51
|
Bertollo AG, Mingoti MED, Ignácio ZM. Neurobiological mechanisms in the kynurenine pathway and major depressive disorder. Rev Neurosci 2025; 36:169-187. [PMID: 39245854 DOI: 10.1515/revneuro-2024-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a prevalent psychiatric disorder that has damage to people's quality of life. Tryptophan is the precursor to serotonin, a critical neurotransmitter in mood modulation. In mammals, most free tryptophan is degraded by the kynurenine pathway (KP), resulting in a range of metabolites involved in inflammation, immune response, and neurotransmission. The imbalance between quinolinic acid (QA), a toxic metabolite, and kynurenic acid (KynA), a protective metabolite, is a relevant phenomenon involved in the pathophysiology of MDD. Proinflammatory cytokines increase the activity of the enzyme indoleamine 2,3-dioxygenase (IDO), leading to the degradation of tryptophan in the KP and an increase in the release of QA. IDO activates proinflammatory genes, potentiating neuroinflammation and deregulating other physiological mechanisms related to chronic stress and MDD. This review highlights the physiological mechanisms involved with stress and MDD, which are underlying an imbalance of the KP and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Amanda Gollo Bertollo
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Maiqueli Eduarda Dama Mingoti
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology, Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| |
Collapse
|
52
|
Kong D, Wang X, Liu L. Biosynthesis of a Novel Diketopiperazine Aspkyncin Incorporating a Kynurenine Unit from Aspergillus aculeatus. J Fungi (Basel) 2025; 11:171. [PMID: 40137209 PMCID: PMC11942691 DOI: 10.3390/jof11030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
The simplest cyclo-peptides, also known as diketopiperazines (DKPs), are widespread in nature. The growing interest in these simplest cyclo-peptides is driven by their significant potential for therapeutic applications. In this study, we identified a biosynthetic gene cluster from Aspergillus aculeatus CRI323-04 through genome mining and heterologous expression in Aspergillus nidulans. The two core genes, aacA and aacB, within the gene cluster were characterized for their role in the biossoynthesis of aspkyncin, a novel DKP compound that incorporates a l-kynurenine (l-Kyn) unit. Furthermore, we successfully reconstituted the activities of the minimal bimodular non-ribosomal peptide synthetase (NRPS) AacA and the methyltransferase AacB both in vivo and in vitro. Our findings demonstrate that AacA catalyzes the condensation and cyclization of two non-proteinogenic amino acids, l-Kyn and N-methyl-l-alanine, to produce aspkyncin without the involvement of any release domain. Notably, the N-methyl-l-alanine is generated by a specialized l-alanine N-methyltransferase AacB prior to NRP assembly. This study reveals an unconventional pathway for the biosynthesis of fungal DKPs.
Collapse
Affiliation(s)
- Dekun Kong
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Xin Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China;
| | - Li Liu
- Laboratory of Biochemistry and Molecular Biology, Lab Teaching and Management Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
53
|
Wang F, Zhang M, Yin L, Zhou Z, Peng Z, Li W, Chen H, Yu G, Tang J. The tryptophan metabolite kynurenic acid ameliorates septic colonic injury through activation of the PPARγ signaling pathway. Int Immunopharmacol 2025; 147:113651. [PMID: 39742725 DOI: 10.1016/j.intimp.2024.113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is the leading cause of death among critically ill patients in clinical practice, making it urgent to reduce its incidence and mortality rates. In sepsis, macrophage dysfunction often worsens and complicates the condition. M1 and M2 macrophages, two distinct types, contribute to pro-inflammatory and anti-inflammatory effects, respectively. An imbalance between them is a major cause of sepsis. The aim of this study was to explore the potential of a differential metabolite between M1 and M2 macrophages in mitigating septic colonic injury via multiomics in combination with clinical data and animal experiments. Using nontargeted metabolomics analysis, we found that Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, was significantly upregulated in the supernatant of M2 macrophages. Furthermore, we discovered that the level of KYNA was significantly decreased in sepsis in both human and mouse serum and was negatively correlated with inflammatory factor levels. In vivo experiments demonstrated that KYNA can effectively alleviate septic colon injury and reduce inflammatory factor levels in mice, indicating that KYNA plays a very important protective role in sepsis. Mechanistically, KYNA promotes the transition of M1 macrophages to M2 macrophages by inhibiting the NF-κB signaling pathway and alleviates septic colonic injury through the PPARγ/NF-κB axis. This article reveals that KYNA, a differentially abundant metabolite between M1 and M2 macrophages, can become a new strategy for alleviating septic colon injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Meng Zhang
- Department of Pneumology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyao Peng
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, 13 Zhengyang South Road, Baoshan, Yunnan 678000, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| |
Collapse
|
54
|
Lou F, Yan L, Luo S, Dong Y, Xu J, Kang N, Wang H, Liu Y, Pu J, Yang B, Cannon RD, Xie P, Ji P, Jin X. Dysbiotic oral microbiota-derived kynurenine, induced by chronic restraint stress, promotes head and neck squamous cell carcinoma by enhancing CD8 + T cell exhaustion. Gut 2025:gutjnl-2024-333479. [PMID: 39904603 DOI: 10.1136/gutjnl-2024-333479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND Chronic restraint stress (CRS) is a tumour-promoting factor. However, the underlying mechanism is unknown. OBJECTIVE We aimed to investigate whether CRS promotes head and neck squamous cell carcinoma (HNSCC) by altering the oral microbiota and related metabolites and whether kynurenine (Kyn) promotes HNSCC by modulating CD8+ T cells. DESIGN 4-nitroquinoline-1-oxide (4NQO)-treated mice were exposed to CRS. Germ-free mice treated with 4NQO received oral microbiota transplants from either CRS or control mouse donors. 16S rRNA gene sequencing and liquid chromatography-mass spectrometry were performed on mouse saliva, faecal and plasma samples to investigate alterations in their microbiota and metabolites. The effects of Kyn on HNSCC were studied using the 4NQO-induced HNSCC mouse model. RESULTS Mice subjected to CRS demonstrated a higher incidence of HNSCC and oral microbial dysbiosis than CRS-free control mice. Pseudomonas and Veillonella species were enriched while certain oral bacteria, including Corynebacterium and Staphylococcus species, were depleted with CRS exposure. Furthermore, CRS-altered oral microbiota promoted HNSCC formation, caused oral and gut barrier dysfunction, and induced a host metabolome shift with increased plasma Kyn in germ-free mice exposed to 4NQO treatment. Under stress conditions, we also found that Kyn activated aryl hydrocarbon receptor (AhR) nuclear translocation and deubiquitination in tumour-reactive CD8+ T cells, thereby promoting HNSCC tumourigenesis. CONCLUSION CRS-induced oral microbiota dysbiosis plays a protumourigenic role in HNSCC and can influence host metabolism. Mechanistically, under stress conditions, Kyn promotes CD8+ T cell exhaustion and HNSCC tumourigenesis through stabilising AhR by its deubiquitination.
Collapse
Affiliation(s)
- Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Yunmei Dong
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Jingyi Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bing Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Richard D Cannon
- Department of Oral Sciences, Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases, Chongqing, China
| |
Collapse
|
55
|
Liu A, Li S, Dong X, Qin X, Li Z. Farfarae Flos Mitigates Cigarette Smoking-Induced Lung Inflammation by Regulating the Lysophosphatidylcholine Biosynthesis and Tryptophan Metabolism. Biomed Chromatogr 2025; 39:e6072. [PMID: 39775926 DOI: 10.1002/bmc.6072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/01/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
An increased risk of developing respiratory diseases has been linked to exposure to cigarette smoking (CS). The flower buds of Tussilago farfara L., also known as Farfarae Flos (FF), can be used for the treatment of cough, bronchitis, and asthmatic disorders in China. In the present study, we used lung and fecal metabolomics, as well as the intestinal flora analysis, aimed to investigate the protective effect of FF against the CS exposure induced lung inflammation on mice. The results showed that FF administration could relieve the lung inflammation as demonstrated by lung index, interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels, as well as the pulmonary pathological change. The lung metabolomics coupled with molecular docking showed that FF could alleviate lung inflammation by regulating lysophosphatidylcholine biosynthesis through the caffeoyl quinic acids distributed in the lung tissue. In addition, fecal metabolome coupled with 16S rRNA gene sequencing showed that FF could regulate the tryptophan metabolism by regulating the intestinal flora disorders. This study provided new insights of FF to relieve CS-induced pulmonary inflammation with the multimechanism.
Collapse
Affiliation(s)
- Aoqi Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Siyao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xianlong Dong
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
56
|
Damerell V, Klaassen‐Dekker N, Brezina S, Ose J, Ulvik A, van Roekel EH, Holowatyj AN, Baierl A, Böhm J, Bours MJL, Brenner H, de Wilt JHW, Grady WM, Habermann N, Hoffmeister M, Keski‐Rahkonen P, Lin T, Schirmacher P, Schrotz‐King P, Ulrich AB, van Duijnhoven FJB, Warby CA, Shibata D, Toriola AT, Figueiredo JC, Siegel EM, Li CI, Gsur A, Kampman E, Schneider M, Ueland PM, Weijenberg MP, Ulrich CM, Kok DE, Gigic B. Circulating tryptophan-kynurenine pathway metabolites are associated with all-cause mortality among patients with stage I-III colorectal cancer. Int J Cancer 2025; 156:552-565. [PMID: 39308420 PMCID: PMC11621991 DOI: 10.1002/ijc.35183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 09/28/2024]
Abstract
Alterations within the tryptophan-kynurenine metabolic pathway have been linked to the etiology of colorectal cancer (CRC), but the relevance of this pathway for prognostic outcomes in CRC patients needs further elucidation. Therefore, we investigated associations between circulating concentrations of tryptophan-kynurenine pathway metabolites and all-cause mortality among CRC patients. This study utilizes data from 2102 stage I-III CRC patients participating in six prospective cohorts involved in the international FOCUS Consortium. Preoperative circulating concentrations of tryptophan, kynurenine, kynurenic acid (KA), 3-hydroxykynurenine (HK), xanthurenic acid (XA), 3-hydroxyanthranilic acid (HAA), anthranilic acid (AA), picolinic acid (PA), and quinolinic acid (QA) were measured by liquid chromatography-tandem mass spectrometry. Using Cox proportional hazards regression, we examined associations of above-mentioned metabolites with all-cause mortality, adjusted for potential confounders. During a median follow-up of 3.2 years (interquartile range: 2.2-4.9), 290 patients (13.8%) deceased. Higher blood concentrations of tryptophan, XA, and PA were associated with a lower risk of all-cause mortality (per doubling in concentrations: tryptophan: HR = 0.56; 95%CI:0.41,0.76, XA: HR = 0.74; 95%CI:0.64,0.85, PA: HR = 0.76; 95%CI:0.64,0.92), while higher concentrations of HK and QA were associated with an increased risk of death (per doubling in concentrations: HK: HR = 1.80; 95%CI:1.47,2.21, QA: HR = 1.31; 95%CI:1.05,1.63). A higher kynurenine-to-tryptophan ratio, a marker of cell-mediated immune activation, was associated with an increased risk of death (per doubling: HR = 2.07; 95%CI:1.52,2.83). In conclusion, tryptophan-kynurenine pathway metabolites may be prognostic markers of survival in CRC patients.
Collapse
Affiliation(s)
- Victoria Damerell
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Niels Klaassen‐Dekker
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Stefanie Brezina
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Jennifer Ose
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
- Department III: Media, Information and DesignUniversity of Applied Sciences and Arts, Hochschule HannoverHannoverGermany
| | | | - Eline H. van Roekel
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Andreana N. Holowatyj
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Andreas Baierl
- Department of Statistics and Operations ResearchUniversity of ViennaViennaAustria
| | - Jürgen Böhm
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Martijn J. L. Bours
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Hermann Brenner
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
- German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Johannes H. W. de Wilt
- Department of Surgery, Division of Surgical Oncology and Gastrointestinal SurgeryRadboud University Medical CenterNijmegenThe Netherlands
| | - William M. Grady
- Therapeutics and Translational Science DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Nina Habermann
- Genome BiologyEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging ResearchGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Pekka Keski‐Rahkonen
- Nutrition and Metabolism BranchInternational Agency for Research on CancerLyonFrance
| | - Tengda Lin
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | | | - Petra Schrotz‐King
- Division of Preventive OncologyNational Center for Tumor Diseases and German Cancer Research CenterHeidelbergGermany
| | - Alexis B. Ulrich
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
- Rheinland Klinikum NeussLukas KrankenhausNeussGermany
| | | | - Christy A. Warby
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - David Shibata
- Department of SurgeryUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Jane C. Figueiredo
- Department of Medicine, Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterCaliforniaLos AngelesUSA
| | - Erin M. Siegel
- Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Christopher I. Li
- Division of Public Health SciencesFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - Andrea Gsur
- Center for Cancer ResearchMedical University of ViennaViennaAustria
| | - Ellen Kampman
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Martin Schneider
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | | | - Matty P. Weijenberg
- Department of Epidemiology, GROW School for Oncology and ReproductionMaastricht UniversityMaastrichtThe Netherlands
| | - Cornelia M. Ulrich
- Huntsman Cancer InstituteSalt Lake CityUtahUSA
- Department of Population Health SciencesUniversity of UtahSalt Lake CityUtahUSA
| | - Dieuwertje E. Kok
- Division of Human Nutrition and HealthWageningen University & ResearchWageningenThe Netherlands
| | - Biljana Gigic
- Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
| | | |
Collapse
|
57
|
Hashida R, Kawaguchi T, Nakano D, Tsutsumi T, Kawaguchi M, Takahashi H, Tajima H, Matsuse H, Golabi P, Gerber LH, Younossi ZM, Hiraoka K. Fast score is associated with patient-reported outcomes in patients with metabolic dysfunction-associated steatotic liver disease. Eur J Gastroenterol Hepatol 2025; 37:190-197. [PMID: 39621860 DOI: 10.1097/meg.0000000000002895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUNDS People with metabolic dysfunction-associated steatotic liver disease (MASLD) frequently report fatigue. This symptom is associated with hepatic inflammation and fibrosis. FibroScan-aspartate aminotransferase (FAST) score is a noninvasive measurement tool that can be used to assess the severity of MASLD. We aimed to investigate the independent factors associated with patient-reported outcomes (PROs) including fatigue, and their FAST scores. METHODS We enrolled 116 patients with MASLD. PROs were assessed by the Chronic Liver Disease Questionnaire for nonalcoholic fatty liver disease (CLDQ-NAFLD), which consists of six domains including fatigue. Each domain score that was less than 6 was classified into the impairment group. A cutoff value of 0.67 in the FAST score was used to categorize a high or low FAST score. Independent factors associated with impaired PROs and fatigue were analyzed using logistic regression analysis and a graphical model. RESULTS For factor total, in the logistic regression analysis, the high FAST score was only identified as a negative independent factor for impaired total CLDQ-NAFLD (odds ratio: 5.9, 95% confidence interval: 1.11-31.20, P = 0.034). The graphical model revealed that FAST score, BMI, and age directly interact with impaired total CLDQ-NAFLD. For fatigue, there was no statistically significant factor in the logistic regression analysis. The graphical model revealed that the FAST score, BMI, estimated glomerular filtration rate, and age directly interact with fatigue. CONCLUSION We found that the FAST score directly interacted with total CLDQ-NAFLD and the domain of fatigue. The FAST score may be a useful tool to assess impaired CLDQ-NAFLD.
Collapse
Affiliation(s)
- Ryuki Hashida
- Department of Orthopedics, Kurume University School of Medicine, Kurume
- Division of Rehabilitation, Kurume University Hospital, Fukuoka, Japan
- The Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume
| | - Dan Nakano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume
| | - Tsubasa Tsutsumi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume
| | - Machiko Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume
| | | | - Hiroshi Tajima
- Department of Orthopedics, Kurume University School of Medicine, Kurume
- Division of Rehabilitation, Kurume University Hospital, Fukuoka, Japan
| | - Hiroo Matsuse
- Department of Orthopedics, Kurume University School of Medicine, Kurume
- Division of Rehabilitation, Kurume University Hospital, Fukuoka, Japan
| | - Pegah Golabi
- The Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Lynn H Gerber
- The Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- The Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia, USA
- The Global NASH Council, Washington, DC, USA
| | - Koji Hiraoka
- Department of Orthopedics, Kurume University School of Medicine, Kurume
| |
Collapse
|
58
|
Macias SL, Palmer O, Simonovich JA, Clark RA, Hudalla GA, Keselowsky BG. Immunometabolic Approaches Mitigating Foreign Body Response and Transcriptome Characterization of the Foreign Body Capsule. Adv Healthc Mater 2025; 14:e2400602. [PMID: 39148172 PMCID: PMC11828940 DOI: 10.1002/adhm.202400602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/08/2024] [Indexed: 08/17/2024]
Abstract
Directing immunometabolism presents new opportunities to modulate key cell types associated with the formation of foreign body response (FBR) capsule. Contrasting approaches directing immunometabolism are investigated to mitigate FBR: a broadly suppressive metabolic inhibitor (MI) cocktail comprised of 2-deoxyglucose (2-DG), metformin, and 6-diazo-5-oxo-l-norleucine (DON) with daily systemic dosing regimen, and local weekly injection of the more narrowly focused tryptophan catabolizing IDO-Gal3 fusion protein. Treatments significantly decrease FBR capsule formed around subcutaneously implanted cellulose disks. MI cocktail results in a substantially thinner FBR capsule (40% of control), while weekly local injection of IDO-Gal3 also results in a thinner FBR capsule (69% of control). RNA-sequencing capsule transcripts reveal MI cocktail promotes quiescence, with decreased antigen processing and presentation, T helper subset differentiation, and cytokine-cytokine receptor pathway. IDO-Gal3 promotes pro-regenerative, alternatively activated M2-like macrophages and T helper 2 cells, with increased expression of type 2 response-associated genes (Il4, Il13, Arg1, Mrc1, Chil3, Gata3). IDO-Gal3 decreases pro-inflammatory innate sensing pathways, and C-type lectin receptor, NOD-like receptor, RIG-I-like receptor, and Toll-like receptor signaling. This work helps define key gene targets and pathways concomitantly regulated in the FBR capsule during immunometabolic modulation compared to control FBR capsule.
Collapse
Affiliation(s)
- Sabrina L. Macias
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Olivia Palmer
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jennifer A. Simonovich
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Ryan A. Clark
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Gregory A. Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Benjamin G. Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
59
|
Dumont KD, Jannig PR, Porsmyr-Palmertz M, Ruas JL. Constitutive loss of kynurenine-3-monooxygenase changes circulating kynurenine metabolites without affecting systemic energy metabolism. Am J Physiol Endocrinol Metab 2025; 328:E274-E285. [PMID: 39805032 DOI: 10.1152/ajpendo.00386.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Kynurenic acid (KYNA) and quinolinic acid (QUIN) are metabolites of the kynurenine pathway of tryptophan degradation with opposing biological activities in the central nervous system. In the periphery, KYNA is known to positively affect metabolic health, whereas the effects of QUIN remain less explored. Interestingly, metabolic stressors, including exercise and obesity, differentially change the balance between circulating KYNA and QUIN. Here, we hypothesized that chronically elevated levels of circulating KYNA and reduced levels of QUIN would manifest as differences in whole body energy metabolism. To test this, we used a mouse model lacking the enzyme kynurenine 3-monooxygenase (KMO), thus shunting kynurenine away from QUIN synthesis and toward KYNA production. KMO-deficient and wild-type littermate male and female mice were evaluated under chow and high-fat diets. Comprehensive kynurenine pathway metabolite profiling in plasma showed that the loss of KMO elicits robust changes in circulating levels of kynurenine metabolites. This included a 45-fold increase in kynurenine, a 26-fold increase in KYNA, and a 99% decrease in QUIN levels, depending on the diet. However, despite these changes, loss of KMO did not significantly impact whole body energy metabolism or change the transcriptomic profile of subcutaneous adipose tissue on either diet. With KMO inhibitors being considered therapeutic candidates for various disorders, this work shows that chronic systemic KMO inhibition does not have widespread metabolic effects. Our data also indicate that the beneficial effects of KYNA on metabolism may depend on its acute, intermittent elevation in circulation, akin to transient exercise-induced signals that mediate improved metabolic health.NEW & NOTEWORTHY The kynurenine pathway of tryptophan degradation is influenced by metabolic stressors: exercise raises circulating KYNA levels, while obesity is linked to increased QUIN. We investigated whether a mouse model lacking KMO-leading to increased circulating KYNA and decreased QUIN-would exhibit changes in energy metabolism. We found that energy metabolism was largely unaffected despite robust changes in circulating kynurenine metabolites, suggesting that systemic KMO inhibition may not have widespread metabolic effects.
Collapse
Affiliation(s)
- Kyle D Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Margareta Porsmyr-Palmertz
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Pharmacology and Stanley and Judith Frankel Institute for Heart & Brain Health, University of Michigan Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
60
|
Wang Y, Wu W, Zeng F, Meng X, Peng M, Wang J, Chen Z, Liu W. The role of kynurenine pathway metabolism mediated by exercise in the microbial-gut-brain axis in Alzheimer's disease. Exp Neurol 2025; 384:115070. [PMID: 39603488 DOI: 10.1016/j.expneurol.2024.115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
In recent years, the role of the microbiome-gut-brain axis in the pathogenesis of Alzheimer's disease (AD) has garnered increasing attention. Specifically, tryptophan metabolism via the kynurenine pathway (KP) plays a crucial regulatory role in this axis. This study reviews how exercise regulates the microbiome-gut-brain axis by influencing kynurenine pathway metabolism, thereby exerting resistance against AD. This paper also discusses how exercise positively impacts AD via the microbiome-gut-brain axis by modulating the endocrine, autonomic nervous, and immune systems. Although the specific mechanisms are not fully understood, research indicates that exercise may optimize tryptophan metabolism by promoting the growth of beneficial microbiota and inhibiting harmful microbiota, producing substances that are beneficial to the nervous system and combating AD. The aim of this review is to provide new perspectives and potential intervention strategies for the prevention and treatment of AD by exploring the links between exercise, KP and the gut-brain axis.
Collapse
Affiliation(s)
- Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
61
|
Wang M, Liu Y, Li Y, Lu T, Wang M, Cheng Z, Chen L, Wen T, Pan M, Hu G. Tumor Microenvironment-Responsive Nanoparticles Enhance IDO1 Blockade Immunotherapy by Remodeling Metabolic Immunosuppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405845. [PMID: 39661740 PMCID: PMC11791960 DOI: 10.1002/advs.202405845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/25/2024] [Indexed: 12/13/2024]
Abstract
The clinical efficacy of immune checkpoint blockade (ICB) therapy is significantly compromised in the metabolically disordered tumor microenvironment (TME), posing a formidable challenge that cannot be ignored in current antitumor strategies. In this study, TME-responsive nanoparticles (HMP1G NPs) loaded with 1-methyltryptophan (1-MT; an indoleamine 2,3-dioxygenase 1 [IDO1] inhibitor,) and S-nitrosoglutathione (GSNO; a nitric oxide donor) is developed to enhance the therapeutic efficacy of 1-MT-mediated ICB. The HMP1G NPs responded to H+ and glutathione in the TME, releasing Mn2+, GSNO, and 1-MT. The released Mn2+ catalyzed the production of abundant reactive oxygen species and nitric oxide from hydrogen peroxide and GSNO, and the generated nitric oxide, synergistically with 1-MT, inhibited the accumulation of kynurenine mediated by IDO1 in the tumor. Mechanistically, HMP1G NPs downregulated tumor cell-derived IDO1 via the aryl hydrocarbon receptor/signal transducer and activator of transcription 3/interleukin signaling axis to improve kynurenine/tryptophan metabolism and immunosuppression. In a murine breast cancer model, treatment with HMP1G NPs elicited effective antitumor immunity and enhanced survival outcomes. This study highlights a novel nano-platform that simultaneously improves metabolism and enhances ICB efficacy to achieve a new and efficient antitumor strategy.
Collapse
Affiliation(s)
- Mengna Wang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- The First Clinical CollegeChongqing Medical UniversityChongqing400016P. R. China
| | - Yuhong Liu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- The First Clinical CollegeChongqing Medical UniversityChongqing400016P. R. China
| | - Yanshi Li
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Tao Lu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Min Wang
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Zhaobo Cheng
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- The First Clinical CollegeChongqing Medical UniversityChongqing400016P. R. China
| | - Lin Chen
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Tongling Wen
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
- The First Clinical CollegeChongqing Medical UniversityChongqing400016P. R. China
| | - Min Pan
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| | - Guohua Hu
- Department of OtorhinolaryngologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016P. R. China
| |
Collapse
|
62
|
Dawson SL, Todd E, Ward AC. The Interplay of Nutrition, the Gut Microbiota and Immunity and Its Contribution to Human Disease. Biomedicines 2025; 13:329. [PMID: 40002741 PMCID: PMC11853302 DOI: 10.3390/biomedicines13020329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Nutrition, the gut microbiota and immunity are all important factors in the maintenance of health. However, there is a growing realization of the complex interplay between these elements coalescing in a nutrition-gut microbiota-immunity axis. This regulatory axis is critical for health with disruption being implicated in a broad range of diseases, including autoimmune disorders, allergies and mental health disorders. This new perspective continues to underpin a growing number of innovative therapeutic strategies targeting different elements of this axis to treat relevant diseases. This review describes the inter-relationships between nutrition, the gut microbiota and immunity. It then details several human diseases where disruption of the nutrition-gut microbiota-immunity axis has been identified and presents examples of how the various elements may be targeted therapeutically as alternate treatment strategies for these diseases.
Collapse
Affiliation(s)
- Samantha L. Dawson
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Emma Todd
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia; (S.L.D.); (E.T.)
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
63
|
Blaylock RL. Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders. Surg Neurol Int 2025; 16:26. [PMID: 39926461 PMCID: PMC11799683 DOI: 10.25259/sni_1114_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Autoimmune disorders are destructive processes considered to be an attack on "self " antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a "self " antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.
Collapse
|
64
|
Wang Y, Deng Y, Feng M, Chen J, Zhong M, Han Z, Zhang Q, Sun Y. Cordycepin Extracted from Cordyceps militaris mitigated CUMS-induced depression of rats via targeting GSK3β/β-catenin signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119249. [PMID: 39689748 DOI: 10.1016/j.jep.2024.119249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordycepin, the main active component of Cordyceps militaris, exhibits various pharmacological activities, including anti-tumor and antioxidant effects. However, its antidepressant effect and the underlying mechanisms remain unclear. AIM OF REVIEW This study aimed to explore the antidepressant effect of cordycepin and elucidate the potential molecular mechanisms. MATERIALS AND METHODS Chronic unpredictable mild stress (CUMS) rat model was established to assess antidepressant effect of cordycepin. Gas chromatography-mass spectrometry (GC-MS) metabolomics with integrated network pharmacology were used to find differential metabolites in serum, brain, and cerebrospinal fluid of rats and identify potential target by cordycepin. Western blot and Real-time PCR were applied to validate the signaling pathway. RESULTS Cordycepin alleviated CUMS-induced depression-like behaviors by weight gain, sucrose preference increment, immobility time reduction, total travelling distance extension and serum corticosterone levels reduction. Metabolomics showed that cordycepin reversed CUMS-induced metabolic disturbances through alanine and TCA cycle metabolism pathways. Network pharmacology identified GSK3β as a potential target. Cordycepin increased protein levels of p-GSK3β, β-catenin and nuclear β-catenin, and enhanced transcription of downstream genes PKM, LDHA, Cyclin D1 and C-myc in brains of CUMS-induced rats. CONCLUSIONS This study indicated that cordycepin exerted antidepressant effect by modulating GSK3β/β-catenin pathway, suggesting its potential as a candidate agent for depression.
Collapse
Affiliation(s)
- Yupeng Wang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Yanhui Deng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Mingmei Feng
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Jiaxi Chen
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Mengling Zhong
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Zhipeng Han
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China; College of Food Science and Light Industry, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China.
| | - Yang Sun
- School of Pharmaceutical Sciences, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, the People's Republic of China.
| |
Collapse
|
65
|
Liao S, Guo F, Xiao Z, Xiao H, Pan QR, Guo Y, Chen J, Wang X, Wang S, Huang H, Yang L, Liu HF, Pan Q. Autophagy activation within inflammatory microenvironment improved the therapeutic effect of MSC-Derived extracellular Vesicle in SLE. J Adv Res 2025:S2090-1232(25)00063-3. [PMID: 39880074 DOI: 10.1016/j.jare.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/06/2025] [Accepted: 01/25/2025] [Indexed: 01/31/2025] Open
Abstract
INTRODUCTION Developing strategies to improve the therapeutic efficacy of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in autoimmune diseases have garnered increased attention. OBJECTIVES To evaluate whether rapamycin-induced autophagy within the systemic lupus erythematosus (SLE) inflammatory microenvironment (Rapa-SLE) augments the therapeutic effects of MSC-derived EVs in SLE. METHODS The therapeutic potential of the resulting EVs (Rapa-SLE-EV) was assessed in MRL/lpr mice. Rapa-SLE-EVs were compared with EVs derived from MSCs from MSCs cultured with EV-depleted fetal bovine serum (FBS-EV), EVs from MSCs cultured with rapamycin-treated FBS (Rapa-FBS-EV), and EVs exposed to SLE serum without rapamycin (SLE-EV). The autoimmune response, renal function, and pathological damage were assessed among the mouse groups. Additionally, mechanistic investigations into the role of the anti-inflammatory protein IDO1 within the EVs. RESULTS Interaction with the SLE inflammatory microenvironment triggered autophagy in MSCs, which was further enhanced by rapamycin treatment. Rapa-SLE-EV administration significantly ameliorated the autoimmune response and renal damage in MRL/lpr mice, outperforming other MSC-EV groups. This treatment mitigated key manifestations of SLE, including reduced autoantibody levels, as well as splenomegaly, and lymphadenopathy. Furthermore, Rapa-SLE-EV demonstrated superior suppression of plasma inflammatory cytokines, preserved renal function, mitigated pathological damage, and reduced glomerular immune complex deposition. Mechanistically, Rapa-SLE-EV exhibits exceptional inhibitory effects on SLE-B cell function, benefited by the high expression of the anti-inflammatory protein IDO1, which was confirmed to enter SLE-B cells through EVs. CONCLUSIONS We developed a novel strategy to improve the therapeutic efficacy of MSC-EVs in SLE and confirmed that the immunomodulatory function of the MSC-EVs is enhanced through autophagic activation and interaction with the SLE serum microenvironment, a process likely benefited by the high expression of IDO1.
Collapse
Affiliation(s)
- Shuzhen Liao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou 510515, China
| | - Fengbiao Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zengzhi Xiao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Haiyan Xiao
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Quan-Ren Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yugan Guo
- Department of Radiation Oncology, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512000, China
| | - Jiaxuan Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Xi Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Shuting Wang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Haimin Huang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Lawei Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Qingjun Pan
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Clinical Research and Experimental Center, Department of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Clinical Laboratory, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University. Guangzhou 510120, China.
| |
Collapse
|
66
|
Xu J, Yu Y, Li S, Qiu F. Global Trends in Research of Amino Acid Metabolism in T Lymphocytes in Recent 15 Years: A Bibliometric Analysis. J Immunol Res 2025; 2025:3393342. [PMID: 39950085 PMCID: PMC11824865 DOI: 10.1155/jimr/3393342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/20/2024] [Indexed: 02/16/2025] Open
Abstract
Amino acid metabolism in T cells determines the therapeutic efficacy of T-cell-targeting drugs. To assess the direction of amino acid metabolism in T cells and construct related knowledge structure, we performed a bibliometric analysis aiming at amino acid metabolism in T cells utilizing studies publicized in recent 15 years. Three hundred thirty-seven related studies were downloaded from the Web of Science Core Collection (WoSCC), and the information on countries, institutes, and authors was collected and analyzed. In addition, the present research status and future trends were explored according to the results yielded from the analysis of cited references and keywords. This study revealed that publications regarding amino acid metabolism in T cells gradually increased each year. The USA is the top producer and most influential country in this field. Recent research has focused on the correlation between the metabolism of several amino acids and regulatory T cells (Tregs) and CD8+ T cells. Overall, this research offers a comprehensive exhibition on the field of amino acid metabolism in T cells, which will help researchers to study this domain more effectively and intuitively.
Collapse
Affiliation(s)
- Jiaona Xu
- Department of Rehabilitation, Hangzhou Geriatric Hospital, Hangzhou 310022, China
| | - Yinan Yu
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310006, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310018, China
| | - Fanghui Qiu
- Department of Rehabilitation, Hangzhou Geriatric Hospital, Hangzhou 310022, China
| |
Collapse
|
67
|
Tan Q, Deng S, Xiong L. Role of Kynurenine and Its Derivatives in Liver Diseases: Recent Advances and Future Clinical Perspectives. Int J Mol Sci 2025; 26:968. [PMID: 39940736 PMCID: PMC11816720 DOI: 10.3390/ijms26030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Liver health is integral to overall human well-being and the pathogenesis of various diseases. In recent years, kynurenine and its derivatives have gradually been recognized for their involvement in various pathophysiological processes, especially in the regulation of liver diseases, such as acute liver injury, non-alcoholic fatty liver disease, cirrhosis, and liver cancer. Kynurenine and its derivatives are derived from tryptophan, which is broken down by the enzymes indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO), converting the essential amino acid tryptophan into kynurenine (KYN) and other downstream metabolites, such as kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), xanthurenic acid (XA), and quinolinic acid (QA). In liver diseases, kynurenine and its derivatives can promote the activity of the transcription factor aryl hydrocarbon receptor (AhR), suppress T cell activity for immune modulation, inhibit the activation of inflammatory signaling pathways, such as NF-κB for anti-inflammatory effects, and inhibit the activation of hepatic stellate cells to slow down fibrosis progression. Additionally, kynurenine and other downstream metabolites can influence the progression of liver diseases by modulating the gut microbiota. Therefore, in this review, we summarize and explore the mechanisms by which kynurenine and its derivatives regulate liver diseases to help develop new diagnostic or prognostic biomarkers and effective therapies targeting the kynurenine pathway for liver disease treatment.
Collapse
Affiliation(s)
- Qiwen Tan
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lijuan Xiong
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Department of Nosocomial Infection Management, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
68
|
Zemitis A, Vanags J, Schiemer T, Klavins K, Laganovska G. Aqueous humor metabolomic profiling identifies a distinct signature in pseudoexfoliation syndrome. Front Mol Biosci 2025; 11:1487115. [PMID: 39917180 PMCID: PMC11798801 DOI: 10.3389/fmolb.2024.1487115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/23/2024] [Indexed: 02/09/2025] Open
Abstract
Purpose PEXS was first described in 1917, yet its etiology still needs clarification. An imbalance between oxidants and antioxidants plays a significant role. PEXS leads to various ocular complications, including increased risk during cataract surgery due to weak zonules, lens dislocation, and reduced visual outcomes. Our study investigates whether metabolomics can provide insights into this ocular pathology. Methods The study included 183 patients undergoing cataract surgery at Pauls Stradins Clinical University Hospital. 104 patients did not have PEXS, while 79 were diagnosed with the condition. Intraocular fluid samples from these patients were analyzed using targeted metabolite analysis, performed through HILIC liquid chromatography coupled with mass spectrometry detection. Results The aqueous humor of PEXS patients contains statistically significant higher levels of cystine (p < 0.001), citrulline (p < 0.001), phenylalanine (p = 0.041), tyrosine (p = 0.025), serine (p = 0.030), arginine (p = 0.017), lactic acid (p = 0.055), tryptophan (p = 0.055), and creatinine (p = 0.022). These results suggest a potential link to ferroptosis. Conclusion Ferroptosis is a form of programmed cell death characterized by iron-dependent LPO. The inhibition of the antiporter system Xc - leads to increased oxidative stress, suggesting that the changes seen in PEXS could be linked to ferroptosis. Our findings indicate that cysteine synthesis occurs via the transsulfation pathway, attributable to inhibiting the antiporter system Xc -. Treatment of pseudoexfoliation should lower the oxidative stress inside the anterior chamber by reducing the uptake of PUFAs, lower iron levels, and cysteine supplementation.
Collapse
Affiliation(s)
- Arturs Zemitis
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Clinic of Ophthalmology, Riga, Latvia
| | - Juris Vanags
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Clinic of Ophthalmology, Riga, Latvia
| | - Theresa Schiemer
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Kristaps Klavins
- Institute of Biomaterials and Bioengineering, Faculty of Natural Sciences and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Guna Laganovska
- Department of Ophthalmology, Riga Stradins University, Riga, Latvia
- Pauls Stradins Clinical University Hospital, Clinic of Ophthalmology, Riga, Latvia
| |
Collapse
|
69
|
Wang N, Zhu S, Chen S, Zou J, Zeng P, Tan S. Neurological mechanism-based analysis of the role and characteristics of physical activity in the improvement of depressive symptoms. Rev Neurosci 2025:revneuro-2024-0147. [PMID: 39829004 DOI: 10.1515/revneuro-2024-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Abstract
Depression is a common mental disorder characterized by a high prevalence and significant adverse effects, making the searching for effective interventions an urgent priority. In recent years, physical activity (PA) has increasingly been recognized as a standard adjunctive treatment for mental disorders owing to its low cost, easy application, and high efficiency. Epidemiological data shows positive preventive and therapeutic effects of PA on mental illnesses such as depression. This article systematically describes the prophylactic and therapeutic effects of PA on depression and its biological basis. A comprehensive literature analysis reveals that PA significantly improves depressive symptoms by upregulating the expression of "exerkines" such as irisin, adiponectin, and BDNF to positively impacting neuropsychiatric conditions. In particular, lactate could also play a critical role in the ameliorating effects of PA on depression due to the findings about protein lactylation as a novel protein post-transcriptional modification. The literature also suggests that in terms of brain structure, PA may improve hippocampal volume, basal ganglia (neostriatum, caudate-crustal nucleus) and PFC density in patients with MDD. In summary, this study elucidates the multifaceted positive effects of PA on depression and its potential biological mechanisms with a particular emphasis on the roles of various exerkines. Future research may further investigate the effects of different types, intensities, and durations of PA on depression, as well as how to better integrate PA interventions into existing treatment strategies to achieve optimal outcomes in mental health interventions.
Collapse
Affiliation(s)
- Nan Wang
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shanshan Zhu
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Shuyang Chen
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Ju Zou
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Peng Zeng
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
| | - Sijie Tan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical School, 34706 University of South China , Hengyang 421001, China
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China
| |
Collapse
|
70
|
Li M, Wu Y, Xu Y, Huang X, Gao K, Hu N, Zhu S, Wang C, Liang S. Peripheral tryptophan-kynurenine pathway dysfunction in first-episode schizophrenia. Sci Rep 2025; 15:2432. [PMID: 39827210 PMCID: PMC11742721 DOI: 10.1038/s41598-025-86390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
The tryptophan (TRP)-kynurenine (KYN) pathway is involved in the pathogenesis of schizophrenia. This study aimed to investigate the levels of TRP-KYN metabolites in serum and urine of patients with first-episode schizophrenia (FES) and their association with clinical manifestations. This study included 38 drug-naive patients with FES and 43 healthy controls (HCs). Clinical symptoms were evaluated using the Positive and Negative Syndrome Scale (PANSS). Levels of TRP-KYN metabolites in serum and urine were quantified. Patients with FES showed significantly higher serum quinolinic acid/kynurenic acid (QUIN/KYNA) ratio and urine KYN/TRP ratio compared to HCs, while neuroprotective metabolites, including serum KYNA, xanthurenic acid (XA), and urine picolinic acid (PIC) levels, were significantly reduced, along with a decreased urine PIC/QUIN ratio (p < 0.05). The urine KYNA/KYN ratio was negatively correlated with PANSS general psychopathology scores (r = -0.35, p = 0.04) and with PANSS total scores (r = -0.35, p = 0.046). Patients with FES exhibited dysregulation of the peripheral TRP-KYN pathway, characterized by an increased neurotoxic-to-neuroprotective QUIN/KYNA ratio and reduced levels of neuroprotective metabolites. This shift towards increased neurotoxic product generation suggests that the dysregulation of the TRP-KYN pathway could play a role in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Mian Li
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
- The Fourth Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yue Wu
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Yan Xu
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Xin Huang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Kerun Gao
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Nannan Hu
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Shuangyue Zhu
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Chengpeng Wang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China
| | - Sugai Liang
- Affiliated Mental Health Centre & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| |
Collapse
|
71
|
Wang J, Xiang JH, Peng XY, Liu M, Sun LJ, Zhang M, Zhang LY, Chen ZB, Tang ZQ, Cheng L. Characteristic alterations of gut microbiota and serum metabolites in patients with chronic tinnitus: a multi-omics analysis. Microbiol Spectr 2025; 13:e0187824. [PMID: 39555931 PMCID: PMC11705945 DOI: 10.1128/spectrum.01878-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Chronic tinnitus is a central nervous system disorder. Currently, the effects of gut microbiota on tinnitus remain unexplored. To explore the connection between gut microbiota and tinnitus, we conducted 16S rRNA sequencing of fecal microbiota and serum metabolomic analysis in a cohort of 70 patients with tinnitus and 30 healthy volunteers. We used the weighted gene co-expression network method to analyze the relationship between the gut microbiota and the serum metabolites. The random forest technique was utilized to select metabolites and gut taxa to construct predictive models. A pronounced gut dysbiosis in the tinnitus group, characterized by reduced bacterial diversity, an increased Firmicutes/Bacteroidetes ratio, and some opportunistic bacteria including Aeromonas and Acinetobacter were enriched. In contrast, some beneficial gut probiotics decreased, including Lactobacillales and Lactobacillaceae. In serum metabolomic analysis, serum metabolic disturbances in tinnitus patients and these differential metabolites were enriched in pathways of neuroinflammation, neurotransmitter activity, and synaptic function. The predictive models exhibited great diagnostic performance, achieving 0.94 (95% CI: 0.85-0.98) and 0.96 (95% CI: 0.86-0.99) in the test set. Our study suggests that changes in gut microbiota could potentially influence the occurrence and chronicity of tinnitus, and exert regulatory effects through changes in serum metabolites. Overall, this research provides new perceptions into the potential role of gut microbiota and serum metabolite in the pathogenesis of tinnitus, and proposes the "gut-brain-ear" concept as a pathomechanism underlying tinnitus, with significant clinical diagnostic implications and therapeutic potential.IMPORTANCETinnitus affects millions of people worldwide. Severe cases may lead to sleep disorders, anxiety, and depression, subsequently impacting patients' lives and increasing societal healthcare expenditures. However, tinnitus mechanisms are poorly understood, and effective therapeutic interventions are currently lacking. We discovered the gut microbiota and serum metabolomics changes in patients with tinnitus, and provided the potential pathological mechanisms of dysregulated gut flora in chronic tinnitus. We proposed the innovative concept of the "gut-brain-ear axis," which underscores the exploration of gut microbiota impact on susceptibility to chronic tinnitus through serum metabolic profile modulation. We also reveal novel biomarkers associated with chronic tinnitus, offering a new conceptual framework for further investigations into the susceptibility of patients, potential treatment targets for tinnitus, and assessing patient prognosis. Subsequently, gut microbiota and serum metabolites can be used as molecular markers to assess the susceptibility and prognosis of tinnitus.Furthermore, fecal transplantation may be used to treat tinnitus.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Hui Xiang
- Department of Breast Surgical Oncology, National Cancer Center & National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Yuan Peng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Liu
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Le-Jia Sun
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Yuan Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bin Chen
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
72
|
Li M, She K, Zhu P, Li Z, Liu J, Luo F, Ye Y. Chronic Pain and Comorbid Emotional Disorders: Neural Circuitry and Neuroimmunity Pathways. Int J Mol Sci 2025; 26:436. [PMID: 39859152 PMCID: PMC11764837 DOI: 10.3390/ijms26020436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic pain is a multidimensional experience that not only involves persistent nociception but is also frequently accompanied by significant emotional disorders, such as anxiety and depression, which complicate its management and amplify its impact. This review provides an in-depth exploration of the neurobiological mechanisms underlying the comorbidity of chronic pain and emotional disturbances. Key areas of focus include the dysregulation of major neurotransmitter systems (serotonin, gamma-aminobutyric acid, and glutamate) and the resulting functional remodeling of critical neural circuits implicated in pain processing, emotional regulation, and reward. Given the contribution of neuroimmune mechanisms to pain chronicity and mood disorders, we further conducted an in-depth investigation into the role of neuroimmune factors, including resident immune cells, infiltrating immune cells, and the release of inflammatory mediators. This review further discusses current therapeutic strategies, encompassing pharmacological interventions, neuromodulation, and integrative approaches, and emphasizes the necessity of targeted treatments that address both pain and emotional components. Finally, it identifies gaps in the current understanding and outlines future research directions aimed at elucidating the complex interplay between chronic pain and emotional disorders, thereby laying the foundation for more effective and holistic treatment paradigms.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Luo
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| | - Yingze Ye
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (M.L.); (K.S.); (P.Z.); (Z.L.); (J.L.)
| |
Collapse
|
73
|
Wang J, Yin J, Peng D, Zhang X, Shi Z, Li W, Shi Y, Sun M, Jiang N, Cheng B, Meng X, Liu R. 4-Nitrophenol at environmentally relevant concentrations mediates reproductive toxicity in Caenorhabditis elegans via metabolic disorders-induced estrogen signaling pathway. J Environ Sci (China) 2025; 147:244-258. [PMID: 39003044 DOI: 10.1016/j.jes.2023.09.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 07/15/2024]
Abstract
4-Nitrophenol (4-NP), as a toxic and refractory pollutant, has generated significant concern due to its adverse effects. However, the potential toxic effects and mechanism remained unclear. In this study, the reproduction, development, locomotion and reactive oxygen species (ROS) production of Caenorhabditis elegans were investigated to evaluate the 4-NP toxicity. We used metabolomics to assess the potential damage mechanisms. The role of metabolites in mediating the relationship between 4-NP and phenotypes was examined by correlation and mediation analysis. 4-NP (8 ng/L and 8 µg/L) caused significant reduction of brood size, ovulation rate, total germ cells numbers, head thrashes and body bends, and an increase in ROS. However, the oosperm numbers in uterus, body length and body width were decreased in 8 µg/L. Moreover, 36 differential metabolites were enriched in the significant metabolic pathways, including lysine biosynthesis, β-alanine metabolism, tryptophan metabolism, pentose phosphate pathway, pentose and glucuronate interconversions, amino sugar and nucleotide sugar metabolism, starch and sucrose metabolism, galactose metabolism, propanoate metabolism, glycerolipid metabolism, and estrogen signaling pathway. The mechanism of 4-NP toxicity was that oxidative stress caused by the perturbation of amino acid, which had effects on energy metabolism through disturbing carbohydrate and lipid metabolism, and finally affected the estrogen signaling pathway to exert toxic effects. Moreover, correlation and mediation analysis showed glycerol-3P, glucosamine-6P, glucosamine-1P, UDP-galactose, L-aspartic acid, and uracil were potential markers for the reproduction and glucose-1,6P2 for developmental toxicity. The results provided insight into the pathways involved in the toxic effects caused by 4-NP and developed potential biomarkers to evaluate 4-NP toxicity.
Collapse
Affiliation(s)
- Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Danhong Peng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaoqian Zhang
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Zhouhong Shi
- Department of Obstetrics and Gynecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu 215002, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Beijing Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
74
|
Xie X, Li W, Xiong Z, Xu J, Liao T, Sun L, Xu H, Zhang M, Zhou J, Xiong W, Fu Z, Li Z, Han Q, Cui D, Anthony DC. Metformin reprograms tryptophan metabolism via gut microbiome-derived bile acid metabolites to ameliorate depression-Like behaviors in mice. Brain Behav Immun 2025; 123:442-455. [PMID: 39303815 DOI: 10.1016/j.bbi.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
As an adjunct therapy, metformin enhances the efficacy of conventional antidepressant medications. However, its mode of action remains unclear. Here, metformin was found to ameliorate depression-like behaviors in mice exposed to chronic restraint stress (CRS) by normalizing the dysbiotic gut microbiome. Fecal transplants from metformin-treated mice ameliorated depressive behaviors in stressed mice. Microbiome profiling revealed that Akkermansia muciniphila (A. muciniphila), in particular, was markedly increased in the gut by metformin and that oral administration of this species alone was sufficient to reverse CRS-induced depressive behaviors and normalize aberrant stress-induced 5-hydroxytryptamine (5-HT) metabolism in the brain and gut. Untargeted metabolomic profiling further identified the bile acid metabolites taurocholate and deoxycholic acid as direct A. muciniphila-derived molecules that are, individually, sufficient to rescue the CRS-induced impaired 5-HT metabolism and depression-like behaviors. Thus, we report metformin reprograms 5-HT metabolism via microbiome-brain interactions to mitigate depressive syndromes, providing novel insights into gut microbiota-derived bile acids as potential therapeutic candidates for depressive mood disorders from bench to bedside.
Collapse
Affiliation(s)
- Xiaoxian Xie
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201109, PR China; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenwen Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Ze Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Junyu Xu
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, PR China
| | - Tailin Liao
- NHC and CAMS Key Laboratory of Medical Neurobiology, Ministry of Education Frontier Science Center for Brain Research and Brain Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, PR China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haoshen Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenzheng Xiong
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zezhi Li
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou 510370, PR China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, PR China.
| | - Qi Han
- Center for Brain Science Shanghai Children s Medical Center, Department of Anatomy and Physiology, Shanghai Frontiers Science Center of Cellular Homeostasis and Human Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; Shanghai Center for Brain Science and Brain-inspired Technology, Shanghai 200031, PR China.
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 201109, PR China.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT Oxford, UK
| |
Collapse
|
75
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
76
|
Palmfeldt J. Interaction and regulation of the mitochondrial proteome - in health and disease. Expert Rev Proteomics 2025; 22:19-33. [PMID: 39806765 DOI: 10.1080/14789450.2025.2451704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/06/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Mitochondria contain multiple pathways including energy metabolism and several signaling and synthetic pathways. Mitochondrial proteomics is highly valuable for studying diseases including inherited metabolic disorders, complex and common disorders like neurodegeneration, diabetes, and cancer, since they all to some degree have mitochondrial underpinnings. AREAS COVERED The main mitochondrial functions and pathways are outlined, and systematic protein lists are presented. The main energy metabolic pathways are as follows: iron-sulfur cluster synthesis, one carbon metabolism, catabolism of hydrogen sulfide, kynurenines and reactive oxygen species (ROS), and others, described with the aim of laying a foundation for systematic mitochondrial pathway analysis based on proteomics data. The links of the proteins and pathways to functional effects and diseases are discussed. The disease examples are focussed on inherited metabolic disorders, cancer, neurological, and cardiovascular disorders. EXPERT OPINION To elucidate the role of mitochondria in health and disease, there is a need for comprehensive proteomics analyses with stringent, systematic data treatment for proper interpretation of mitochondrial pathway data. In that way, comprehensive hypothesis-based research can be performed based on proteomics data.
Collapse
Affiliation(s)
- Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
77
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2025; 36:55-69. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
78
|
Perez-Castro L, Nawas AF, Kilgore JA, Garcia R, Lafita-Navarro M, Acosta PH, Nogueira PAS, Williams NS, Conacci-Sorrell M. Tryptophan metabolite atlas uncovers organ, age, and sex-specific variations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630041. [PMID: 39763948 PMCID: PMC11703250 DOI: 10.1101/2024.12.23.630041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Although tryptophan (Trp) is the largest and most structurally complex amino acid, it is the least abundant in the proteome. Its distinct indole ring and high carbon content enable it to generate various biologically active metabolites such as serotonin, kynurenine (Kyn), and indole-3-pyruvate (I3P). Dysregulation of Trp metabolism has been implicated in diseases ranging from depression to cancer. Investigating Trp and its metabolites in healthy tissues offers pathways to target disease-associated disruptions selectively, while preserving essential functions. In this study, we comprehensively mapped Trp metabolites across the Kyn, serotonin, and I3P pathways, as well as the microbiome-derived metabolite tryptamine, in C57BL/6 mice. Our comprehensive analysis covered 12 peripheral organs, the central nervous system, and serum in both male and female mice at three life stages: young (3 weeks), adult (54 weeks), and aged (74 weeks). We found significant tissue-, sex-, and age-specific variations in Trp metabolism, with notably higher levels of the oncometabolites I3P and Kyn in aging males. These findings emphasize the value of organ-specific analysis of Trp metabolism for understanding its role in disease progression and identifying targeted therapeutic opportunities.
Collapse
Affiliation(s)
- Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Afshan F. Nawas
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jessica A. Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Roy Garcia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - M.Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Paul H. Acosta
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Pedro A. S. Nogueira
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noelle S. Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
79
|
Guo T, Wang X, Zhang Q, Jia Y, Liu H, Hu L, Zhao N, Xu S, Duan Y, Jia K. Transcriptomics and metabolomics insights into the seasonal dynamics of meat quality in yak on the Qinghai-Tibetan Plateau. BMC Genomics 2024; 25:1194. [PMID: 39695977 DOI: 10.1186/s12864-024-11093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Meat quality in yak is influenced by the fluctuation of nutritional composition in different grazing seasons on the Qinghai-Tibetan Plateau. However, the molecular mechanism underlying in yak meat remains unknown. Therefore, this study aimed to investigate the seasonal dynamics of meat quality in yak by transcriptomics and metabolomics techniques. Twelve healthy female yaks with a similar weight were divided into two groups, including the warm season group (WS) and cold season group (CS). After slaughter, samples of longissimus lumborum were collected and subjected to transcriptomics and metabolomics to explore the effects of different seasons on meat quality. RESULTS Yak in the WS group had higher contents of n-3 Polyunsaturated fatty acid (PUFA), n-6 PUFA, threonine, and valine compared to the CS group, but the pH45min and b* values were lower. A total of 75 differentially expressed metabolites in the longissimus lumborum muscle were identified, with 23 metabolites upregulated and 52 metabolites downregulated in the WS group. These metabolites were mainly enriched in the pathway of glycine, serine and threonine metabolism, tryptophan metabolism, and carbohydrate digestion and absorption. In comparison, the WS group exhibited 262 upregulated genes in the longissimus lumborum muscle and 81 downregulated genes relatives to the CS group, which were enriched in the fat deposition of TGF-beta, ECM-receptor interaction, MAPK, and PPAR signaling pathway. CONCLUSIONS Among these, downregulated genes NPNT, GADL1, SESN3, and CPXM1 were associated with lipid metabolism and fat deposition in grazing yaks. It was found that DDC, DHTKD1, CCBL1, GCDH, and AOC1 involved in the tryptophan metabolism played an important role in the regulation of energy metabolism in yak.
Collapse
Affiliation(s)
- Tongqing Guo
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xungang Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Qian Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuna Jia
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongjin Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Linyong Hu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| | - Yingzhu Duan
- Test Station for Grassland Improvement, Xining, 812199, China
| | - Ke Jia
- Test Station for Grassland Improvement, Xining, 812199, China
| |
Collapse
|
80
|
Xie Y, Zhang L, Chen S, Xie C, Tong J, Shen Y. The potential role of amino acids in myopia: inspiration from metabolomics. Metabolomics 2024; 21:6. [PMID: 39676079 DOI: 10.1007/s11306-024-02207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/01/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Due to the high prevalence of myopia, there is a growing need for the identification of myopia intervention mechanisms and targets. Metabolomics has been gradually used to investigate changes in myopia tissue metabolites over the last few years, but the potential physiological and pathological roles of amino acids and their downstream metabolites discovered by metabolomics in myopia are not fully understood. AIM OF REVIEW Aim to explore the possible relationship between amino acid metabolism and the occurrence and development of myopia, we collected a total of 21 experimental studies related to myopia metabolomics. Perform pathway analysis using MetaboAnalyst online software. We have identified over 20 amino acids that may be associated with the development of myopia. Among them, 19 types of amino acids are common amino acids. We discussed their possible mechanisms affecting myopia and proposed future prospects for treating myopia. KEY SCIENTIFIC CONCEPTS OF REVIEW Our analysis results show that metabolomics research on myopia involves many important amino acids. We have collected literature and found that research on amino acid metabolism in myopia mainly focuses on downstream small molecule substances. Amino acids and their downstream metabolites affect the development of myopia by participating in important biochemical processes such as oxidative stress, glucose metabolism, and lipid metabolism. Enzymes, receptors, and cytokines that regulate amino acid metabolism may become potential targets for myopia treatment.
Collapse
Affiliation(s)
- Ying Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Liyue Zhang
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Siyi Chen
- The Alfred, 55 Commercial Rd, Melbourne, VIC, Australia
| | - Chen Xie
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Jianping Tong
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| | - Ye Shen
- The Department of Ophthalmology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
81
|
Hong J, Liu W, Xiao X, Gajendran B, Ben-David Y. Targeting pivotal amino acids metabolism for treatment of leukemia. Heliyon 2024; 10:e40492. [PMID: 39654725 PMCID: PMC11626780 DOI: 10.1016/j.heliyon.2024.e40492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024] Open
Abstract
Metabolic reprogramming is a crucial characteristic of cancer, allowing cancer cells to acquire metabolic properties that support their survival, immune evasion, and uncontrolled proliferation. Consequently, targeting cancer metabolism has become an essential therapeutic strategy. Abnormal amino acid metabolism is not only a key aspect of metabolic reprogramming but also plays a significant role in chemotherapy resistance and immune evasion, particularly in leukemia. Changes in amino acid metabolism in tumor cells are typically driven by a combination of signaling pathways and transcription factors. Current approaches to targeting amino acid metabolism in leukemia include inhibiting amino acid transporters, blocking amino acid biosynthesis, and depleting specific amino acids to induce apoptosis in leukemic cells. Different types of leukemic cells rely on the exogenous supply of specific amino acids, such as asparagine, glutamine, arginine, and tryptophan. Therefore, disrupting the supply of these amino acids may represent a vulnerability in leukemia. This review focuses on the pivotal role of amino acids in leukemia metabolism, their impact on leukemic stem cells, and their therapeutic potential.
Collapse
Affiliation(s)
- Jiankun Hong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Xiao Xiao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| | - Babu Gajendran
- Institute of Pharmacology and Biological Activity, Natural Products Research Center of Guizhou Province, Guiyang, Guizhou, 550014, PR China
- School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, Guizhou Province, PR China
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guian New Disctrict, 561113, Guizhou, PR China
- Natural Products Research Center of Guizhou. PR China
| |
Collapse
|
82
|
González CY, Estrada JA, Oros-Pantoja R, Colín-Ferreyra MDC, Benitez-Arciniega AD, Soto Piña AE, Aguirre-Garrido JF. The Gut Microbiota Is Involved in the Regulation of Cognitive Flexibility in Adolescent BALB/c Mice Exposed to Chronic Physical Stress and a High-Fat Diet. Microorganisms 2024; 12:2542. [PMID: 39770745 PMCID: PMC11677384 DOI: 10.3390/microorganisms12122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Dysfunction in the prefrontal cortex can lead to cognitive inflexibility due to multifactorial causes as included cardiometabolic disorders, stress, inadequate diets, as well as an imbalance of the gut-brain axis microbiota. However, these risk factors have not been evaluated jointly. The purpose of this study was to evaluate the effect of physical stress (MS: Male Stress and FS: Female Stress) and high-fat diet (MD: Male Diet and FD: Female Diet) supplementation on the gut microbiota and cognitive flexibility. METHODS The study was performed on 47 mice, 30 male (M) and 17 female (F) BALBc, exposed to chronic stress physical (S) and high-fat diet (D). Cognitive flexibility was evaluated using the Attentional Set-Shifting Test (ASST) and the gut microbiota composition in terms of relative abundance (%) and alpha-beta diversity. RESULTS Results showed that S and D reduced cognitive flexibility in male and female mice (p < 0.0001). Significant changes occurred in Alistipes spp. (MM vs. MS:MD; p < 0.0001), Barnesiella spp. (FC vs. FS; p = 0.0002; FC vs. FD, p = 0.0033); Dorea spp. (MC vs. MD, p = 0.0008; MM vs. MD, p < 0.0001) and Lactobacillus spp. (MC vs. MD and FM vs. FS, p < 0.0001; FM vs. MD, p = 0.0393) genera among groups. Predictive functional analysis (QIIME2 and PICRUSt2) showed a significant increase in the expression of histidine kinase, alanine dehydrogenase, glutamine synthase, glutamate synthase, arginine succinyl synthase, and tryptophan synthase genes (p < 0.05), the latter being a precursor of serotonin (5-HT). CONCLUSIONS Chronic physical stress and a high-fat diet modify cognitive flexibility and the composition and predictive function of the gut microbiota.
Collapse
Affiliation(s)
- Cristian Yuriana González
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - José Antonio Estrada
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Rigoberto Oros-Pantoja
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - María del Carmen Colín-Ferreyra
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Alejandra Donaji Benitez-Arciniega
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - Alexandra Estela Soto Piña
- School of Medicine, Autonomous University of the State of Mexico, Paseo Tollocan and Jesús Carranza, Toluca de Lerdo 50180, State of Mexico, Mexico; (C.Y.G.); (J.A.E.); (R.O.-P.); (M.d.C.C.-F.); (A.D.B.-A.)
| | - José Félix Aguirre-Garrido
- Department of Biotechnology and Environmental Microbiology, Autonomous Metropolitan University-Lerma, Hidalgo Pte. 46, Lerma 52006, State of Mexico, Mexico;
| |
Collapse
|
83
|
Mac Cann R, Newman E, Devane D, Sabin C, Cotter AG, Landay A, O’Toole PW, Mallon PW. HIV, the gut microbiome and clinical outcomes, a systematic review. PLoS One 2024; 19:e0308859. [PMID: 39652612 PMCID: PMC11627425 DOI: 10.1371/journal.pone.0308859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/01/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) has improved the life expectancy of people with HIV (PWH). However, this population is now experiencing accelerated age-related comorbidities, contributed to by chronic immune activation and inflammation, with dysbiosis of the gut microbiome also implicated. METHOD We conducted a systematic literature search of PubMed, Embase, Scopus, Cochrane reviews and international conference abstracts for articles that examined for the following non-communicable diseases (NCDs); cardiovascular disease, cancer, frailty, metabolic, bone, renal and neurocognitive disease, in PWH aged >18 years. Studies were included that measured gut microbiome diversity and composition, microbial translocation markers or microbial metabolite markers. RESULTS In all, 567 articles were identified and screened of which 87 full-text articles were assessed for eligibility and 56 were included in the final review. The data suggest a high burden NCD, in particular cardiovascular and metabolic disease in PWH. Alterations in bacterial diversity and structure varied by NCD type, but a general trend in reduced diversity was seen together with alterations in bacterial abundances between different NCD. Lipopolysaccharide was the most commonly investigated marker of microbial translocation across NCD followed by soluble CD14. Short-chain fatty acids, tryptophan and choline metabolites were associated with cardiovascular outcomes and also associated with chronic liver disease (CLD). CONCLUSIONS This systematic review is the first to summarise the evidence for the association between gut microbiome dysbiosis and NCDs in PWH. Understanding this interaction will provide insights into the pathogenesis of many NCD and help develop novel diagnostic and therapeutic strategies for PWH.
Collapse
Affiliation(s)
- Rachel Mac Cann
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| | - Ellen Newman
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
| | - Declan Devane
- School of Nursing and Midwifery, National University of Galway, Galway, Ireland
| | - Caroline Sabin
- Institute for Global Health, Universitay College London, London, United Kingdom
| | - Aoife G. Cotter
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Alan Landay
- Department of Internal Medicine, Rush University, Chicago, Illinois, United States of America
| | - Paul W. O’Toole
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Patrick W. Mallon
- School of Medicine, University College Dublin, Dublin 4, Ireland
- Department of Infectious Diseases, St Vincent’s University Hospital, Dublin 4, Ireland
- Centre for Experimental Pathogen Host Research (CEPHR), University College Dublin, Dublin 4, Ireland
| |
Collapse
|
84
|
Zhou Y, Lin Z, Han Y, Gan L, Cheng Y, Chen Z. Unveiling a novel mechanism: Reduction of graphene oxide by Lysinibacillus sp. through secretion of l-ascorbic acid. CHEMOSPHERE 2024; 369:143813. [PMID: 39603357 DOI: 10.1016/j.chemosphere.2024.143813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/06/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
The graphene oxide (GO) reduction by microorganisms has garnered considerable interest, yet the specific mechanisms underlying the bacteria secretion of reducing substances for GO reduction remain unclear. This study aims to learn that bacterial extracellular components can reduce graphene oxide through direct (contacting GO) and indirect (not contacting GO) reduction experiments. The subsequent investigation focused on identifying the specific substances secreted by bacteria capable of GO reduction. The results of non-targeted metabolomics revealed differential expression of cacid (L-AA) demonstrates a significant up-regulation. The further experiment involved the supplementation of L-AA in the reduction system of Lysinibacillus sp. with GO, demonstrating enhanced reduction efficacy, with the ID/IG ratio of reduced graphene oxide (rGO) increasing to 1.073 after 4 d of reduction with 0.5 g L-1 L-AA. Therefore, the mediation of GO reduction by L-AA secreted by Lysinibacillus sp. is proposed as a viable mechanism, offering novel insights into microbial GO reduction.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Ziyi Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Yonghe Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China
| | - Li Gan
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| | - Ying Cheng
- Global Centre for Environmental Remediation, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, 350007, Fujian Province, China.
| |
Collapse
|
85
|
Sapienza J, Agostoni G, Comai S, Nasini S, Dall'Acqua S, Sut S, Spangaro M, Martini F, Bechi M, Buonocore M, Bigai G, Repaci F, Nocera D, Ave C, Guglielmino C, Cocchi F, Cavallaro R, Deste G, Bosia M. Neuroinflammation and kynurenines in schizophrenia: Impact on cognition depending on cognitive functioning and modulatory properties in relation to cognitive remediation and aerobic exercise. Schizophr Res Cogn 2024; 38:100328. [PMID: 39281320 PMCID: PMC11399803 DOI: 10.1016/j.scog.2024.100328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024]
Abstract
Background In the last decade, the kynurenine pathway (KP) has gained attention in the pathogenesis of cognitive impairment in schizophrenia being at the croassroad between neuroinflammation and glutamatergic and cholinergic neurotransmission. However, clinical findings are scarse and conflicting, and the specific contributions of these two systems to the neurobiology of cognitive symptoms are far from being elucidated. Furthermore, little is known about the molecular underpinnings of non-pharmacological interventions for cognitive improvement, including rehabilitation strategies. Methods The current study examined 72 patients with schizophrenia, divided in two clusters depending on the severity of the cognitive impairment, with the aim to evaluate the impact of inflammatory biomarkers and KP metabolites depending on cognitive functioning. Moreover, we studied their possible link to the cognitive outcome in relation to sessions of cognitive remediation therapy (CRT) and aerobic exercise (AE) in a longitudinal arm of 42 patients. Results Neuroinflammation appeared to exert a more pronounced influence on cognition in patients exhibiting a higher cognitive functioning, contrasting with the activation of the KP, which had a greater impact on individuals with a lower cognitive profile. Cognitive improvements after the treatments were negatively predicted by levels of TNF-α and positively predicted by the 3-hydroxykynurenine (3-HK)/kynurenine (KYN) ratio, an index of the kynurenine-3-monooxygenase (KMO) enzyme activity. Conclusion Overall, these findings add novel evidence on the biological underpinnings of cognitive impairment in schizophrenia pointing at a differential role of neuroinflammation and KP metabolites in inducing cognitive deficits depending on the cognitive reserve and predicting outcomes after rehabilitation.
Collapse
Affiliation(s)
- Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy
| | - Giulia Agostoni
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
- Division of Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Sofia Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Margherita Bechi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mariachiara Buonocore
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giorgia Bigai
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Federica Repaci
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Nocera
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Chiara Ave
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Carmelo Guglielmino
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Cocchi
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| | - Giacomo Deste
- Department of Mental Health, Spedali Civili Hospital, Brescia, Italy
| | - Marta Bosia
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine, Vita -Salute San Raffaele University, Milan, Italy
| |
Collapse
|
86
|
Luo J, Liang S, Jin F. Gut microbiota and healthy longevity. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2590-2602. [PMID: 39110402 DOI: 10.1007/s11427-023-2595-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/01/2024] [Indexed: 12/18/2024]
Abstract
Recent progress on the underlying biological mechanisms of healthy longevity has propelled the field from elucidating genetic modification of healthy longevity hallmarks to defining mechanisms of gut microbiota influencing it. Importantly, the role of gut microbiota in the healthy longevity of the host may provide unprecedented opportunities to decipher the plasticity of lifespan on a natural evolutionary scale and shed light on using microbiota-targeted strategies to promote healthy aging and combat age-related diseases. This review investigates how gut microbiota affects healthy longevity, focusing on the mechanisms through which gut microbiota modulates it. Specifically, we focused on the ability of gut microbiota to enhance the intestinal barrier integrity, provide protection from inflammaging, ameliorate nutrientsensing pathways, optimize mitochondrial function, and improve defense against age-related diseases, thus participating in enhancing longevity and healthspan.
Collapse
Affiliation(s)
- Jia Luo
- College of Psychology, Sichuan Normal University, Chengdu, 610066, China
| | - Shan Liang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Jin
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
87
|
Tanaka M, Szabó Á, Vécsei L. Redefining Roles: A Paradigm Shift in Tryptophan-Kynurenine Metabolism for Innovative Clinical Applications. Int J Mol Sci 2024; 25:12767. [PMID: 39684480 DOI: 10.3390/ijms252312767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
The tryptophan-kynurenine (KYN) pathway has long been recognized for its essential role in generating metabolites that influence various physiological processes. Traditionally, these metabolites have been categorized into distinct, often opposing groups, such as pro-oxidant versus antioxidant, excitotoxic/neurotoxic versus neuroprotective. This dichotomous framework has shaped much of the research on conditions like neurodegenerative and neuropsychiatric disorders, as well as cancer, where metabolic imbalances are a key feature. The effects are significantly influenced by various factors, including the concentration of metabolites and the particular cellular milieu in which they are generated. A molecule that acts as neuroprotective at low concentrations may exhibit neurotoxic effects at elevated levels. The oxidative equilibrium of the surrounding environment can alter the function of KYN from an antioxidant to a pro-oxidant. This narrative review offers a comprehensive examination and analysis of the contemporary understanding of KYN metabolites, emphasizing their multifaceted biological functions and their relevance in numerous physiological and pathological processes. This underscores the pressing necessity for a paradigm shift in the comprehension of KYN metabolism. Understanding the context-dependent roles of KYN metabolites is vital for novel therapies in conditions like Alzheimer's disease, multiple sclerosis, and cancer. Comprehensive pathway modulation, including balancing inflammatory signals and enzyme regulation, offers promising avenues for targeted, effective treatments.
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Ágnes Szabó
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
- Doctoral School of Clinical Medicine, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
88
|
Brzezińska P, Mieszkowski J, Stankiewicz B, Kowalik T, Reczkowicz J, Niespodziński B, Durzyńska A, Kowalski K, Borkowska A, Antosiewicz J, Kochanowicz A. Direct effects of remote ischemic preconditioning on post-exercise-induced changes in kynurenine metabolism. Front Physiol 2024; 15:1462289. [PMID: 39659803 PMCID: PMC11628380 DOI: 10.3389/fphys.2024.1462289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Purpose Tryptophan (TRP) degradation through the kynurenine pathway is responsible for converting 95% of free TRP into kynurenines, which modulate skeletal muscle bioenergetics, immune and central nervous system activity. Therefore, changes in the kynurenines during exercise have been widely studied but not in the context of the effects of remote ischemic preconditioning (RIPC). In this study, we analyzed the effect of 14-day RIPC training on kynurenines and TRP in runners after running intervals of 20 × 400 m. Methods In this study, 27 semi-professional long-distance runners were assigned to two groups: a RIPC group performing 14 days of RIPC training (n = 12), and a placebo group, SHAM (n = 15). Blood was collected for analysis before, immediately after, and at 6 h and 24 h after the run. Results After the 14-day RIPC/SHAM intervention, post hoc analysis showed a significantly lower concentration of XANA and kynurenic acid to kynurenine ratio (KYNA/KYN) in the RIPC group than in the SHAM group immediately after the running test. Conversely, the decrease in serum TRP levels was higher in the RIPC population. Conclusion RIPC modulates post-exercise changes in XANA and TRP levels, which can affect brain health, yet further research is needed.
Collapse
Affiliation(s)
- Paulina Brzezińska
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Jan Mieszkowski
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
- Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Błażej Stankiewicz
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Tomasz Kowalik
- Department of Theory and Methodology of Physical Education and Sport, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | - Joanna Reczkowicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartłomiej Niespodziński
- Department of Biological Foundations of Physical Education, Faculty of Health Sciences and Physical Education, Kazimierz Wielki University, Bydgoszcz, Poland
| | | | - Konrad Kowalski
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andżelika Borkowska
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Jędrzej Antosiewicz
- Department of Bioenergetics and Physiology of Exercise, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Kochanowicz
- Department of Gymnastics and Dance, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
89
|
Li W, Yang L, Chen H, Miao J, Wang Y, Zhou C, Chen Y, Kong Z, Shen C, Wu J, Li J, Zhu L, Li Z, Bian Y. Depression, stress, and tryptophan metabolism through the kynurenine pathway: treatment strategies from the perspective of Chinese herbal medicine. Metab Brain Dis 2024; 40:5. [PMID: 39546044 DOI: 10.1007/s11011-024-01461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/20/2024] [Indexed: 11/17/2024]
Abstract
The pathogenesis of depression is complex, involving abnormalities in tryptophan (TRP) metabolism through the kynurenine pathway (KP). Moreover, depression is closely related to the hypothalamic-pituitary-adrenal (HPA) axis, the gut-brain axis, neuroinflammation, and stress. These factors collectively influence the multidimensional pathological mechanisms of depression. TRP, a fundamental amino acid, serves as a precursor for neuroactive metabolites vital to physiological functions. Central to TRP metabolism is the KP, and the imbalance between neurotoxic and neuroprotective metabolites is closely related to the onset and progression of depression. Therefore, maintaining the balance of KP metabolites is important. In this review, we have investigated the role of the KP in depression and explored the complexity of KP dysregulation and its therapeutic importance. Here, we highlight how a deeper understanding of the KP and its regulation can pave the way for new treatment strategies. Specifically, we have summarized the latest advances in elucidating the key mechanisms of rate-limiting enzyme inhibitors, providing insights into their potential therapeutic efficacy. In addition, we have explored the emerging field of Chinese herbal medicine, discussing its potential to regulate KP metabolites and alleviate depressive symptoms, thereby expanding the treatment options for depression. Our findings emphasize the multifaceted nature of depression and the necessity of interdisciplinary research to fully utilize KP regulation and Chinese herbal medicine as strategies to advance the treatment of depression.
Collapse
Affiliation(s)
- Wen Li
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haozhi Chen
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changlin Zhou
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chengyue Shen
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jiafei Wu
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jinyi Li
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Luoying Zhu
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yaoyao Bian
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
90
|
Guo K, Yin Y, Zheng L, Wu Z, Rao X, Zhu W, Zhou B, Liu L, Liu D. Integration of microbiomics, metabolomics, and transcriptomics reveals the therapeutic mechanism underlying Fuzheng-Qushi decoction for the treatment of lipopolysaccharide-induced lung injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118584. [PMID: 39019418 DOI: 10.1016/j.jep.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fuzheng-Qushi decoction (FZQS) is a practical Chinese herbal formula for relieving cough and fever. Therefore, the action and specific molecular mechanism of FZQS in the treatment of lung injury with cough and fever as the main symptoms need to be further investigated. AIMS OF THE STUDY To elucidate the protective effects of FZQS against lung injury in mice and reveal its potential targets and key biological pathways for the treatment of lung injury based on transcriptomics, microbiomics, and untargeted metabolomics analyses. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to induce a mouse model of lung injury, followed by the administration of FZQS. ELISA was used to detect IL-1β, IL-6, IL-17A, IL-4, IL-10, and TNF-α, in mouse lung tissues. Macrophage polarization and neutrophil activation were measured by flow cytometry. RNA sequencing (RNA-seq) was applied to screen for differentially expressed genes (DEGs) in lung tissues. RT-qPCR and Western blot assays were utilized to validate key DEGs and target proteins in lung tissues. 16S rRNA sequencing was employed to characterize the gut microbiota of mice. Metabolites in the gut were analyzed using untargeted metabolomics. RESULTS FZQS treatment significantly ameliorated lung histopathological damage, decreased pro-inflammatory cytokine levels, and increased anti-inflammatory cytokine levels. M1 macrophage levels in the peripheral blood decreased, M2 macrophage levels increased, and activated neutrophils were inhibited in mice with LPS-induced lung injury. Importantly, transcriptomic analysis showed that FZQS downregulated macrophage and neutrophil activation and migration and adhesion pathways by reversing 51 DEGs, which was further confirmed by RT-qPCR and Western blot analysis. In addition, FZQS modulated the dysbiosis of the gut microbiota by reversing the abundance of Corynebacterium, Facklamia, Staphylococcus, Paenalcaligenes, Lachnoclostridium, norank_f_Muribaculaceae, and unclassified_f_Lachnospiraceae. Meanwhile, metabolomics analysis revealed that FZQS significantly regulated tryptophan metabolism by reducing the levels of 3-Indoleacetonitrile and 5-Hydroxykynurenine. CONCLUSION FZQS effectively ameliorated LPS-induced lung injury by inhibiting the activation, migration, and adhesion of macrophages and neutrophils and modulating gut microbiota and its metabolites.
Collapse
Affiliation(s)
- Kaien Guo
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Yuting Yin
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Linxin Zheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Zenan Wu
- Department of Postgraduate, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Xiaoyong Rao
- National Engineering Center for Manufacturing Technology of Solid Preparations of Traditional Chinese Medicine Manufacturing Technology, Nanchang, 330004, Jiangxi Province, China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China
| | - Bugao Zhou
- Department of Research, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Liangji Liu
- Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| | - Duanyong Liu
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China; School of Nursing, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi Province, China.
| |
Collapse
|
91
|
Wang K, Chen TL, Zhang XX, Cao JB, Wang P, Wang M, Du JL, Mu Y, Tao R. Unveiling tryptophan dynamics and functions across model organisms via quantitative imaging. BMC Biol 2024; 22:258. [PMID: 39538250 PMCID: PMC11562630 DOI: 10.1186/s12915-024-02058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Tryptophan is an essential amino acid involved in critical cellular processes in vertebrates, serving as a precursor for serotonin and kynurenine, which are key neuromodulators to influence neural and immune functions. Systematic and quantitative measurement of tryptophan is vital to understanding these processes. RESULTS Here, we utilized a robust and highly responsive green ratiometric indicator for tryptophan (GRIT) to quantitatively measure tryptophan dynamics in bacteria, mitochondria of mammalian cell cultures, human serum, and intact zebrafish. At the cellular scale, these quantitative analyses uncovered differences in tryptophan dynamics across cell types and organelles. At the whole-organism scale, we revealed that inflammation-induced tryptophan concentration increases in zebrafish brain led to elevated serotonin and kynurenine levels, prolonged sleep duration, suggesting a novel metabolic connection between immune response and behavior. Moreover, GRIT's application in detecting reduced serum tryptophan levels in patients with inflammation symptoms suggests its potential as a high-throughput diagnostic tool. CONCLUSIONS In summary, this study introduces GRIT as a powerful method for studying tryptophan metabolism and its broader physiological implications, paving the way for new insights into the metabolic regulation of health and disease across multiple biological scales.
Collapse
Affiliation(s)
- Kui Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Tian-Lun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
| | - Xin-Xin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China
| | - Jian-Bin Cao
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Xi-Men Road, Zhejiang, 317000, China
| | - Pengcheng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China
- Department of Pediatric Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kong-Jiang Road, Shanghai, 200092, China
| | - Mingcang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, 150 Xi-Men Road, Zhejiang, 317000, China
| | - Jiu-Lin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai, 200031, China.
| | - Yu Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing, 100049, China.
| | - Rongkun Tao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai, 200031, China.
| |
Collapse
|
92
|
Wu J, Zeng W, Xie H, Cao M, Yang J, Xie Y, Luo Z, Zhang Z, Xu H, Huang W, Zhou T, Tan J, Wu X, Yang Z, Zhu S, Mao R, He Z, Lan P. Microbiota-induced alteration of kynurenine metabolism in macrophages drives formation of creeping fat in Crohn's disease. Cell Host Microbe 2024; 32:1927-1943.e9. [PMID: 39541945 DOI: 10.1016/j.chom.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/28/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Hyperplasia of mesenteric tissues in Crohn's disease, called creeping fat (CrF), is associated with surgical recurrence. Although microbiota translocation and colonization have been found in CrF, convincing mouse phenotypes and the underlying mechanisms of CrF formation remain unclear. Utilizing single-nucleus RNA (snRNA) sequencing of CrF and different mouse models, we demonstrate that the commensal Achromobacter pulmonis induces mesenteric adipogenesis through macrophage alteration. Targeted metabolome analysis reveals that L-kynurenine is the most enriched metabolite in CrF. Upregulation of indoleamine 2,3-dioxygenase 1 (IDO1) enhances kynurenine metabolism and drives mesenteric adipogenesis. Leveraging single-cell RNA (scRNA) sequencing of mouse mesenteric tissues and macrophage-specific IDO1 knockout mice, we verify the role of macrophage-sourced L-kynurenine in mesenteric adipogenesis. Mechanistically, L-kynurenine-induced adipogenesis is mediated by the aryl hydrocarbon receptors in adipocytes. Administration of an IDO1 inhibitor or bacteria engineered to degrade L-kynurenine alleviates mesenteric adipogenesis in mice. Collectively, our study demonstrates that microbiota-induced modulation of macrophage metabolism potentiates CrF formation.
Collapse
Affiliation(s)
- Jinjie Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanyi Zeng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Hongyu Xie
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Anesthesia, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mujia Cao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Jingyi Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Yanchun Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Zongjin Zhang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haoyang Xu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Weidong Huang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tingyue Zhou
- Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jinyu Tan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Wu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zihuan Yang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China
| | - Shu Zhu
- Key Laboratory of immune response and immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhen He
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Key Laboratory of Human Microbiome and Chronic Diseases, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.
| | - Ping Lan
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in South China, Guangzhou, China.
| |
Collapse
|
93
|
Kupjetz M, Patt N, Joisten N, Ueland PM, McCann A, Gonzenbach R, Bansi J, Zimmer P. Baseline Inflammation but not Exercise Modality Impacts Exercise-induced Kynurenine Pathway Modulation in Persons With Multiple Sclerosis: Secondary Results From a Randomized Controlled Trial. Int J Tryptophan Res 2024; 17:11786469241284423. [PMID: 39534856 PMCID: PMC11555752 DOI: 10.1177/11786469241284423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Background The kynurenine pathway (KP) is an important hub in neuroimmune crosstalk that is dysregulated in persons with multiple sclerosis (pwMS) and modulated by exercise in a modality-specific manner. Objectives To compare changes in the KP metabolite profile of pwMS (1) following combined treatments including either high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) during a 3-week multimodal rehabilitation, (2) to evaluate exercise response in relation to baseline systemic inflammation, and (3) to investigate associations of kynurenines with physical capacity and clinical outcomes. Methods For this secondary analysis of a randomized controlled trial, serum concentrations of kynurenines at baseline and after 3 weeks were determined using targeted metabolomics (LC-MS/MS). Exercise-induced changes in the KP metabolite profile according to treatment and baseline systemic inflammation (neutrophil-to-lymphocyte ratio (NLR) <3.12 versus ⩾3.12) were investigated using covariance analyses. Results Regardless of treatment, concentrations of tryptophan and most kynurenines decreased over time. Quinolinic acid concentration increased (p < .001). Participants with low and high NLR revealed differential exercise-induced changes in concentrations of kynurenines and NLR. The systemic inflammation markers neopterin (p = .015) and NLR (p < .001) decreased in the whole group and in participants with high NLR, respectively. Conclusions Combined treatments including HIIT or MICT do not differentially modulate the KP metabolite profile, with both reducing concentrations of most kynurenines. Baseline systemic inflammation may impact exercise-induced changes in the KP metabolite profile and anti-inflammatory effects of exercise in pwMS. Trial registration clinicaltrials.gov (identifier: NCT04356248).
Collapse
Affiliation(s)
- Marie Kupjetz
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| | - Nadine Patt
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Niklas Joisten
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
- Division of Exercise and Movement Science, Institute for Sport Science, University of Göttingen, Göttingen, Germany
| | | | | | - Roman Gonzenbach
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
| | - Jens Bansi
- Department of Neurology, Valens Rehabilitation Centre, Clinics of Valens, Valens, Switzerland
- Department of Health, Physiotherapy, OST – Eastern Switzerland University of Applied Sciences, Sankt Gallen, Switzerland
| | - Philipp Zimmer
- Division of Performance and Health (Sports Medicine), Institute for Sport and Sport Science, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
94
|
Yin T, Zhang X, Xiong Y, Li B, Guo D, Sha Z, Lin X, Wu H. Exploring gut microbial metabolites as key players in inhibition of cancer progression: Mechanisms and therapeutic implications. Microbiol Res 2024; 288:127871. [PMID: 39137590 DOI: 10.1016/j.micres.2024.127871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/19/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota plays a critical role in numerous biochemical processes essential for human health, such as metabolic regulation and immune system modulation. An increasing number of research suggests a strong association between the gut microbiota and carcinogenesis. The diverse metabolites produced by gut microbiota can modulate cellular gene expression, cell cycle dynamics, apoptosis, and immune system functions, thereby exerting a profound influence on cancer development and progression. A healthy gut microbiota promotes substance metabolism, stimulates immune responses, and thereby maintains the long-term homeostasis of the intestinal microenvironment. When the gut microbiota becomes imbalanced and disrupts the homeostasis of the intestinal microenvironment, the risk of various diseases increases. This review aims to elucidate the impact of gut microbial metabolites on cancer initiation and progression, focusing on short-chain fatty acids (SCFAs), polyamines (PAs), hydrogen sulfide (H2S), secondary bile acids (SBAs), and microbial tryptophan catabolites (MTCs). By detailing the roles and molecular mechanisms of these metabolites in cancer pathogenesis and therapy, this article sheds light on dual effects on the host at different concentrations of metabolites and offers new insights into cancer research.
Collapse
Affiliation(s)
- Tianxiang Yin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiang Zhang
- Medical School, Yan'an University, Yan'an 716000, China
| | - Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Bohao Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Dong Guo
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhou Sha
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyuan Lin
- Department of Clinical Microbiology and Immunology, College of Pharmacy and Medical Laboratory, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
95
|
Wang T, Liao X, Zhao X, Chen K, Chen Y, Wen H, Yin D, Wang Y, Lin B, Zhang S, Cui H. Rational design of 2-benzylsulfinyl-benzoxazoles as potent and selective indoleamine 2,3-dioxygenase 1 inhibitors to combat inflammation. Bioorg Chem 2024; 152:107740. [PMID: 39217780 DOI: 10.1016/j.bioorg.2024.107740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Mimicking the transition state of tryptophan (Trp) and O2 in the enzymatic reaction is an effective approach to design indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. In this study, we firstly assembled a small library of 2-substituted benzo-fused five membered heterocycles and found 2-sulfinyl-benzoxazoles with interesting IDO1 inhibitory activities. Next the inhibitory activity toward IDO1 was gradually improved. Several benzoxazoles showed potent IDO1 inhibitory activity with IC50 of 82-91 nM, and exhibited selectivity between IDO1 and tryptophan 2,3-dioxygenase (TDO2). Enzyme binding studies showed that benzoxazoles are reversible type II IDO1 inhibitors, and modeling studies suggested that the oxygen atom of the sulfoxide in benzoxazoles interacts with the iron atom of the heme group, which mimics the transition state of Fe-O-O-Trp complex. Especially, 10b can effectively inhibit the NO production in lipopolysaccharides (LPS) stimulated RAW264.7 cells, and it also shows good anti-inflammation effect on mice acute inflammation model of croton oil induced ear edema.
Collapse
Affiliation(s)
- Ting Wang
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiufeng Liao
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Xiaodi Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Kai Chen
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yangzhonghui Chen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Dali Yin
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Bin Lin
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|
96
|
Romanowicz J, Niemiec S, Khailova L, Lehmann T, Mancuso CA, Mitchell MB, Morgan GJ, Twite M, DiMaria MV, Klawitter J, Davidson JA, Frank BS. Perturbations of tryptophan catabolism via the kynurenine pathway are associated with stage 2 postoperative outcomes in single ventricle heart disease. Physiol Rep 2024; 12:e70133. [PMID: 39581847 PMCID: PMC11586103 DOI: 10.14814/phy2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
Preliminary evidence suggests perturbations of the kynurenine pathway (KP) of tryptophan metabolism in infants with single ventricle heart disease (SVHD). In 72 infants with SVHD undergoing stage 2 palliation (S2P) and 41 controls, we quantified serum KP metabolite concentrations via tandem mass spectroscopy pre-S2P and post-S2P at 2, 24, and 48 h and assessed metabolite relationships with post-S2P outcomes (length of stay, hypoxemia burden, and intubation duration). Pre-S2P, SVHD infants had lower tryptophan and serotonin levels and higher kynurenic acid, 3-hydroxykynurenine, and picolinic acid levels than controls. Post-S2P, metabolites peaked at 2 h, with return to baseline by 48 h for all except kynurenic acid, which remained elevated. Metabolite concentrations pre-S2P were poorly associated with outcomes. A lower serotonin peak 2 h post-S2P was associated with longer length of stay and intubation duration. Multiple metabolites at 24 and 48 h correlated with outcomes; notably, elevated kynurenic acid was associated with worse results for all three outcomes. Our results confirm that interstage SVHD infants have altered KP activity compared to controls. Further, the link between outcomes and KP metabolites post-S2P-but not at baseline-demonstrates that acute, perioperative changes in tryptophan catabolism may be more important to tolerating S2P physiology than chronic interstage changes.
Collapse
Affiliation(s)
- Jennifer Romanowicz
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Sierra Niemiec
- Department of Biostatistics and InformaticsUniversity of Colorado AnschutzAuroraColoradoUSA
| | - Ludmila Khailova
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Tanner Lehmann
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Christopher A. Mancuso
- Department of Biostatistics and InformaticsUniversity of Colorado AnschutzAuroraColoradoUSA
| | - Max B. Mitchell
- Department of Cardiac SurgeryChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Gareth J. Morgan
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Mark Twite
- Department of AnesthesiologyUniversity of Colorado AnschutzAuroraColoradoUSA
| | - Michael V. DiMaria
- Congenital Heart CenterUniversity of Michigan C.S. Mott Children's HospitalAnn ArborMichiganUSA
| | - Jelena Klawitter
- Department of AnesthesiologyUniversity of Colorado AnschutzAuroraColoradoUSA
| | - Jesse A. Davidson
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| | - Benjamin S. Frank
- Department of Pediatrics, Section of CardiologyChildren's Hospital Colorado and University of Colorado AnschutzAuroraColoradoUSA
| |
Collapse
|
97
|
Zhang J, Chen M, Yang Y, Liu Z, Guo W, Xiang P, Zeng Z, Wang D, Xiong W. Amino acid metabolic reprogramming in the tumor microenvironment and its implication for cancer therapy. J Cell Physiol 2024; 239:e31349. [PMID: 38946173 DOI: 10.1002/jcp.31349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024]
Abstract
Amino acids are essential building blocks for proteins, crucial energy sources for cell survival, and key signaling molecules supporting the resistant growth of tumor cells. In tumor cells, amino acid metabolic reprogramming is characterized by the enhanced uptake of amino acids as well as their aberrant synthesis, breakdown, and transport, leading to immune evasion and malignant progression of tumor cells. This article reviews the altered amino acid metabolism in tumor cells and its impact on tumor microenvironment, and also provides an overview of the current clinical applications of amino acid metabolism. Innovative drugs targeting amino acid metabolism hold great promise for precision and personalized cancer therapy.
Collapse
Affiliation(s)
- Jiarong Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Mingjian Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yuxin Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Ziqi Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wanni Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pingjuan Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
98
|
Yan Y, Zhou D, Chen J. Navigating Nutritional Inequality in Schizophrenia: A Comprehensive Exploration of Diet, Genetics, and Holistic Management Across the Life Cycle. Nutrients 2024; 16:3738. [PMID: 39519571 PMCID: PMC11547656 DOI: 10.3390/nu16213738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
This review explores the understudied topic of nutritional inequality among individuals with schizophrenia, highlighting the complex interplay between diet, genetics, and mental health. Unhealthy dietary patterns, socioeconomic factors, and disordered eating behaviors contribute to malnutrition, increasing the risk of physical health issues and premature mortality. Socioeconomic factors exacerbate nutritional disparities, necessitating targeted interventions. Genetic influences on nutrient metabolism remain under-researched, although nutritional genomics shows potential for personalized interventions. Current research reveals methodological gaps, urging larger sample sizes and standardized approaches. The integration of nutrigenomics, encompassing various omics disciplines, emerges as a transformative tool. The holistic life-cycle approach to schizophrenia management underscores the vital role of nutrition, calling for personalized interventions to enhance mental health outcomes.
Collapse
Affiliation(s)
- Yiming Yan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Disheng Zhou
- School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China;
| | - Jianhua Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China;
- Shanghai Clinical Research Center for Mental Health, Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
99
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
100
|
Pocivavsek A, Schwarcz R, Erhardt S. Neuroactive Kynurenines as Pharmacological Targets: New Experimental Tools and Exciting Therapeutic Opportunities. Pharmacol Rev 2024; 76:978-1008. [PMID: 39304346 PMCID: PMC11549936 DOI: 10.1124/pharmrev.124.000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Both preclinical and clinical studies implicate functional impairments of several neuroactive metabolites of the kynurenine pathway (KP), the major degradative cascade of the essential amino acid tryptophan in mammals, in the pathophysiology of neurologic and psychiatric diseases. A number of KP enzymes, such as tryptophan 2,3-dioxygenase (TDO2), indoleamine 2,3-dioxygenases (IDO1 and IDO2), kynurenine aminotransferases (KATs), kynurenine 3-monooxygenase (KMO), 3-hydroxyanthranilic acid oxygenase (3-HAO), and quinolinic acid phosphoribosyltransferase (QPRT), control brain KP metabolism in health and disease and are therefore increasingly considered to be promising targets for the treatment of disorders of the nervous system. Understanding the distribution, cellular expression, and regulation of KP enzymes and KP metabolites in the brain is therefore critical for the conceptualization and implementation of successful therapeutic strategies. SIGNIFICANCE STATEMENT: Studies have implicated the kynurenine pathway of tryptophan in the pathophysiology of neurologic and psychiatric diseases. Key enzymes of the kynurenine pathway regulate brain metabolism in both health and disease, making them promising targets for treating these disorders. Therefore, understanding the distribution, cellular expression, and regulation of these enzymes and metabolites in the brain is critical for developing effective therapeutic strategies. This review endeavors to describe these processes in detail.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Robert Schwarcz
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| | - Sophie Erhardt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina (A.P.); Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland (R.S.); and Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (S.E.)
| |
Collapse
|