.
Collapse
Affiliation(s)
- Paul F. Langton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michael E. Baumgartner
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Remi Logeay
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
53
|
Quiroz-Figueroa K, Vitali C, Conlon DM, Millar JS, Tobias JW, Bauer RC, Hand NJ, Rader DJ. TRIB1 regulates LDL metabolism through CEBPα-mediated effects on the LDL receptor in hepatocytes. J Clin Invest 2021; 131:146775. [PMID: 34779419 DOI: 10.1172/jci146775] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic variants near the TRIB1 gene are highly significantly associated with plasma lipid traits and coronary artery disease. While TRIB1 is likely causal of these associations, the molecular mechanisms are not well understood. Here we sought to investigate how TRIB1 influences low density lipoprotein cholesterol (LDL-C) levels in mice. Hepatocyte-specific deletion of Trib1 (Trib1Δhep) in mice increased plasma cholesterol and apoB and slowed the catabolism of LDL-apoB due to decreased levels of LDL receptor (LDLR) mRNA and protein. Simultaneous deletion of the transcription factor CCAAT/enhancer-binding protein alpha (CEBPα) with TRIB1 eliminated the effects of TRIB1 on hepatic LDLR regulation and LDL catabolism. Using RNA-seq, we found that activating transcription factor 3 (Atf3) was highly upregulated in the livers of Trib1Δhep but not Trib1Δhep CebpaΔhep mice. ATF3 has been shown to directly bind to the CEBPα protein, and to repress the expression of LDLR by binding its promoter. Blunting the increase of ATF3 in Trib1Δhep mice reduced the levels of plasma cholesterol and partially attenuated the effects on LDLR. Based on these data, we conclude that deletion of Trib1 leads to a posttranslational increase in CEBPα, which increases ATF3 levels, thereby contributing to the downregulation of LDLR and increased plasma LDL-C.
Collapse
Affiliation(s)
| | - Cecilia Vitali
- Division of Translational Medicine and Human Genetics, Department of Medicine
| | - Donna M Conlon
- Division of Translational Medicine and Human Genetics, Department of Medicine
| | - John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine
| | | | - Robert C Bauer
- Division of Translational Medicine and Human Genetics, Department of Medicine
| | - Nicholas J Hand
- Department of Genetics.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine.,Department of Genetics.,Department of Pediatrics, and.,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
54
|
Zheng Z, Aihemaiti Y, Liu J, Afridi MI, Yang S, Zhang X, Xu Y, Chen C, Tu H. The bZIP Transcription Factor ZIP-11 Is Required for the Innate Immune Regulation in Caenorhabditis elegans. Front Immunol 2021; 12:744454. [PMID: 34804026 PMCID: PMC8602821 DOI: 10.3389/fimmu.2021.744454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of host defense against pathogen infection in metazoans. However, the molecular mechanisms of the complex immune regulatory network are not fully understood. Based on a transcriptome profiling of the nematode Caenorhabditis elegans, we found that a bZIP transcription factor ZIP-11 was up-regulated upon Pseudomonas aeruginosa PA14 infection. The tissue specific RNAi knock-down and rescue data revealed that ZIP-11 acts in intestine to promote host resistance against P. aeruginosa PA14 infection. We further showed that intestinal ZIP-11 regulates innate immune response through constituting a feedback loop with the conserved PMK-1/p38 mitogen-activated protein signaling pathway. Intriguingly, ZIP-11 interacts with a CCAAT/enhancer-binding protein, CEBP-2, to mediate the transcriptional response to P. aeruginosa PA14 infection independently of PMK-1/p38 pathway. In addition, human homolog ATF4 can functionally substitute for ZIP-11 in innate immune regulation of C. elegans. Our findings indicate that the ZIP-11/ATF4 genetic program activates local innate immune response through conserved PMK-1/p38 and CEBP-2/C/EBPγ immune signals in C. elegans, raising the possibility that a similar process may occur in other organisms.
Collapse
Affiliation(s)
- Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Yilixiati Aihemaiti
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Shengmei Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Yongfu Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Chunhong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha, China
- Shenzhen Research Institute, Hunan University, Shenzhen, China
| |
Collapse
|
55
|
Lin T, Zhang Y, Zhang T, Steckler RA, Yang X. Hop2 interacts with the transcription factor CEBPα and suppresses adipocyte differentiation. J Biol Chem 2021; 297:101264. [PMID: 34600885 PMCID: PMC8528721 DOI: 10.1016/j.jbc.2021.101264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
CCAAT enhancer binding protein (CEBP) transcription factors (TFs) are known to promote adipocyte differentiation; however, suppressors of CEBP TFs have not been reported thus far. Here, we find that homologous chromosome pairing protein 2 (Hop2) functions as an inhibitor for the TF CEBPα. We found that Hop2 mRNA is highly and specifically expressed in adipose tissue, and that ectopic Hop2 expression suppresses reporter activity induced by CEBP as revealed by DNA transfection. Recombinant and ectopically expressed Hop2 was shown to interact with CEBPα in pull-down and coimmunoprecipitation assays, and interaction between endogenous Hop2 and CEBPα was observed in the nuclei of 3T3 preadipocytes and adipocytes by immunofluorescence and coimmunoprecipitation of nuclear extracts. In addition, Hop2 stable overexpression in 3T3 preadipocytes inhibited adipocyte differentiation and adipocyte marker gene expression. These in vitro data suggest that Hop2 inhibits adipogenesis by suppressing CEBP-mediated transactivation. Consistent with a negative role for Hop2 in adipogenesis, ablation of Hop2 (Hop2-/-) in mice led to increased body weight, adipose volume, adipocyte size, and adipogenic marker gene expression. Adipogenic differentiation of isolated adipose-derived mesenchymal stem cells showed a greater number of lipid droplet-containing colonies formed in Hop2-/- adipose-derived mesenchymal stem cell cultures than in wt controls, which is associated with the increased expression of adipogenic marker genes. Finally, chromatin immunoprecipitation revealed a higher binding activity of endogenous CEBPα to peroxisome proliferator-activated receptor γ, a master adipogenic TF, and a known CEBPα target gene. Therefore, our study identifies for the first time that Hop2 is an intrinsic suppressor of CEBPα and thus adipogenesis in adipocytes.
Collapse
Affiliation(s)
- Tonghui Lin
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yang Zhang
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting Zhang
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Rita A Steckler
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiangli Yang
- Department of Pediatrics, Pediatric Research Center, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
56
|
Shrivastava M, Feng J, Coles M, Clark B, Islam A, Dumeaux V, Whiteway M. Modulation of the complex regulatory network for methionine biosynthesis in fungi. Genetics 2021; 217:6078591. [PMID: 33724418 DOI: 10.1093/genetics/iyaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023] Open
Abstract
The assimilation of inorganic sulfate and the synthesis of the sulfur-containing amino acids methionine and cysteine is mediated by a multibranched biosynthetic pathway. We have investigated this circuitry in the fungal pathogen Candida albicans, which is phylogenetically intermediate between the filamentous fungi and Saccharomyces cerevisiae. In S. cerevisiae, this pathway is regulated by a collection of five transcription factors (Met4, Cbf1, Met28, and Met31/Met32), while in the filamentous fungi the pathway is controlled by a single Met4-like factor. We found that in C. albicans, the Met4 ortholog is also a core regulator of methionine biosynthesis, where it functions together with Cbf1. While C. albicans encodes this Met4 protein, a Met4 paralog designated Met28 (Orf19.7046), and a Met31 protein, deletion, and activation constructs suggest that of these proteins only Met4 is actually involved in the regulation of methionine biosynthesis. Both Met28 and Met31 are linked to other functions; Met28 appears essential, and Met32 appears implicated in the regulation of genes of central metabolism. Therefore, while S. cerevisiae and C. albicans share Cbf1 and Met4 as central elements of the methionine biosynthesis control, the other proteins that make up the circuit in S. cerevisiae are not members of the C. albicans control network, and so the S. cerevisiae circuit likely represents a recently evolved arrangement.
Collapse
Affiliation(s)
| | - Jinrong Feng
- Medical School, Nantong University, Nangtong, Jiangsu, China
| | - Mark Coles
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Benjamin Clark
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Amjad Islam
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Vanessa Dumeaux
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| | - Malcolm Whiteway
- Depatment of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
57
|
Kang M, Han SK, Kim S, Park S, Jo Y, Kang H, Ko J. Role of small leucine zipper protein in hepatic gluconeogenesis and metabolic disorder. J Mol Cell Biol 2021; 13:361-373. [PMID: 33355643 PMCID: PMC8373270 DOI: 10.1093/jmcb/mjaa069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/03/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic gluconeogenesis is the central pathway for glucose generation in the body. The imbalance between glucose synthesis and uptake leads to metabolic diseases such as obesity, diabetes, and cardiovascular diseases. Small leucine zipper protein (sLZIP) is an isoform of LZIP and it mainly functions as a transcription factor. Although sLZIP is known to regulate the transcription of genes involved in various cellular processes, the role of sLZIP in hepatic glucose metabolism is not known. In this study, we investigated the regulatory role of sLZIP in hepatic gluconeogenesis and its involvement in metabolic disorder. We found that sLZIP expression was elevated during glucose starvation, leading to the promotion of phosphoenolpyruvate carboxylase and glucose-6-phosphatase expression in hepatocytes. However, sLZIP knockdown suppressed the expression of the gluconeogenic enzymes under low glucose conditions. sLZIP also enhanced glucose production in the human liver cells and mouse primary hepatic cells. Fasting-induced cyclic adenosine monophosphate impeded sLZIP degradation. Results of glucose and pyruvate tolerance tests showed that sLZIP transgenic mice exhibited abnormal blood glucose metabolism. These findings suggest that sLZIP is a novel regulator of gluconeogenic enzyme expression and plays a role in blood glucose homeostasis during starvation.
Collapse
Affiliation(s)
- Minsoo Kang
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sun Kyoung Han
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Suhyun Kim
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Sungyeon Park
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Yerin Jo
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Hyeryung Kang
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| | - Jesang Ko
- Division of Life Sciences, Korea University, Seoul 02841, South Korea
| |
Collapse
|
58
|
Abstract
Some have hypothesized that ancestral proteins were, on average, less specific than their descendants. If true, this would provide a universal axis along which to organize protein evolution and suggests that reconstructed ancestral proteins may be uniquely powerful tools for protein engineering. Ancestral sequence reconstruction studies are one line of evidence used to support this hypothesis. Previously, we performed such a study, investigating the evolution of peptide-binding specificity for the paralogs S100A5 and S100A6. The modern proteins appeared more specific than their last common ancestor (ancA5/A6), as each paralog bound a subset of the peptides bound by ancA5/A6. In this study, we revisit this transition, using quantitative phage display to measure the interactions of 30,533 random peptides with human S100A5, S100A6, and ancA5/A6. This unbiased screen reveals a different picture. While S100A5 and S100A6 do indeed bind to a subset of the peptides recognized by ancA5/A6, they also acquired new peptide partners outside of the set recognized by ancA5/A6. Our previous work showed that ancA5/A6 had lower specificity than its descendants when measured against biological targets; our new work shows that ancA5/A6 has similar specificity to the modern proteins when measured against a random set of peptide targets. This demonstrates that altered biological specificity does not necessarily indicate altered intrinsic specificity, and sounds a cautionary note for using ancestral reconstruction studies with biological targets as a means to infer global evolutionary trends in specificity.
Collapse
Affiliation(s)
- Lucas C Wheeler
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| | - Michael J Harms
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA.,Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| |
Collapse
|
59
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
60
|
Sorge S, Theelke J, Yildirim K, Hertenstein H, McMullen E, Müller S, Altbürger C, Schirmeier S, Lohmann I. ATF4-Induced Warburg Metabolism Drives Over-Proliferation in Drosophila. Cell Rep 2021; 31:107659. [PMID: 32433968 DOI: 10.1016/j.celrep.2020.107659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/30/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondrial electron transport chain (ETC) enables essential metabolic reactions; nonetheless, the cellular responses to defects in mitochondria and the modulation of signaling pathway outputs are not understood. We show that Notch signaling and ETC attenuation via knockdown of COX7a induces massive over-proliferation. The tumor-like growth is caused by a transcriptional response through the eIF2α-kinase PERK and ATF4, which activates the expression of metabolic enzymes, nutrient transporters, and mitochondrial chaperones. We find this stress adaptation to be beneficial for progenitor cell fitness, as it renders cells sensitive to proliferation induced by the Notch signaling pathway. Intriguingly, over-proliferation is not caused by transcriptional cooperation of Notch and ATF4, but it is mediated in part by pH changes resulting from the Warburg metabolism induced by ETC attenuation. Our results suggest that ETC function is monitored by the PERK-ATF4 pathway, which can be hijacked by growth-promoting signaling pathways, leading to oncogenic pathway activity.
Collapse
Affiliation(s)
- Sebastian Sorge
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Jonas Theelke
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Kerem Yildirim
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Helen Hertenstein
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ellen McMullen
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Stephan Müller
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | | | - Stefanie Schirmeier
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
61
|
Zhou Q, Sun X, Pasquier N, Jefferson P, Nguyen TTT, Siegelin MD, Angelastro JM, Greene LA. Cell-Penetrating CEBPB and CEBPD Leucine Zipper Decoys as Broadly Acting Anti-Cancer Agents. Cancers (Basel) 2021; 13:cancers13102504. [PMID: 34065488 PMCID: PMC8161188 DOI: 10.3390/cancers13102504] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The gene-regulatory factors ATF5, CEBPB and CEBPD promote survival, growth, metastasis and treatment resistance of a range of cancer cell types. Presently, no drugs target all three at once. Here, with the aim of treating cancers, we designed novel cell-penetrating peptides that interact with and inactivate all three. The peptides Bpep and Dpep kill a range of cancer cell types in culture and in animals. In animals with tumors, they also significantly increase survival time. In contrast, they do not affect survival of non-cancer cells and have no apparent side effects in animals. The peptides work in combination with other anti-cancer treatments. Mechanism studies of how the peptides kill cancer cells indicate a decrease in survival proteins and increase in death proteins. These studies support the potential of Bpep and Dpep as novel, safe agents for the treatment of a variety of cancer types, both as mono- and combination therapies. Abstract Transcription factors are key players underlying cancer formation, growth, survival, metastasis and treatment resistance, yet few drugs exist to directly target them. Here, we characterized the in vitro and in vivo anti-cancer efficacy of novel synthetic cell-penetrating peptides (Bpep and Dpep) designed to interfere with the formation of active leucine-zipper-based dimers by CEBPB and CEBPD, transcription factors implicated in multiple malignancies. Both peptides similarly promoted apoptosis of multiple tumor lines of varying origins, without such effects on non-transformed cells. Combined with other treatments (radiation, Taxol, chloroquine, doxorubicin), the peptides acted additively to synergistically and were fully active on Taxol-resistant cells. The peptides suppressed expression of known direct CEBPB/CEBPD targets IL6, IL8 and asparagine synthetase (ASNS), supporting their inhibition of transcriptional activation. Mechanisms by which the peptides trigger apoptosis included depletion of pro-survival survivin and a required elevation of pro-apoptotic BMF. Bpep and Dpep significantly slowed tumor growth in mouse models without evident side effects. Dpep significantly prolonged survival in xenograft models. These findings indicate the efficacy and potential of Bpep and Dpep as novel agents to treat a variety of cancers as mono- or combination therapies.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Xiotian Sun
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Nicolas Pasquier
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Parvaneh Jefferson
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Trang T. T. Nguyen
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - Markus D. Siegelin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
| | - James M. Angelastro
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA;
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; (Q.Z.); (X.S.); (N.P.); (P.J.); (T.T.T.N.); (M.D.S.)
- Correspondence:
| |
Collapse
|
62
|
Garcia-Sanchez JA, Ewbank JJ, Visvikis O. Ubiquitin-related processes and innate immunity in C. elegans. Cell Mol Life Sci 2021; 78:4305-4333. [PMID: 33630111 PMCID: PMC11072174 DOI: 10.1007/s00018-021-03787-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
Innate immunity is an evolutionary ancient defence strategy that serves to eliminate infectious agents while maintaining host health. It involves a complex network of sensors, signaling proteins and immune effectors that detect the danger, then relay and execute the immune programme. Post-translational modifications relying on conserved ubiquitin and ubiquitin-like proteins are an integral part of the system. Studies using invertebrate models of infection, such as the nematode Caenorhabditis elegans, have greatly contributed to our understanding of how ubiquitin-related processes act in immune sensing, regulate immune signaling pathways, and participate to host defence responses. This review highlights the interest of working with a genetically tractable model organism and illustrates how C. elegans has been used to identify ubiquitin-dependent immune mechanisms, discover novel ubiquitin-based resistance strategies that mediate pathogen clearance, and unravel the role of ubiquitin-related processes in tolerance, preserving host fitness during pathogen attack. Special emphasis is placed on processes that are conserved in mammals.
Collapse
Affiliation(s)
- Juan A Garcia-Sanchez
- INSERM, C3M, Côte D'Azur University, Nice, France
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France
| | - Jonathan J Ewbank
- INSERM, CNRS, CIML, Turing Centre for Living Systems, Aix-Marseille University, Marseille, France.
| | | |
Collapse
|
63
|
Deficiency of optineurin enhances osteoclast differentiation by attenuating the NRF2-mediated antioxidant response. Exp Mol Med 2021; 53:667-680. [PMID: 33864025 PMCID: PMC8102640 DOI: 10.1038/s12276-021-00596-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 02/02/2023] Open
Abstract
Abnormally increased resorption contributes to bone degenerative diseases such as Paget's disease of bone (PDB) through unclear mechanisms. Recently, the optineurin (OPTN) gene has been implicated in PDB, and global OPTN knockout mice (Optn-/-) were shown to exhibit increased formation of osteoclasts (osteoclastogenesis). Growing evidence, including our own, has demonstrated that intracellular reactive oxygen species (ROS) stimulated by receptor activator of nuclear factor kappa-B ligand (RANKL) can act as signaling molecules to promote osteoclastogenesis. Here, we report that OPTN interacts with nuclear factor erythroid-derived factor 2-related factor 2 (NRF2), the master regulator of the antioxidant response, defining a pathway through which RANKL-induced ROS could be regulated for osteoclastogenesis. In this study, monocytes from Optn-/- and wild-type (Optn+/+) mice were utilized to differentiate into osteoclasts, and both qRT-PCR and tartrate-resistant acid phosphatase (TRAP) staining showed that the Optn-/- monocytes exhibited enhanced osteoclastogenesis compared to the Optn+/+ cells. CellROX® staining, qRT-PCR, and Western blotting indicated that OPTN deficiency reduced the basal expression of Nrf2, inhibited the expression of NRF2-responsive antioxidants, and increased basal and RANKL-induced intracellular ROS levels, leading to enhanced osteoclastogenesis. Coimmunoprecipitation (co-IP) showed direct interaction, and immunofluorescence staining showed perinuclear colocalization of the OPTN-NRF2 granular structures during differentiation. Finally, curcumin and the other NRF2 activators attenuated the hyperactive osteoclastogenesis induced by OPTN deficiency. Collectively, our findings reveal a novel OPTN-mediated mechanism for regulating the NRF2-mediated antioxidant response in osteoclasts and extend the therapeutic potential of OPTN in the aging process resulting from ROS-triggered oxidative stress, which is associated with PDB and many other degenerative diseases.
Collapse
|
64
|
Jonsson WO, Margolies NS, Mirek ET, Zhang Q, Linden MA, Hill CM, Link C, Bithi N, Zalma B, Levy JL, Pettit AP, Miller JW, Hine C, Morrison CD, Gettys TW, Miller BF, Hamilton KL, Wek RC, Anthony TG. Physiologic Responses to Dietary Sulfur Amino Acid Restriction in Mice Are Influenced by Atf4 Status and Biological Sex. J Nutr 2021; 151:785-799. [PMID: 33512502 PMCID: PMC8030708 DOI: 10.1093/jn/nxaa396] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/19/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.
Collapse
Affiliation(s)
- William O Jonsson
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | | | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhang
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Cristal M Hill
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Brian Zalma
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Jordan L Levy
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Ashley P Pettit
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | | | - Thomas W Gettys
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Benjamin F Miller
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Ft. Collins, CO, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
65
|
A Novel Therapeutic Target, BACH1, Regulates Cancer Metabolism. Cells 2021; 10:cells10030634. [PMID: 33809182 PMCID: PMC8001775 DOI: 10.3390/cells10030634] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
BTB domain and CNC homology 1 (BACH1) is a transcription factor that is highly expressed in tumors including breast and lung, relative to their non-tumor tissues. BACH1 is known to regulate multiple physiological processes including heme homeostasis, oxidative stress response, senescence, cell cycle, and mitosis. In a tumor, BACH1 promotes invasion and metastasis of cancer cells, and the expression of BACH1 presents a poor outcome for cancer patients including breast and lung cancer patients. Recent studies identified novel functional roles of BACH1 in the regulation of metabolic pathways in cancer cells. BACH1 inhibits mitochondrial metabolism through transcriptional suppression of mitochondrial membrane genes. In addition, BACH1 suppresses activity of pyruvate dehydrogenase (PDH), a key enzyme that converts pyruvate to acetyl-CoA for the citric acid (TCA) cycle through transcriptional activation of pyruvate dehydrogenase kinase (PDK). Moreover, BACH1 increases glucose uptake and lactate secretion through the expression of metabolic enzymes involved such as hexokinase 2 (HK2) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) for aerobic glycolysis. Pharmacological or genetic inhibition of BACH1 could reprogram by increasing mitochondrial metabolism, subsequently rendering metabolic vulnerability of cancer cells against mitochondrial respiratory inhibition. Furthermore, inhibition of BACH1 decreased antioxidant-induced glycolysis rates as well as reduced migration and invasion of cancer cells, suggesting BACH1 as a potentially useful cancer therapeutic target.
Collapse
|
66
|
Hu H, Zhang Q, Hu FF, Liu CJ, Guo AY. A comprehensive survey for human transcription factors on expression, regulation, interaction, phenotype and cancer survival. Brief Bioinform 2021; 22:6124917. [PMID: 33517372 DOI: 10.1093/bib/bbab002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/13/2022] Open
Abstract
Transcription factors (TFs) act as key regulators in biological processes through controlling gene expression. Here, we conducted a systematic study for all human TFs on the expression, regulation, interaction, mutation, phenotype and cancer survival. We revealed that the average expression levels of TFs in normal tissues were lower than 50% expression of non-TFs, whereas TF expression was increased in cancers. TFs that are specifically expressed in an individual tissue or cancer may be potential marker genes. For instance, TGIF2LX/Y were preferentially expressed in testis and NEUROG1, PRDM14, SRY, ZNF705A and ZNF716 were specifically highly expressed in germ cell tumors. We found different distributions of target genes and TF co-regulations in different TF families. Some small TF families have huge protein interaction pairs, suggesting their central roles in transcriptional regulation. The bZIP family is a small family involving many signaling pathways. Survival analysis indicated that most TFs significantly affect survival of one or more cancers. Some survival-related TFs were also specifically highly expressed in the corresponding cancer types, which may be potential targets for cancer therapy. Finally, we identified 43 TFs whose mutations were closely correlated to survival, suggesting their cancer-driven roles. The systematic analysis of TFs provides useful clues for further investigation of TF regulatory mechanisms and the role of TFs in diseases.
Collapse
Affiliation(s)
- Hui Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiong Zhang
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fei-Fei Hu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun-Jie Liu
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - An-Yuan Guo
- Center for Artificial Intelligence Biology, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
67
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
68
|
Vardaka P, Lozano T, Bot C, Ellery J, Whiteside SK, Imianowski CJ, Farrow S, Walker S, Okkenhaug H, Yang J, Okkenhaug K, Kuo P, Roychoudhuri R. A cell-based bioluminescence assay reveals dose-dependent and contextual repression of AP-1-driven gene expression by BACH2. Sci Rep 2020; 10:18902. [PMID: 33144667 PMCID: PMC7641119 DOI: 10.1038/s41598-020-75732-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/12/2020] [Indexed: 02/02/2023] Open
Abstract
Whereas effector CD4+ and CD8+ T cells promote immune activation and can drive clearance of infections and cancer, CD4+ regulatory T (Treg) cells suppress their function, contributing to both immune homeostasis and cancer immunosuppression. The transcription factor BACH2 functions as a pervasive regulator of T cell differentiation, promoting development of CD4+ Treg cells and suppressing the effector functions of multiple effector T cell (Teff) lineages. Here, we report the development of a stable cell-based bioluminescence assay of the transcription factor activity of BACH2. Tetracycline-inducible BACH2 expression resulted in suppression of phorbol 12-myristate 13-acetate (PMA)/ionomycin-driven activation of a luciferase reporter containing BACH2/AP-1 target sequences from the mouse Ifng + 18k enhancer. BACH2 expression repressed the luciferase signal in a dose-dependent manner but this activity was abolished at high levels of AP-1 signalling, suggesting contextual regulation of AP-1 driven gene expression by BACH2. Finally, using the reporter assay developed, we find that the histone deacetylase 3 (HDAC3)-selective inhibitor, RGFP966, inhibits BACH2-mediated repression of signal-driven luciferase expression. In addition to enabling mechanistic studies, this cell-based reporter may enable identification of small molecule agonists or antagonists of BACH2 function for drug development.
Collapse
Affiliation(s)
- Panagiota Vardaka
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Teresa Lozano
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Christopher Bot
- CRUK Therapeutic Discovery Laboratories, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jonathan Ellery
- CRUK Therapeutic Discovery Laboratories, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Sarah K Whiteside
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Charlotte J Imianowski
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Stuart Farrow
- CRUK Therapeutic Discovery Laboratories, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Simon Walker
- Imaging Facility, Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Jie Yang
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Paula Kuo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Rahul Roychoudhuri
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, CB22 3AT, UK.
| |
Collapse
|
69
|
Sharma RB, Darko C, Alonso LC. Intersection of the ATF6 and XBP1 ER stress pathways in mouse islet cells. J Biol Chem 2020; 295:14164-14177. [PMID: 32788214 DOI: 10.1074/jbc.ra120.014173] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Success or failure of pancreatic beta cell adaptation to ER stress is a determinant of diabetes susceptibility. The ATF6 and IRE1/XBP1 pathways are separate ER stress-response effectors important to beta cell health and function. ATF6α. and XBP1 direct overlapping transcriptional responses in some cell types. However, the signaling dynamics and interdependence of ATF6α and XBP1 in pancreatic beta cells have not been explored. To assess pathway-specific signal onset, we performed timed exposures of primary mouse islet cells to ER stressors and measured the early transcriptional response. Comparing the time course of induction of ATF6 and XBP1 targets suggested that the two pathways have similar response dynamics. The role of ATF6α in target induction was assessed by acute knockdown using islet cells from Atf6α flox/flox mice transduced with adenovirus expressing Cre recombinase. Surprisingly, given the mild impact of chronic deletion in mice, acute ATF6α knockdown markedly reduced ATF6-pathway target gene expression under both basal and stressed conditions. Intriguingly, although ATF6α knockdown did not alter Xbp1 splicing dynamics or intensity, it did reduce induction of XBP1 targets. Inhibition of Xbp1 splicing did not decrease induction of ATF6α targets. Taken together, these data suggest that the XBP1 and ATF6 pathways are simultaneously activated in islet cells in response to acute stress and that ATF6α is required for full activation of XBP1 targets, but XBP1 is not required for activation of ATF6α targets. These observations improve understanding of the ER stress transcriptional response in pancreatic islets.
Collapse
Affiliation(s)
- Rohit B Sharma
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, USA .,Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, USA
| | - Christine Darko
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, USA.,Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, USA
| | - Laura C Alonso
- Division of Endocrinology, Diabetes and Metabolism, Weill Cornell Medicine, New York, New York, USA .,Weill Center for Metabolic Health, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
70
|
Correa Marrero M, Immink RGH, de Ridder D, van Dijk ADJ. Improved inference of intermolecular contacts through protein-protein interaction prediction using coevolutionary analysis. Bioinformatics 2020; 35:2036-2042. [PMID: 30398547 DOI: 10.1093/bioinformatics/bty924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/11/2018] [Accepted: 11/05/2018] [Indexed: 01/09/2023] Open
Abstract
MOTIVATION Predicting residue-residue contacts between interacting proteins is an important problem in bioinformatics. The growing wealth of sequence data can be used to infer these contacts through correlated mutation analysis on multiple sequence alignments of interacting homologs of the proteins of interest. This requires correct identification of pairs of interacting proteins for many species, in order to avoid introducing noise (i.e. non-interacting sequences) in the analysis that will decrease predictive performance. RESULTS We have designed Ouroboros, a novel algorithm to reduce such noise in intermolecular contact prediction. Our method iterates between weighting proteins according to how likely they are to interact based on the correlated mutations signal, and predicting correlated mutations based on the weighted sequence alignment. We show that this approach accurately discriminates between protein interaction versus non-interaction and simultaneously improves the prediction of intermolecular contact residues compared to a naive application of correlated mutation analysis. This requires no training labels concerning interactions or contacts. Furthermore, the method relaxes the assumption of one-to-one interaction of previous approaches, allowing for the study of many-to-many interactions. AVAILABILITY AND IMPLEMENTATION Source code and test data are available at www.bif.wur.nl/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Richard G H Immink
- Laboratory of Molecular Biology, Department of Plant Sciences.,Bioscience, Wageningen Plant Research
| | | | - Aalt D J van Dijk
- Bioinformatics Group, Department of Plant Sciences.,Bioscience, Wageningen Plant Research.,Biometris, Department of Plant Sciences, Wageningen University & Research, Wageningen PB, The Netherlands
| |
Collapse
|
71
|
Fink T, Stevović B, Verwaal R, Roubos JA, Gaber R, Benčina M, Jerala R, Gradišar H. Metabolic enzyme clustering by coiled coils improves the biosynthesis of resveratrol and mevalonate. AMB Express 2020; 10:97. [PMID: 32448937 PMCID: PMC7246283 DOI: 10.1186/s13568-020-01031-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023] Open
Abstract
The clustering of biosynthetic enzymes is used in nature to channel reaction products and increase the yield of compounds produced by multiple reaction steps. The coupling of multiple enzymes has been shown to increase the biosynthetic product yield. Different clustering strategies have particular advantages as the spatial organization of multiple enzymes creates biocatalytic cascades with a higher efficiency of biochemical reaction. However, there are also some drawbacks, such as misfolding and the variable stability of interaction domains, which may differ between particular biosynthetic reactions and the host organism. Here, we compared different protein-based clustering strategies, including direct fusion, fusion mediated by intein, and noncovalent interactions mediated through small coiled-coil dimer-forming domains. The clustering of enzymes through orthogonally designed coiled-coil interaction domains increased the production of resveratrol in Escherichia coli more than the intein-mediated fusion of biosynthetic enzymes. The improvement of resveratrol production correlated with the stability of the coiled-coil dimers. The coiled-coil fusion-based approach also increased mevalonate production in Saccharomyces cerevisiae, thus demonstrating the wider applicability of this strategy.
Collapse
|
72
|
Park WM. Coiled-Coils: the Molecular Zippers that Self-Assemble Protein Nanostructures. Int J Mol Sci 2020; 21:E3584. [PMID: 32438665 PMCID: PMC7278914 DOI: 10.3390/ijms21103584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 02/07/2023] Open
Abstract
Coiled-coils, the bundles of intertwined helical protein motifs, have drawn much attention as versatile molecular toolkits. Because of programmable interaction specificity and affinity as well as well-established sequence-to-structure relationships, coiled-coils have been used as subunits that self-assemble various molecular complexes in a range of fields. In this review, I describe recent advances in the field of protein nanotechnology, with a focus on programming assembly of protein nanostructures using coiled-coil modules. Modular design approaches to converting the helical motifs into self-assembling building blocks are described, followed by a discussion on the molecular basis and principles underlying the modular designs. This review also provides a summary of recently developed nanostructures with a variety of structural features, which are in categories of unbounded nanostructures, discrete nanoparticles, and well-defined origami nanostructures. Challenges existing in current design strategies, as well as desired improvements for controls over material properties and functionalities for applications, are also provided.
Collapse
Affiliation(s)
- Won Min Park
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
73
|
Chen Z, Kibler RD, Hunt A, Busch F, Pearl J, Jia M, VanAernum ZL, Wicky BIM, Dods G, Liao H, Wilken MS, Ciarlo C, Green S, El-Samad H, Stamatoyannopoulos J, Wysocki VH, Jewett MC, Boyken SE, Baker D. De novo design of protein logic gates. Science 2020; 368:78-84. [PMID: 32241946 DOI: 10.1126/science.aay2790] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
The design of modular protein logic for regulating protein function at the posttranscriptional level is a challenge for synthetic biology. Here, we describe the design of two-input AND, OR, NAND, NOR, XNOR, and NOT gates built from de novo-designed proteins. These gates regulate the association of arbitrary protein units ranging from split enzymes to transcriptional machinery in vitro, in yeast and in primary human T cells, where they control the expression of the TIM3 gene related to T cell exhaustion. Designed binding interaction cooperativity, confirmed by native mass spectrometry, makes the gates largely insensitive to stoichiometric imbalances in the inputs, and the modularity of the approach enables ready extension to three-input OR, AND, and disjunctive normal form gates. The modularity and cooperativity of the control elements, coupled with the ability to de novo design an essentially unlimited number of protein components, should enable the design of sophisticated posttranslational control logic over a wide range of biological functions.
Collapse
Affiliation(s)
- Zibo Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Ryan D Kibler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Andrew Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Florian Busch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jocelynn Pearl
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Mengxuan Jia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Zachary L VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Basile I M Wicky
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Galen Dods
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hanna Liao
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Matthew S Wilken
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Christie Ciarlo
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Shon Green
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA
| | - Hana El-Samad
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - John Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA 98195, USA.,Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, Division of Oncology, University of Washington, Seattle, WA 98109, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA.,Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Scott E Boyken
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. .,Institute for Protein Design, University of Washington, Seattle, WA 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
74
|
Ebert SM, Bullard SA, Basisty N, Marcotte GR, Skopec ZP, Dierdorff JM, Al-Zougbi A, Tomcheck KC, DeLau AD, Rathmacher JA, Bodine SC, Schilling B, Adams CM. Activating transcription factor 4 (ATF4) promotes skeletal muscle atrophy by forming a heterodimer with the transcriptional regulator C/EBPβ. J Biol Chem 2020; 295:2787-2803. [PMID: 31953319 PMCID: PMC7049960 DOI: 10.1074/jbc.ra119.012095] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/10/2020] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is a highly-prevalent and debilitating condition that remains poorly understood at the molecular level. Previous work found that aging, fasting, and immobilization promote skeletal muscle atrophy via expression of activating transcription factor 4 (ATF4) in skeletal muscle fibers. However, the direct biochemical mechanism by which ATF4 promotes muscle atrophy is unknown. ATF4 is a member of the basic leucine zipper transcription factor (bZIP) superfamily. Because bZIP transcription factors are obligate dimers, and because ATF4 is unable to form highly-stable homodimers, we hypothesized that ATF4 may promote muscle atrophy by forming a heterodimer with another bZIP family member. To test this hypothesis, we biochemically isolated skeletal muscle proteins that associate with the dimerization- and DNA-binding domain of ATF4 (the bZIP domain) in mouse skeletal muscle fibers in vivo Interestingly, we found that ATF4 forms at least five distinct heterodimeric bZIP transcription factors in skeletal muscle fibers. Furthermore, one of these heterodimers, composed of ATF4 and CCAAT enhancer-binding protein β (C/EBPβ), mediates muscle atrophy. Within skeletal muscle fibers, the ATF4-C/EBPβ heterodimer interacts with a previously unrecognized and evolutionarily conserved ATF-C/EBP composite site in exon 4 of the Gadd45a gene. This three-way interaction between ATF4, C/EBPβ, and the ATF-C/EBP composite site activates the Gadd45a gene, which encodes a critical mediator of muscle atrophy. Together, these results identify a biochemical mechanism by which ATF4 induces skeletal muscle atrophy, providing molecular-level insights into the etiology of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Scott M Ebert
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241
| | - Steven A Bullard
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Nathan Basisty
- Buck Institute for Research on Aging, Novato, California 94945
| | - George R Marcotte
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Zachary P Skopec
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jason M Dierdorff
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Asma Al-Zougbi
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Kristin C Tomcheck
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Austin D DeLau
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Jacob A Rathmacher
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246
| | - Sue C Bodine
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Emmyon, Inc., Coralville, Iowa 52241
| | | | - Christopher M Adams
- Departments of Internal Medicine and Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242; Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246; Emmyon, Inc., Coralville, Iowa 52241.
| |
Collapse
|
75
|
Blanco J, Cooper JC, Baker NE. Roles of C/EBP class bZip proteins in the growth and cell competition of Rp ('Minute') mutants in Drosophila. eLife 2020; 9:50535. [PMID: 31909714 PMCID: PMC6946401 DOI: 10.7554/elife.50535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/04/2019] [Indexed: 02/01/2023] Open
Abstract
Reduced copy number of ribosomal protein (Rp) genes adversely affects both flies and mammals. Xrp1 encodes a reportedly Drosophila-specific AT-hook, bZIP protein responsible for many of the effects including the elimination of Rp mutant cells by competition with wild type cells. Irbp18, an evolutionarily conserved bZIP gene, heterodimerizes with Xrp1 and with another bZip protein, dATF4. We show that Irbp18 is required for the effects of Xrp1, whereas dATF4 does not share the same phenotype, indicating that Xrp1/Irbp18 is the complex active in Rp mutant cells, independently of other complexes that share Irbp18. Xrp1 and Irbp18 transcripts and proteins are upregulated in Rp mutant cells by auto-regulatory expression that depends on the Xrp1 DNA binding domains and is necessary for cell competition. We show that Xrp1 is conserved beyond Drosophila, although under positive selection for rapid evolution, and that at least one human bZip protein can similarly affect Drosophila development.
Collapse
Affiliation(s)
- Jorge Blanco
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| | - Jacob C Cooper
- School of Biological SciencesUniversity of UtahSalt Lake CityUnited States
| | - Nicholas E Baker
- Department of GeneticsAlbert Einstein College of MedicineNew YorkUnited States
| |
Collapse
|
76
|
Yin Z, Venkannagari H, Lynch H, Aglyamova G, Bhandari M, Machius M, Nestler EJ, Robison AJ, Rudenko G. Self-assembly of the bZIP transcription factor ΔFosB. Curr Res Struct Biol 2019; 2:1-13. [PMID: 32542236 PMCID: PMC7295165 DOI: 10.1016/j.crstbi.2019.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/07/2023] Open
Abstract
ΔFosB is a highly stable transcription factor that accumulates in specific brain regions upon chronic exposure to drugs of abuse, stress, or seizures, and mediates lasting behavioral responses. ΔFosB reportedly heterodimerizes with JunD forming a canonical bZIP leucine zipper coiled coil that clamps onto DNA. However, the striking accumulation of ΔFosB protein in brain upon chronic insult has brought its molecular status into question. Here, we demonstrate through a series of crystal structures that the ΔFosB bZIP domain self-assembles into stable oligomeric assemblies that defy the canonical arrangement. The ΔFosB bZIP domain also self-assembles in solution, and in neuron-like Neuro 2a cells it is trapped into molecular arrangements that are consistent with our structures. Our data suggest that, as ΔFosB accumulates in brain in response to chronic insult, it forms non-canonical assemblies. These species may be at the root of ΔFosB's striking protein stability, and its unique transcriptional and behavioral consequences.
Collapse
Affiliation(s)
- Zhou Yin
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Harikanth Venkannagari
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Haley Lynch
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Galina Aglyamova
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mukund Bhandari
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mischa Machius
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric J. Nestler
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, New York, NY 10029, USA
| | - Alfred J. Robison
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Gabby Rudenko
- Department of Pharmacology and Toxicology, and the Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
77
|
Johnston BP, McCormick C. Herpesviruses and the Unfolded Protein Response. Viruses 2019; 12:E17. [PMID: 31877732 PMCID: PMC7019427 DOI: 10.3390/v12010017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023] Open
Abstract
Herpesviruses usurp cellular stress responses to promote viral replication and avoid immune surveillance. The unfolded protein response (UPR) is a conserved stress response that is activated when the protein load in the ER exceeds folding capacity and misfolded proteins accumulate. The UPR aims to restore protein homeostasis through translational and transcriptional reprogramming; if homeostasis cannot be restored, the UPR switches from "helper" to "executioner", triggering apoptosis. It is thought that the burst of herpesvirus glycoprotein synthesis during lytic replication causes ER stress, and that these viruses may have evolved mechanisms to manage UPR signaling to create an optimal niche for replication. The past decade has seen considerable progress in understanding how herpesviruses reprogram the UPR. Here we provide an overview of the molecular events of UPR activation, signaling and transcriptional outputs, and highlight key evidence that herpesviruses hijack the UPR to aid infection.
Collapse
Affiliation(s)
- Benjamin P. Johnston
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| | - Craig McCormick
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada;
- Beatrice Hunter Cancer Research Institute, 5850 College Street, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
78
|
Hu Y, Vinayagam A, Nand A, Comjean A, Chung V, Hao T, Mohr SE, Perrimon N. Molecular Interaction Search Tool (MIST): an integrated resource for mining gene and protein interaction data. Nucleic Acids Res 2019; 46:D567-D574. [PMID: 29155944 PMCID: PMC5753374 DOI: 10.1093/nar/gkx1116] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/25/2017] [Indexed: 12/16/2022] Open
Abstract
Model organism and human databases are rich with information about genetic and physical interactions. These data can be used to interpret and guide the analysis of results from new studies and develop new hypotheses. Here, we report the development of the Molecular Interaction Search Tool (MIST; http://fgrtools.hms.harvard.edu/MIST/). The MIST database integrates biological interaction data from yeast, nematode, fly, zebrafish, frog, rat and mouse model systems, as well as human. For individual or short gene lists, the MIST user interface can be used to identify interacting partners based on protein–protein and genetic interaction (GI) data from the species of interest as well as inferred interactions, known as interologs, and to view a corresponding network. The data, interologs and search tools at MIST are also useful for analyzing ‘omics datasets. In addition to describing the integrated database, we also demonstrate how MIST can be used to identify an appropriate cut-off value that balances false positive and negative discovery, and present use-cases for additional types of analysis. Altogether, the MIST database and search tools support visualization and navigation of existing protein and GI data, as well as comparison of new and existing data.
Collapse
Affiliation(s)
- Yanhui Hu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Arunachalam Vinayagam
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Ankita Nand
- Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Aram Comjean
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Verena Chung
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Tong Hao
- Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Stephanie E Mohr
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Drosophila RNAi Screening Center, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.,Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
79
|
Molecular mechanisms of the protein-protein interaction-regulated binding specificity of basic-region leucine zipper transcription factors. J Mol Model 2019; 25:246. [PMID: 31342181 DOI: 10.1007/s00894-019-4138-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
Abstract
It is well known that the DNA-binding specificity of transcription factors (TFs) is influenced by protein-protein interactions (PPIs). However, the underlying molecular mechanisms remain largely unknown. In this work, we adopted the cAMP-response element-binding protein (CREB) of the basic leucine zipper (bZIP) TF family as a model system, and a workflow of combined bioinformatics and molecular modeling analysis of protein-DNA interaction was tested. First, the multiple sequence alignment and SDPsite method were used to find potential bZIP family binding specificity determining positions (SDPs) within the protein-protein interaction region. Second, the mutation system was analyzed using molecular dynamics simulation. Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) free energy calculations confirmed the enhancement of the binding affinity of the mutation, which was in agreement with experimental results. The root mean square fluctuation (RMSF) and hydrogen bonding changes suggested an open and close protein dimerization process after the system was mutated, which resulted in the change of the hydrogen bonding of the protein-DNA interface and a slight conformational change. We believe that this work will contribute to understanding the protein-protein interaction-regulated binding specificity of bZIP transcription factors.
Collapse
|
80
|
Leach WB, Reitzel AM. Transcriptional remodelling upon light removal in a model cnidarian: Losses and gains in gene expression. Mol Ecol 2019; 28:3413-3426. [PMID: 31264275 DOI: 10.1111/mec.15163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/06/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Organismal responses to light:dark cycles can result from two general processes: (a) direct response to light or (b) a free-running rhythm (i.e., a circadian clock). Previous research in cnidarians has shown that candidate circadian clock genes have rhythmic expression in the presence of diel lighting, but these oscillations appear to be lost quickly after removal of the light cue. Here, we measure whole-organism gene expression changes in 136 transcriptomes of the sea anemone Nematostella vectensis, entrained to a light:dark environment and immediately following light cue removal to distinguish two broadly defined responses in cnidarians: light entrainment and circadian regulation. Direct light exposure resulted in significant differences in expression for hundreds of genes, including more than 200 genes with rhythmic, 24-hr periodicity. Removal of the lighting cue resulted in the loss of significant expression for 80% of these genes after 1 day, including most of the hypothesized cnidarian circadian genes. Further, 70% of these candidate genes were phase-shifted. Most surprisingly, thousands of genes, some of which are involved in oxidative stress, DNA damage response and chromatin modification, had significant differences in expression in the 24 hr following light removal, suggesting that loss of the entraining cue may induce a cellular stress response. Together, our findings suggest that a majority of genes with significant differences in expression for anemones cultured under diel lighting are largely driven by the primary photoresponse rather than a circadian clock when measured at the whole animal level. These results provide context for the evolution of cnidarian circadian biology and help to disassociate two commonly confounded factors driving oscillating phenotypes.
Collapse
Affiliation(s)
- Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| |
Collapse
|
81
|
Cohen DM, Lim HW, Won KJ, Steger DJ. Shared nucleotide flanks confer transcriptional competency to bZip core motifs. Nucleic Acids Res 2019; 46:8371-8384. [PMID: 30085281 PMCID: PMC6144830 DOI: 10.1093/nar/gky681] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022] Open
Abstract
Sequence-specific DNA binding recruits transcription factors (TFs) to the genome to regulate gene expression. Here, we perform high resolution mapping of CEBP proteins to determine how sequence dictates genomic occupancy. We demonstrate a fundamental difference between the sequence repertoire utilized by CEBPs in vivo versus the palindromic sequence preference reported by classical in vitro models, by identifying a palindromic motif at <1% of the genomic binding sites. On the native genome, CEBPs bind a diversity of related 10 bp sequences resulting from the fusion of degenerate and canonical half-sites. Altered DNA specificity of CEBPs in cells occurs through heterodimerization with other bZip TFs, and approximately 40% of CEBP-binding sites in primary human cells harbor motifs characteristic of CEBP heterodimers. In addition, we uncover an important role for sequence bias at core-motif-flanking bases for CEBPs and demonstrate that flanking bases regulate motif function across mammalian bZip TFs. Favorable flanking bases confer efficient TF occupancy and transcriptional activity, and DNA shape may explain how the flanks alter TF binding. Importantly, motif optimization within the 10-mer is strongly correlated with cell-type-independent recruitment of CEBPβ, providing key insight into how sequence sub-optimization affects genomic occupancy of widely expressed CEBPs across cell types.
Collapse
Affiliation(s)
- Daniel M Cohen
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - David J Steger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
82
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
83
|
Lambert SA, Yang AWH, Sasse A, Cowley G, Albu M, Caddick MX, Morris QD, Weirauch MT, Hughes TR. Similarity regression predicts evolution of transcription factor sequence specificity. Nat Genet 2019; 51:981-989. [PMID: 31133749 DOI: 10.1038/s41588-019-0411-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 11/09/2022]
Abstract
Transcription factor (TF) binding specificities (motifs) are essential for the analysis of gene regulation. Accurate prediction of TF motifs is critical, because it is infeasible to assay all TFs in all sequenced eukaryotic genomes. There is ongoing controversy regarding the degree of motif diversification among related species that is, in part, because of uncertainty in motif prediction methods. Here we describe similarity regression, a significantly improved method for predicting motifs, which we use to update and expand the Cis-BP database. Similarity regression inherently quantifies TF motif evolution, and shows that previous claims of near-complete conservation of motifs between human and Drosophila are inflated, with nearly half of the motifs in each species absent from the other, largely due to extensive divergence in C2H2 zinc finger proteins. We conclude that diversification in DNA-binding motifs is pervasive, and present a new tool and updated resource to study TF diversity and gene regulation across eukaryotes.
Collapse
Affiliation(s)
- Samuel A Lambert
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Ally W H Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Sasse
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gwendolyn Cowley
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Mihai Albu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Mark X Caddick
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Quaid D Morris
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Canadian Institutes For Advanced Research (CIFAR) Artificial Intelligence Chair, Vector Institute, Toronto, Ontario, Canada.,Ontario Institute of Cancer Research, Toronto, Ontario, Canada
| | - Matthew T Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. .,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada. .,CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
84
|
Butler VJ, Cortopassi WA, Gururaj S, Wang AL, Pierce OM, Jacobson MP, Kao AW. Multi-Granulin Domain Peptides Bind to Pro-Cathepsin D and Stimulate Its Enzymatic Activity More Effectively Than Progranulin in Vitro. Biochemistry 2019; 58:2670-2674. [PMID: 31099551 DOI: 10.1021/acs.biochem.9b00275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Progranulin (PGRN) is an evolutionarily conserved glycoprotein associated with several disease states, including neurodegeneration, cancer, and autoimmune disorders. This protein has recently been implicated in the regulation of lysosome function, whereby PGRN may bind to and promote the maturation and activity of the aspartyl protease cathepsin D (proCTSD, inactive precursor; matCTSD, mature, enzymatically active form). As the full-length PGRN protein can be cleaved into smaller peptides, called granulins, we assessed the function of these granulin peptides in binding to proCTSD and stimulating matCTSD enzyme activity in vitro. Here, we report that full-length PGRN and multi-granulin domain peptides bound to proCTSD with low to submicromolar binding affinities. This binding promoted proCTSD destabilization, the magnitude of which was greater for multi-granulin domain peptides than for full-length PGRN. Such destabilization correlated with enhanced matCTSD activity at acidic pH. The presence and function of multi-granulin domain peptides have typically been overlooked in previous studies. This work provides the first in vitro quantification of their binding and activity on proCTSD. Our study highlights the significance of multi-granulin domain peptides in the regulation of proCTSD maturation and enzymatic activity and suggests that attention to PGRN processing will be essential for the future understanding of the molecular mechanisms leading to neurodegenerative disease states with loss-of-function mutations in PGRN.
Collapse
Affiliation(s)
- Victoria J Butler
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Wilian A Cortopassi
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Sushmitha Gururaj
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Austin L Wang
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| | - Olivia M Pierce
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry , University of California , San Francisco , California 94143 , United States
| | - Aimee W Kao
- Department of Neurology , University of California , San Francisco , California 94143 , United States
| |
Collapse
|
85
|
Cabianca DS, Muñoz-Jiménez C, Kalck V, Gaidatzis D, Padeken J, Seeber A, Askjaer P, Gasser SM. Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature 2019; 569:734-739. [PMID: 31118512 DOI: 10.1038/s41586-019-1243-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/29/2019] [Indexed: 12/22/2022]
Abstract
The execution of developmental programs of gene expression requires an accurate partitioning of the genome into subnuclear compartments, with active euchromatin enriched centrally and silent heterochromatin at the nuclear periphery1. The existence of degenerative diseases linked to lamin A mutations suggests that perinuclear binding of chromatin contributes to cell-type integrity2,3. The methylation of lysine 9 of histone H3 (H3K9me) characterizes heterochromatin and mediates both transcriptional repression and chromatin anchoring at the inner nuclear membrane4. In Caenorhabditis elegans embryos, chromodomain protein CEC-4 bound to the inner nuclear membrane tethers heterochromatin through H3K9me3,5, whereas in differentiated tissues, a second heterochromatin-sequestering pathway is induced. Here we use an RNA interference screen in the cec-4 background and identify MRG-1 as a broadly expressed factor that is necessary for this second chromatin anchor in intestinal cells. However, MRG-1 is exclusively bound to euchromatin, suggesting that it acts indirectly. Heterochromatin detachment in double mrg-1; cec-4 mutants is rescued by depleting the histone acetyltransferase CBP-1/p300 or the transcription factor ATF-8, a member of the bZIP family (which is known to recruit CBP/p300). Overexpression of CBP-1 in cec-4 mutants is sufficient to delocalize heterochromatin in an ATF-8-dependent manner. CBP-1 and H3K27ac levels increase in heterochromatin upon mrg-1 knockdown, coincident with delocalization. This suggests that the spatial organization of chromatin in C. elegans is regulated both by the direct perinuclear attachment of silent chromatin, and by an active retention of CBP-1/p300 in euchromatin. The two pathways contribute differentially in embryos and larval tissues, with CBP-1 sequestration by MRG-1 having a major role in differentiated cells.
Collapse
Affiliation(s)
- Daphne S Cabianca
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Celia Muñoz-Jiménez
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Véronique Kalck
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, Basel, Switzerland.,Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Peter Askjaer
- Andalusian Center for Developmental Biology (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland. .,Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
86
|
Kang SK, Chu XY, Tian T, Dong PF, Chen BX, Zhang HY. Why the c-Fos/c-Jun complex is extremely conserved: An in vitro evolution exploration by combining cDNA display and proximity ligation. FEBS Lett 2019; 593:1040-1049. [PMID: 31002393 DOI: 10.1002/1873-3468.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/31/2019] [Accepted: 04/10/2019] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation involves a series of sophisticated protein-protein and protein-DNA interactions (PPI and PDI). Some transcriptional complexes, such as c-Fos/c-Jun and their binding DNA fragments, have been conserved over the past one billion years. Considering the thermodynamic principle for transcriptional complex formation, we hypothesized that the c-Fos/c-Jun complex may represent a thermodynamic summit in the evolutionary space. To test this, we invented a new method, termed One-Pot-seq, which combines cDNA display and proximity ligation to analyse PPI/PDI complexes simultaneously. We found that the wild-type c-Fos/c-Jun complex is indeed the most thermodynamically stable relative to various mutants of c-Fos/c-Jun and binding DNA fragments. Our method also provides a universal approach to detect transcriptional complexes and explore transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Shou-Kai Kang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Xin-Yi Chu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tian Tian
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Peng-Fei Dong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Bai-Xue Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
87
|
Mitochondrial UPR repression during Pseudomonas aeruginosa infection requires the bZIP protein ZIP-3. Proc Natl Acad Sci U S A 2019; 116:6146-6151. [PMID: 30850535 DOI: 10.1073/pnas.1817259116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.
Collapse
|
88
|
Drosophila Pif1A is essential for spermatogenesis and is the homolog of human CCDC157, a gene associated with idiopathic NOA. Cell Death Dis 2019; 10:125. [PMID: 30741974 PMCID: PMC6370830 DOI: 10.1038/s41419-019-1398-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/05/2023]
Abstract
The dynamic process of spermatogenesis shows little variation between invertebrate models such as Drosophila, and vertebrate models such as mice and rats. In each case, germ stem cells undergo mitotic division to proliferate and then continue, via meiosis, through various stages of elongation and individualization from spermatogonia to spermatid to finally to form mature sperm. Mature sperm are then stored in the seminal vesicles for fertilization. Errors in any of these stages can lead to male infertility. Here, we identify that Drosophila Pif1A acts as a key regulator for sperm individualization. Loss of Pif1A leads to male sterility associated with irregular individualization complex and empty seminal vesicles without mature sperm. Pif1A is highly expressed in the testes of mated male adult flies and the Pif1A protein is expressed at a higher level in male than in female flies. Pif1A is homologous to mammalian coiled-coil domain-containing protein 157 (CCDC157), which is also enriched in the testes of humans and mice. Human CCDC157, with unknown function, was identified to be downregulated in men with idiopathic non-obstructive azoospermia (NOA). We map the function of Drosophila Pif1A during spermatogenesis, showing that Pif1A is essential for spermatide individualization and involved in the regulation of the lipid metabolism genes. Our findings might be applicable for studying the function of CCDC157 in spermatogenesis and other aspects of human male fertility.
Collapse
|
89
|
Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, Luís A, McCarthy N, Montibeller L, More S, Papaioannou A, Püschel F, Sassano ML, Skoko J, Agostinis P, de Belleroche J, Eriksson LA, Fulda S, Gorman AM, Healy S, Kozlov A, Muñoz‐Pinedo C, Rehm M, Chevet E, Samali A. Endoplasmic reticulum stress signalling - from basic mechanisms to clinical applications. FEBS J 2019; 286:241-278. [PMID: 30027602 PMCID: PMC7379631 DOI: 10.1111/febs.14608] [Citation(s) in RCA: 650] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/24/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
The endoplasmic reticulum (ER) is a membranous intracellular organelle and the first compartment of the secretory pathway. As such, the ER contributes to the production and folding of approximately one-third of cellular proteins, and is thus inextricably linked to the maintenance of cellular homeostasis and the fine balance between health and disease. Specific ER stress signalling pathways, collectively known as the unfolded protein response (UPR), are required for maintaining ER homeostasis. The UPR is triggered when ER protein folding capacity is overwhelmed by cellular demand and the UPR initially aims to restore ER homeostasis and normal cellular functions. However, if this fails, then the UPR triggers cell death. In this review, we provide a UPR signalling-centric view of ER functions, from the ER's discovery to the latest advancements in the understanding of ER and UPR biology. Our review provides a synthesis of intracellular ER signalling revolving around proteostasis and the UPR, its impact on other organelles and cellular behaviour, its multifaceted and dynamic response to stress and its role in physiology, before finally exploring the potential exploitation of this knowledge to tackle unresolved biological questions and address unmet biomedical needs. Thus, we provide an integrated and global view of existing literature on ER signalling pathways and their use for therapeutic purposes.
Collapse
Affiliation(s)
- Aitor Almanza
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Antonio Carlesso
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Chetan Chintha
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | | | - Dimitrios Doultsinos
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Brian Leuzzi
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andreia Luís
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Nicole McCarthy
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | - Luigi Montibeller
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Sanket More
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Alexandra Papaioannou
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Franziska Püschel
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Maria Livia Sassano
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Josip Skoko
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Patrizia Agostinis
- Department Cellular and Molecular MedicineLaboratory of Cell Death and TherapyKU LeuvenBelgium
| | - Jackie de Belleroche
- Neurogenetics GroupDivision of Brain SciencesFaculty of MedicineImperial College LondonUK
| | - Leif A. Eriksson
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Simone Fulda
- Institute for Experimental Cancer Research in PaediatricsGoethe‐UniversityFrankfurtGermany
| | | | - Sandra Healy
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| | - Andrey Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyAUVA Research CentreViennaAustria
| | - Cristina Muñoz‐Pinedo
- Cell Death Regulation GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)BarcelonaSpain
| | - Markus Rehm
- Institute of Cell Biology and ImmunologyUniversity of StuttgartGermany
| | - Eric Chevet
- INSERM U1242University of RennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Afshin Samali
- Apoptosis Research CentreNational University of IrelandGalwayIreland
| |
Collapse
|
90
|
Potential in vitro and ex vivo targeting of bZIP53 involved in stress response and seed maturation in Arabidopsis thaliana by five designed peptide inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1249-1259. [DOI: 10.1016/j.bbapap.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/31/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022]
|
91
|
Zhang Z, Coenen H, Ruelens P, Hazarika RR, Al Hindi T, Oguis GK, Vandeperre A, van Noort V, Geuten K. Resurrected Protein Interaction Networks Reveal the Innovation Potential of Ancient Whole-Genome Duplication. THE PLANT CELL 2018; 30:2741-2760. [PMID: 30333148 PMCID: PMC6305981 DOI: 10.1105/tpc.18.00409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/18/2018] [Accepted: 10/10/2018] [Indexed: 05/29/2023]
Abstract
The evolution of plants is characterized by whole-genome duplications, sometimes closely associated with the origin of large groups of species. The gamma (γ) genome triplication occurred at the origin of the core eudicots, which comprise ∼75% of flowering plants. To better understand the impact of whole-genome duplication, we studied the protein interaction network of MADS domain transcription factors, which are key regulators of reproductive development. We reconstructed, synthesized, and tested the interactions of ancestral proteins immediately before and closely after the triplication and directly compared these ancestral networks to the extant networks of Arabidopsis thaliana and tomato (Solanum lycopersicum). We found that gamma expanded the MADS domain interaction network more strongly than subsequent genomic events. This event strongly rewired MADS domain interactions and allowed for the evolution of new functions and installed robustness through new redundancy. Despite extensive rewiring, the organization of the network was maintained through gamma. New interactions and protein retention compensated for its potentially destructive impact on network organization. Post gamma, the network evolved from an organization around the single hub SEP3 to a network organized around multiple hubs and well-connected proteins lost, rather than gained, interactions. The data provide a resource for comparative developmental biology in flowering plants.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Heleen Coenen
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Philip Ruelens
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | - Rashmi R Hazarika
- Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium
| | - Tareq Al Hindi
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| | | | | | - Vera van Noort
- Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium
| | - Koen Geuten
- Department of Biology, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
92
|
Zhang F, Hu Z, Li G, Huo S, Ma F, Cui A, Xue Y, Han Y, Gong Q, Gao J, Bian H, Meng Z, Wu H, Long G, Tan Y, Zhang Y, Lin X, Gao X, Xu A, Li Y. Hepatic CREBZF couples insulin to lipogenesis by inhibiting insig activity and contributes to hepatic steatosis in diet-induced insulin-resistant mice. Hepatology 2018; 68:1361-1375. [PMID: 29637572 DOI: 10.1002/hep.29926] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
UNLABELLED Insulin is critical for the regulation of de novo fatty acid synthesis, which converts glucose to lipid in the liver. However, how insulin signals are transduced into the cell and then regulate lipogenesis remains to be fully understood. Here, we identified CREB/ATF bZIP transcription factor (CREBZF) of the activating transcription factor/cAMP response element-binding protein (ATF/CREB) gene family as a key regulator for lipogenesis through insulin-Akt signaling. Insulin-induced gene 2a (Insig-2a) decreases during refeeding, allowing sterol regulatory element binding protein 1c to be processed to promote lipogenesis; but the mechanism of reduction is unknown. We show that Insig-2a inhibition is mediated by insulin-induced CREBZF. CREBZF directly inhibits transcription of Insig-2a through association with activating transcription factor 4. Liver-specific knockout of CREBZF causes an induction of Insig-2a and Insig-1 and resulted in repressed lipogenic program in the liver of mice during refeeding or upon treatment with streptozotocin and insulin. Moreover, hepatic CREBZF deficiency attenuates hepatic steatosis in high-fat, high-sucrose diet-fed mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced insulin resistance or genetically obese ob/ob mice and humans with hepatic steatosis, which may underscore the potential role of CREBZF in the development of sustained lipogenesis in the liver under selective insulin resistance conditions. CONCLUSION These findings uncover an unexpected mechanism that couples changes in extracellular hormonal signals to hepatic lipid homeostasis; disrupting CREBZF function may have the therapeutic potential for treating fatty liver disease and insulin resistance. (Hepatology 2018).
Collapse
Affiliation(s)
- Feifei Zhang
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhimin Hu
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gaopeng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shaofeng Huo
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fengguang Ma
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Aoyuan Cui
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yaqian Xue
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yamei Han
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qi Gong
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Gao
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haifu Wu
- Metabolic and Bariatric Surgery of Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Long
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yi Tan
- Pediatric Research Institute at the Department of Pediatrics, Wendy L. Novak Diabetes Care Center, University of Louisville, Louisville, KY
| | - Yan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Xu Lin
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.,Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Yu Li
- CAS Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
93
|
Zhu YP, Wang M, Xiang Y, Qiu L, Hu S, Zhang Z, Mattjus P, Zhu X, Zhang Y. Nach Is a Novel Subgroup at an Early Evolutionary Stage of the CNC-bZIP Subfamily Transcription Factors from the Marine Bacteria to Humans. Int J Mol Sci 2018; 19:ijms19102927. [PMID: 30261635 PMCID: PMC6213907 DOI: 10.3390/ijms19102927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/19/2018] [Accepted: 09/22/2018] [Indexed: 02/07/2023] Open
Abstract
Normal growth and development, as well as adaptive responses to various intracellular and environmental stresses, are tightly controlled by transcriptional networks. The evolutionarily conserved genomic sequences across species highlights the architecture of such certain regulatory elements. Among them, one of the most conserved transcription factors is the basic-region leucine zipper (bZIP) family. Herein, we have performed phylogenetic analysis of these bZIP proteins and found, to our surprise, that there exist a few homologous proteins of the family members Jun, Fos, ATF2, BATF, C/EBP and CNC (cap’n’collar) in either viruses or bacteria, albeit expansion and diversification of this bZIP superfamily have occurred in vertebrates from metazoan. Interestingly, a specific group of bZIP proteins is identified, designated Nach (Nrf and CNC homology), because of their strong conservation with all the known CNC and NF-E2 p45 subunit-related factors Nrf1 and Nrf2. Further experimental evidence has also been provided, revealing that Nach1 and Nach2 from the marine bacteria exert distinctive functions, when compared with human Nrf1 and Nrf2, in the transcriptional regulation of antioxidant response element (ARE)-battery genes. Collectively, further insights into these Nach/CNC-bZIP subfamily transcription factors provide a novel better understanding of distinct biological functions of these factors expressed in distinct species from the marine bacteria to humans.
Collapse
Affiliation(s)
- Yu-Ping Zhu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Meng Wang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Yuancai Xiang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Lu Qiu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Shaofan Hu
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| | - Zhengwen Zhang
- Institute of Neuroscience and Psychology, School of Life Sciences, University of Glasgow, 42 Western Common Road, Glasgow G22 5PQ, Scotland, UK.
| | - Peter Mattjus
- Department of Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Artillerigatan 6A, III, BioCity, FI-20520 Turku, Finland.
| | - Xiaomei Zhu
- Shanghai Center for Quantitative Life Science and Department of Physics, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yiguo Zhang
- The Laboratory of Cell Biochemistry and Topogenetic Regulation, College of Bioengineering and Faculty of Sciences, Chongqing University, No. 174 Shazheng Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
94
|
Enane FO, Saunthararajah Y, Korc M. Differentiation therapy and the mechanisms that terminate cancer cell proliferation without harming normal cells. Cell Death Dis 2018; 9:912. [PMID: 30190481 PMCID: PMC6127320 DOI: 10.1038/s41419-018-0919-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 12/24/2022]
Abstract
Chemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance. An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation. Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly unknown. We performed a systematic review of published literature (January 2007-June 2018) to identify gene pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC), ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies. Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes (e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-clinical and clinical trial literature.
Collapse
Affiliation(s)
- Francis O Enane
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Department of Translational Hematology and Oncology Research, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine Indianapolis, Indianapolis, IN, 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- The Pancreatic Cancer Signature Center at Indiana University Purdue University Indianapolis and Indiana University Simon Cancer, Indianapolis, IN, 46202, USA.
| |
Collapse
|
95
|
Vancraenenbroeck R, Hofmann H. Occupancies in the DNA-Binding Pathways of Intrinsically Disordered Helix-Loop-Helix Leucine-Zipper Proteins. J Phys Chem B 2018; 122:11460-11467. [DOI: 10.1021/acs.jpcb.8b07351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Renee Vancraenenbroeck
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| | - Hagen Hofmann
- Department of Structural Biology, Weizmann Institute of Science, Herzl St. 234, 76100 Rehovot, Israel
| |
Collapse
|
96
|
Abstract
To survive, organisms require mechanisms that enable them to sense changes in the outside environment, introduce necessary responses, and resist unfavorable distortion. Consequently, through evolutionary adaptation, cells have become equipped with the apparatus required to monitor their fundamental intracellular processes and the mechanisms needed to try to offset malfunction without receiving any direct signals from the outside environment. It has been shown recently that eukaryotic cells are equipped with a special mechanism that monitors their fundamental cellular functions and that some pathogenic proteobacteria can override this monitoring mechanism to cause harm. The monitored cellular activities involved in the stressed intracellular response have been researched extensively in Caenorhabditis elegans, where discovery of an association between key mitochondrial activities and innate immune responses was named "cellular associated detoxification and defenses (cSADD)." This cellular surveillance pathway (cSADD) oversees core cellular activities such as mitochondrial respiration and protein transport into mitochondria, detects xenobiotics and invading pathogens, and activates the endocrine pathways controlling behavior, detoxification, and immunity. The cSADD pathway is probably associated with cellular responses to stress in human inflammatory diseases. In the critical care field, the pathogenesis of lethal inflammatory syndromes (e.g., respiratory distress syndromes and sepsis) involves the disturbance of mitochondrial respiration leading to cell death. Up-to-date knowledge about monitored cellular activities and cSADD, especially focusing on mitochondrial involvement, can probably help fill a knowledge gap regarding the pathogenesis of lethal inflammatory syndromes in the critical care field.
Collapse
|
97
|
Brambilla V, Martignago D, Goretti D, Cerise M, Somssich M, de Rosa M, Galbiati F, Shrestha R, Lazzaro F, Simon R, Fornara F. Antagonistic Transcription Factor Complexes Modulate the Floral Transition in Rice. THE PLANT CELL 2017; 29:2801-2816. [PMID: 29042404 PMCID: PMC5728136 DOI: 10.1105/tpc.17.00645] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 05/04/2023]
Abstract
Plants measure day or night lengths to coordinate specific developmental changes with a favorable season. In rice (Oryza sativa), the reproductive phase is initiated by exposure to short days when expression of HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1) is induced in leaves. The cognate proteins are components of the florigenic signal and move systemically through the phloem to reach the shoot apical meristem (SAM). In the SAM, they form a transcriptional activation complex with the bZIP transcription factor OsFD1 to start panicle development. Here, we show that Hd3a and RFT1 can form transcriptional activation or repression complexes also in leaves and feed back to regulate their own transcription. Activation complexes depend on OsFD1 to promote flowering. However, additional bZIPs, including Hd3a BINDING REPRESSOR FACTOR1 (HBF1) and HBF2, form repressor complexes that reduce Hd3a and RFT1 expression to delay flowering. We propose that Hd3a and RFT1 are also active locally in leaves to fine-tune photoperiodic flowering responses.
Collapse
Affiliation(s)
- Vittoria Brambilla
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | | | - Daniela Goretti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Martina Cerise
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Marc Somssich
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | | | | | - Roshi Shrestha
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federico Lazzaro
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Rüdiger Simon
- Institute for Developmental Genetics and Cluster of Excellence on Plant Sciences, Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Fabio Fornara
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
98
|
Cancer-specific PERK signaling drives invasion and metastasis through CREB3L1. Nat Commun 2017; 8:1079. [PMID: 29057869 PMCID: PMC5651903 DOI: 10.1038/s41467-017-01052-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/15/2017] [Indexed: 12/14/2022] Open
Abstract
PERK signaling is required for cancer invasion and there is interest in targeting this pathway for therapy. Unfortunately, chemical inhibitors of PERK's kinase activity cause on-target side effects that have precluded their further development. One strategy for resolving this difficulty would be to target downstream components of the pathway that specifically mediate PERK's pro-invasive and metastatic functions. Here we identify the transcription factor CREB3L1 as an essential mediator of PERK's pro-metastatic functions in breast cancer. CREB3L1 acts downstream of PERK, specifically in the mesenchymal subtype of triple-negative tumors, and its inhibition by genetic or pharmacological methods suppresses cancer cell invasion and metastasis. In patients with this tumor subtype, CREB3L1 expression is predictive of distant metastasis. These findings establish CREB3L1 as a key downstream mediator of PERK-driven metastasis and a druggable target for breast cancer therapy.
Collapse
|
99
|
Li L, Ward DM. Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1. Curr Genet 2017; 64:413-416. [PMID: 29043483 DOI: 10.1007/s00294-017-0767-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 11/27/2022]
Abstract
All eukaryotes require the transition metal, iron, a redox active element that is an essential cofactor in many metabolic pathways, as well as an oxygen carrier. Iron can also react to generate oxygen radicals such as hydroxyl radicals and superoxide anions, which are highly toxic to cells. Therefore, organisms have developed intricate mechanisms to acquire iron as well as to protect themselves from the toxic effects of excess iron. In fungi and plants, iron is stored in the vacuole as a protective mechanism against iron toxicity. Iron storage in the vacuole is mediated predominantly by the vacuolar metal importer Ccc1 in yeast and the homologous transporter VIT1 in plants. Transcription of yeast CCC1 expression is tightly controlled primarily by the transcription factor Yap5, which sits on the CCC1 promoter and activates transcription through the binding of Fe-S clusters. A second mechanism that regulates CCC1 transcription is through the Snf1 signaling pathway involved in low-glucose sensing. Snf1 activates stress transcription factors Msn2 and Msn4 to mediate CCC1 transcription. Transcriptional regulation by Yap5 and Snf1 are completely independent and provide for a graded response in Ccc1 expression. The identification of multiple independent transcriptional pathways that regulate the levels of Ccc1 under high iron conditions accentuates the importance of protecting cells from the toxic effects of high iron.
Collapse
Affiliation(s)
- Liangtao Li
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA
| | - Diane M Ward
- Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA.
| |
Collapse
|
100
|
Sears TK, Angelastro JM. The transcription factor ATF5: role in cellular differentiation, stress responses, and cancer. Oncotarget 2017; 8:84595-84609. [PMID: 29137451 PMCID: PMC5663623 DOI: 10.18632/oncotarget.21102] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a cellular prosurvival transcription factor within the basic leucine zipper (bZip) family that is involved in cellular differentiation and promotes cellular adaptation to stress. Recent studies have characterized the oncogenic role of ATF5 in the development of several different types of cancer, notably glioblastoma. Preclinical assessment of a systemically deliverable dominant-negative ATF5 (dnATF5) biologic has found that targeting ATF5 results in tumor regression and tumor growth inhibition of glioblastoma xenografts in mouse models. In this review, we comprehensively and critically detail the current scientific literature on ATF5 in the context of cellular differentiation, survival, and response to stressors in normal tissues. Furthermore, we will discuss how the prosurvival role of ATF5 aides in cancer development, followed by current advances in targeting ATF5 using dominant-negative biologics, and perspectives on future research.
Collapse
Affiliation(s)
- Thomas K Sears
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| | - James M Angelastro
- Department of Molecular Biosciences, University of California, Davis School of Veterinary Medicine, Davis, 95616 CA, USA
| |
Collapse
|