51
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. J Virol 2024; 98:e0119424. [PMID: 39470208 PMCID: PMC11575322 DOI: 10.1128/jvi.01194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae, which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV), representative members of alpha- and betaherpesviruses, respectively. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. IMPORTANCE Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
Affiliation(s)
- James Zhen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Jia Chen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Haigen Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Shiqing Liao
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Shiheng Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
| | - Yan Yuan
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Richard Longnecker
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California, USA
- California NanoSystems Institute, UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
52
|
Chagomerana MB, Moser CB, Kang M, Umbleja T, Hughes MD, Campbell TB, Krown SE, Borok MZ, Samaneka W, Ngongondo M, Nyirenda M, Langat DC, Hoagland B, Burger H, Busakhala N, Njiru E, Mwelase N, Mngqibisa R, Hosseinipour MC. Mortality and Associated Risk Factors Among People Living With HIV With Kaposi Sarcoma: A5263/AMC066 and A5264/AMC067. J Acquir Immune Defic Syndr 2024; 97:216-225. [PMID: 39431505 PMCID: PMC11494148 DOI: 10.1097/qai.0000000000003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/03/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND AIDS-related Kaposi sarcoma (AIDS-KS) remains a leading cause of morbidity and mortality among people living with HIV in Africa. Mortality among people with AIDS-KS on antiretroviral therapy remains high compared with people on antiretroviral therapy who do not have AIDS-KS. SETTING People living with HIV with Kaposi sarcoma (KS) who participated in 2 randomized trials (A5263/AMC066 [advanced stage] and A5264/AMC067 [mild-to-moderate stage]) conducted by AIDS Clinical Trials Group/AIDS Malignancy Consortium in low- and middle-income countries. METHODS We estimated mortality rates over the trial period. Cox proportional hazards regressions were used to identify baseline characteristics associated with mortality and compared mortality rates between participants who had KS progression within 12 weeks of treatment initiation (early progression of KS [KS-PD]) and those who did not. RESULTS Of the 329 and 189 eligible participants in A5263/AMC066 and A5264/AMC067, 71 (21.6%) and 24 (12.7%) died, respectively. In both trials, hypoalbuminemia was associated with increased hazards of death compared with normal albumin; A5263/AMC066: mild hypoalbuminemia (adjusted hazard ratio [aHR] = 3.01; 95% CI: 1.42 to 6.29), moderate hypoalbuminemia (aHR = 5.11; 95% CI: 2.54 to 10.29), and severe hypoalbuminemia (aHR = 14.58; 95% CI: 6.32 to 35.60), and A5264/AMC067: mild hypoalbuminemia (aHR = 5.66; 95% CI: 1.90 to 16.93) and moderate hypoalbuminemia (aHR = 7.02; 95% CI: 2.57 to 19.15). The rate of death was higher among participants who had early KS-PD than those without early KS-PD in A5263/AMC066 (HR = 5.09; 95% CI: 1.71 to 15.19) but not in A5264/AMC067 (HR = 1.74; 95% CI: 0.66 to 4.62). CONCLUSIONS Albumin measurements may be used to identify individuals at higher risk of death after initiating KS treatment and for evaluation of interventions that can reduce AIDS-KS mortality.
Collapse
Affiliation(s)
- Maganizo B. Chagomerana
- UNC Project, Lilongwe, Malawi
- UNC Department of Medicine, University of North Carolina at Chapel Hill, USA
| | - Carlee B. Moser
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, USA
| | - Minhee Kang
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, USA
| | - Triin Umbleja
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, USA
| | - Michael D. Hughes
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, USA
| | | | | | - Margaret Z. Borok
- University of Zimbabwe, Faculty of Medicine and Health Sciences, Zimbabwe
| | - Wadzanai Samaneka
- University of Zimbabwe, Faculty of Medicine and Health Sciences, Zimbabwe
| | | | - Mulinda Nyirenda
- Johns Hopkins Research Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Deborah C. Langat
- Kenya Medical Research Institute/Walter Reed Project, Kericho, Kenya
| | | | - Henriette Burger
- Faculty of Medicine and Health Sciences, Stellenbosch University and Tygerberg Academic hospital, Cape Town, South Africa
| | | | | | | | | | - Mina C. Hosseinipour
- UNC Project, Lilongwe, Malawi
- UNC Department of Medicine, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
53
|
Yu CJ, Damania B. Molecular Mechanisms of Kaposi Sarcoma-Associated Herpesvirus (HHV8)-Related Lymphomagenesis. Cancers (Basel) 2024; 16:3693. [PMID: 39518131 PMCID: PMC11544871 DOI: 10.3390/cancers16213693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Approximately 15-20% of cancers are caused by viruses. Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8 (HHV8), is an oncogenic virus that is the etiologic agent of not only Kaposi sarcoma but also the lymphoproliferative disorders, primary effusion lymphoma (PEL) and multicentric Castleman disease (MCD). KSHV can infect a broad tropism of cells, including B lymphocytes, wherein KSHV encodes specific viral proteins that can transform the cell. KSHV infection precedes the progression of PEL and MCD. KSHV establishes lifelong infection and has two phases of its lifecycle: latent and lytic. During the latent phase, viral genomes are maintained episomally with limited gene expression. Upon sporadic reactivation, the virus enters its replicative lytic phase to produce infectious virions. KSHV relies on its viral products to modulate host factors to evade immune detection or to co-opt their function for KSHV persistence. These manipulations dysregulate normal cell pathways to ensure cell survival and inhibit antiviral immune responses, which in turn, contribute to KSHV-associated malignancies. Here, we highlight the known molecular mechanisms of KSHV that promote lymphomagenesis and how these findings identify potential therapeutic targets for KSHV-associated lymphomas.
Collapse
Affiliation(s)
| | - Blossom Damania
- Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA;
| |
Collapse
|
54
|
Li W, Zhou J, Gu Y, Chen Y, Huang Y, Yang J, Zhu X, Zhao K, Yan Q, Zhao Z, Li X, Chen G, Jia X, Gao SJ, Lu C. Lactylation of RNA m 6A demethylase ALKBH5 promotes innate immune response to DNA herpesviruses and mpox virus. Proc Natl Acad Sci U S A 2024; 121:e2409132121. [PMID: 39413129 PMCID: PMC11513906 DOI: 10.1073/pnas.2409132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/31/2024] [Indexed: 10/18/2024] Open
Abstract
RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-β) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-β mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-β mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.
Collapse
Affiliation(s)
- Wan Li
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Yiming Huang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Jingxin Yang
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Xiaojuan Zhu
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Kangchen Zhao
- Jiangsu Provincial Medical Key Laboratory of Pathogenic Microbiology in Emerging Major Infectious Diseases, National Health Commission (NHC) Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing210009, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| | - Zongzheng Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Xiao Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun130122, People’s Republic of China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou213000, People’s Republic of China
| | - Xuemei Jia
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA15232
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA15232
| | - Chun Lu
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing210004, People’s Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing211166, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing211166, People’s Republic of China
| |
Collapse
|
55
|
Palmer M, Leo A, Atyeo N, Tomacari C, Nguyen X, Papp B. Conserved linear motif within the immediate early protein ORF45 promotes its engagement with KSHV lytic cycle-promoting forkhead transcription factors, FOXK1 and FOXK2. J Virol 2024; 98:e0088624. [PMID: 39287387 PMCID: PMC11494905 DOI: 10.1128/jvi.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Collapse
Affiliation(s)
- Marley Palmer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alessandro Leo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Christiana Tomacari
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xuan Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
56
|
Shaik F, Uldrick TS, Mazinu M, Gwebushe N, Mosam A. Early Changes in Health-Related Quality of Life as a Biomarker of Survival in African Patients with HIV-Associated Kaposi Sarcoma. Trop Med Infect Dis 2024; 9:244. [PMID: 39453271 PMCID: PMC11511451 DOI: 10.3390/tropicalmed9100244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Sub-Saharan Africa bears the largest public health burden of Kaposi sarcoma (KS), a leading cause of cancer mortality. Quality of life (QOL) assessments in cancer patients can provide information on prognosis beyond traditional biomarkers or biological measures. The prognostic value of QOL measures in patients with HIV-KS was evaluated. Prognostic associations of baseline QOL scores (by quartiles or thresholds for clinical importance) and changes in QOL scores (using minimum important difference) over the first 3 months of therapy were evaluated in 112 participants with HIV-KS randomised to receive ART, with or without chemotherapy. Cox's regression analysis assessed the prognostic contribution of QOL scores from the EORTC QLQ-C30 questionnaire. Survival curves were generated using the Kaplan-Meier method. Baseline QOL scores did not predict overall survival. The change in the 3-month QOL scores for the global health scale, fatigue, and pain domains was prognostic; the hazard ratios were 3.88 (95% CI 1.32-11.38, p = 0.01), 3.72 (95% CI 1.61-8.62, p = 0.00) and 5.96 (95% CI 2.46-14.43, p = 0.00), respectively. QOL assessments can provide useful prognostic information in patients with HIV-KS. Patients lacking meaningful improvement early into treatment represent a population at high risk of death.
Collapse
Affiliation(s)
- Fahmida Shaik
- Department of Dermatology, University of Kwa-Zulu Natal, Durban 4001, South Africa;
- SAMRC Clinician Researcher Development Scholarship PhD Programme, Tygerberg, Cape Town 7505, South Africa
| | | | - Mikateko Mazinu
- Biostatistics Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.M.); (N.G.)
| | - Nomonde Gwebushe
- Biostatistics Research Unit, South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (M.M.); (N.G.)
| | - Anisa Mosam
- Department of Dermatology, University of Kwa-Zulu Natal, Durban 4001, South Africa;
- Inkosi Albert Luthuli Central Hospital, Cato Manor, Durban 4091, South Africa
| |
Collapse
|
57
|
Dommisch H, Schmidt‐Westhausen AM. The role of viruses in oral mucosal lesions. Periodontol 2000 2024; 96:189-202. [PMID: 38411337 PMCID: PMC11579825 DOI: 10.1111/prd.12553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/21/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
The mucosa of the oral cavity is exposed to a large number of different microorganisms such as archaea, bacteria, fungi, parasites, and viruses. Among those, viruses cause specific infections, which can easily be transmitted from one person to another. The infectious route may not only include patients and their relatives but also the dental professional team. Thus, a wide knowledge regarding specific viral infections is crucial for the daily routine. Signs and symptoms of oral viral infections can be completely absent or develop into a pronounced clinical picture, so that early detection and information determine the further course of the infection and its influence on other inflammatory diseases, such as periodontitis, as well as the safety of family members and the social environment. As the clinical manifestation of viral infections may be highly variable leading to heterogenous mucosal lesions it is, in most cases, mandatory to differentiate them by specific microbiological tests in addition to clinical examination procedures. This article will give an overview of the role of viruses infecting the oral mucosa, and in addition, describe their clinical manifestation and management.
Collapse
Affiliation(s)
- Henrik Dommisch
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| | - Andrea Maria Schmidt‐Westhausen
- Department of Periodontology, Oral Medicine and Oral Surgery, Charité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt Universität zu BerlinBerlinGermany
| |
Collapse
|
58
|
Toner K, McCann CD, Bollard CM. Applications of cell therapy in the treatment of virus-associated cancers. Nat Rev Clin Oncol 2024; 21:709-724. [PMID: 39160243 DOI: 10.1038/s41571-024-00930-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/21/2024]
Abstract
A diverse range of viruses have well-established roles as the primary driver of oncogenesis in various haematological malignancies and solid tumours. Indeed, estimates suggest that approximately 1.5 million patients annually are diagnosed with virus-related cancers. The predominant human oncoviruses include Epstein-Barr virus (EBV), Kaposi sarcoma-associated herpesvirus (KSHV), hepatitis B and C viruses (HBV and HCV), human papillomavirus (HPV), human T-lymphotropic virus type 1 (HTLV1), and Merkel cell polyomavirus (MCPyV). In addition, although not inherently oncogenic, human immunodeficiency virus (HIV) is associated with immunosuppression that contributes to the development of AIDS-defining cancers (specifically, Kaposi sarcoma, aggressive B cell non-Hodgkin lymphoma and cervical cancer). Given that an adaptive T cell-mediated immune response is crucial for the control of viral infections, increasing research is being focused on evaluating virus-specific T cell therapies for the treatment of virus-associated cancers. In this Review, we briefly outline the roles of viruses in the pathogenesis of these malignancies before describing progress to date in the field of virus-specific T cell therapy and evaluating the potential utility of these therapies to treat or possibly even prevent virus-related malignancies.
Collapse
Affiliation(s)
- Keri Toner
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Hospital, Washington, DC, USA.
- Department of Paediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
59
|
Yusifli Z, Ismayilov R, Kosemehmetoglu K, Gedikoglu G. A Single-Center Retrospective Analysis of Kaposi's Sarcoma: Is There a Relationship Between Emmprin/CD147 Expression and Biological Behavior? Int J Surg Pathol 2024; 32:1263-1268. [PMID: 38291659 DOI: 10.1177/10668969241226711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
OBJECTIVES Emmprin (CD147/BSG) protein is estimated to play a key role in cell migration and chemoresistance in viral carcinogenesis. However, there are very limited studies investigating the CD147 in the oncogenesis of Kaposi's sarcoma-associated herpesvirus. This study aims to reveal the relationship between CD147 expression with histopathological parameters, disease pattern, and recurrence in Kaposi's sarcoma (KS). METHODS The study included 67 patients diagnosed with KS between January 1982 and September 2023. Clinical and histopathological features were analyzed retrospectively. HHV-8, CD31, and CD147 expressions were evaluated by immunohistochemistry. RESULTS Sixteen (24%) female and 51 (76%) male patients with median age of 64 (10-86) were included in the study. CD147 was positive in 57 (85%) cases and associated with nodular pattern (P = .001), presence of solid/fibrosarcomatous area (P = .005), and high mitotic activity (P = .035). The disease relapsed in 17 (27%) of the 63 patients with median 2 (0-12) years follow-up. While a 5-year relapse-free survival was 48.5% in the CD147 diffuse positive group, it was 83.4% in focal positive and 100% in negative cases (P = .029). CONCLUSION Our study exhibited the relationship between CD147 overexpression and recurrence in KS, but the inhomogeneity of the treatment groups and the small number of patients should also be considered. These findings may provide insight into the pathogenesis of KS and the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Zarifa Yusifli
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rashad Ismayilov
- Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Kemal Kosemehmetoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gokhan Gedikoglu
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
60
|
Yan Q, Zhou J, Gu Y, Huang W, Ruan M, Zhang H, Wang T, Wei P, Chen G, Li W, Lu C. Lactylation of NAT10 promotes N 4-acetylcytidine modification on tRNA Ser-CGA-1-1 to boost oncogenic DNA virus KSHV reactivation. Cell Death Differ 2024; 31:1362-1374. [PMID: 38879723 PMCID: PMC11445560 DOI: 10.1038/s41418-024-01327-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/03/2024] Open
Abstract
N4-acetylcytidine (ac4C), a conserved but recently rediscovered RNA modification on tRNAs, rRNAs and mRNAs, is catalyzed by N-acetyltransferase 10 (NAT10). Lysine acylation is a ubiquitous protein modification that controls protein functions. Our latest study demonstrates a NAT10-dependent ac4C modification, which occurs on the polyadenylated nuclear RNA (PAN) encoded by oncogenic DNA virus Kaposi's sarcoma-associated herpesvirus (KSHV), can induce KSHV reactivation from latency and activate inflammasome. However, it remains unclear whether a novel lysine acylation occurs in NAT10 during KSHV reactivation and how this acylation of NAT10 regulates tRNAs ac4C modification. Here, we showed that NAT10 was lactylated by α-tubulin acetyltransferase 1 (ATAT1), as a writer at the critical domain, to exert RNA acetyltransferase function and thus increase the ac4C level of tRNASer-CGA-1-1. Mutagenesis at the ac4C site in tRNASer-CGA-1-1 inhibited its ac4C modifications, translation efficiency of viral lytic genes, and virion production. Mechanistically, KSHV PAN orchestrated NAT10 and ATAT1 to enhance NAT10 lactylation, resulting in tRNASer-CGA-1-1 ac4C modification, eventually boosting KSHV reactivation. Our findings reveal a novel post-translational modification in NAT10, as well as expand the understanding about tRNA-related ac4C modification during KSHV replication, which may be exploited to design therapeutic strategies for KSHV-related diseases.
Collapse
Affiliation(s)
- Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yang Gu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wenjing Huang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Mingpeng Ruan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Guochun Chen
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Infectious Diseases, Changzhou Third People's Hospital, Changzhou, 213000, PR China.
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
- Changzhou Medical Center, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
61
|
Elshirbeny M, Murshed K, Fawzy A, Nauman A, Hamdi A, Akhtar M, Al-Malki H, Alkadi M. Kaposi Sarcoma Involving Kidney Allografts: A Report of Two Cases From Qatar and Literature Review. Cureus 2024; 16:e71573. [PMID: 39559587 PMCID: PMC11571281 DOI: 10.7759/cureus.71573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/20/2024] Open
Abstract
Immunosuppression in kidney transplantation elevates the risk of malignancies, particularly immune-driven and virus-related cancers like Kaposi sarcoma (KS). KS typically manifests as single or multiple skin lesions following kidney transplantation but can also affect other organs. Involvement of the kidney allograft by KS is exceptionally rare, with only a few cases documented. In this report, we present all known cases of KS involving kidney allografts in adult transplant recipients in Qatar, accompanied by a brief review of the literature.
Collapse
Affiliation(s)
| | - Khaled Murshed
- Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, QAT
| | - Ashraf Fawzy
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Awais Nauman
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Ahmed Hamdi
- Nephrology, Hamad Medical Corporation, Doha, QAT
| | - Mohammed Akhtar
- Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, QAT
| | | | | |
Collapse
|
62
|
Li X, Ohler ZW, Day A, Bassel L, Grosskopf A, Afsari B, Tagawa T, Custer W, Mangusan R, Lurain K, Yarchoan R, Ziegelbauer J, Ramaswami R, Krug LT. Mapping herpesvirus-driven impacts on the cellular milieu and transcriptional profile of Kaposi sarcoma in patient-derived mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615429. [PMID: 39386738 PMCID: PMC11463583 DOI: 10.1101/2024.09.27.615429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Kaposi sarcoma (KS) is defined by aberrant angiogenesis driven by Kaposi sarcoma herpesvirus (KSHV)-infected spindle cells with endothelial characteristics. KS research is hindered by rapid loss of KSHV infection upon explant culture of tumor cells. Here, we establish patient-derived KS xenografts (PDXs) upon orthotopic implantation of cutaneous KS biopsies in immunodeficient mice. KS tumors were maintained in 27/28 PDX until experimental endpoint, up to 272 days in the first passage of recipient mice. KSHV latency associated nuclear antigen (LANA)+ endothelial cell density increased by a mean 4.3-fold in 14/15 PDX analyzed by IHC at passage 1 compared to respective input biopsies, regardless of implantation variables and clinical features of patients. The Ki-67 proliferation marker colocalized with LANA more frequently in PDXs. Spatial transcriptome analysis revealed increased expression of viral transcripts from latent and lytic gene classes in the PDX. The expanded KSHV+ regions of the PDX maintained signature gene expression of KS tumors, with enrichment in pathways associated with angiogenesis and endothelium development. Cells with characteristics of tumor-associated fibroblasts derived from PDX were propagated for 15 passages. These fibroblast-like cells were permissive for de novo KSHV infection, and one lineage produced CXCL12, a cancer-promoting chemokine. Spatial analysis revealed that fibroblasts are a likely source of CXCL12 signaling to CXCR4 that was upregulated in KS regions. The reproducible expansion of KSHV-infected endothelial cells in PDX from multiple donors and recapitulation of a KS tumor gene signature supports the application of patient-derived KS mouse models for studies of pathogenesis and novel therapies.
Collapse
Affiliation(s)
- Xiaofan Li
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Zoë Weaver Ohler
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Amanda Day
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Laura Bassel
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Anna Grosskopf
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Bahman Afsari
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Takanobu Tagawa
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Wendi Custer
- Center for Advanced Preclinical Research, Center for Cancer Research, National Cancer Institute; Frederick, MD
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Joseph Ziegelbauer
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| | - Laurie T. Krug
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute; Bethesda, MD
| |
Collapse
|
63
|
Bao C, Gao Q, Xiang H, Shen Y, Chen Q, Gao Q, Cao Y, Zhang M, He W, Mao L. Human endogenous retroviruses and exogenous viral infections. Front Cell Infect Microbiol 2024; 14:1439292. [PMID: 39397863 PMCID: PMC11466896 DOI: 10.3389/fcimb.2024.1439292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/03/2024] [Indexed: 10/15/2024] Open
Abstract
The human genome harbors many endogenous retroviral elements, known as human endogenous retroviruses (HERVs), which have been integrated into the genome during evolution due to infections by exogenous retroviruses. Accounting for up to 8% of the human genome, HERVs are tightly regulated by the host and are implicated in various physiological and pathological processes. Aberrant expression of HERVs has been observed in numerous studies on exogenous viral infections. In this review, we focus on elucidating the potential roles of HERVs during various exogenous viral infections and further discuss their implications in antiviral immunity.
Collapse
Affiliation(s)
- Chenxuan Bao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qing Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Huayuan Xiang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuxuan Shen
- Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Qiaoqiao Chen
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Qianqian Gao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yuanfei Cao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Mengyu Zhang
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Wenyuan He
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
64
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
65
|
Park J, Lee JE. Localized Radiotherapy for Classic Kaposi's Sarcoma: An Analysis of Lesion Characteristics and Treatment Response. Cancers (Basel) 2024; 16:3194. [PMID: 39335165 PMCID: PMC11430677 DOI: 10.3390/cancers16183194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES Classic Kaposi's sarcoma (CKS) is a rare malignancy with diverse clinical presentations, lacking a standard treatment. While localized therapies are commonly used for symptomatic lesions, radiotherapy (RT) has demonstrated effectiveness. This study aims to evaluate the efficacy of RT for treating skin lesions in CKS. METHODS A retrospective analysis was conducted on patients with KS treated between April 2012 and January 2024. In total, 69 lesions in 16 patients were included. Treatment response was defined as follows: complete response (CR) indicated the absence of clinically detectable skin lesions and symptoms; partial response (PR) was a reduction in lesion height by more than half or a lighter lesion color compared to before treatment. In-field recurrence was the appearance of new lesions within a previously irradiated field. Logistic regression analysis was used to investigate factors influencing response and in-field recurrence. RESULTS The median follow-up period was 52 months (range, 3-138 months). The overall response rate was 100%, with 92.8% of the patients achieving CR and 7.2% receiving PR. PR was observed in three patients with five lesions, all of which remained stable. In-field recurrence occurred in two patients with initially advanced disease, and all recurrent lesions responded to RT. No variables were significantly associated with response or in-field recurrence. CONCLUSIONS RT for CKS showed a 100% response rate, with complete symptom relief in all cases. The effectiveness of RT was evident, even in cases involving disseminated lesions. Further research is needed to determine the optimal RT dose and fractionation.
Collapse
Affiliation(s)
| | - Jeong Eun Lee
- Department of Radiation Oncology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea;
| |
Collapse
|
66
|
Li G, Li Y, Tang X, Wang L, Yue S, He S, Li T. LKB1 suppresses KSHV reactivation and promotes primary effusion lymphoma progression. J Virol 2024; 98:e0060424. [PMID: 39194241 PMCID: PMC11406988 DOI: 10.1128/jvi.00604-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
Viruses normally reprogram the host cell metabolic pathways as well as metabolic sensors to facilitate their persistence. The serine-threonine liver kinase B1 (LKB1) is a master upstream kinase of 5'-AMP-activated protein kinase (AMPK) that senses the energy status and therefore regulates the intracellular metabolic homeostasis. Previous studies showed that AMPK restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication in endothelial cells during primary infection and promotes primary effusion lymphoma (PEL) cell survival. However, the role of LKB1 in KSHV lytic reactivation and KSHV-associated malignancies is unclear. In this study, we found that LKB1 is phosphorylated or activated in KSHV-positive PEL cells. Mechanistically, KSHV-encoded vCyclin mediated LKB1 activation in PEL cells, as vCyclin knockout ablated, while vCyclin overexpression enhanced LKB1 activation. Furthermore, knockdown of LKB1 inactivated AMPK and induced KSHV reactivation, as indicated by the increased expression of viral lytic genes and the increased virions in supernatants. Accordingly, AMPK inhibition by functional knockdown or a pharmacologic inhibitor, Compound C, promoted KSHV reactivation in PEL cells. Furthermore, inhibition of either LKB1 or AMPKα1 efficiently induced cell death by apoptosis of PEL cells both in vitro and in vivo. Together, these results identify LKB1 as a vulnerable target for PEL, which could be potentially exploited for treating other virus-associated diseases.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus associated with several human cancers, such as primary effusion lymphoma (PEL). Here, we showed that serine-threonine liver kinase B1 (LKB1), upstream of 5' AMP-activated protein kinase (AMPK), is activated by KSHV-encoded vCyclin and maintains KSHV latency in PEL cells. Inhibition of either LKB1 or AMPK enhances KSHV lytic replication from latency, which at least partially accounts for PEL cell death by apoptosis. Compound C, a potent AMPK inhibitor, induced KSHV reactivation and efficiently inhibited PEL progression in vivo. Thus, our work revealed that LKB1 is a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Guanya Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yinan Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Tang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Lijie Wang
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shusheng Yue
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Tingting Li
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
67
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
68
|
Orbaum-Harel O, Sloutskin A, Kalt I, Sarid R. KSHV ORF20 Promotes Coordinated Lytic Reactivation for Increased Infectious Particle Production. Viruses 2024; 16:1418. [PMID: 39339894 PMCID: PMC11437498 DOI: 10.3390/v16091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a cancer-causing virus that establishes life-long infection. KSHV is implicated in the etiology of Kaposi's sarcoma, and a number of rare hematopoietic malignancies. The present study focuses on the KSHV open reading frame 20 (ORF20), a member of the conserved herpesvirus UL24 protein family containing five conserved homology domains and a conserved PD-(D/E)XK putative endonuclease motif, whose nuclease function has not been established to date. ORF20 encodes three co-linear protein isoforms, full length, intermediate, and short, though their differential functions are unknown. In an effort to determine the role of ORF20 during KSHV infection, we generated a recombinant ORF20-Null KSHV genome, which fails to express all three ORF20 isoforms. This genome was reconstituted in iSLK cells to establish a latent infection, which resulted in an accelerated transcription of viral mRNAs, an earlier accumulation of viral lytic proteins, an increase in the quantity of viral DNA copies, and a significant decrease in viral yield upon lytic reactivation. This was accompanied by early cell death of cells infected with the ORF20-Null virus. Functional complementation of the ORF20-Null mutant with the short ORF20 isoform rescued KSHV production, whereas its endonuclease mutant form failed to enhance lytic reactivation. Complementation with the short isoform further revealed a decrease in cell death as compared with ORF20-Null virus. Finally, expression of IL6 and CXCL8, previously shown to be affected by the hCMV UL24 homolog, was relatively low upon reactivation of cells infected with the ORF20-Null virus. These findings suggest that ORF20 protein, with its putative endonuclease motif, promotes coordinated lytic reactivation for increased infectious particle production.
Collapse
Affiliation(s)
- Odelia Orbaum-Harel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Anna Sloutskin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
| | - Inna Kalt
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Ronit Sarid
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (O.O.-H.)
- Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
69
|
Odeny TA, Fink V, Muchengeti M, Gopal S. Cancer in People with HIV. Infect Dis Clin North Am 2024; 38:531-557. [PMID: 39111924 PMCID: PMC11529824 DOI: 10.1016/j.idc.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
We review the intersection of human immunodeficiency virus (HIV) and cancer globally, including the complex interplay of oncogenic infections, chronic inflammation, and behavioral and other factors in increasing cancer risk among people with HIV (PWH). We discuss current cancer screening, prevention, and treatment recommendations for PWH. Specific interventions include vaccination, behavioral risk reduction, timely HIV diagnosis and treatment, screening for specific cancer sites, and multifaceted treatment considerations unique to PWH including supportive care and drug interactions. Finally, the potential of novel therapies and the need for inclusive cancer clinical trials are highlighted. Collaborative multidisciplinary efforts are critical for continued progress against cancer among PWH.
Collapse
Affiliation(s)
- Thomas A Odeny
- Division of Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., CB 8056, St. Louis, MO 63110-1093, USA
| | - Valeria Fink
- Research Department, Fundación Huésped, Av. Forest 345 (C1427CEA) Buenos Aires, Argentina
| | - Mazvita Muchengeti
- School of Public Health, University of the Witwatersrand, Johannesburg, South Africa; South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, South Africa
| | - Satish Gopal
- Center for Global Health, National Cancer Institute, 9609 Medical Center Drive, Rockville MD 20850, USA.
| |
Collapse
|
70
|
Niu D, Ma Y, Ren P, Chang S, Li C, Jiang Y, Han C, Lan K. Methylation of KSHV vCyclin by PRMT5 contributes to cell cycle progression and cell proliferation. PLoS Pathog 2024; 20:e1012535. [PMID: 39255317 PMCID: PMC11421797 DOI: 10.1371/journal.ppat.1012535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/24/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.
Collapse
Affiliation(s)
- Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chenhui Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
71
|
Kampouri E, Little JS, Crocchiolo R, Hill JA. Human herpesvirus-6, HHV-8 and parvovirus B19 after allogeneic hematopoietic cell transplant: the lesser-known viral complications. Curr Opin Infect Dis 2024; 37:245-253. [PMID: 38726832 PMCID: PMC11932445 DOI: 10.1097/qco.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW Viral infections continue to burden allogeneic hematopoietic cell transplant (HCT) recipients. We review the epidemiology, diagnosis, and management of human herpesvirus (HHV)-6, HHV-8 and parvovirus B19 following HCT. RECENT FINDINGS Advances in HCT practices significantly improved outcomes but impact viral epidemiology: post-transplant cyclophosphamide for graft-versus-host disease prevention increases HHV-6 reactivation risk while the impact of letermovir for CMV prophylaxis - and resulting decrease in broad-spectrum antivirals - is more complex. Beyond the well established HHV-6 encephalitis, recent evidence implicates HHV-6 in pneumonitis. Novel less toxic therapeutic approaches (brincidofovir, virus-specific T-cells) may enable preventive strategies in the future. HHV-8 is the causal agent of Kaposi's sarcoma, which is only sporadically reported after HCT, but other manifestations are possible and not well elucidated. Parvovirus B19 can cause severe disease post-HCT, frequently manifesting with anemia, but can also be easily overlooked due to lack of routine screening and ambiguity of manifestations. SUMMARY Studies should establish the contemporary epidemiology of HHV-6, and other more insidious viruses, such as HHV-8 and parvovirus B19 following HCT and should encompass novel cellular therapies. Standardized and readily available diagnostic methods are key to elucidate epidemiology and optimize preventive and therapeutic strategies to mitigate the burden of infection.
Collapse
Affiliation(s)
- Eleftheria Kampouri
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jessica S. Little
- Dana-Farber Cancer Institute
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Joshua A. Hill
- Vaccine and Infectious Disease Division
- Clinical Research Division, Fred Hutchinson Cancer Center
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
72
|
Veronese BHS, Nguyen A, Patel K, Paulsen K, Ma Z. ORF48 is required for optimal lytic replication of Kaposi's sarcoma-associated herpesvirus. PLoS Pathog 2024; 20:e1012081. [PMID: 39186813 PMCID: PMC11379392 DOI: 10.1371/journal.ppat.1012081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/06/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNβ production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.
Collapse
Affiliation(s)
- Beatriz H. S. Veronese
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, Gainesville, Florida, United States of America
| | - Amy Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Khushil Patel
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Kimberly Paulsen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Zhe Ma
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, Gainesville, Florida, United States of America
| |
Collapse
|
73
|
Shekhar R, O'Grady T, Keil N, Feswick A, Amador DM, Tibbetts S, Flemington E, Renne R. High-density resolution of the Kaposi's sarcoma associated herpesvirus transcriptome identifies novel transcript isoforms generated by long-range transcription and alternative splicing. Nucleic Acids Res 2024; 52:7720-7739. [PMID: 38922687 PMCID: PMC11260491 DOI: 10.1093/nar/gkae540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.
Collapse
Affiliation(s)
- Ritu Shekhar
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Tina O'Grady
- Department of Pathology, Tulane University, New Orleans, LA, USA
| | - Netanya Keil
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | - April Feswick
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - David A Moraga Amador
- UF Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| | | | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
74
|
Zhen J, Chen J, Huang H, Liao S, Liu S, Yuan Y, Sun R, Longnecker R, Wu TT, Zhou ZH. Structures of Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus virions reveal species-specific tegument and envelope features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602672. [PMID: 39026862 PMCID: PMC11257568 DOI: 10.1101/2024.07.09.602672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are classified into the gammaherpesvirus subfamily of Herpesviridae , which stands out from its alpha- and betaherpesvirus relatives due to the tumorigenicity of its members. Although structures of human alpha- and betaherpesviruses by cryogenic electron tomography (cryoET) have been reported, reconstructions of intact human gammaherpesvirus virions remain elusive. Here, we structurally characterize extracellular virions of EBV and KSHV by deep learning-enhanced cryoET, resolving both previously known monomorphic capsid structures and previously unknown pleomorphic features beyond the capsid. Through subtomogram averaging and subsequent tomogram-guided sub-particle reconstruction, we determined the orientation of KSHV nucleocapsids from mature virions with respect to the portal to provide spatial context for the tegument within the virion. Both EBV and KSHV have an eccentric capsid position and polarized distribution of tegument. Tegument species span from the capsid to the envelope and may serve as scaffolds for tegumentation and envelopment. The envelopes of EBV and KSHV are less densely populated with glycoproteins than those of herpes simplex virus 1 and human cytomegalovirus, representative members of alpha- and betaherpesviruses, respectively. This population density of glycoproteins correlates with their relative infectivity against HEK293T cells. Also, we observed fusion protein gB trimers exist within triplet arrangements in addition to standalone complexes, which is relevant to understanding dynamic processes such as fusion pore formation. Taken together, this study reveals nuanced yet important differences in the tegument and envelope architectures among human herpesviruses and provides insights into their varied cell tropism and infection. Importance Discovered in 1964, Epstein-Barr virus (EBV) is the first identified human oncogenic virus and the founding member of the gammaherpesvirus subfamily. In 1994, another cancer-causing virus was discovered in lesions of AIDS patients and later named Kaposi's sarcoma-associated herpesvirus (KSHV), the second human gammaherpesvirus. Despite the historical importance of EBV and KSHV, technical difficulties with isolating large quantities of these viruses and the pleiomorphic nature of their envelope and tegument layers have limited structural characterization of their virions. In this study, we employed the latest technologies in cryogenic electron microscopy (cryoEM) and tomography (cryoET) supplemented with an artificial intelligence-powered data processing software package to reconstruct 3D structures of the EBV and KSHV virions. We uncovered unique properties of the envelope glycoproteins and tegument layers of both EBV and KSHV. Comparison of these features with their non-tumorigenic counterparts provides insights into their relevance during infection.
Collapse
|
75
|
Saberian C, Lurain K, Hill LK, Marshall V, Cornejo Castro EM, Labo N, Miley W, Moore K, Roshan R, Ruggerio M, Ryan K, Widell A, Ekwede I, Mangusan R, Rupert A, Barochia A, Whitby D, Yarchoan R, Ramaswami R. Kaposi sarcoma herpesvirus viral load in bronchoalveolar lavage as a diagnostic marker for pulmonary Kaposi sarcoma. AIDS 2024; 38:1172-1180. [PMID: 38564482 PMCID: PMC11141217 DOI: 10.1097/qad.0000000000003897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE Kaposi sarcoma is a vascular tumor that affects the pulmonary system. However, the diagnosis of airway lesions suggestive of pulmonary Kaposi sarcoma (pKS) is reliant on bronchoscopic visualization. We evaluated the role of Kaposi sarcoma herpesvirus (KSHV) viral load in bronchoalveolar lavage (BAL) as a diagnostic biomarker in patients with bronchoscopic evidence of pKS and evaluated inflammatory cytokine profiles in BAL and blood samples. DESIGN In this retrospective study, we evaluated KSHV viral load and cytokine profiles within BAL and blood samples in patients who underwent bronchoscopy for suspected pKS between 2016 and 2021. METHODS KSHV viral load and cytokine profiles were obtained from both the circulation and BAL samples collected at the time of bronchoscopy to evaluate compartment-specific characteristics. BAL was centrifuged and stored as cell pellets and KSHV viral load was measured using primers for the KSHV K6 gene regions. RESULTS We evaluated 38 BAL samples from 32 patients (30 with HIV co-infection) of whom 23 had pKS. In patients with airway lesions suggestive of pKS, there was higher KSHV viral load (median 3188 vs. 0 copies/10 6 cell equivalent; P = 0.0047). A BAL KSHV viral load cutoff of 526 copies/10 6 cells had a sensitivity of 72% and specificity of 89% in determining lesions consistent with pKS. Those with pKS also had higher IL-1β and IL-8 levels in BAL. The 3-year survival rate for pKS patients was 55%. CONCLUSION KSHV viral load in BAL shows potential for aiding in pKS diagnosis. Patients with pKS also have evidence of cytokine dysregulation in BAL.
Collapse
Affiliation(s)
- Chantal Saberian
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Kathryn Lurain
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Lindsay K Hill
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Vickie Marshall
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Elena M. Cornejo Castro
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Nazzarena Labo
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Wendell Miley
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Kyle Moore
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Romin Roshan
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Margie Ruggerio
- Critical Care Medicine and Pulmonary Branch, National Heart Lung and Blood Institute, Bethesda, MD
| | - Kerry Ryan
- Critical Care Medicine and Pulmonary Branch, National Heart Lung and Blood Institute, Bethesda, MD
| | - Anaida Widell
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Irene Ekwede
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Ralph Mangusan
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Adam Rupert
- AIDS Monitoring Laboratory, Leidos Biomedical Research, Frederick, MD
| | - Amisha Barochia
- Critical Care Medicine and Pulmonary Branch, National Heart Lung and Blood Institute, Bethesda, MD
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Robert Yarchoan
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| | - Ramya Ramaswami
- HIV & AIDS Malignancy Branch, Center for Cancer Research, NCI, Bethesda, MD
| |
Collapse
|
76
|
Luan Y, Long W, Dai L, Tao P, Deng Z, Xia Z. Linear ubiquitination regulates the KSHV replication and transcription activator protein to control infection. Nat Commun 2024; 15:5515. [PMID: 38951495 PMCID: PMC11217414 DOI: 10.1038/s41467-024-49887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/21/2024] [Indexed: 07/03/2024] Open
Abstract
Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenying Long
- Center for Clinical Research, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Lisi Dai
- Department of Pathology & Pathophysiology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Surgical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Panfeng Tao
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhifen Deng
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zongping Xia
- Clinical Systems Biology Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
77
|
Panaampon J, Okada S. Promising immunotherapeutic approaches for primary effusion lymphoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:699-713. [PMID: 38966176 PMCID: PMC11220309 DOI: 10.37349/etat.2024.00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 07/06/2024] Open
Abstract
Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as a serious effusion in body cavities without detectable tumor masses. It is an AIDS-related non-Hodgkin's lymphoma (HL) with human herpes virus 8 (HHV8)/Kaposi sarcoma-associated herpes virus (KSHV) infection. A combination antiretroviral therapy (cART) prolongs the lifespan of AIDS and AIDS-related malignant lymphoma patients, but PEL continues to have a dismal prognosis. PEL showed disappointing outcomes with standard chemotherapy such as CHOP or CHOP-like regimens. A PEL status highlights the urgent need for new therapeutic approaches and treatment strategies and improve clinical outcomes. This review discusses the current knowledge and some recent clinical trials for PEL in the platform of immunotherapy as well as promising future immunotherapeutic approaches for PEL.
Collapse
Affiliation(s)
- Jutatip Panaampon
- Division of Hematologic Neoplasia, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
78
|
Fujimuro M. The Interactions between Cells and Viruses. Int J Mol Sci 2024; 25:6886. [PMID: 38999995 PMCID: PMC11241451 DOI: 10.3390/ijms25136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many infectious diseases are caused by life-threatening DNA and RNA viruses and have been reported worldwide, including those caused by emerging and re-emerging viruses [...].
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
79
|
Manning JC, Boza JM, Cesarman E, Erickson D. Rapid, equipment-free extraction of DNA from skin biopsies for point-of-care diagnostics. Sci Rep 2024; 14:13782. [PMID: 38877073 PMCID: PMC11178891 DOI: 10.1038/s41598-024-64533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
Kaposi's sarcoma (KS) is a cancer affecting skin and internal organs for which the Kaposi's sarcoma associated herpesvirus (KSHV) is a necessary cause. Previous work has pursued KS diagnosis by quantifying KSHV DNA in skin biopsies using a point-of-care (POC) device which performs quantitative loop-mediated isothermal amplification (LAMP). These previous studies revealed that extracting DNA from patient biopsies was the rate limiting step in an otherwise rapid process. In this study, a simplified, POC-compatible alkaline DNA extraction, ColdSHOT, was optimized for 0.75 mm human skin punch biopsies. The optimized ColdSHOT extraction consistently produced 40,000+ copies of DNA per 5 µl reaction from 3 mg samples-a yield comparable to standard spin column extractions-within 1 h without significant equipment. The DNA yield was estimated sufficient for KSHV detection from KS-positive patient biopsies, and the LAMP assay was not affected by non-target tissue in the unpurified samples. Furthermore, the yields achieved via ColdSHOT were robust to sample storage in phosphate-buffered saline (PBS) or Tris-EDTA (TE) buffer prior to DNA extraction, and the DNA sample was stable after extraction. The results presented in this study indicate that the ColdSHOT DNA extraction could be implemented to simplify and accelerate the LAMP-based diagnosis of Kaposi's sarcoma using submillimeter biopsy samples.
Collapse
Affiliation(s)
- Jason Cade Manning
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Juan Manuel Boza
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, 10021, USA
| | - David Erickson
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, 14850, USA.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14850, USA.
- Cornell University, 369 Upson Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
80
|
Zhang Y, Dong Z, Gu F, Xu Y, Li Y, Sun W, Rao W, Du S, Zhu C, Wang Y, Wei F, Cai Q. Degradation of TRIM32 is induced by RTA for Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 2024; 98:e0000524. [PMID: 38717113 PMCID: PMC11237441 DOI: 10.1128/jvi.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifei Xu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wutian Rao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
81
|
Muniraju M, Mutsvunguma LZ, Reidel IG, Escalante GM, Cua S, Musonda W, Calero-Landa J, Farelo MA, Rodriguez E, Li Z, Ogembo JG. Kaposi sarcoma-associated herpesvirus complement control protein (KCP) and glycoprotein K8.1 are not required for viral infection in vitro or in vivo. J Virol 2024; 98:e0057624. [PMID: 38767375 PMCID: PMC11237445 DOI: 10.1128/jvi.00576-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, is the causal agent of Kaposi sarcoma, a cancer that appears as tumors on the skin or mucosal surfaces, as well as primary effusion lymphoma and KSHV-associated multicentric Castleman disease, which are B-cell lymphoproliferative disorders. Effective prophylactic and therapeutic strategies against KSHV infection and its associated diseases are needed. To develop these strategies, it is crucial to identify and target viral glycoproteins involved in KSHV infection of host cells. Multiple KSHV glycoproteins expressed on the viral envelope are thought to play a pivotal role in viral infection, but the infection mechanisms involving these glycoproteins remain largely unknown. We investigated the role of two KSHV envelope glycoproteins, KSHV complement control protein (KCP) and K8.1, in viral infection in various cell types in vitro and in vivo. Using our newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP, K8.1, or both, we demonstrated the presence of KCP and K8.1 on the surface of both virions and KSHV-infected cells. We showed that KSHV lacking KCP and/or K8.1 remained infectious in KSHV-susceptible cell lines, including epithelial, endothelial, and fibroblast, when compared to wild-type recombinant KSHV. We also provide the first evidence that KSHV lacking K8.1 or both KCP and K8.1 can infect human B cells in vivo in a humanized mouse model. Thus, these results suggest that neither KCP nor K8.1 is required for KSHV infection of various host cell types and that these glycoproteins do not determine KSHV cell tropism. IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) is an oncogenic human gamma-herpesvirus associated with the endothelial malignancy Kaposi sarcoma and the lymphoproliferative disorders primary effusion lymphoma and multicentric Castleman disease. Determining how KSHV glycoproteins such as complement control protein (KCP) and K8.1 contribute to the establishment, persistence, and transmission of viral infection will be key for developing effective anti-viral vaccines and therapies to prevent and treat KSHV infection and KSHV-associated diseases. Using newly generated anti-KCP antibodies, previously characterized anti-K8.1 antibodies, and recombinant mutant KSHV viruses lacking KCP and/or K8.1, we show that KCP and K8.1 can be found on the surface of both virions and KSHV-infected cells. Furthermore, we show that KSHV lacking KCP and/or K8.1 remains infectious to diverse cell types susceptible to KSHV in vitro and to human B cells in vivo in a humanized mouse model, thus providing evidence that these viral glycoproteins are not required for KSHV infection.
Collapse
Affiliation(s)
- Murali Muniraju
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lorraine Z Mutsvunguma
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Ivana G Reidel
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriela M Escalante
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Simeon Cua
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Webster Musonda
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jonathan Calero-Landa
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Mafalda A Farelo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Esther Rodriguez
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
- Irell & Manella Graduate School of Biological Sciences of City of Hope, Duarte, California, USA
| | - Zhou Li
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Javier Gordon Ogembo
- Department of Immuno-Oncology, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
82
|
Jang SJ, Atyeo N, Mietzsch M, Chae MY, McKenna R, Toth Z, Papp B. Genome-Wide Transcriptional Roles of KSHV Viral Interferon Regulatory Factors in Oral Epithelial Cells. Viruses 2024; 16:846. [PMID: 38932139 PMCID: PMC11209080 DOI: 10.3390/v16060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
The viral interferon regulatory factors (vIRFs) of KSHV are known to dysregulate cell signaling pathways to promote viral oncogenesis and to block antiviral immune responses to facilitate infection. However, it remains unknown to what extent each vIRF plays a role in gene regulation. To address this, we performed a comparative analysis of the protein structures and gene regulation of the four vIRFs. Our structure prediction analysis revealed that despite their low amino acid sequence similarity, vIRFs exhibit high structural homology in both their DNA-binding domain (DBD) and IRF association domain. However, despite this shared structural homology, we demonstrate that each vIRF regulates a distinct set of KSHV gene promoters and human genes in epithelial cells. We also found that the DBD of vIRF1 is essential in regulating the expression of its target genes. We propose that the structurally similar vIRFs evolved to possess specialized transcriptional functions to regulate specific genes.
Collapse
Affiliation(s)
- Seung Jin Jang
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Mario Mietzsch
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Min Y. Chae
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 1200 Newell Drive, Gainesville, FL 32610, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Gainesville, FL 32610, USA
- UF Genetics Institute, Gainesville, FL 32610, USA
- UF Health Cancer Center, Gainesville, FL 32610, USA
- UF Center for Orphaned Autoimmune Disorders, Gainesville, FL 32610, USA
- UF Informatics Institute, Gainesville, FL 32610, USA
| |
Collapse
|
83
|
Değerli E, Oruç K, Şentürk Öztaş N, Alkan Şen G, Bedir Ş, Demirci NS, Demirelli HF. Prognostic factors in Kaposi sarcoma, single centre experience. Australas J Dermatol 2024. [PMID: 38760927 DOI: 10.1111/ajd.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Kaposi sarcoma (KS) is a multicentric vascular and lymphatic neoplasm caused by human herpesvirus 8 (HHV-8). It generally concerns the elderly and immunosuppressed population. Four major clinical types of KS have been described. The most common subtype is Classical KS (CKS). OBJECTIVES Our retrospective study aimed to better define prognostic subgroups among patients with CKS, which is the most common in our country. METHOD Between 2014 and 2020, 43 patients with CKS were treated with local excision, radiotherapy and chemotherapy. Reviewed information included demographics, clinical features, laboratory findings, treatment responses and overall survival. RESULTS During the follow-up, eight patients (18.6%) died of CKS. The complete response rate was 46.5%, partial response and stable disease 51.2%, and progressive disease 2.3% of all patients. Gender, haemoglobin level at diagnosis, and disseminated involvement were prognostic factors affecting survival in all patients. CONCLUSION We confirmed that male gender, low haemoglobin levels, and disseminated involvement are associated with poor prognosis in CKS patients. It is the only Turkish study in which prognostic analysis was performed for this rare cancer.
Collapse
Affiliation(s)
- Ezgi Değerli
- Department of Medical Oncology, Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Kerem Oruç
- Department of Medical Oncology, Yozgat City Hospital, Yozgat, Turkey
| | - Nihan Şentürk Öztaş
- Department of Medical Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gülin Alkan Şen
- Department of Medical Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Şahin Bedir
- Department of Medical Oncology, Bağcılar Training and Research Hospital, Istanbul, Turkey
| | - Nebi Serkan Demirci
- Department of Medical Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hulusi Fuat Demirelli
- Department of Medical Oncology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
84
|
Han C, Gui C, Dong S, Lan K. The Interplay between KSHV Infection and DNA-Sensing Pathways. Viruses 2024; 16:749. [PMID: 38793630 PMCID: PMC11125855 DOI: 10.3390/v16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
During viral infection, the innate immune system utilizes a variety of specific intracellular sensors to detect virus-derived nucleic acids and activate a series of cellular signaling cascades that produce type I IFNs and proinflammatory cytokines and chemokines. Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus that has been associated with a variety of human malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. Infection with KSHV activates various DNA sensors, including cGAS, STING, IFI16, and DExD/H-box helicases. Activation of these DNA sensors induces the innate immune response to antagonize the virus. To counteract this, KSHV has developed countless strategies to evade or inhibit DNA sensing and facilitate its own infection. This review summarizes the major DNA-triggered sensing signaling pathways and details the current knowledge of DNA-sensing mechanisms involved in KSHV infection, as well as how KSHV evades antiviral signaling pathways to successfully establish latent infection and undergo lytic reactivation.
Collapse
Affiliation(s)
- Chunyan Han
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Chenwu Gui
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Shuhong Dong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430062, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
85
|
Rauch DA, Ramos PV, Khanfar M, Harding J, Joseph A, Griffith O, Griffith M, Ratner L. Single-Cell Transcriptomic Analysis of Kaposi Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592010. [PMID: 38746135 PMCID: PMC11092626 DOI: 10.1101/2024.05.01.592010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Kaposi Sarcoma (KS) is a complex tumor caused by KS-associated herpesvirus 8 (KSHV). Histological analysis reveals a mixture of "spindle cells", vascular-like spaces, extravasated erythrocytes, and immune cells. In order to elucidate the infected and uninfected cell types in KS tumors, we examined skin and blood samples from twelve subjects by single cell RNA sequence analyses. Two populations of KSHV-infected cells were identified, one of which represented a proliferative fraction of lymphatic endothelial cells, and the second represented an angiogenic population of vascular endothelial tip cells. Both infected clusters contained cells expressing lytic and latent KSHV genes. Novel cellular biomarkers were identified in the KSHV infected cells, including the sodium channel SCN9A. The number of KSHV positive tumor cells was found to be in the 6% range in HIV-associated KS, correlated inversely with tumor-infiltrating immune cells, and was reduced in biopsies from HIV-negative individuals. T-cell receptor clones were expanded in KS tumors and blood, although in differing magnitudes. Changes in cellular composition in KS tumors were identified in subjects treated with antiretroviral therapy alone, or immunotherapy. These studies demonstrate the feasibility of single cell analyses to identify prognostic and predictive biomarkers. Author Summary Kaposi sarcoma (KS) is a malignancy caused by the KS-associated herpesvirus (KSHV) that causes skin lesions, and may also be found in lymph nodes, lungs, gastrointestinal tract, and other organs in immunosuppressed individuals more commonly than immunocompetent subjects. The current study examined gene expression in single cells from the tumor and blood of these subjects, and identified the characteristics of the complex mixtures of cells in the tumor. This method also identified differences in KSHV gene expression in different cell types and associated cellular genes expressed in KSHV infected cells. In addition, changes in the cellular composition could be elucidated with therapeutic interventions.
Collapse
|
86
|
Lacunza E, Ahuja A, Coso OA, Abba M, Ramos JC, Cesarman E, Mesri EA, Naipauer J. Unveiling the role of KSHV-infected human mesenchymal stem cells in Kaposi's sarcoma initiation. J Med Virol 2024; 96:e29684. [PMID: 38773828 PMCID: PMC12068558 DOI: 10.1002/jmv.29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Kaposi's sarcoma (KS) may derive from Kaposi's sarcoma herpesvirus (KSHV)-infected human mesenchymal stem cells (hMSCs) that migrate to sites characterized by inflammation and angiogenesis, promoting the initiation of KS. By analyzing the RNA sequences of KSHV-infected primary hMSCs, we have identified specific cell subpopulations, mechanisms, and conditions involved in the initial stages of KSHV-induced transformation and reprogramming of hMSCs into KS progenitor cells. Under proangiogenic environmental conditions, KSHV can reprogram hMSCs to exhibit gene expression profiles more similar to KS tumors, activating cell cycle progression, cytokine signaling pathways, endothelial differentiation, and upregulating KSHV oncogenes indicating the involvement of KSHV infection in inducing the mesenchymal-to-endothelial (MEndT) transition of hMSCs. This finding underscores the significance of this condition in facilitating KSHV-induced proliferation and reprogramming of hMSCs towards MEndT and closer to KS gene expression profiles, providing further evidence of these cell subpopulations as precursors of KS cells that thrive in a proangiogenic environment.
Collapse
Affiliation(s)
- Ezequiel Lacunza
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Anuj Ahuja
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Omar A. Coso
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martin Abba
- Centro de Investigaciones Inmunologicas Basicas y Aplicadas, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Juan Carlos Ramos
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Medicine, Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA
- Center for AIDS Research, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Enrique A. Mesri
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Tumor Biology Program, Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research, Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Julian Naipauer
- University of Miami-Centre for AIDS Research/Sylvester Cancer Comprehensive Center Argentina Consortium for Research and Training in Virally Induced AIDS-Malignancies, University of Miami Miller School of Medicine, Miami, Florida, USA
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
87
|
Petrella RJ. The Eruptive Fevers at Sixes and Sevens. Open Access Emerg Med 2024; 16:101-105. [PMID: 38706755 PMCID: PMC11067716 DOI: 10.2147/oaem.s448246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Sixth Disease (roseola infantum) and its primary causative agent, HHV-6, share names that numerically concur. This article examines and answers the question of whether that correspondence is by design or coincidental by briefly reviewing the history and nomenclature of the HHV viruses and the classic febrile rashes of childhood while highlighting some clinical and microbiologic features of HHV-6 infection.
Collapse
Affiliation(s)
- Robert J Petrella
- Harvard Medical School, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
- Emergency Departments, CharterCARE Health Partners, Providence and North Providence, RI, USA
- Emergency Department, Boston VA Medical Center, Boston, MA, USA
- Emergency Departments, Steward Health Care Systems, Boston and Methuen, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
88
|
Kuriyama K, Watanabe T, Ohno S. Analysis of the interaction between the ORF42 and ORF55 proteins encoded by Kaposi's sarcoma-associated herpesvirus. Arch Virol 2024; 169:98. [PMID: 38619650 DOI: 10.1007/s00705-024-06021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/01/2024] [Indexed: 04/16/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. The tegument is a structure that is unique to herpesviruses that includes host and viral proteins, including the viral ORF42 and ORF55 proteins. Alphaherpesvirus tegument proteins have been well studied, but much is unknown regarding KSHV. Here, we report an interaction between the ORF42 and ORF55 proteins. ORF55 interacted with and recruited ORF42 from the nucleus to the cytoplasm. When ORF42 and ORF55 were expressed simultaneously in cultured cells, the expression level of these two viral proteins was higher than when either was expressed independently. ORF55, but not ORF42, was polyubiquitinated, suggesting that an unidentified regulatory mechanism may be present. A recombinant virus with an ectopic stop codon in ORF42 exhibited normal replication of genomic DNA, but fewer virus particles were released with the recombinant than with the wild-type virus. A unique R136Q mutation in ORF42, which is found in a KSHV strain that is prevalent on Miyako Island, Okinawa Prefecture, Japan, further increased the expression of ORF42 and ORF55 when these proteins were expressed simultaneously. However, the ORF42 R136Q mutation did not affect the localization pattern of ORF42 itself or of ORF55. In addition, experiments with a recombinant virus possessing the ORF42 R136Q mutation showed lower levels of production of the mutant virus than of the wild-type virus, despite similar levels of genome replication. We suggest that the R136Q mutation in ORF42 plays an important role in ORF55 protein expression and virus production.
Collapse
Affiliation(s)
- Kazushi Kuriyama
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Tadashi Watanabe
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Shinji Ohno
- Department of Virology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan.
| |
Collapse
|
89
|
Fan J, Qin Z. Roles of Human Endogenous Retrovirus-K-Encoded Np9 in Human Diseases: A Small Protein with Big Functions. Viruses 2024; 16:581. [PMID: 38675923 PMCID: PMC11054019 DOI: 10.3390/v16040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Human Endogenous Retrovirus Sequences (HERVs) constitute up to 8% of the human genome, yet not all HERVs remain silent passengers within our genomes. Some HERVs, especially HERV type K (HERV-K), have been found to be frequently transactivated in a variety of inflammatory diseases and human cancers. Np9, a small protein translated from the HERV-K env reading frame, has been reported as an oncogenic protein and is present in a variety of tumors and transformed cells. The Np9 protein can crosstalk with many cellular factors and is involved in the pathogenicity of various diseases, including some oncogenic virus infections. In the current review, we summarize recent findings about Np9 clinical relevance/implications, its mediated cellular functions/mechanisms, and potential targeted therapies in development.
Collapse
Affiliation(s)
| | - Zhiqiang Qin
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W Markham St., Little Rock, AR 72205, USA;
| |
Collapse
|
90
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
91
|
Stanfield BA, Ruiz E, Chouljenko VN, Kousoulas KG. Guinea pig herpes like virus is a gamma herpesvirus. Virus Genes 2024; 60:148-158. [PMID: 38340271 PMCID: PMC10978641 DOI: 10.1007/s11262-024-02054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/21/2024] [Indexed: 02/12/2024]
Abstract
Guinea Pig Herpes-Like Virus (GPHLV) is a virus isolated from leukemic guinea pigs with herpes virus-like morphology described by Hsiung and Kaplow in 1969. GPHLV transformed embryonic cells from Syrian hamsters or rats, which were tumorigenic in adult animals. Herein, we present the genomic sequence of GPHLV strain LK40 as a reference for future molecular analysis. GPHLV has a broad host tropism and replicates efficiently in Guinea pig, Cat, and Green African Monkey-derived cell lines. GPHLV has a GC content of 35.45%. The genome is predicted to encode at least 75 open-reading frames (ORFs) with 84% (63 ORFs) sharing homology to human Kaposi Sarcoma Associated Herpes Virus (KSHV). Importantly, GPHLV encodes homologues of the KSHV oncogenes, vBCL2 (ORF16), vPK (ORF36), viral cyclin (v-cyclin, ORF72), the latency associated nuclear antigen (LANA, ORF73), and vGPCR (ORF74). GPHLV is a Rhadinovirus of Cavia porcellus, and we propose the formal name of Caviid gamma herpesvirus 1 (CaGHV-1). GPHLV can be a novel small animal model of Rhadinovirus pathogenesis with broad host tropism.
Collapse
Affiliation(s)
- Brent A Stanfield
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Emmanuelle Ruiz
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Vladimir N Chouljenko
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Konstantin G Kousoulas
- Division of Biotechnology and Molecular Medicine, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
92
|
Zhou Y, Tian X, Wang S, Gao M, Zhang C, Ma J, Cheng X, Bai L, Qin HB, Luo MH, Qin Q, Jiang B, Lan K, Zhang J. Palmitoylation of KSHV pORF55 is required for Golgi localization and efficient progeny virion production. PLoS Pathog 2024; 20:e1012141. [PMID: 38626263 PMCID: PMC11051623 DOI: 10.1371/journal.ppat.1012141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/26/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus etiologically associated with multiple malignancies. Both latency and sporadic lytic reactivation contribute to KSHV-associated malignancies, however, the specific roles of many KSHV lytic gene products in KSHV replication remain elusive. In this study, we report that ablation of ORF55, a late gene encoding a tegument protein, does not impact KSHV lytic reactivation but significantly reduces the production of progeny virions. We found that cysteine 10 and 11 (C10 and C11) of pORF55 are palmitoylated, and the palmytoilation is essential for its Golgi localization and secondary envelope formation. Palmitoylation-defective pORF55 mutants are unstable and undergo proteasomal degradation. Notably, introduction of a putative Golgi localization sequence to these palmitoylation-defective pORF55 mutants restores Golgi localization and fully reinstates KSHV progeny virion production. Together, our study provides new insight into the critical role of pORF55 palmitoylation in KSHV progeny virion production and offers potential therapeutic targets for the treatment of related malignancies.
Collapse
Affiliation(s)
- Yaru Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuezhang Tian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Shaowei Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Chuchu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Jiali Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Bai
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Hai-Bin Qin
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingsong Qin
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Baishan Jiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Junjie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
93
|
Schwartz RA, Kapila R. Kaposi's sarcoma: epidemiologic aspects, the immune reconstitution inflammatory syndrome, and more along the Silk Road of cognition. Ital J Dermatol Venerol 2024; 159:161-165. [PMID: 38059781 DOI: 10.23736/s2784-8671.23.07755-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Kaposi's sarcoma remains enignmatic with many clinical and epidemiological patterns. We review them and describe the groove sign, an important association worthy of recognition. We also stress Kaposi's sarcoma (KS) without coexistent human immunodefiency virus infection, with recent data from China describing an extraordinarily high classical KS prevalence rate among Uygurs and Kazaks in the Xinjiang Uygur Autonomous Region in northwestern China, presumably derived from elderly men residing there. The possible travel of HHV-8 along the ancient silk road from Italy to the Xinjiang Uyghur region remains intriguing. If only one in 10,000 HHV-8-infected patients develops classical KS worldwide, then triggers for its overrepresentation in this population within China are of particular concern. The KS-related immune reconstitution inflammatory syndrome is also emphasized.
Collapse
Affiliation(s)
- Robert A Schwartz
- Department of Dermatology, Pathology, Pediatrics, and Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA -
| | - Rajendra Kapila
- Department of Infectious Diseases and Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
94
|
Ye X, Guerin LN, Chen Z, Rajendren S, Dunker W, Zhao Y, Zhang R, Hodges E, Karijolich J. Enhancer-promoter activation by the Kaposi sarcoma-associated herpesvirus episome maintenance protein LANA. Cell Rep 2024; 43:113888. [PMID: 38416644 PMCID: PMC11005752 DOI: 10.1016/j.celrep.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ziche Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA.
| |
Collapse
|
95
|
Galati L, Chiantore MV, Marinaro M, Di Bonito P. Human Oncogenic Viruses: Characteristics and Prevention Strategies-Lessons Learned from Human Papillomaviruses. Viruses 2024; 16:416. [PMID: 38543781 PMCID: PMC10974567 DOI: 10.3390/v16030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 05/23/2024] Open
Abstract
Approximately 12% of human cancers worldwide are associated with infectious agents, which are classified by the International Agency for Research on Cancer (IARC) as Group 1 within the agents that are carcinogenic to humans. Most of these agents are viruses. Group 1 oncogenic viruses include hepatitis C virus, hepatitis B virus (HBV), human T-cell lymphotropic virus type 1, Epstein-Barr virus, Kaposi sarcoma-associated herpesvirus, human immunodeficiency virus-1 and high-risk human papillomaviruses (HPVs). In addition, some human polyomaviruses are suspected of inducing cancer prevalently in hosts with impaired immune responses. Merkel cell polyomavirus has been associated with Merkel cell carcinoma and included by the IARC in Group 2A (i.e., probably carcinogenic to humans). Linking viruses to human cancers has allowed for the development of diagnostic, prophylactic and therapeutic measures. Vaccination significantly reduced tumours induced by two oncogenic viruses as follows: HBV and HPV. Herein, we focus on mucosal alpha HPVs, which are responsible for the highest number of cancer cases due to tumour viruses and against which effective prevention strategies have been developed to reduce the global burden of HPV-related cancers.
Collapse
Affiliation(s)
- Luisa Galati
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy;
| | - Maria Vincenza Chiantore
- Department of Infectious Diseases, Viral Hepatitis and Oncovirus and Retrovirus Diseases (EVOR) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Microorganisms and Host Response: Research and Technological Innovation (MICROS) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis and Oncovirus and Retrovirus Diseases (EVOR) Unit, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| |
Collapse
|
96
|
Zhou J, Wang T, Zhang H, Liu J, Wei P, Xu R, Yan Q, Chen G, Li W, Gao SJ, Lu C. KSHV vIL-6 promotes SIRT3-induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation. PLoS Pathog 2024; 20:e1012082. [PMID: 38470932 PMCID: PMC10959363 DOI: 10.1371/journal.ppat.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guochun Chen
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
97
|
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F, Daraei A. Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol 2024; 34:e2530. [PMID: 38517354 DOI: 10.1002/rmv.2530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
A significant portion of human cancers are caused by oncoviruses (12%-25%). Oncoviruses employ various strategies to promote their replication and induce tumourigenesis in host cells, one of which involves modifying the gene expression patterns of the host cells, leading to the rewiring of genes and resulting in significant changes in cellular processes and signalling pathways. In recent studies, a specific mode of gene regulation known as circular RNA (circRNA)-mediated competing endogenous RNA (ceRNA) networks has emerged as a key player in this context. CircRNAs, a class of non-coding RNA molecules, can interact with other RNA molecules, such as mRNAs and microRNAs (miRNAs), through a process known as ceRNA crosstalk. This interaction occurs when circRNAs, acting as sponges, sequester miRNAs, thereby preventing them from binding to their target mRNAs and modulating their expression. By rewiring the host cell genome, oncoviruses have the ability to manipulate the expression and activity of circRNAs, thereby influencing the ceRNA networks that can profoundly impact cellular processes such as cell proliferation, differentiation, apoptosis, and immune responses. This review focuses on a comprehensive evaluation of the latest findings on the involvement of virus-induced reprogramming of host circRNA-mediated ceRNA networks in the development and pathophysiology of human viral cancers, including cervical cancer, gastric cancer, nasopharyngeal carcinoma, Kaposi's sarcoma, hepatocellular carcinoma, and diffuse large B cell lymphoma. Understanding these mechanisms can improve our knowledge of how oncoviruses contribute to human tumourigenesis and identify potential targets for developing optimised therapies and diagnostic tools for viral cancers.
Collapse
Affiliation(s)
- Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Salehi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrnaz Mostafavi
- Department of Physics, Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Morovatshoar
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mitra Akbari
- Eye Department, Eye Research Center, Amiralmomenin Hospital, School of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Narges Latifi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Omid Barzegari
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Ghadimi
- Department of Medical Genetics, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
98
|
Veronese BHS, Nguyen A, Patel K, Paulsen K, Ma Z. ORF48 is required for optimal lytic replication of Kaposi's Sarcoma-Associated Herpesvirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582672. [PMID: 38464154 PMCID: PMC10925306 DOI: 10.1101/2024.02.29.582672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to interact with endogenous STING in HEK293 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNβ production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.
Collapse
Affiliation(s)
- Beatriz H S Veronese
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| | - Amy Nguyen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Khushil Patel
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Kimberly Paulsen
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Zhe Ma
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, USA
- UF Health Cancer Center, Gainesville, Florida, USA
| |
Collapse
|
99
|
Ren P, Niu D, Chang S, Yu L, Ren J, Ma Y, Lan K. RUNX3 inhibits KSHV lytic replication by binding to the viral genome and repressing transcription. J Virol 2024; 98:e0156723. [PMID: 38197631 PMCID: PMC10878072 DOI: 10.1128/jvi.01567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family, which can cause human malignancies including Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's diseases. KSHV typically maintains a persistent latent infection within the host. However, after exposure to intracellular or extracellular stimuli, KSHV lytic replication can be reactivated. The reactivation process of KSHV triggers the innate immune response to limit viral replication. Here, we found that the transcriptional regulator RUNX3 is transcriptionally upregulated by the NF-κB signaling pathway in KSHV-infected SLK cells and B cells during KSHV reactivation. Notably, knockdown of RUNX3 significantly promotes viral lytic replication as well as the gene transcription of KSHV. Consistent with this finding, overexpression of RUNX3 impairs viral lytic replication. Mechanistically, RUNX3 binds to the KSHV genome and limits viral replication through transcriptional repression, which is related to its DNA- and ATP-binding ability. However, KSHV has also evolved corresponding strategies to antagonize this inhibition by using the viral protein RTA to target RUNX3 for ubiquitination and proteasomal degradation. Altogether, our study suggests that RUNX3, a novel host-restriction factor of KSHV that represses the transcription of viral genes, may serve as a potential target to restrict KSHV transmission and disease development.IMPORTANCEThe reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) from latent infection to lytic replication is important for persistent viral infection and tumorigenicity. However, reactivation is a complex event, and the regulatory mechanisms of this process are not fully elucidated. Our study revealed that the host RUNX3 is upregulated by the NF-κB signaling pathway during KSHV reactivation, which can repress the transcription of KSHV genes. At the late stage of lytic replication, KSHV utilizes a mechanism involving RTA to degrade RUNX3, thus evading host inhibition. This finding helps elucidate the regulatory mechanism of the KSHV life cycle and may provide new clues for the development of therapeutic strategies for KSHV-associated diseases.
Collapse
Affiliation(s)
- Pengyu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Danping Niu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Sijia Chang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lei Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junrui Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuanming Ma
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
100
|
Prazsák I, Tombácz D, Fülöp Á, Torma G, Gulyás G, Dörmő Á, Kakuk B, McKenzie Spires L, Toth Z, Boldogkői Z. KSHV 3.0: a state-of-the-art annotation of the Kaposi's sarcoma-associated herpesvirus transcriptome using cross-platform sequencing. mSystems 2024; 9:e0100723. [PMID: 38206015 PMCID: PMC10878076 DOI: 10.1128/msystems.01007-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a large, oncogenic DNA virus belonging to the gammaherpesvirus subfamily. KSHV has been extensively studied with various high-throughput RNA-sequencing approaches to map the transcription start and end sites, the splice junctions, and the translation initiation sites. Despite these efforts, the comprehensive annotation of the viral transcriptome remains incomplete. In the present study, we generated a long-read sequencing data set of the lytic and latent KSHV transcriptome using native RNA and direct cDNA-sequencing methods. This was supplemented with Cap Analysis of Gene Expression sequencing based on a short-read platform. We also utilized data sets from previous publications for our analysis. As a result of this combined approach, we have identified a number of novel viral transcripts and RNA isoforms and have either corroborated or improved the annotation of previously identified viral RNA molecules, thereby notably enhancing our comprehension of the transcriptomic architecture of the KSHV genome. We also evaluated the coding capability of transcripts previously thought to be non-coding by integrating our data on the viral transcripts with translatomic information from other publications.IMPORTANCEDeciphering the viral transcriptome of Kaposi's sarcoma-associated herpesvirus is of great importance because we can gain insight into the molecular mechanism of viral replication and pathogenesis, which can help develop potential targets for antiviral interventions. Specifically, the identification of substantial transcriptional overlaps by this work suggests the existence of a genome-wide interference between transcriptional machineries. This finding indicates the presence of a novel regulatory layer, potentially controlling the expression of viral genes.
Collapse
Affiliation(s)
- István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ádám Fülöp
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Torma
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Lauren McKenzie Spires
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Toth
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| |
Collapse
|