51
|
Loss of Stat6 affects chromatin condensation in intestinal epithelial cells causing diverse outcome in murine models of inflammation-associated and sporadic colon carcinogenesis. Oncogene 2018; 38:1787-1801. [PMID: 30353167 PMCID: PMC6756235 DOI: 10.1038/s41388-018-0551-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/16/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
While great advances have been achieved regarding the genetic basis of colorectal cancer, the complex role of cell–cell communication and cytokine-induced signaling during its pathogenesis remains less understood. Signal transducer and activator of transcription 6 (Stat6) is the main transcription factor of interleukin-4 (IL-4) signaling and its participation in the development of various tumor types has been already reported. Here we aimed to examine the contribution of Stat6 in intestinal epithelial cells (IEC) in mouse models of intestinal carcinogenesis. Wild-type (WT), Stat6 knockout (Stat6−/−), and intestinal epithelial cell-specific IL-4Rα knockout (Il-4rαΔIEC) mice were subjected to colitis-associated (AOM/DSS) and colitis-independent (sporadic) carcinogenesis. IEC proliferation, apoptosis and RNA expression were evaluated by immunohistochemical, immunoblot, and RT-PCR analysis. We found that Stat6−/− mice developed more tumors in the colitis-associated carcinogenesis model. This was accompanied by a more pronounced inflammatory response during colitis and an elevated Stat3-dependent proliferation of IEC. Increased sensitivity to DSS-induced colitis was caused by elevated cell death in response to the initial carcinogen exposure as Stat6 deficiency led to increased chromatin compaction affecting DNA damage response in IEC upon treatment with alkylating agents independently of IL-4Rα engagement. Thus, loss of Stat6 caused more severe colitis and increased tumor load, however loss-of-initiated Stat6−/− IEC prevented tumor formation in the absence of overt inflammation. Our data unravel unexpected IL-4-independent functions of Stat6 in chromatin compaction in intestinal epithelial cells ultimately providing both tumor suppressive as well as tumor promoting effects in different models of intestinal tumorigenesis.
Collapse
|
52
|
Becerra-Díaz M, Strickland AB, Keselman A, Heller NM. Androgen and Androgen Receptor as Enhancers of M2 Macrophage Polarization in Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:2923-2933. [PMID: 30305328 DOI: 10.4049/jimmunol.1800352] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Allergic asthma is a disease initiated by a breach of the lung mucosal barrier and an inappropriate Th2 inflammatory immune response that results in M2 polarization of alveolar macrophages (AM). The number of M2 macrophages in the airway correlates with asthma severity in humans. Sex differences in asthma suggest that sex hormones modify lung inflammation and macrophage polarization. Asthmatic women have more M2 macrophages than asthmatic men and androgens have been used as an experimental asthma treatment. In this study, we demonstrate that although androgen (dihydrotestosterone) reconstitution of castrated mice reduced lung inflammation in a mouse model of allergic lung inflammation, it enhanced M2 polarization of AM. This indicates a cell-specific role for androgens. Dihydrotestosterone also enhanced IL-4-stimulated M2 macrophage polarization in vitro. Using mice lacking androgen receptor (AR) in monocytes/macrophages (ARfloxLysMCre), we found that male but not female mice exhibited less eosinophil recruitment and lung inflammation due to impaired M2 polarization. There was a reduction in eosinophil-recruiting chemokines and IL-5 in AR-deficient AM. These data reveal an unexpected and novel role for androgen/AR in promoting M2 macrophage polarization. Our findings are also important for understanding pathology in diseases promoted by M2 macrophages and androgens, such as asthma, eosinophilic esophagitis, and prostate cancer, and for designing new approaches to treatment.
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Ashley B Strickland
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21205; and .,Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
53
|
Ricard-Blum S, Baffet G, Théret N. Molecular and tissue alterations of collagens in fibrosis. Matrix Biol 2018; 68-69:122-149. [DOI: 10.1016/j.matbio.2018.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 02/07/2023]
|
54
|
Junttila IS. Tuning the Cytokine Responses: An Update on Interleukin (IL)-4 and IL-13 Receptor Complexes. Front Immunol 2018; 9:888. [PMID: 29930549 PMCID: PMC6001902 DOI: 10.3389/fimmu.2018.00888] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/10/2018] [Indexed: 12/29/2022] Open
Abstract
Interleukin (IL)-4 and IL-13 are related cytokines that regulate many aspects of allergic inflammation. They play important roles in regulating the responses of lymphocytes, myeloid cells, and non-hematopoietic cells. In T-cells, IL-4 induces the differentiation of naïve CD4 T cells into Th2 cells, in B cells, IL-4 drives the immunoglobulin (Ig) class switch to IgG1 and IgE, and in macrophages, IL-4 and IL-13 induce alternative macrophage activation. This review gives a short insight into the functional formation of these cytokine receptors. I will discuss both the binding kinetics of ligand/receptor interactions and the expression of the receptor chains for these cytokines in various cell types; both of which are crucial factors in explaining the efficiency by which these cytokines induce intracellular signaling and gene expression. Work initiated in part by William (Bill) E. Paul on IL-4 some 30 years ago has now grown into a major building block of our current understanding of basic immunology and the immune response. This knowledge on IL-4 has growing clinical importance, as therapeutic approaches targeting the cytokine and its signal transduction are becoming a part of the clinical practice in treating allergic diseases. Just by reading the reference list of this short review, one can appreciate the enormous input Bill has had on shaping our understanding of the pathophysiology of allergic inflammation and in particular the role of IL-4 in this process.
Collapse
Affiliation(s)
- Ilkka S Junttila
- Cytokine Biology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Department of Clinical Microbiology, Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
55
|
Keegan AD, Zamorano J, Keselman A, Heller NM. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View. Front Immunol 2018; 9:1037. [PMID: 29868002 PMCID: PMC5962649 DOI: 10.3389/fimmu.2018.01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States.,Baltimore VA Medical Center, Baltimore, MD, United States
| | - Jose Zamorano
- Unidad Investigacion, Complejo Hospitalario Universitario, Caceres, Spain
| | - Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
56
|
The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflamm 2018; 2018:1264913. [PMID: 29950923 PMCID: PMC5989173 DOI: 10.1155/2018/1264913] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/21/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Despite development in the understanding of the pathogenesis of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), the underlying mechanism still needs to be elucidated. Apart from leukocytes and endothelial cells, macrophages are also essential for the process of the inflammatory response in ALI/ARDS. Notably, macrophages play a dual role of proinflammation and anti-inflammation based on the microenvironment in different pathological stages. In the acute phase of ALI/ARDS, resident alveolar macrophages, typically expressing the alternatively activated phenotype (M2), shift into the classically activated phenotype (M1) and release various potent proinflammatory mediators. In the later phase, the M1 phenotype of activated resident and recruited macrophages shifts back to the M2 phenotype for eliminating apoptotic cells and participating in fibrosis. In this review, we summarize the main subsets of macrophages and the associated signaling pathways in three different pathological phases of ALI/ARDS. According to the current literature, regulating the function of macrophages and monocytes might be a promising therapeutic strategy against ALI/ARDS.
Collapse
|
57
|
Das A, Yang CS, Arifuzzaman S, Kim S, Kim SY, Jung KH, Lee YS, Chai YG. High-Resolution Mapping and Dynamics of the Transcriptome, Transcription Factors, and Transcription Co-Factor Networks in Classically and Alternatively Activated Macrophages. Front Immunol 2018; 9:22. [PMID: 29403501 PMCID: PMC5778122 DOI: 10.3389/fimmu.2018.00022] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022] Open
Abstract
Macrophages are the prime innate immune cells of the inflammatory response, and the combination of multiple signaling inputs derived from the recognition of host factors [e.g., interferon-g (IFN-γ)] and invading pathogen products (e.g., toll-like receptors (TLRs) agonists) are required to maintain essential macrophage function. The profound effects on biological outcomes of inflammation associated with IFN-γ pretreatment (“priming”) and TLR4 ligand bacterial lipopolysaccharide (LPS)-induced macrophage activation (M1 or classical activation) have long been recognized, but the underlying mechanisms are not well defined. Therefore, we analyzed gene expression profiles of macrophages and identified genes, transcription factors (TFs), and transcription co-factors (TcoFs) that are uniquely or highly expressed in IFN-γ-mediated TLR4 ligand LPS-inducible versus only TLR4 ligand LPS-inducible primary macrophages. This macrophage gene expression has not been observed in macrophage cell lines. We also showed that interleukin (IL)-4 and IL-13 (M2 or alternative activation) elicited the induction of a distinct subset of genes related to M2 macrophage polarization. Importantly, this macrophage gene expression was also associated with promoter conservation. In particular, our approach revealed novel roles for the TFs and TcoFs in response to inflammation. We believe that the systematic approach presented herein is an important framework to better understand the transcriptional machinery of different macrophage subtypes.
Collapse
Affiliation(s)
- Amitabh Das
- Institute of Natural Science and Technology, Hanyang University, Ansan, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| | | | - Sojin Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Sun Young Kim
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| | - Kyoung Hwa Jung
- Institute of Natural Science and Technology, Hanyang University, Ansan, South Korea
| | - Young Seek Lee
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea
| | - Young Gyu Chai
- Department of Molecular and Life Sciences, Hanyang University, Ansan, South Korea.,Department of Bionanotechnology, Hanyang University, Seoul, South Korea
| |
Collapse
|
58
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
59
|
Pelaia C, Vatrella A, Gallelli L, Terracciano R, Navalesi P, Maselli R, Pelaia G. Dupilumab for the treatment of asthma. Expert Opin Biol Ther 2017; 17:1565-1572. [PMID: 28990423 DOI: 10.1080/14712598.2017.1387245] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Dupilumab is a fully human IgG4 monoclonal antibody directed against the α subunit of the interleukin (IL)-4 receptor (IL-4Rα). Since the activation of IL-4Rα is utilized by both IL-4 and IL-13 to mediate their pathophysiological effects, dupilumab behaves as a dual antagonist of these two sister cytokines, which blocks IL-4/IL-13-dependent signal transduction. Areas covered: Herein, the authors review the cellular and molecular pathways activated by IL-4 and IL-13, which are relevant to asthma pathobiology. They also review: the mechanism of action of dupilumab, the phase I, II and III studies evaluating the pharmacokinetics as well as the safety, tolerability and clinical efficacy of dupilumab in asthma therapy. Expert opinion: Supported by a strategic mechanism of action, as well as by convincing preliminary clinical results, dupilumab currently appears to be a very promising biological drug for the treatment of severe uncontrolled asthma. It also may have benefits to comorbidities of asthma including atopic dermatitis, chronic sinusitis and nasal polyposis.
Collapse
Affiliation(s)
- Corrado Pelaia
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Alessandro Vatrella
- b Department of Medicine , Surgery and Dentistry, University of Salerno , Salerno , Italy
| | - Luca Gallelli
- c Department of Health Science , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Rosa Terracciano
- c Department of Health Science , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Paolo Navalesi
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Rosario Maselli
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| | - Girolamo Pelaia
- a Department of Medical and Surgical Sciences , University "Magna Græcia" of Catanzaro , Catanzaro , Italy
| |
Collapse
|
60
|
Huang SCC, Smith AM, Everts B, Colonna M, Pearce EL, Schilling JD, Pearce EJ. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity 2017; 45:817-830. [PMID: 27760338 DOI: 10.1016/j.immuni.2016.09.016] [Citation(s) in RCA: 468] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/15/2023]
Abstract
Macrophage activation status is intrinsically linked to metabolic remodeling. Macrophages stimulated by interleukin 4 (IL-4) to become alternatively (or, M2) activated increase fatty acid oxidation and oxidative phosphorylation; these metabolic changes are critical for M2 activation. Enhanced glucose utilization is also characteristic of the M2 metabolic signature. Here, we found that increased glucose utilization is essential for M2 activation. Increased glucose metabolism in IL-4-stimulated macrophages required the activation of the mTORC2 pathway, and loss of mTORC2 in macrophages suppressed tumor growth and decreased immunity to a parasitic nematode. Macrophage colony stimulating factor (M-CSF) was implicated as a contributing upstream activator of mTORC2 in a pathway that involved PI3K and AKT. mTORC2 operated in parallel with the IL-4Rα-Stat6 pathway to facilitate increased glycolysis during M2 activation via the induction of the transcription factor IRF4. IRF4 expression required both mTORC2 and Stat6 pathways, providing an underlying mechanism to explain how glucose utilization is increased to support M2 activation.
Collapse
Affiliation(s)
- Stanley Ching-Cheng Huang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amber M Smith
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Marco Colonna
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erika L Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Joel D Schilling
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Edward J Pearce
- Department of Immunometabolism, Max Planck Institute for Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
61
|
Keselman A, Fang X, White PB, Heller NM. Estrogen Signaling Contributes to Sex Differences in Macrophage Polarization during Asthma. THE JOURNAL OF IMMUNOLOGY 2017; 199:1573-1583. [PMID: 28760880 DOI: 10.4049/jimmunol.1601975] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 06/30/2017] [Indexed: 11/19/2022]
Abstract
Allergic asthma is a chronic Th2 inflammation in the lungs that constricts the airways and presents as coughing and wheezing. Asthma mostly affects boys in childhood and women in adulthood, suggesting that shifts in sex hormones alter the course of the disease. Alveolar macrophages have emerged as major mediators of allergic lung inflammation in animal models as well as humans. Whether sex differences exist in macrophage polarization and the molecular mechanism(s) that drive differential responses are not well understood. We found that IL-4-stimulated bone marrow-derived and alveolar macrophages from female mice exhibited greater expression of M2 genes in vitro and after allergen challenge in vivo. Alveolar macrophages from female mice exhibited greater expression of the IL-4Rα and estrogen receptor (ER) α compared with macrophages from male mice following allergen challenge. An ERα-specific agonist enhanced IL-4-induced M2 gene expression in macrophages from both sexes, but more so in macrophages from female mice. Furthermore, IL-4-stimulated macrophages from female mice exhibited more transcriptionally active histone modifications at M2 gene promoters than did macrophages from male mice. We found that supplementation of estrogen into ovariectomized female mice enhanced M2 polarization in vivo upon challenge with allergen and that macrophage-specific deletion of ERα impaired this M2 polarization. The effects of estrogen are long-lasting; bone marrow-derived macrophages from ovariectomized mice implanted with estrogen exhibited enhanced IL-4-induced M2 gene expression compared with macrophages from placebo-implanted littermates. Taken together, our findings suggest that estrogen enhances IL-4-induced M2 gene expression and thereby contributes to sex differences observed in asthma.
Collapse
Affiliation(s)
- Aleksander Keselman
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Xi Fang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Preston B White
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
62
|
Guo X, Li T, Xu Y, Xu X, Zhu Z, Zhang Y, Xu J, Xu K, Cheng H, Zhang X, Ke Y. Increased levels of Gab1 and Gab2 adaptor proteins skew interleukin-4 (IL-4) signaling toward M2 macrophage-driven pulmonary fibrosis in mice. J Biol Chem 2017; 292:14003-14015. [PMID: 28687632 DOI: 10.1074/jbc.m117.802066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
M2-polarized macrophages, also known as alternatively activated macrophages, have long been associated with pulmonary fibrosis; however, the mechanism has not been fully defined. Gab1 and Gab2 proteins belong to the Gab family of adaptors and are integral components of the signal specificity in response to various extracellular stimuli. In this report, we found that levels of both Gab1 and Gab2 were elevated in M2-polarized macrophages isolated from bleomycin-induced fibrotic lungs. In vitro Gab1/2 deficiency in bone marrow-derived macrophages abrogated IL-4-mediated M2 polarization. Furthermore, in vivo conditional removal of Gab1 (Gab1MyKO) and germ line knock-out of Gab2 (Gab2-/-) in macrophages prevented a bias toward the M2 phenotype and attenuated bleomycin-induced fibrotic lung remodeling. In support of these observations, Gab1/2 were involved in responses predominated by IL-4 signaling, an essential determinant for macrophage M2 polarization. Further investigation revealed that both Gab1 and -2 are recruited to the IL-4 receptor, synergistically enhancing downstream signal amplification but conferring IL-4 signal preference. Mechanistically, the loss of Gab1 attenuated AKT activation, whereas the absence of Gab2 suppressed STAT6 activation in response to IL-4 stimulation, both of which are commonly attributed to M2-driven pulmonary fibrosis in mice. Taken together, these observations define a non-redundant role of Gab docking proteins in M2 polarization, adding critical insights into the pathogenesis of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiaohong Guo
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Tingting Li
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiayan Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhengyi Zhu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yun Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kaihong Xu
- Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Hongqiang Cheng
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China
| | - Xue Zhang
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| | - Yuehai Ke
- From the Department of Pathology and Pathophysiology and Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
63
|
He C, Larson-Casey JL, Gu L, Ryan AJ, Murthy S, Carter AB. Cu,Zn-Superoxide Dismutase-Mediated Redox Regulation of Jumonji Domain Containing 3 Modulates Macrophage Polarization and Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 55:58-71. [PMID: 26699812 DOI: 10.1165/rcmb.2015-0183oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
M2 macrophages are implicated in the development of pulmonary fibrosis as they generate profibrotic signals. The polarization process, at least in part, is regulated by epigenetic modulation. Because Cu,Zn-superoxide dismutase-induced H2O2 can polarize macrophages to a profibrotic M2 phenotype, we hypothesized that modulation of the redox state of the cell is involved in the epigenetic modulation of the macrophage phenotype. In this study, we show that signal transducer and activator of transcription 6 (STAT6) regulates Jumonji domain containing (Jmjd) 3, a histone H3 lysine 27 demethylase, and mutation of a redox-sensitive cysteine in STAT6 attenuates jmjd3 expression. Moreover, Jmjd3 deficiency abrogates profibrotic M2 gene expression. Treatment with leflunomide, which reduces mitochondrial reactive oxygen species production and tyrosine phosphorylation, inhibits jmjd3 expression and M2 polarization, as well as development of a fibrotic phenotype. Taken together, these observations provide evidence that the redox regulation of Jmjd3 is a unique regulatory mechanism for Cu,Zn-superoxide dismutase-mediated profibrotic M2 polarization. Furthermore, leflunomide, which reduces reactive oxygen species production and tyrosine phosphorylation, may prove to be therapeutic in the treatment of asbestos-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Chao He
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology
| | - Jennifer L Larson-Casey
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology.,2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Linlin Gu
- 2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Alan J Ryan
- 3 Internal Medicine, Carver College of Medicine, and
| | - Shubha Murthy
- 3 Internal Medicine, Carver College of Medicine, and
| | - A Brent Carter
- Departments of 1Radiation Oncology and the Graduate Program in Free Radical and Radiation Biology.,4 Human Toxicology, College of Public Health, University of Iowa, Iowa City, Iowa.,5 Iowa City Veterans Administration Center, Iowa City, Iowa.,2 Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and.,6 Birmingham Veterans Administration Center, Birmingham, Alabama
| |
Collapse
|
64
|
Becerra-Díaz M, Wills-Karp M, Heller NM. New perspectives on the regulation of type II inflammation in asthma. F1000Res 2017; 6:1014. [PMID: 28721208 PMCID: PMC5497827 DOI: 10.12688/f1000research.11198.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the lungs which has been thought to arise as a result of inappropriately directed T helper type-2 (Th2) immune responses of the lungs to otherwise innocuous inhaled antigens. Current asthma therapeutics are directed towards the amelioration of downstream consequences of type-2 immune responses (i.e. β-agonists) or broad-spectrum immunosuppression (i.e. corticosteroids). However, few approaches to date have been focused on the primary prevention of immune deviation. Advances in molecular phenotyping reveal heterogeneity within the asthmatic population with multiple endotypes whose varying expression depends on the interplay between numerous environmental factors and the inheritance of a broad range of susceptibility genes. The most common endotype is one described as "type-2-high" (i.e. high levels of interleukin [IL]-13, eosinophilia, and periostin). The identification of multiple endotypes has provided a potential explanation for the observations that therapies directed at typical Th2 cytokines (IL-4, IL-5, and IL-13) and their receptors have often fallen short when they were tested in a diverse group of asthmatic patients without first stratifying based on disease endotype or severity. However, despite the incorporation of endotype-dependent stratification schemes into clinical trial designs, variation in drug responses are still apparent, suggesting that additional genetic/environmental factors may be contributing to the diversity in drug efficacy. Herein, we will review recent advances in our understanding of the complex pathways involved in the initiation and regulation of type-2-mediated immune responses and their modulation by host factors (genetics, metabolic status, and the microbiome). Particular consideration will be given to how this knowledge could pave the way for further refinement of disease endotypes and/or the development of novel therapeutic strategies for the treatment of asthma .
Collapse
Affiliation(s)
- Mireya Becerra-Díaz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Marsha Wills-Karp
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Nicola M. Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
65
|
Tang F, Wang Y, Hemmings BA, Rüegg C, Xue G. PKB/Akt-dependent regulation of inflammation in cancer. Semin Cancer Biol 2017; 48:62-69. [PMID: 28476657 DOI: 10.1016/j.semcancer.2017.04.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Abstract
Chronic inflammation is a major cause of human cancer. Clinical cancer therapies against inflammatory risk factors are strategically determined. To rationally guide a novel drug development, an improved mechanistic understanding on the pathological connection between inflammation and carcinogenesis is essential. PI3K-PKB signaling axis has been extensively studied and shown to be one of the key oncogenic drivers in most types of cancer. Pharmacological inhibition of the components along this signaling axis is of great interest for developing novel therapies. Interestingly, emerging studies have shown a close association between PKB activation and inflammatory activity in the vicinity of the tumor, and either blockade of PKB or attenuation of para-tumoral inflammation reveals a mutual-interactive pattern through pathway crosstalk. In this review, we intend to discuss recent advances of PKB-regulated chronic inflammation and its potential impacts on tumor development.
Collapse
Affiliation(s)
- Fengyuan Tang
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| | - Yuhua Wang
- Novartis Pharma AG, 4057 Basel, Switzerland
| | - Brian A Hemmings
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Curzio Rüegg
- Pathology, Department of Medicine, Faculty of Sciences, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gongda Xue
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.
| |
Collapse
|
66
|
Barrett JP, Henry RJ, Villapol S, Stoica BA, Kumar A, Burns MP, Faden AI, Loane DJ. NOX2 deficiency alters macrophage phenotype through an IL-10/STAT3 dependent mechanism: implications for traumatic brain injury. J Neuroinflammation 2017; 14:65. [PMID: 28340575 PMCID: PMC5366128 DOI: 10.1186/s12974-017-0843-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND NADPH oxidase (NOX2) is an enzyme system that generates reactive oxygen species (ROS) in microglia and macrophages. Excessive ROS production is linked with neuroinflammation and chronic neurodegeneration following traumatic brain injury (TBI). Redox signaling regulates macrophage/microglial phenotypic responses (pro-inflammatory versus anti-inflammatory), and NOX2 inhibition following moderate-to-severe TBI markedly reduces pro-inflammatory activation of macrophages/microglia resulting in concomitant increases in anti-inflammatory responses. Here, we report the signaling pathways that regulate NOX2-dependent macrophage/microglial phenotype switching in the TBI brain. METHODS Bone marrow-derived macrophages (BMDMs) prepared from wildtype (C57Bl/6) and NOX2 deficient (NOX2-/-) mice were treated with lipopolysaccharide (LPS; 10 ng/ml), interleukin-4 (IL-4; 10 ng/ml), or combined LPS/IL-4 to investigate signal transduction pathways associated with macrophage activation using western immunoblotting and qPCR analyses. Signaling pathways and activation markers were evaluated in ipsilateral cortical tissue obtained from adult male wildtype and NOX2-/- mice that received moderate-level controlled cortical impact (CCI). A neutralizing anti-IL-10 approach was used to determine the effects of IL-10 on NOX2-dependent transitions from pro- to anti-inflammatory activation states. RESULTS Using an LPS/IL-4-stimulated BMDM model that mimics the mixed pro- and anti-inflammatory responses observed in the injured cortex, we show that NOX2-/- significantly reduces STAT1 signaling and markers of pro-inflammatory activation. In addition, NOX2-/- BMDMs significantly increase anti-inflammatory marker expression; IL-10-mediated STAT3 signaling, but not STAT6 signaling, appears to be critical in regulating this anti-inflammatory response. Following moderate-level CCI, IL-10 is significantly increased in microglia/macrophages in the injured cortex of NOX2-/- mice. These changes are associated with increased STAT3 activation, but not STAT6 activation, and a robust anti-inflammatory response. Neutralization of IL-10 in NOX2-/- BMDMs or CCI mice blocks STAT3 activation and the anti-inflammatory response, thereby demonstrating a critical role for IL-10 in regulating NOX2-dependent transitions between pro- and anti-inflammatory activation states. CONCLUSIONS These studies indicate that following TBI NOX2 inhibition promotes a robust anti-inflammatory response in macrophages/microglia that is mediated by the IL-10/STAT3 signaling pathway. Thus, therapeutic interventions that inhibit macrophage/microglial NOX2 activity may improve TBI outcomes by not only limiting pro-inflammatory neurotoxic responses, but also enhancing IL-10-mediated anti-inflammatory responses that are neuroprotective.
Collapse
Affiliation(s)
- James P Barrett
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA
| | - Rebecca J Henry
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA
| | - Sonia Villapol
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Bogdan A Stoica
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA
| | - Alok Kumar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA
| | - Mark P Burns
- Laboratory for Brain Injury and Dementia, Department of Neuroscience, Georgetown University, Washington, DC, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 655 West Baltimore Street, #6-011, Baltimore, MD, 21201, USA.
| |
Collapse
|
67
|
Santini G, Mores N, Malerba M, Mondino C, Anzivino R, Macis G, Montuschi P. Dupilumab for the treatment of asthma. Expert Opin Investig Drugs 2017; 26:357-366. [PMID: 28085503 DOI: 10.1080/13543784.2017.1282458] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Dupilumab (REGN668/SAR231893), produced by a collaboration between Regeneron and Sanofi, is a monoclonal antibody currently in phase III for moderate-to-severe asthma. Dupilumab is directed against the α-subunit of the interleukin (IL)-4 receptor and blocks the IL-4 and IL-13 signal transduction. Areas covered: Pathophysiological role of IL-4 and IL-13 in asthma; mechanism of action of dupilumab; pharmacology of IL-4 receptor; phase I and phase II studies with dupilumab; regulatory affairs. Expert opinion: Patients with severe asthma who are not sufficiently controlled with standard-of-care represent the target asthma population for dupilumab. If confirmed, efficacy of dupilumab in both eosinophilic and non-eosinophilic severe asthma phenotype might represent an advantage over approved biologics for asthma, including omalizumab, mepolizumab, and reslizumab. Head-to-head studies to compare dupilumab versus other biologics with different mechanism of action are required. Pediatric studies with dupilumab are currently lacking and should be undertaken to assess efficacy and safety of this drug in children with severe asthma. The lack of preclinical data and published results of the completed four phase I studies precludes a complete assessment of the pharmacological profile of dupilumab. Dupilumab seems to be generally well tolerated, but large studies are required to establish its long-term safety and tolerability.
Collapse
Affiliation(s)
- Giuseppe Santini
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation , Rome , Italy
| | - Nadia Mores
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation , Rome , Italy
| | - Mario Malerba
- b Department of Internal Medicine , University of Brescia , Brescia , Italy
| | - Chiara Mondino
- c Department of Allergology , 'Bellinzona e Valli' Hospital , Bellinzona , Switzerland
| | - Roberta Anzivino
- d Department of Otorhinolaryngology, Faculty of Medicine , Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation , Rome , Italy
| | - Giuseppe Macis
- e Department of Radiological Sciences, Faculty of Medicine , Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation , Rome , Italy
| | - Paolo Montuschi
- a Department of Pharmacology, Faculty of Medicine , Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation , Rome , Italy
| |
Collapse
|
68
|
Hallowell RW, Collins SL, Craig JM, Zhang Y, Oh M, Illei PB, Chan-Li Y, Vigeland CL, Mitzner W, Scott AL, Powell JD, Horton MR. mTORC2 signalling regulates M2 macrophage differentiation in response to helminth infection and adaptive thermogenesis. Nat Commun 2017; 8:14208. [PMID: 28128208 PMCID: PMC5290163 DOI: 10.1038/ncomms14208] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/05/2016] [Indexed: 12/24/2022] Open
Abstract
Alternatively activated macrophages (M2) have an important function in innate immune responses to parasitic helminths, and emerging evidence also indicates these cells are regulators of systemic metabolism. Here we show a critical role for mTORC2 signalling in the generation of M2 macrophages. Abrogation of mTORC2 signalling in macrophages by selective conditional deletion of the adaptor molecule Rictor inhibits the generation of M2 macrophages while leaving the generation of classically activated macrophages (M1) intact. Selective deletion of Rictor in macrophages prevents M2 differentiation and clearance of a parasitic helminth infection in mice, and also abrogates the ability of mice to regulate brown fat and maintain core body temperature. Our findings define a role for mTORC2 in macrophages in integrating signals from the immune microenvironment to promote innate type 2 immunity, and also to integrate systemic metabolic and thermogenic responses.
Collapse
Affiliation(s)
- R. W. Hallowell
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brooklyn Avenue, Boston, Massachusetts 02215, USA
| | - S. L. Collins
- Department of Medicine, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - J. M. Craig
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, 650 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Y. Zhang
- Department of Respiratory Diseases, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200433, China
| | - M. Oh
- Department of Oncology, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - P. B. Illei
- Department of Pathology, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - Y. Chan-Li
- Department of Medicine, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - C. L. Vigeland
- Department of Medicine, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - W. Mitzner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 650 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - A. L. Scott
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 650 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - J. D. Powell
- Department of Oncology, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| | - M. R. Horton
- Department of Medicine, Johns Hopkins University School of Medicine, 735 North Broadway, Baltimore, Maryland 21205, USA
| |
Collapse
|
69
|
Seoane PI, Rückerl D, Casaravilla C, Barrios AA, Pittini Á, MacDonald AS, Allen JE, Díaz A. Particles from the Echinococcus granulosus laminated layer inhibit IL-4 and growth factor-driven Akt phosphorylation and proliferative responses in macrophages. Sci Rep 2016; 6:39204. [PMID: 27966637 PMCID: PMC5155279 DOI: 10.1038/srep39204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022] Open
Abstract
Proliferation of macrophages is a hallmark of inflammation in many type 2 settings including helminth infections. The cellular expansion is driven by the type 2 cytokine interleukin-4 (IL-4), as well as by M-CSF, which also controls homeostatic levels of tissue resident macrophages. Cystic echinococcosis, caused by the tissue-dwelling larval stage of the cestode Echinococcus granulosus, is characterised by normally subdued local inflammation. Infiltrating host cells make contact only with the acellular protective coat of the parasite, called laminated layer, particles of which can be ingested by phagocytic cells. Here we report that a particulate preparation from this layer (pLL) strongly inhibits the proliferation of macrophages in response to IL-4 or M-CSF. In addition, pLL also inhibits IL-4-driven up-regulation of Relm-α, without similarly affecting Chitinase-like 3 (Chil3/Ym1). IL-4-driven cell proliferation and up-regulation of Relm-α are both known to depend on the phosphatidylinositol (PI3K)/Akt pathway, which is dispensable for induction of Chil3/Ym1. Exposure to pLL in vitro inhibited Akt activation in response to proliferative stimuli, providing a potential mechanism for its activities. Our results suggest that the E. granulosus laminated layer exerts some of its anti-inflammatory properties through inhibition of PI3K/Akt activation and consequent limitation of macrophage proliferation.
Collapse
Affiliation(s)
- Paula I Seoane
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Dominik Rückerl
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cecilia Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Anabella A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Álvaro Pittini
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research (MCCIR), University of Manchester, Manchester, UK
| | - Judith E Allen
- Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Alvaro Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) e Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
70
|
Warren KJ, Fang X, Gowda NM, Thompson JJ, Heller NM. The TORC1-activated Proteins, p70S6K and GRB10, Regulate IL-4 Signaling and M2 Macrophage Polarization by Modulating Phosphorylation of Insulin Receptor Substrate-2. J Biol Chem 2016; 291:24922-24930. [PMID: 27742835 DOI: 10.1074/jbc.m116.756791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Lung M2 macrophages are regulators of airway inflammation, associated with poor lung function in allergic asthma. Previously, we demonstrated that IL-4-induced M2 gene expression correlated with tyrosine phosphorylation of the insulin receptor substrate-2 (IRS-2) in macrophages. We hypothesized that negative regulation of IRS-2 activity after IL-4 stimulation is dependent upon serine phosphorylation of IRS-2. Herein, we describe an inverse relationship between tyrosine phosphorylation (Tyr(P)) and serine phosphorylation (Ser(P)) of IRS-2 after IL-4 stimulation. Inhibiting serine phosphatase activity increased Ser(P)-IRS-2 and decreased Tyr(P)-IRS-2 leading to reduced M2 gene expression (CD200R, CCL22, MMP12, and TGM2). We found that inhibition of p70S6K, downstream of TORC1, resulted in diminished Ser(P)-IRS-2 and prolonged Tyr(P)-IRS-2 as well. Inhibition of p70S6K increased expression of CD200R and CCL22 indicating that p70S6K negatively regulates some, but not all, human M2 genes. Knocking down GRB10, another negative regulatory protein downstream of TORC1, enhanced both Tyr(P)-IRS-2 and increased expression of all four M2 genes. Furthermore, GRB10 associated with IRS-2, NEDD4.2 (an E3-ubiquitin ligase), IL-4Rα, and γC after IL-4 stimulation. Both IL-4Rα and γC were ubiquitinated after 30 min of IL-4 treatment, suggesting that GRB10 may regulate degradation of the IL-4 receptor-signaling complex through interactions with NEDD4.2. Taken together, these data highlight two novel regulatory proteins that could be therapeutically manipulated to limit IL-4-induced IRS-2 signaling and polarization of M2 macrophages in allergic inflammation.
Collapse
Affiliation(s)
- Kristi J Warren
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Xi Fang
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Nagaraj M Gowda
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Joshua J Thompson
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| | - Nicola M Heller
- From Johns Hopkins University, School of Medicine, Department of Anesthesiology and Critical Care Medicine, Baltimore, Maryland 21205
| |
Collapse
|
71
|
McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in Monocytes and Macrophages via the Proteasome. J Biol Chem 2016; 291:20574-87. [PMID: 27507812 DOI: 10.1074/jbc.m116.746164] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Indexed: 11/06/2022] Open
Abstract
Allergic asthma is a chronic lung disease initiated and driven by Th2 cytokines IL-4/-13. In macrophages, IL-4/-13 bind IL-4 receptors, which signal through insulin receptor substrate (IRS)-2, inducing M2 macrophage differentiation. M2 macrophages correlate with disease severity and poor lung function, although the mechanisms that regulate M2 polarization are not understood. Following IL-4 exposure, suppressor of cytokine signaling (SOCS)1 is highly induced in human monocytes. We found that siRNA knockdown of SOCS1 prolonged IRS-2 tyrosine phosphorylation and enhanced M2 differentiation, although siRNA knockdown of SOCS3 did not affect either. By co-immunoprecipitation, we found that SOCS1 complexes with IRS-2 at baseline, and this association increased after IL-4 stimulation. Because SOCS1 is an E3 ubiquitin ligase, we examined the effect of proteasome inhibitors on IL-4-induced IRS-2 phosphorylation. Proteasomal inhibition prolonged IRS-2 tyrosine phosphorylation, increased ubiquitination of IRS-2, and enhanced M2 gene expression. siRNA knockdown of SOCS1 inhibited ubiquitin accumulation on IRS-2, although siRNA knockdown of SOCS3 had no effect on ubiquitination of IRS-2. Monocytes from healthy and allergic individuals revealed that SOCS1 is induced by IL-4 in healthy monocytes but not allergic cells, whereas SOCS3 is highly induced in allergic monocytes. Healthy monocytes displayed greater ubiquitination of IRS-2 and lower M2 polarization than allergic monocytes in response to IL-4 stimulation. Here, we identify SOCS1 as a key negative regulator of IL-4-induced IRS-2 signaling and M2 differentiation. Our findings provide novel insight into how dysregulated expression of SOCS increases IL-4 responses in allergic monocytes, and this may represent a new therapeutic avenue for managing allergic disease.
Collapse
Affiliation(s)
- Sarah M McCormick
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nagaraj Gowda
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Jessie X Fang
- From the Department of Anesthesiology and Critical Care Medicine and
| | - Nicola M Heller
- From the Department of Anesthesiology and Critical Care Medicine and Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
72
|
Dasgupta P, Dorsey NJ, Li J, Qi X, Smith EP, Yamaji-Kegan K, Keegan AD. The adaptor protein insulin receptor substrate 2 inhibits alternative macrophage activation and allergic lung inflammation. Sci Signal 2016; 9:ra63. [PMID: 27330190 DOI: 10.1126/scisignal.aad6724] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Insulin receptor substrate 2 (IRS2) is an adaptor protein that becomes tyrosine-phosphorylated in response to the cytokines interleukin-4 (IL-4) and IL-13, which results in activation of the phosphoinositide 3-kinase (PI3K)-Akt pathway. IL-4 and IL-13 contribute to allergic lung inflammation. To examine the role of IRS2 in allergic disease, we evaluated the responses of IRS2-deficient (IRS2(-/-)) mice. Unexpectedly, loss of IRS2 resulted in a substantial increase in the expression of a subset of genes associated with the generation of alternatively activated macrophages (AAMs) in response to IL-4 or IL-13 in vitro. AAMs secrete factors that enhance allergic responses and promote airway remodeling. Moreover, compared to IRS2(+/+) mice, IRS2(+/-) and IRS2(-/-) mice developed enhanced pulmonary inflammation, accumulated eosinophils and AAMs, and exhibited airway and vascular remodeling upon allergen stimulation, responses that partially depended on macrophage-intrinsic IRS2 signaling. Both in unstimulated and IL-4-stimulated macrophages, lack of IRS2 enhanced phosphorylation of Akt and ribosomal S6 protein. Thus, we identified a critical inhibitory loop downstream of IRS2, demonstrating an unanticipated and previously unrecognized role for IRS2 in suppressing allergic lung inflammation and remodeling.
Collapse
Affiliation(s)
- Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicolas J Dorsey
- Medical Scientist Training Program, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiaqi Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Xiulan Qi
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Elizabeth P Smith
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins Medical Institutions, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, 800 West Baltimore Street Baltimore, MD 21201, USA. Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA. Research and Development Service, U.S. Department of Veterans Affairs, Veterans Affairs Maryland Health Care System, Baltimore, MD 21201, USA.
| |
Collapse
|
73
|
Hall SL, Baker T, Lajoie S, Richgels PK, Yang Y, McAlees JW, van Lier A, Wills-Karp M, Sivaprasad U, Acciani TH, LeCras TD, Myers JB, Kovacic MB, Lewkowich IP. IL-17A enhances IL-13 activity by enhancing IL-13-induced signal transducer and activator of transcription 6 activation. J Allergy Clin Immunol 2016; 139:462-471.e14. [PMID: 27417023 DOI: 10.1016/j.jaci.2016.04.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/22/2016] [Accepted: 04/25/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increased IL-17A production has been associated with more severe asthma; however, the mechanisms whereby IL-17A can contribute to IL-13-driven pathology in asthmatic patients remain unclear. OBJECTIVE We sought to gain mechanistic insight into how IL-17A can influence IL-13-driven responses. METHODS The effect of IL-17A on IL-13-induced airway hyperresponsiveness, gene expression, mucus hypersecretion, and airway inflammation was assessed by using in vivo models of IL-13-induced lung pathology and in vitro culture of murine fibroblast cell lines and primary fibroblasts and human epithelial cell lines or primary human epithelial cells exposed to IL-13, IL-17A, or both. RESULTS Compared with mice given intratracheal IL-13 alone, those exposed to IL-13 and IL-17A had augmented airway hyperresponsiveness, mucus production, airway inflammation, and IL-13-induced gene expression. In vitro, IL-17A enhanced IL-13-induced gene expression in asthma-relevant murine and human cells. In contrast to the exacerbating influence of IL-17A on IL-13-induced responses, coexposure to IL-13 inhibited IL-17A-driven antimicrobial gene expression in vivo and in vitro. Mechanistically, in both primary human and murine cells, the IL-17A-driven increase in IL-13-induced gene expression was associated with enhanced IL-13-driven signal transducer and activator of transcription 6 activation. CONCLUSIONS Our data suggest that IL-17A contributes to asthma pathophysiology by increasing the capacity of IL-13 to activate intracellular signaling pathways, such as signal transducer and activator of transcription 6. These data represent the first mechanistic explanation of how IL-17A can directly contribute to the pathogenesis of IL-13-driven pathology.
Collapse
Affiliation(s)
- Sara L Hall
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Theresa Baker
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stephane Lajoie
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Phoebe K Richgels
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yanfen Yang
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jaclyn W McAlees
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Adelaide van Lier
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Marsha Wills-Karp
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md
| | - Umasundari Sivaprasad
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Thomas H Acciani
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Timothy D LeCras
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn Biagini Myers
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Melinda Butsch Kovacic
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ian P Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
74
|
de Souza LD, Vendrame CMV, de Jesus AR, Carvalho MDT, Magalhães AS, Schriefer A, Guimarães LH, Carvalho EMD, Goto H. Insulin-like growth factor-I serum levels and their biological effects on Leishmania isolates from different clinical forms of American tegumentary leishmaniasis. Parasit Vectors 2016; 9:335. [PMID: 27286813 PMCID: PMC4902932 DOI: 10.1186/s13071-016-1619-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/01/2016] [Indexed: 01/19/2023] Open
Abstract
Background American tegumentary leishmaniasis (ATL) in Brazil is mostly caused by Leishmania (Viannia) braziliensis, with known forms of the disease being cutaneous (CL), mucosal (ML) and disseminated (DL) leishmaniasis. The development of the lesion in ATL is related both to the persistence of the Leishmania in the skin and to the parasite-triggered immune and inflammatory responses that ensue lesions. In this context one factor with expected role in the pathogenesis is insulin-like growth factor (IGF)-I with known effects on parasite growth and healing and inflammatory processes. In the present study, we addressed the effect of IGF-I on intracellular amastigote isolates from CL, ML and DL patients within human macrophage and we evaluated the IGF-I and IGF-binding protein-3 (IGFBP3) serum levels in patients presenting different clinical forms and controls from the endemic area. Methods We evaluated biological variability in the responses of intracellular amastigotes of Leishmania isolates derived from CL, ML, and DL patients from an area for ATL in response to IGF-I. Intracellular amastigote growth was evaluated using the human macrophage cell line THP-1. Arginase activity in infected cells was evaluated quantifying the generated urea concentration. Serum samples from patients and controls were assayed using chemiluminescent immunometric assay to determine IGF-I and IGFBP3 levels. Results We observed an increase in intracellular parasitism upon IGF-I stimulus in 62.5 % of isolates from CL, in 85.7 % from ML and only 42.8 % from DL cases. In DL, the basal arginase activity was lower than that of CL. We then evaluated the IGF-I and IGFBP3 serum levels in patients, and we observed significantly lower levels in ML and DL than in CL and control samples. Conclusions The data suggest that IGF-I is modulated distinctly in different clinical forms of tegumentary leishmaniasis. IGF-I seemingly exerts effect on parasite growth likely contributing to its persistence in the skin in earlier phase. In addition the decreased IGF-I serum levels may affect the modulation of inflammation and lesion healing in chronic phase. In view of potential role of IGF-I in the pathogenesis of ATL we can speculate on therapeutic procedures taking into account the local IGF-I level.
Collapse
Affiliation(s)
- Luana Dias de Souza
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar n 470, prédio II, 4 andar, CEP 05403-000, São Paulo, SP, Brazil
| | - Célia Maria Vieira Vendrame
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar n 470, prédio II, 4 andar, CEP 05403-000, São Paulo, SP, Brazil.,Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Amélia Ribeiro de Jesus
- Laboratório de Biologia Molecular, Departamento de Medicina Interna e Patologia, Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | - Márcia Dias Teixeira Carvalho
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar n 470, prédio II, 4 andar, CEP 05403-000, São Paulo, SP, Brazil
| | - Andréa Santos Magalhães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Albert Schriefer
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Luiz Henrique Guimarães
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Edgar Marcelino de Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Hiro Goto
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, Avenida Dr. Enéas de Carvalho Aguiar n 470, prédio II, 4 andar, CEP 05403-000, São Paulo, SP, Brazil. .,Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
75
|
Keegan AD, Shirey KA, Bagdure D, Blanco J, Viscardi RM, Vogel SN. Enhanced allergic responsiveness after early childhood infection with respiratory viruses: Are long-lived alternatively activated macrophages the missing link? Pathog Dis 2016; 74:ftw047. [PMID: 27178560 DOI: 10.1093/femspd/ftw047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/25/2022] Open
Abstract
Early childhood infection with respiratory viruses, including human rhinovirus, respiratory syncytial virus (RSV) and influenza, is associated with an increased risk of allergic asthma and severe exacerbation of ongoing disease. Despite the long recognition of this relationship, the mechanism linking viral infection and later susceptibility to allergic lung inflammation is still poorly understood. We discuss the literature and provide new evidence demonstrating that these viruses induce the alternative activation of macrophages. Alternatively activated macrophages (AAM) induced by RSV or influenza infection persisted in the lungs of mice up to 90 days after initial viral infection. Several studies suggest that AAM contribute to allergic inflammatory responses, although their mechanism of action is unclear. In this commentary, we propose that virus-induced AAM provide a link between viral infection and enhanced responses to inhaled allergens.
Collapse
Affiliation(s)
- Achsah D Keegan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Rm 380, Baltimore, MD 21201, USA Research and Development Service, Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Kari Ann Shirey
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Rm 380, Baltimore, MD 21201, USA
| | - Dayanand Bagdure
- Department of Pediatrics, University of Maryland School of Medicine, 29 South Greene St., Suite 1000, Baltimore, MD 21201, USA
| | - Jorge Blanco
- Department of Research and Development, Sigmovir Biosystems, Inc., 9650 Medical Center Drive, Rockville, MD 20850, USA
| | - Rose M Viscardi
- Department of Pediatrics, University of Maryland School of Medicine, 29 South Greene St., Suite 1000, Baltimore, MD 21201, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore St., Rm 380, Baltimore, MD 21201, USA
| |
Collapse
|
76
|
Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box. Cytokine Growth Factor Rev 2016; 32:3-15. [PMID: 27165851 DOI: 10.1016/j.cytogfr.2016.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/23/2016] [Accepted: 04/15/2016] [Indexed: 01/23/2023]
Abstract
Studies on Interlukin-4 (IL-4) disclosed great deal of information about its various physiological and pathological roles. All these roles depend upon its interaction and signaling through either type-I (IL-4Rα/common γ-chain) or type-II (IL-4Rα/IL-13Rα) receptors. Another cytokine, IL-13, shares some of the functions of IL-4, because both cytokines use a common receptor subunit, IL-4Rα. Here in this review, we discuss the structural details of IL-4 and IL-4Rα subunit and the structural similarities between IL-4 and IL-13. We also describe detailed chemistry of type-I and type-II receptor complexes and their signaling pathways. Furthermore, we elaborate the strength of type-II hetero dimer signals in response to IL-4 and IL-13. These cytokines are prime players in pathogenesis of allergic asthma, allergic hypersensitivity, different cancers, and HIV infection. Recent advances in the structural and binding chemistry of these cytokines various types of inhibitors were designed to block the interaction of IL-4 and IL-13 with their receptor, including several IL-4 mutant analogs and IL-4 antagonistic antibodies. Moreover, different targeted immunotoxins, which is a fusion of cytokine protein with a toxin or suicidal gene, are the new class of inhibitors to prevent cancer progression. In addition few small molecular inhibitors such as flavonoids have also been developed which are capable of binding with high affinity to IL-4Rα and, therefore, can be very effective in blocking IL-4-mediated responses.
Collapse
|
77
|
D'Alessio FR, Craig JM, Singer BD, Files DC, Mock JR, Garibaldi BT, Fallica J, Tripathi A, Mandke P, Gans JH, Limjunyawong N, Sidhaye VK, Heller NM, Mitzner W, King LS, Aggarwal NR. Enhanced resolution of experimental ARDS through IL-4-mediated lung macrophage reprogramming. Am J Physiol Lung Cell Mol Physiol 2016; 310:L733-46. [PMID: 26895644 PMCID: PMC4836113 DOI: 10.1152/ajplung.00419.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/12/2016] [Indexed: 01/11/2023] Open
Abstract
Despite intense investigation, acute respiratory distress syndrome (ARDS) remains an enormous clinical problem for which no specific therapies currently exist. In this study, we used intratracheal lipopolysaccharide or Pseudomonas bacteria administration to model experimental acute lung injury (ALI) and to further understand mediators of the resolution phase of ARDS. Recent work demonstrates macrophages transition from a predominant proinflammatory M1 phenotype during acute inflammation to an anti-inflammatory M2 phenotype with ALI resolution. We tested the hypothesis that IL-4, a potent inducer of M2-specific protein expression, would accelerate ALI resolution and lung repair through reprogramming of endogenous inflammatory macrophages. In fact, IL-4 treatment was found to offer dramatic benefits following delayed administration to mice subjected to experimental ALI, including increased survival, accelerated resolution of lung injury, and improved lung function. Expression of the M2 proteins Arg1, FIZZ1, and Ym1 was increased in lung tissues following IL-4 treatment, and among macrophages, FIZZ1 was most prominently upregulated in the interstitial subpopulation. A similar trend was observed for the expression of macrophage mannose receptor (MMR) and Dectin-1 on the surface of alveolar macrophages following IL-4 administration. Macrophage depletion or STAT6 deficiency abrogated the therapeutic effect of IL-4. Collectively, these data demonstrate that IL-4-mediated therapeutic macrophage reprogramming can accelerate resolution and lung repair despite delayed use following experimental ALI. IL-4 or other therapies that target late-phase, proresolution pathways may hold promise for the treatment of human ARDS.
Collapse
Affiliation(s)
- F R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J M Craig
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - B D Singer
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - D C Files
- Division of Pulmonary and Critical Care, Wake Forest University School of Medicine, Winston-Salem, North Carolina; and
| | - J R Mock
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - B T Garibaldi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J Fallica
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - A Tripathi
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - P Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - J H Gans
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N Limjunyawong
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - V K Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N M Heller
- Department of Anesthesiology and Critical Care, Johns Hopkins University, Baltimore, Maryland
| | - W Mitzner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - L S King
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - N R Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
78
|
Regulation of IL-4 Expression in Immunity and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 941:31-77. [PMID: 27734408 DOI: 10.1007/978-94-024-0921-5_3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IL-4 was first identified as a T cell-derived growth factor for B cells. Studies over the past several decades have markedly expanded our understanding of its cellular sources and function. In addition to T cells, IL-4 is produced by innate lymphocytes, such as NTK cells, and myeloid cells, such as basophils and mast cells. It is a signature cytokine of type 2 immune response but also has a nonimmune function. Its expression is tightly regulated at several levels, including signaling pathways, transcription factors, epigenetic modifications, microRNA, and long noncoding RNA. This chapter will review in detail the molecular mechanism regulating the cell type-specific expression of IL-4 in physiological and pathological type 2 immune responses.
Collapse
|
79
|
Huang L, Beiting DP, Gebreselassie NG, Gagliardo LF, Ruyechan MC, Lee NA, Lee JJ, Appleton JA. Eosinophils and IL-4 Support Nematode Growth Coincident with an Innate Response to Tissue Injury. PLoS Pathog 2015; 11:e1005347. [PMID: 26720604 PMCID: PMC4697774 DOI: 10.1371/journal.ppat.1005347] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/28/2015] [Indexed: 01/30/2023] Open
Abstract
It has become increasingly clear that the functions of eosinophils extend beyond host defense and allergy to metabolism and tissue regeneration. These influences have strong potential to be relevant in worm infections in which eosinophils are prominent and parasites rely on the host for nutrients to support growth or reproduction. The aim of this study was to investigate the mechanism underlying the observation that eosinophils promote growth of Trichinella spiralis larvae in skeletal muscle. Our results indicate that IL-4 and eosinophils are necessary for normal larval growth and that eosinophils from IL-4 competent mice are sufficient to support growth. The eosinophil-mediated effect operates in the absence of adaptive immunity. Following invasion by newborn larvae, host gene expression in skeletal muscle was compatible with a regenerative response and a shift in the source of energy in infected tissue. The presence of eosinophils suppressed local inflammation while also influencing nutrient homeostasis in muscle. Redistribution of glucose transporter 4 (GLUT4) and phosphorylation of Akt were observed in nurse cells, consistent with enhancement of glucose uptake and glycogen storage by larvae that is known to occur. The data are consistent with a mechanism in which eosinophils promote larval growth by an IL-4 dependent mechanism that limits local interferon-driven responses that otherwise alter nutrient metabolism in infected muscle. Our findings document a novel interaction between parasite and host in which worms have evolved a strategy to co-opt an innate host cell response in a way that facilitates their growth. Eosinophilia is a central feature of Type 2 immunity induced by infection with parasitic worms. Although early work showed that eosinophils could adhere to and damage parasite larvae in vitro, a definitive role for eosinophils during worm infection remained elusive for many years. Recent studies uncovered novel roles of eosinophils in regulating metabolism and tissue remodeling, observations that suggest that eosinophils may function as regulatory cells and modulate such processes during helminth infections. We investigated the eosinophil-dependent mechanism that promotes growth of Trichinella spiralis larvae. We found that larval growth is independent of adaptive immunity and requires IL-4/STAT6 signaling in eosinophils. Gene transcription profiles in infected muscle suggested that eosinophils promote larval growth by suppressing local inflammation and enhancing nutrient uptake and metabolism. Our study provides new insights into the interactions between a parasitic worm and its host.
Collapse
Affiliation(s)
- Lu Huang
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Nebiat G. Gebreselassie
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Lucille F. Gagliardo
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Maura C. Ruyechan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Nancy A. Lee
- Department of Biochemistry and Molecular Biology, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - James J. Lee
- Department of Biochemistry and Molecular Biology, Division of Pulmonary Medicine, Mayo Clinic Arizona, Scottsdale, Arizona, United States of America
| | - Judith A. Appleton
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
80
|
Terawaki S, Camosseto V, Prete F, Wenger T, Papadopoulos A, Rondeau C, Combes A, Rodriguez Rodrigues C, Vu Manh TP, Fallet M, English L, Santamaria R, Soares AR, Weil T, Hammad H, Desjardins M, Gorvel JP, Santos MAS, Gatti E, Pierre P. RUN and FYVE domain-containing protein 4 enhances autophagy and lysosome tethering in response to Interleukin-4. J Cell Biol 2015; 210:1133-52. [PMID: 26416964 PMCID: PMC4586740 DOI: 10.1083/jcb.201501059] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a key degradative pathway coordinated by external cues, including starvation, oxidative stress, or pathogen detection. Rare are the molecules known to contribute mechanistically to the regulation of autophagy and expressed specifically in particular environmental contexts or in distinct cell types. Here, we unravel the role of RUN and FYVE domain-containing protein 4 (RUFY4) as a positive molecular regulator of macroautophagy in primary dendritic cells (DCs). We show that exposure to interleukin-4 (IL-4) during DC differentiation enhances autophagy flux through mTORC1 regulation and RUFY4 induction, which in turn actively promote LC3 degradation, Syntaxin 17-positive autophagosome formation, and lysosome tethering. Enhanced autophagy boosts endogenous antigen presentation by MHC II and allows host control of Brucella abortus replication in IL-4-treated DCs and in RUFY4-expressing cells. RUFY4 is therefore the first molecule characterized to date that promotes autophagy and influences endosome dynamics in a subset of immune cells.
Collapse
Affiliation(s)
- Seigo Terawaki
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Voahirana Camosseto
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Francesca Prete
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Till Wenger
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Alexia Papadopoulos
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Christiane Rondeau
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada
| | - Alexis Combes
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Christian Rodriguez Rodrigues
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Luc English
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada
| | - Rodrigo Santamaria
- Departamento de Informática y Automática, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Ana R Soares
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tobias Weil
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, Department for Molecular Biomedical Research, VIB, Ghent 9050, Belgium
| | - Michel Desjardins
- Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada Département de microbiologie, infectiologie, et immunologie, Université de Montréal, Québec H3C 3J7, Canada
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France
| | - Manuel A S Santos
- RNA Biology Laboratory, Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Evelina Gatti
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Philippe Pierre
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Institut National de la Santé et de la Recherche Médicale U1104, Centre National de la Recherche Scientifique UMR7280, 13288 Marseille, France Institute for Research in Biomedicine (iBiMED), Aveiro Health Sciences Program, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
81
|
Moraga I, Richter D, Wilmes S, Winkelmann H, Jude K, Thomas C, Suhoski MM, Engleman EG, Piehler J, Garcia KC. Instructive roles for cytokine-receptor binding parameters in determining signaling and functional potency. Sci Signal 2015; 8:ra114. [PMID: 26554818 DOI: 10.1126/scisignal.aab2677] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines dimerize cell surface receptors to activate signaling and regulate many facets of the immune response. Many cytokines have pleiotropic effects, inducing a spectrum of redundant and distinct effects on different cell types. This pleiotropy has hampered cytokine-based therapies, and the high doses required for treatment often lead to off-target effects, highlighting the need for a more detailed understanding of the parameters controlling cytokine-induced signaling and bioactivities. Using the prototypical cytokine interleukin-13 (IL-13), we explored the interrelationships between receptor binding and a wide range of downstream cellular responses. We applied structure-based engineering to generate IL-13 variants that covered a spectrum of binding strengths for the receptor subunit IL-13Rα1. Engineered IL-13 variants representing a broad range of affinities for the receptor exhibited similar potencies in stimulating the phosphorylation of STAT6 (signal transducer and activator of transcription 6). Delays in the phosphorylation and nuclear translocation of STAT6 were only apparent for those IL-13 variants with markedly reduced affinities for the receptor. From these data, we developed a mechanistic model that quantitatively reproduced the kinetics of STAT6 phosphorylation for the entire spectrum of binding affinities. Receptor endocytosis played a key role in modulating STAT6 activation, whereas the lifetime of receptor-ligand complexes at the plasma membrane determined the potency of the variant for inducing more distal responses. This complex interrelationship between extracellular ligand binding and receptor function provides the foundation for new mechanism-based strategies that determine the optimal cytokine dose to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - David Richter
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Stephan Wilmes
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Hauke Winkelmann
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany
| | - Kevin Jude
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Christoph Thomas
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Megan M Suhoski
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | - Jacob Piehler
- Department of Biology, University of Osnabrück, 49076 Osnabrück, Germany.
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305-5345, USA. Department of Molecular and Cellular Physiology and Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA.
| |
Collapse
|
82
|
Higuchi H, Shoji T, Murase Y, Iijima S, Nishijima KI. Siglec-9 modulated IL-4 responses in the macrophage cell line RAW264. Biosci Biotechnol Biochem 2015; 80:501-9. [PMID: 26540411 DOI: 10.1080/09168451.2015.1104238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Siglecs, an immunoglobulin-like lectin family that recognizes the sialic acid moiety, regulate various aspects of immune responses. In the present study, we investigated the effects of Siglecs on the macrophage cell line RAW264, which was stimulated with interleukin-4 (IL-4). The induction of arginase-1 (Arg1) by IL-4 was stronger in Siglec-9-expressing cells than in mock cells. Mutations in the cytoplasmic tyrosine-based inhibitory motifs in Siglec-9 markedly reduced the expression of Arg1. The phosphorylation of Akt by IL-4 and extracellular signal-regulated kinase (ERK) without IL-4 was stronger in Siglec-9-expressing cells, indicating the enhanced activation of the phosphatidylinositol 3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK)/ERK pathways, respectively. The enhanced expression of Arg1 was inhibited by MEK inhibitors, but not by PI-3K inhibitor. These results indicate that Siglec-9 affects several different signaling pathways in IL-4-stimulated macrophages, which resulted in enhanced induction of Arg1 in Siglec-9-expressing RAW264 cells.
Collapse
Affiliation(s)
- Hiroshi Higuchi
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Toru Shoji
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Yusuke Murase
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Shinji Iijima
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| | - Ken-ichi Nishijima
- a Department of Biotechnology , Graduate School of Engineering, Nagoya University , Nagoya , Japan
| |
Collapse
|
83
|
Barberà-Cremades M, Baroja-Mazo A, Pelegrín P. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages. J Leukoc Biol 2015; 99:289-99. [PMID: 26382298 DOI: 10.1189/jlb.1a0514-267rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/31/2015] [Indexed: 12/16/2022] Open
Abstract
Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis.
Collapse
Affiliation(s)
- Maria Barberà-Cremades
- Unidad de Inflamación Molecular y Cirugía Experimental, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Murciano de Investigación Biosanitaria, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Alberto Baroja-Mazo
- Unidad de Inflamación Molecular y Cirugía Experimental, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Murciano de Investigación Biosanitaria, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| | - Pablo Pelegrín
- Unidad de Inflamación Molecular y Cirugía Experimental, Centro de Investigación Biomédica en Red en el Área temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto Murciano de Investigación Biosanitaria, Hospital Clínico Universitario Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain
| |
Collapse
|
84
|
Suzuki A, Leland P, Joshi BH, Puri RK. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75:79-88. [DOI: 10.1016/j.cyto.2015.05.026] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 02/03/2023]
|
85
|
McCormick SM, Heller NM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine 2015; 75:38-50. [PMID: 26187331 PMCID: PMC4546937 DOI: 10.1016/j.cyto.2015.05.023] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
Interleukin (IL)-4 and IL-13 were discovered approximately 30years ago and were immediately linked to allergy and atopic diseases. Since then, new roles for IL-4 and IL-13 and their receptors in normal gestation, fetal development and neurological function and in the pathogenesis of cancer and fibrosis have been appreciated. Studying IL-4/-13 and their receptors has revealed important clues about cytokine biology and led to the development of numerous experimental therapeutics. Here we aim to highlight new discoveries and consolidate concepts in the field of IL-4 and IL-13 structure, receptor regulation, signaling and experimental therapeutics.
Collapse
Affiliation(s)
- Sarah M McCormick
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
86
|
|
87
|
Lin Y, Chen Z, Kato S. Receptor-selective IL-4 mutein modulates inflammatory vascular cell phenotypes and attenuates atherogenesis in apolipoprotein E-knockout mice. Exp Mol Pathol 2015; 99:116-27. [DOI: 10.1016/j.yexmp.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/15/2015] [Indexed: 01/25/2023]
|
88
|
Wu WK, Georgiadis A, Copland DA, Liyanage S, Luhmann UFO, Robbie SJ, Liu J, Wu J, Bainbridge JW, Bates DO, Ali RR, Nicholson LB, Dick AD. IL-4 regulates specific Arg-1(+) macrophage sFlt-1-mediated inhibition of angiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2324-35. [PMID: 26079814 DOI: 10.1016/j.ajpath.2015.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/17/2015] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
One of the main drivers for neovascularization in age-related macular degeneration is activation of innate immunity in the presence of macrophages. Here, we demonstrate that T helper cell type 2 cytokines and, in particular, IL-4 condition human and murine monocyte phenotype toward Arg-1(+), and their subsequent behavior limits angiogenesis by increasing soluble fms-like tyrosine kinase 1 (sFlt-1) gene expression. We document that T helper cell type 2 cytokine-conditioned murine macrophages neutralize vascular endothelial growth factor-mediated endothelial cell proliferation (human umbilical vein endothelial cell and choroidal vasculature) in a sFlt-1-dependent manner. We demonstrate that in vivo intravitreal administration of IL-4 attenuates laser-induced choroidal neovascularization (L-CNV) due to specific IL-4 conditioning of macrophages. IL-4 induces the expression of sFlt-1 by resident CD11b(+) retinal microglia and infiltrating myeloid cells but not from retinal pigment epithelium. IL-4-induced suppression of L-CNV is not prevented when sFlt-1 expression is attenuated in retinal pigment epithelium. IL-4-mediated suppression of L-CNV was abrogated in IL-4R-deficient mice and in bone marrow chimeras reconstituted with myeloid cells that had undergone lentiviral-mediated shRNA silencing of sFlt-1, demonstrating the critical role of this cell population. Together, these data establish how lL-4 directly drives macrophage sFlt-1 production expressing an Arg-1(+) phenotype and support the therapeutic potential of targeted IL-4 conditioning within the tissue to regulate disease conditions such as neovascular age-related macular degeneration.
Collapse
Affiliation(s)
- Wei-Kang Wu
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - David A Copland
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Sidath Liyanage
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Ulrich F O Luhmann
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Scott J Robbie
- Institute of Ophthalmology, University College London, London, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, United Kingdom
| | - Jian Liu
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Jiahui Wu
- School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - James W Bainbridge
- Institute of Ophthalmology, University College London, London, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, United Kingdom
| | - David O Bates
- Cancer Biology, Division of Cancer and Stem Cells, School of Medicine, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Robin R Ali
- Institute of Ophthalmology, University College London, London, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, United Kingdom
| | - Lindsay B Nicholson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom; School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Andrew D Dick
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom; School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital and University College London Institute of Ophthalmology, London, United Kingdom.
| |
Collapse
|
89
|
Bao K, Reinhardt RL. The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 2015; 75:25-37. [PMID: 26073683 DOI: 10.1016/j.cyto.2015.05.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/06/2023]
Abstract
Allergic disease represents a significant global health burden, and disease incidence continues to rise in urban areas of the world. As such, a better understanding of the basic immune mechanisms underlying disease pathology are key to developing therapeutic interventions to both prevent disease onset as well as to ameliorate disease morbidity in those individuals already suffering from a disorder linked to type-2 inflammation. Two factors central to type-2 immunity are interleukin (IL)-4 and IL-13, which have been linked to virtually all major hallmarks associated with type-2 inflammation. Therefore, IL-4 and IL-13 and their regulatory pathways represent ideal targets to suppress disease. Despite sharing many common regulatory pathways and receptors, these cytokines perform very distinct functions during a type-2 immune response. This review summarizes the literature surrounding the function and expression of IL-4 and IL-13 in CD4+ T cells and innate immune cells. It highlights recent findings in vivo regarding the differential expression and non-canonical regulation of IL-4 and IL-13 in various immune cells, which likely play important and underappreciated roles in type-2 immunity.
Collapse
Affiliation(s)
- Katherine Bao
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States
| | - R Lee Reinhardt
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
90
|
IL-4 and IL-13 signaling in allergic airway disease. Cytokine 2015; 75:68-78. [PMID: 26070934 DOI: 10.1016/j.cyto.2015.05.014] [Citation(s) in RCA: 346] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022]
Abstract
Aberrant production of the prototypical type 2 cytokines, interleukin (IL)-4 and IL-13 has long been associated with the pathogenesis of allergic disorders. Despite tremendous scientific inquiry, the similarities in their structure, and receptor usage have made it difficult to ascertain the distinct role that these two look-alike cytokines play in the onset and perpetuation of allergic inflammation. However, recent discoveries of differences in receptor distribution, utilization/assembly and affinity between IL-4 and IL-13, along with the discovery of unique innate lymphoid 2 cells (ILC2) which preferentially produce IL-13, not IL-4, are beginning to shed light on these mysteries. The purpose of this chapter is to review our current understanding of the distinct roles that IL-4 and IL-13 play in allergic inflammatory states and the utility of their modulation as potential therapeutic strategies for the treatment of allergic disorders.
Collapse
|
91
|
Barrett JP, Minogue AM, Falvey A, Lynch MA. Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Exp Cell Res 2015; 335:258-68. [PMID: 26022664 DOI: 10.1016/j.yexcr.2015.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/22/2015] [Accepted: 05/18/2015] [Indexed: 12/16/2022]
Abstract
Macrophages can be polarised to adopt the M1 or M2 phenotype and functional outcomes of activation include altered secretion of immune molecules such as insulin-like growth factor (IGF)-1 as well as upregulation of cell surface molecules specifically associated with each state. Interleukin (IL)-4 mediates its effects through two receptors, the type I and II receptors and activation of these receptors results in phosphorylation of signal transducers and activators of transcription (STAT)6. JAK3 is activated as a consequence of ligation of the type I IL-4R, which participates in Akt activation. We set out to investigate the impact of perturbation of IGF-1 tone on IL-4- and interferon (IFN)γ-induced activation, the mechanisms by which this may occur and the contribution of type I IL-4R activation to adoption of the M2 state. The data presented here indicate that IL-4-induced activation of Akt is JAK3-dependent, enhanced by release of IGF-1 and necessary for full adoption of the M2 phenotype, since blocking IGF-1 activity blunts the ability of IL-4 to induce activation of Akt and to upregulate expression of some M2-associated molecules. In addition, differential control of the expression of mannose receptor (MRC1), arginase-1 (Arg-1), chitinase-3 like 3 (Chi3l3) and found in inflammatory zone 1 (FIZZ1) was observed. The IFNγ-induced decrease in IGF-1 was exacerbated by inhibition of phosphatidylinositol-3 (PI3) kinase, indicating that Akt may regulate its own activation via IGF-1. Overall, a deficit in IGF-1/Akt signalling is associated with decreased capacity to induce the M2 state and an increased responsiveness to IFNγ.
Collapse
Affiliation(s)
- James P Barrett
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Aedín M Minogue
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | - Aidan Falvey
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
92
|
Sheikh F, Dickensheets H, Pedras-Vasconcelos J, Ramalingam T, Helming L, Gordon S, Donnelly RP. The Interleukin-13 Receptor-α1 Chain Is Essential for Induction of the Alternative Macrophage Activation Pathway by IL-13 but Not IL-4. J Innate Immun 2015; 7:494-505. [PMID: 25766112 DOI: 10.1159/000376579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/29/2015] [Indexed: 12/17/2022] Open
Abstract
Macrophages coexpress both the interleukin (IL)-2Rγ chain (γ(c)) and IL-13Rα1. These receptor chains can heterodimerize with IL-4Rα to form type I or type II IL-4 receptor complexes, respectively. We used macrophages derived from Il2rg and Il13ra1 knockout (KO) mice to evaluate the requirements for these receptor chains for induction of the alternative macrophage activation (AMA) pathway by IL-4 and IL-13. Absence of γ(c) significantly decreased activation of STAT6 by IL-4 but not IL-13. However, although activation of STAT6 by IL-4 was markedly reduced in γ(c) KO macrophages, it was not abolished, indicating that IL-4 can still signal through type II IL-4 receptors via the IL-13Rα1 chain. IL-13 failed to activate STAT6 in macrophages derived from Il13ra1 KO mice; however, these cells remained fully responsive to IL-4. The inability of IL-13 but not IL-4 to signal in Il13ra1(-/-) macrophages correlated with the inability of IL-13 but not IL-4 to induce expression of genes such as Arg1, Retnla and Ccl11 that are characteristically expressed by alternatively activated macrophages. In addition, IL-13 but not IL-4 failed to induce membrane fusion and giant cell formation by Il13ra1 KO macrophages. These findings demonstrate that the IL-13Rα1 chain is essential for induction of the AMA pathway by IL-13 but not IL-4.
Collapse
Affiliation(s)
- Faruk Sheikh
- Division of Therapeutic Proteins, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Md., USA
| | | | | | | | | | | | | |
Collapse
|
93
|
Differential expression of the fractalkine chemokine receptor (CX3CR1) in human monocytes during differentiation. Cell Mol Immunol 2014; 12:669-80. [PMID: 25502213 DOI: 10.1038/cmi.2014.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
Circulating monocytes (Mos) may continuously repopulate macrophage (MAC) or dendritic cell (DC) populations to maintain homeostasis. MACs and DCs are specialized cells that play different and complementary immunological functions. Accordingly, they present distinct migratory properties. Specifically, whereas MACs largely remain in tissues, DCs are capable of migrating from peripheral tissues to lymphoid organs. The aim of this work was to analyze the expression of the fractalkine receptor (CX3CR1) during the monocytic differentiation process. Freshly isolated Mos express high levels of both CX3CR1 mRNA and protein. During the Mo differentiation process, CX3CR1 is downregulated in both DCs and MACs. However, MACs showed significantly higher CX3CR1 expression levels than did DC. We also observed an antagonistic CX3CR1 regulation by interferon (IFN)-γ and interleukin (IL)-4 during MAC activation through the classical and alternative MAC pathways, respectively. IFN-γ inhibited the loss of CX3CR1, but IL-4 induced it. Additionally, we demonstrated an association between CX3CR1 expression and apoptosis prevention by soluble fractalkine (sCX3CL1) in Mos, DCs and MACs. This is the first report demonstrating sequential and differential CX3CR1 modulation during Mo differentiation. Most importantly, we demonstrated a functional link between CX3CR1 expression and cell survival in the presence of sCX3CL1.
Collapse
|
94
|
Jiménez-Garcia L, Herránz S, Luque A, Hortelano S. Critical role of p38 MAPK in IL-4-induced alternative activation of peritoneal macrophages. Eur J Immunol 2014; 45:273-86. [DOI: 10.1002/eji.201444806] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/28/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Lidia Jiménez-Garcia
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sandra Herránz
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Alfonso Luque
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| | - Sonsoles Hortelano
- Unidad de Terapias Farmacológicas. Área de Genética Humana. Instituto de Investigación de Enfermedades Raras (IIER); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
95
|
Huang X, Ren L, Ye P, Cheng C, Wu J, Wang S, Sun Y, Liu Z, Xie A, Xia J. Peroxisome proliferator-activated receptor γ deficiency in T cells accelerates chronic rejection by influencing the differentiation of CD4+ T cells and alternatively activated macrophages. PLoS One 2014; 9:e112953. [PMID: 25383620 PMCID: PMC4226585 DOI: 10.1371/journal.pone.0112953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 10/22/2014] [Indexed: 12/04/2022] Open
Abstract
Background In a previous study, activation of the peroxisome proliferator–activated receptor γ (PPARγ) inhibited chronic cardiac rejection. However, because of the complexity of chronic rejection and the fact that PPARγ is widely expressed in immune cells, the mechanism of the PPARγ - induced protective effect was unclear. Materials and Methods A chronic rejection model was established using B6.C-H-2bm12KhEg (H-2bm12) mice as donors, and MHC II-mismatched T-cell-specific PPARγ knockout mice or wild type (WT) littermates as recipients. The allograft lesion was assessed by histology and immunohistochemistry. T cells infiltrates in the allograft were isolated, and cytokines and subpopulations were detected using cytokine arrays and flow cytometry. Transcription levels in the allograft were measured by RT-PCR. In vitro, the T cell subset differentiation was investigated after culture in various polarizing conditions. PPARγ-deficient regularory T cells (Treg) were cocultured with monocytes to test their ability to induce alternatively activated macrophages (AAM). Results T cell-specific PPARγ knockout recipients displayed reduced cardiac allograft survival and an increased degree of pathology compared with WT littermates. T cell-specific PPARγ knockout resulted in more CD4+ T cells infiltrating into the allograft and altered the Th1/Th2 and Th17/Treg ratios. The polarization of AAM was also reduced by PPARγ deficiency in T cells through the action of Th2 and Treg. PPARγ-deficient T cells eliminated the pioglitazone-induced polarization of AAM and reduced allograft survival. Conclusions PPARγ-deficient T cells influenced the T cell subset and AAM polarization in chronic allograft rejection. The mechanism of PPARγ activation in transplantation tolerance could yield a novel treatment without side effects.
Collapse
Affiliation(s)
- Xiaofan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lingyun Ren
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Ping Ye
- Department of Cardiology, Central Hospital of Wuhan, Wuhan, People’s Republic of China
| | - Chao Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Sihua Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuan Sun
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Zheng Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Aini Xie
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Wuhan, People’s Republic of China
- * E-mail:
| |
Collapse
|
96
|
Weisser SB, Kozicky LK, Brugger HK, Ngoh EN, Cheung B, Jen R, Menzies SC, Samarakoon A, Murray PJ, Lim CJ, Johnson P, Boucher JL, van Rooijen N, Sly LM. Arginase activity in alternatively activated macrophages protects PI3Kp110δ deficient mice from dextran sodium sulfate induced intestinal inflammation. Eur J Immunol 2014; 44:3353-67. [DOI: 10.1002/eji.201343981] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 07/25/2014] [Accepted: 08/12/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Shelley B. Weisser
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Lisa K. Kozicky
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Hayley K. Brugger
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Eyler N. Ngoh
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Bonnie Cheung
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Roger Jen
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Susan C. Menzies
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| | - Asanga Samarakoon
- Department of Microbiology and Immunology; University of British Columbia; Vancouver British Columbia Canada
| | - Peter J. Murray
- Departments of Infectious Diseases and Immunology; St Jude's Children's Research Hospital; Memphis TN USA
| | - C. James Lim
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
- Division of Hematology, Oncology, BMT, Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
| | - Pauline Johnson
- Department of Microbiology and Immunology; University of British Columbia; Vancouver British Columbia Canada
| | | | - Nico van Rooijen
- Department of Molecular Cell Biology; Vrije Universiteit Amsterdam; Amsterdam The Netherlands
| | - Laura M. Sly
- Division of Gastroenterology; Department of Pediatrics; University of British Columbia; Vancouver British Columbia Canada
- Child & Family Research Institute, BC Children's Hospital; Vancouver British Columbia Canada
| |
Collapse
|
97
|
Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157:1292-1308. [PMID: 24906148 DOI: 10.1016/j.cell.2014.03.066] [Citation(s) in RCA: 690] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/06/2014] [Accepted: 03/31/2014] [Indexed: 12/19/2022]
Abstract
Beige fat, which expresses the thermogenic protein UCP1, provides a defense against cold and obesity. Although a cold environment is the physiologic stimulus for inducing beige fat in mice and humans, the events that lead from the sensing of cold to the development of beige fat remain poorly understood. Here, we identify the efferent beige fat thermogenic circuit, consisting of eosinophils, type 2 cytokines interleukin (IL)-4/13, and alternatively activated macrophages. Genetic loss of eosinophils or IL-4/13 signaling impairs cold-induced biogenesis of beige fat. Mechanistically, macrophages recruited to cold-stressed subcutaneous white adipose tissue (scWAT) undergo alternative activation to induce tyrosine hydroxylase expression and catecholamine production, factors required for browning of scWAT. Conversely, administration of IL-4 to thermoneutral mice increases beige fat mass and thermogenic capacity to ameliorate pre-established obesity. Together, our findings have uncovered the efferent circuit controlling biogenesis of beige fat and provide support for its targeting to treat obesity.
Collapse
|
98
|
Ranasinghe C, Trivedi S, Wijesundara DK, Jackson RJ. IL-4 and IL-13 receptors: Roles in immunity and powerful vaccine adjuvants. Cytokine Growth Factor Rev 2014; 25:437-42. [DOI: 10.1016/j.cytogfr.2014.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023]
|
99
|
Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T. The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2014; 4:2834. [PMID: 24280772 PMCID: PMC3876736 DOI: 10.1038/ncomms3834] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Macrophages are able to polarize to proinflammatory M1 or alternative M2 states with distinct phenotypes and physiological functions. How metabolic status regulates macrophage polarization remains not well understood, and here we examine the role of mTOR (Mechanistic Target of Rapamycin), a central metabolic pathway that couples nutrient sensing to regulation of metabolic processes. Using a mouse model in which myeloid lineage specific deletion of Tsc1 (Tsc1Δ/Δ) leads to constitutive mTOR Complex 1 (mTORC1) activation, we find that Tsc1Δ/Δ macrophages are refractory to IL-4 induced M2 polarization, but produce increased inflammatory responses to proinflammatory stimuli. Moreover, mTORC1-mediated downregulation of Akt signaling critically contributes to defective polarization. These findings highlight a key role for the mTOR pathway in regulating macrophage polarization, and suggest how nutrient sensing and metabolic status could be “hard-wired” to control of macrophage function, with broad implications for regulation of Type 2 immunity, inflammation, and allergy.
Collapse
Affiliation(s)
- Vanessa Byles
- 1] Department of Genetics & Complex Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA [2]
| | | | | | | | | | | | | |
Collapse
|
100
|
Ferreira R, Lively S, Schlichter LC. IL-4 type 1 receptor signaling up-regulates KCNN4 expression, and increases the KCa3.1 current and its contribution to migration of alternative-activated microglia. Front Cell Neurosci 2014; 8:183. [PMID: 25071444 PMCID: PMC4077126 DOI: 10.3389/fncel.2014.00183] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/14/2014] [Indexed: 01/05/2023] Open
Abstract
The Ca2+-activated K+ channel, KCa3.1 (KCNN4/IK1/SK4), contributes to “classical,” pro-inflammatory activation of microglia, and KCa3.1 blockers have improved the outcome in several rodent models of CNS damage. For instance, blocking KCa3.1 with TRAM-34 rescued retinal ganglion neurons after optic nerve damage in vivo and, reduced p38 MAP kinase activation, production of reactive oxygen and nitrogen species, and neurotoxicity by microglia in vitro. In pursuing the therapeutic potential of KCa3.1 blockers, it is crucial to assess KCa3.1 contributions to other microglial functions and activation states, especially the IL-4-induced “alternative” activation state that can counteract pro-inflammatory states. We recently found that IL-4 increases microglia migration – a crucial function in the healthy and damaged CNS – and that KCa3.1 contributes to P2Y2 receptor-stimulated migration. Here, we discovered that KCa3.1 is greatly increased in alternative-activated rat microglia and then contributes to an enhanced migratory capacity. IL-4 up-regulated KCNN4 mRNA (by 6 h) and greatly increased the KCa3.1 current by 1 day, and this required de novo protein synthesis. The increase in current was sustained for at least 6 days. IL-4 increased microglial migration and this was reversed by blocking KCa3.1 with TRAM-34. A panel of inhibitors of signal-transduction mediators was used to analyze contributions of IL-4-related signaling pathways. Induction of KCNN4 mRNA and KCa3.1 current was mediated specifically through IL-4 binding to the type I receptor and, surprisingly, it required JAK3, Ras/MEK/ERK signaling and the transcription factor, activator protein-1, rather than JAK2, STAT6, or phosphatidylinositol 3-kinase.The same receptor subtype and pathway were required for the enhanced KCa3.1-dependent migration. In providing the first direct signaling link between an IL-4 receptor, expression and roles of an ion channel, this study also highlights the potential importance of KCa3.1 in alternative-activated microglia.
Collapse
Affiliation(s)
- Roger Ferreira
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| | - Starlee Lively
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada
| | - Lyanne C Schlichter
- Genes and Development Division, Toronto Western Research Institute, University Health Network Toronto, ON, Canada ; Department of Physiology, University of Toronto Toronto, ON, Canada
| |
Collapse
|