51
|
Fontes FL, de Araújo LF, Coutinho LG, Leib SL, Agnez-Lima LF. Genetic polymorphisms associated with the inflammatory response in bacterial meningitis. BMC MEDICAL GENETICS 2015; 16:70. [PMID: 26316174 PMCID: PMC4593216 DOI: 10.1186/s12881-015-0218-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 08/18/2015] [Indexed: 11/28/2022]
Abstract
Background Bacterial meningitis (BM) is an infectious disease that results in high mortality and morbidity. Despite efficacious antibiotic therapy, neurological sequelae are often observed in patients after disease. Currently, the main challenge in BM treatment is to develop adjuvant therapies that reduce the occurrence of sequelae. In recent papers published by our group, we described the associations between the single nucleotide polymorphisms (SNPs) AADAT +401C > T, APEX1 Asn148Glu, OGG1 Ser326Cys and PARP1 Val762Ala and BM. In this study, we analyzed the associations between the SNPs TNF -308G > A, TNF -857C > T, IL-8 -251A > T and BM and investigated gene-gene interactions, including the SNPs that we published previously. Methods The study was conducted with 54 BM patients and 110 healthy volunteers (as the control group). The genotypes were investigated via primer-introduced restriction analysis-polymerase chain reaction (PIRA-PCR) or polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. Allelic and genotypic frequencies were also associated with cytokine and chemokine levels, as measured with the x-MAP method, and cell counts. We analyzed gene-gene interactions among SNPs using the generalized multifactor dimensionality reduction (GMDR) method. Results We did not find significant association between the SNPs TNF -857C > T and IL-8 -251A > T and the disease. However, a higher frequency of the variant allele TNF -308A was observed in the control group, associated with changes in cytokine levels compared to individuals with wild type genotypes, suggesting a possible protective role. In addition, combined inter-gene interaction analysis indicated a significant association between certain genotypes and BM, mainly involving the alleles APEX1 148Glu, IL8 -251 T and AADAT +401 T. These genotypic combinations were shown to affect cyto/chemokine levels and cell counts in CSF samples from BM patients. Conclusions In conclusion, this study revealed a significant association between genetic variability and altered inflammatory responses, involving important pathways that are activated during BM. This knowledge may be useful for a better understanding of BM pathogenesis and the development of new therapeutic approaches. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0218-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Luíza Ferreira de Araújo
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Leonam Gomes Coutinho
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil.
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3010, Bern, Switzerland.
| | - Lucymara Fassarella Agnez-Lima
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, Brazil. .,Departamento de Biologia Celular e Genética, Centro de Biociências - UFRN, Campus Universitário, Lagoa Nova, Natal, RN, 59078-970, Brazil.
| |
Collapse
|
52
|
New insights into neutrophil and Leishmania infantum in vitro immune interactions. Comp Immunol Microbiol Infect Dis 2015; 40:19-29. [DOI: 10.1016/j.cimid.2015.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/24/2015] [Accepted: 03/20/2015] [Indexed: 01/09/2023]
|
53
|
|
54
|
|
55
|
Affiliation(s)
- Sangyong Lim
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon, Korea
| |
Collapse
|
56
|
Sheshachalam A, Srivastava N, Mitchell T, Lacy P, Eitzen G. Granule protein processing and regulated secretion in neutrophils. Front Immunol 2014; 5:448. [PMID: 25285096 PMCID: PMC4168738 DOI: 10.3389/fimmu.2014.00448] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 12/31/2022] Open
Abstract
Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines, and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First, we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking, and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.
Collapse
Affiliation(s)
| | - Nutan Srivastava
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Troy Mitchell
- Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Paige Lacy
- Pulmonary Research Group, University of Alberta , Edmonton, AB , Canada ; Department of Medicine, University of Alberta , Edmonton, AB , Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
57
|
Identification ofVibrio anguillarumOuter Membrane Vesicles Related to Immunostimulation in the Japanese Flounder,Paralichthys olivaceus. Biosci Biotechnol Biochem 2014; 73:437-9. [DOI: 10.1271/bbb.80580] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
58
|
Haddad LE, Sirois MG. Angiopoietin-1 upregulates de novo expression of IL-1β and Il1-Ra, and the exclusive release of Il1-Ra from human neutrophils. PLoS One 2014; 9:e88980. [PMID: 24563688 PMCID: PMC3923077 DOI: 10.1371/journal.pone.0088980] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/14/2014] [Indexed: 01/24/2023] Open
Abstract
The expression of the angiopoietin (Ang) receptor, Tie2, on both endothelial and inflammatory cells supports the idea that Ang signaling may play a fundamental role in initiating and maintaining the inflammatory response. We have previously shown that Ang1 and/or Ang2 alter the innate immune response by enhancing human neutrophil survival, chemotaxis and production of inflammatory cytokine interleukin-8 (IL-8) in vitro. Thus, we hypothesized that Ang1 and Ang2 could modulate other inflammatory signals in neutrophils, a possibility we explored through a gene-based assay looking at changes in the mRNA expression of 84 inflammatory cytokines and their receptors. We observed that Ang1 (10(-8) M), but not Ang2, increased mRNA expression of prominent pro-inflammatory cytokine IL-1β and its natural antagonist IL-1RA, by up to 32.6- and 10.0-fold respectively, compared to PBS-control. The effects of Ang1 extended to the proteins, as Ang1 increased intracellular levels of precursor and mature IL-1β, and extracellular levels of IL-1RA proteins, by up to 4.2-, 5.0- and 4.4-fold respectively, compared to PBS-control. Interestingly, Ang1 failed at inducing IL-1β protein release or at increasing intracellular IL-1RA, but the ratio of IL-1RA to mature IL-1β remained above 100-fold molar excess inside and outside the cells. The above-noted effects of Ang1 were mediated by MAP kinases, whereby inhibiting MEK1/2 lead to up to 70% effect reduction, whereas the blockade of p38MAPK activity doubled Ang1's effect. These findings suggest that Ang1 selectively alters the balance of neutrophil-derived inflammatory cytokines, favoring the blockade of IL-1 activity, a consideration for future therapies of inflammatory diseases.
Collapse
Affiliation(s)
- Lydia E. Haddad
- Research Center, Montreal Heart Institute, Montréal, Canada
- Department Of Pharmacology, Faculty of Medicine, Université De Montréal, Montréal, Canada
| | - Martin G. Sirois
- Research Center, Montreal Heart Institute, Montréal, Canada
- Department Of Pharmacology, Faculty of Medicine, Université De Montréal, Montréal, Canada
- * E-mail:
| |
Collapse
|
59
|
Advances towards the prevention of meningococcal B disease: A multidimensional story. J Infect 2014; 68 Suppl 1:S76-82. [DOI: 10.1016/j.jinf.2013.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 11/18/2022]
|
60
|
Pérez O, Romeu B, Cabrera O, González E, Batista-Duharte A, Labrada A, Pérez R, Reyes LM, Ramírez W, Sifontes S, Fernández N, Lastre M. Adjuvants are Key Factors for the Development of Future Vaccines: Lessons from the Finlay Adjuvant Platform. Front Immunol 2013; 4:407. [PMID: 24348475 PMCID: PMC3845353 DOI: 10.3389/fimmu.2013.00407] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/10/2013] [Indexed: 11/13/2022] Open
Abstract
The development of effective vaccines against neglected diseases, especially those associated with poverty and social deprivation, is urgently needed. Modern vaccine technologies and a better understanding of the immune response have provided scientists with the tools for rational and safer design of subunit vaccines. Often, however, subunit vaccines do not elicit strong immune responses, highlighting the need to incorporate better adjuvants; this step therefore becomes a key factor for vaccine development. In this review we outline some key features of modern vaccinology that are linked with the development of better adjuvants. In line with the increased desire to obtain novel adjuvants for future vaccines, the Finlay Adjuvant Platform offers a novel approach for the development of new and effective adjuvants. The Finlay Adjuvants (AFs), AFPL (proteoliposome), and AFCo (cochleate), were initially designed for parenteral and mucosal applications, and constitute potent adjuvants for the induction of Th1 responses against several antigens. This review summarizes the status of the Finlay technology in producing promising adjuvants for unsolved-vaccine diseases including mucosal approaches and therapeutic vaccines. Ideas related to adjuvant classification, adjuvant selection, and their possible influence on innate recognition via multiple toll-like receptors are also discussed.
Collapse
Affiliation(s)
- Oliver Pérez
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba ; Havana Medical Sciences University , Havana , Cuba
| | - Belkis Romeu
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| | - Osmir Cabrera
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| | - Elizabeth González
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| | - Alexander Batista-Duharte
- Toxicology and Biomedicine Center (TOXIMED), Medical Sciences University Santiago de Cuba , Santiago de Cuba , Cuba
| | - Alexis Labrada
- Centro Nacional de Biopreparados (BioCen) , Mayabeque , Cuba
| | - Rocmira Pérez
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| | - Laura M Reyes
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| | - Wendy Ramírez
- Centro Nacional de Biopreparados (BioCen) , Mayabeque , Cuba
| | - Sergio Sifontes
- Centro de Bioactivos Químicos (CBQ), Universidad Central Marta Abreu de Las Villas , Villa Clara , Cuba
| | | | - Miriam Lastre
- Immunology Department, Research and Development Vice-presidency, Finlay Institute , Havana , Cuba
| |
Collapse
|
61
|
Tamassia N, Cassatella MA. Cytoplasmic receptors recognizing nucleic acids and mediating immune functions in neutrophils. Curr Opin Pharmacol 2013; 13:547-54. [PMID: 23725881 DOI: 10.1016/j.coph.2013.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 01/02/2023]
Abstract
Cells belonging to the innate immune system, including neutrophils, rapidly respond to invading microorganisms by recognizing a wide range of microbial-derived products referred to as pathogen-associated molecular patterns (PAMPs). Generally speaking, PAMPs include molecular structures associated with microbial envelopes (such as bacterial lipopolysaccharide, lipoproteins, and flagellin) and microbial nucleic acids. PAMPs bind to and activate various families of germline-encoded receptors carried by cells of the innate immune system, known as pattern-recognition receptors (PRRs). This group of receptors, located in various subcellular compartments, in turn generates a series of intracellular signaling pathways that coordinately modulate the transcription of hundreds of inflammatory genes, the products of which directly control infection and/or contribute to promote the development of the innate and adaptive immune responses. Herein, we summarize current knowledge on neutrophil recognition and response to foreign cytoplasmic nucleic acids.
Collapse
Affiliation(s)
- Nicola Tamassia
- Department of Pathology and Diagnostics, Section of General Pathology, University of Verona, 37134 Verona, Italy
| | | |
Collapse
|
62
|
Tamassia N, Zimmermann M, Castellucci M, Ostuni R, Bruderek K, Schilling B, Brandau S, Bazzoni F, Natoli G, Cassatella MA. Cutting Edge: An Inactive Chromatin Configuration at the IL-10 Locus in Human Neutrophils. THE JOURNAL OF IMMUNOLOGY 2013; 190:1921-5. [DOI: 10.4049/jimmunol.1203022] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
63
|
Offense and defense: microbial membrane vesicles play both ways. Res Microbiol 2012; 163:607-18. [PMID: 23123555 DOI: 10.1016/j.resmic.2012.10.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Microbes have evolved over millennia to become adapted and specialized to the environments that they occupy. These environments may include water or soil, extreme environments such as hydrothermal vents, and can even include a host organism. To become adapted to these locations, microbes have evolved specific tools to mediate interactions with the environment. One such tool that prokaryotes have evolved includes the production of membrane vesicles (MVs). MVs are 10-300 nm spherical blebs derived from the outermost membrane and have known functions in protein secretion, immune activation and suppression, stress response, attachment, internalization and virulence. In this review, we consider the highly conserved role of membrane vesicles derived from Gram-negative, Gram-positive and archaeal species as a mechanism to facilitate intermicrobial and microbe-host interaction. We examine both the offensive and defensive capabilities of MVs in regard to the interaction of MVs with both host and microbial cells in their environment.
Collapse
|
64
|
O’Reilly N, Bergin D, Reeves E, McElvaney N, Kavanagh K. Demodex-associated bacterial proteins induce neutrophil activation. Br J Dermatol 2012; 166:753-60. [DOI: 10.1111/j.1365-2133.2011.10746.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
65
|
Söderholm N, Vielfort K, Hultenby K, Aro H. Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 2011; 6:e24353. [PMID: 21949708 PMCID: PMC3174955 DOI: 10.1371/journal.pone.0024353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 08/05/2011] [Indexed: 11/18/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are important components of the human innate immune system and are rapidly recruited at the site of bacterial infection. Despite the effective phagocytic activity of PMNs, Neisseria gonorrhoeae infections are characterized by high survival within PMNs. We reveal a novel type IV pilus-mediated adherence of pathogenic Neisseria to the uropod (the rear) of polarized PMNs. The direct pilus-uropod interaction was visualized by scanning electron microscopy and total internal reflection fluorescence (TIRF) microscopy. We showed that N. meningitidis adhesion to the PMN uropod depended on both pilus-associated proteins PilC1 and PilC2, while N. gonorrhoeae adhesion did not. Bacterial adhesion elicited accumulation of the complement regulator CD46, but not I-domain-containing integrins, beneath the adherent bacterial microcolony. Electrographs and live-cell imaging of PMNs suggested that bacterial adherence to the uropod is followed by internalization into PMNs via the uropod. We also present data showing that pathogenic Neisseria can hitchhike on PMNs to hide from their phagocytic activity as well as to facilitate the spread of the pathogen through the epithelial cell layer.
Collapse
Affiliation(s)
- Niklas Söderholm
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Katarina Vielfort
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Karolinska Institute, Huddinge, Sweden
| | - Helena Aro
- Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
66
|
Neisseria gonorrhoeae-mediated inhibition of apoptotic signalling in polymorphonuclear leukocytes. Infect Immun 2011; 79:4447-58. [PMID: 21844239 DOI: 10.1128/iai.01267-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The human pathogen Neisseria gonorrhoeae recruits and interacts extensively with polymorphonuclear leukocytes (PMNs) during infection. N. gonorrhoeae is able to survive the bactericidal activity of these innate immune cells and can actively modulate PMN functions in vitro. PMNs are short-lived cells which readily undergo apoptosis, and thus the effect of N. gonorrhoeae infection on PMN survival has implications for whether PMNs might serve as an important site of bacterial replication during infection. We developed and validated an HL-60 myeloid leukemia cell culture model for PMN infection and used both these cells and primary PMNs to show that N. gonorrhoeae infection alone does not induce apoptosis and furthermore that N. gonorrhoeae can inhibit both spontaneous apoptosis and apoptosis induced by the intrinsic and extrinsic apoptosis inducers staurosporine (STS) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), respectively. N. gonorrhoeae infection also results in the activation of NF-κB signaling in neutrophils and induces secretion of an identical profile of proinflammatory cytokines and chemokines in both HL-60 cells and primary PMNs. Our data show that the HL-60 cell line can be used to effectively model N. gonorrhoeae-PMN interactions and that N. gonorrhoeae actively inhibits apoptosis induced by multiple stimuli to prolong PMN survival and potentially facilitate bacterial survival, replication, and transmission.
Collapse
|
67
|
Sanders MS, van Well GTJ, Ouburg S, Morré SA, van Furth AM. Genetic variation of innate immune response genes in invasive pneumococcal and meningococcal disease applied to the pathogenesis of meningitis. Genes Immun 2011; 12:321-34. [DOI: 10.1038/gene.2011.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
68
|
Abstract
Neutrophils are produced in the bone marrow from stem cells that proliferate and differentiate to mature neutrophils fully equipped with an armory of granules. These contain proteins that enable the neutrophil to deliver lethal hits against microorganisms, but also to cause great tissue damage. Neutrophils circulate in the blood as dormant cells. At sites of infection, endothelial cells capture bypassing neutrophils and guide them through the endothelial cell lining whereby the neutrophils are activated and tuned for the subsequent interaction with microbes. Once in tissues, neutrophils kill microorganisms by microbicidal agents liberated from granules or generated by metabolic activation. As a final act, neutrophils can extrude stands of DNA with bactericidal proteins attached that act as extracellular traps for microorganisms.
Collapse
Affiliation(s)
- Niels Borregaard
- The Granulocyte Research Laboratory, Department of Hematology, National University Hospital (Rigshospitalet), University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
69
|
Kumar V, Sharma A. Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 2010; 10:1325-34. [PMID: 20828640 DOI: 10.1016/j.intimp.2010.08.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 12/24/2022]
Abstract
Neutrophils are the first line of innate immune defense against infectious diseases. However, since their discovery by Elie Metchnikoff, they have always been considered tissue-destructive cells responsible for inflammatory tissue damage occurring during acute infections. Now, extensive research in the field of neutrophil cell biology and their role skewing the immune response in various infections or inflammatory disorders revealed their importance in the regulation of immune response. Along with releasing various antimicrobial molecules, neutrophils also release neutrophil extracellular traps (NETs) for the containment of infection and inflammation. Activated neutrophils provide signals for the activation and maturation of macrophages as well as dendritic cells. Neutrophils are also involved in the regulation of T-cell immune response against various pathogens and tumor antigens. Thus, the present review is intended to highlight the emerging role of neutrophils in the regulation of both innate and adaptive immunity during acute infectious or inflammatory conditions.
Collapse
Affiliation(s)
- V Kumar
- Department of Pediatrics, Faculty of Medicine, Sainte-Justine Hospital, University of Montreal, Montreal, Canada.
| | | |
Collapse
|
70
|
Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev 2010; 74:81-94. [PMID: 20197500 DOI: 10.1128/mmbr.00031-09] [Citation(s) in RCA: 696] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Outer membrane (OM) vesicles are ubiquitously produced by Gram-negative bacteria during all stages of bacterial growth. OM vesicles are naturally secreted by both pathogenic and nonpathogenic bacteria. Strong experimental evidence exists to categorize OM vesicle production as a type of Gram-negative bacterial virulence factor. A growing body of data demonstrates an association of active virulence factors and toxins with vesicles, suggesting that they play a role in pathogenesis. One of the most popular and best-studied pathogenic functions for membrane vesicles is to serve as natural vehicles for the intercellular transport of virulence factors and other materials directly into host cells. The production of OM vesicles has been identified as an independent bacterial stress response pathway that is activated when bacteria encounter environmental stress, such as what might be experienced during the colonization of host tissues. Their detection in infected human tissues reinforces this theory. Various other virulence factors are also associated with OM vesicles, including adhesins and degradative enzymes. As a result, OM vesicles are heavily laden with pathogen-associated molecular patterns (PAMPs), virulence factors, and other OM components that can impact the course of infection by having toxigenic effects or by the activation of the innate immune response. However, infected hosts can also benefit from OM vesicle production by stimulating their ability to mount an effective defense. Vesicles display antigens and can elicit potent inflammatory and immune responses. In sum, OM vesicles are likely to play a significant role in the virulence of Gram-negative bacterial pathogens.
Collapse
|
71
|
Yeh SS, Marandi M, Thode HC, Levine DM, Parker T, Dixon T, Schuster MW. Report of a Pilot, Double-Blind, Placebo-Controlled Study of Megestrol Acetate in Elderly Dialysis Patients With Cachexia. J Ren Nutr 2010; 20:52-62. [DOI: 10.1053/j.jrn.2009.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Indexed: 11/11/2022] Open
|
72
|
Abstract
Polymorphonuclear leukocytes (PMNs) are the most abundant white cell in humans and an essential component of the innate immune system. PMNs are typically the first type of leukocyte recruited to sites of infection or areas of inflammation. Ingestion of microorganisms triggers production of reactive oxygen species and fusion of cytoplasmic granules with forming phagosomes, leading to effective killing of ingested microbes. Phagocytosis of bacteria typically accelerates neutrophil apoptosis, which ultimately promotes the resolution of infection. However, some bacterial pathogens alter PMN apoptosis to survive and thereby cause disease. Herein, we review PMN apoptosis and the ability of microorganisms to alter this important process.
Collapse
Affiliation(s)
- Adam D Kennedy
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
73
|
Tavano R, Franzoso S, Cecchini P, Cartocci E, Oriente F, Aricò B, Papini E. The membrane expression of Neisseria meningitidis
adhesin A (NadA) increases the proimmune effects of MenB
OMVs on human macrophages, compared with NadA-
OMVs, without further stimulating their proinflammatory activity on circulating monocytes. J Leukoc Biol 2009; 86:143-53. [DOI: 10.1189/jlb.0109030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
74
|
Abstract
Polymorphonuclear leukocytes (neutrophils) are the first cells that arrive at sites of infection or injury. There, besides their microorganism-targeted effector functions, activated neutrophils secrete numerous chemoattractants that recruit other leukocyte subtypes into the inflamed tissue. First, neutrophil activation leads to the upregulation of the gene expression of several classical chemokines of the CXC and CC families. Second, neutrophil granules contain preformed intracellular storage pools of chemotactically active proteins that are rapidly released upon neutrophil degranulation. The third pathway of generation of chemotactically active proteins by activated neutrophils--shedding and concomitant proteolytic processing of a membrane protein--has recently been demonstrated in our laboratory. In this review, we summarize the essential features of chemoattractant production by neutrophils and their contribution to orchestrating the recruitment of leukocyte subtypes during inflammatory response.
Collapse
Affiliation(s)
- B K Pliyev
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia.
| |
Collapse
|
75
|
Hurtado-Nedelec M, Chollet-Martin S, Nicaise-Roland P, Grootenboer-Mignot S, Ruimy R, Meyer O, Hayem G. Characterization of the immune response in the synovitis, acne, pustulosis, hyperostosis, osteitis (SAPHO) syndrome. Rheumatology (Oxford) 2008; 47:1160-7. [PMID: 18559374 DOI: 10.1093/rheumatology/ken185] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE The aetiology of SAPHO (synovitis, acne, palmoplantar pustulosis, hyperostosis, osteitis) syndrome seems to involve genetic, infectious and immunological components. We examined innate and adaptive immune responses in SAPHO syndrome, as compared with PsA and RA. We also studied the effect of etanercept on immunological parameters. METHODS We studied 29 patients with SAPHO syndrome, as well as 22 patients with RA, 21 patients with PsA and 15 healthy controls. Adaptive immune responses were investigated by assaying total serum immunoglobulins and several autoantibodies. Innate immunity was studied by quantifying blood PMN functions and plasma cytokine levels. PMN responses to Propionibacterium acnes were tested ex vivo. Eight patients who received etanercept for refractory rheumatic disorders were tested before and after 28 days of treatment. RESULTS SAPHO syndrome was associated with elevated IL-8 and IL-18 plasma levels. IL-8 and TNF-alpha production by purified PMN was higher in the three patient groups than in the healthy controls, but the oxidative burst and IL-18 production were normal. No autoantibodies were detected in SAPHO patients. Induction of PMN IL-8 and TNF-alpha production by P. acnes was impaired in the SAPHO group as compared with the RA and PsA groups. After 28 days of etanercept therapy, PMN IL-8 and TNF-alpha production was down-regulated and TNF-alpha plasma levels were increased. CONCLUSIONS These results support the view that the SAPHO syndrome may be triggered by an infectious state involving P. acnes, contributing to the strong humoral and cellular pro-inflammatory responses. Etanercept modulation of PMN activation status emphasizes these new immunological findings.
Collapse
Affiliation(s)
- M Hurtado-Nedelec
- Immunology, Auto-immunity and Hypersensibility Unit, AP-HP Bichat Claude Bernard Hospital, Paris, France
| | | | | | | | | | | | | |
Collapse
|
76
|
Polenghi A, Bossi F, Fischetti F, Durigutto P, Cabrelle A, Tamassia N, Cassatella MA, Montecucco C, Tedesco F, de Bernard M. The neutrophil-activating protein of Helicobacter pylori crosses endothelia to promote neutrophil adhesion in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 178:1312-20. [PMID: 17237377 DOI: 10.4049/jimmunol.178.3.1312] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori induces an acute inflammatory response followed by a chronic infection of the human gastric mucosa characterized by infiltration of neutrophils/polymorphonuclear cells (PMNs) and mononuclear cells. The H. pylori neutrophil-activating protein (HP-NAP) activates PMNs, monocytes, and mast cells, and promotes PMN adherence to the endothelium in vitro. By using intravital microscopy analysis of rat mesenteric venules exposed to HP-NAP, we demonstrated, for the first time in vivo, that HP-NAP efficiently crosses the endothelium and promotes a rapid PMN adhesion. This HP-NAP-induced adhesion depends on the acquisition of a high affinity state of beta(2) integrin on the plasma membrane of PMNs, and this conformational change requires a functional p38 MAPK. We also show that HP-NAP stimulates human PMNs to synthesize and release a number of chemokines, including CXCL8, CCL3, and CCL4. Collectively, these data strongly support a central role for HP-NAP in the inflammation process in vivo: indeed, HP-NAP not only recruits leukocytes from the vascular lumen, but also stimulates them to produce messengers that may contribute to the maintenance of the flogosis associated with the H. pylori infection.
Collapse
|
77
|
Ortega N, Caro MR, Buendía AJ, Gallego MC, Del Río L, Martínez CM, Nicolas L, Cuello F, Salinas J. Role of polymorphonuclear neutrophils (PMNs) and NK cells in the protection conferred by different vaccines against Chlamydophila abortus infection. Res Vet Sci 2006; 82:314-22. [PMID: 17046037 DOI: 10.1016/j.rvsc.2006.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 05/30/2006] [Accepted: 07/30/2006] [Indexed: 10/23/2022]
Abstract
Ovine enzootic abortion (OEA) is caused by Chlamydophila abortus, an intracellular bacterium which acts by infecting the placenta, causing abortion in the last term of gestation. The main prevention strategy against OEA is the vaccination of flocks. An effective vaccine against C. abortus must induce a Th1-like specific immune response, which is characterized by the early production of IFN-gamma and the activation of CD8(+)T cells. Moreover, vaccine effectiveness could be modulated by the functioning of the innate immunity. The purpose of this study was to ascertain how polymorphonuclear neutrophils (PMNs) and NK cells might influence vaccine-induced protection. The live attenuated 1B vaccine and two inactivated experimental vaccines, adjuvated with aluminium hydroxide (AH) or QS-21 (QS), were used in PMN-depleted or NK cell-depleted mice. For PMN depletion, RB6-8C5 monoclonal antibody, which recognizes GR1(+) receptors (Robben, P.M., LaRegina, M., Kuziel, W.A., Sibley, L.D. 2005. Recruitment of Gr-1(+) monocytes is essential for control of acute toxoplasmosis. The Journal of Experimental Medicine 201, 1761-1769.) was used, while for NK cell-depletion the anti-asialo GM1 polyclonal antibody was used. The depletion of PMNs caused 100% mortality in non-vaccinated mice (NV) and 60% mortality in the AH-vaccinated mice by day 10 p.i., while both groups showed a significant increase in their bacterial burden in the liver by day 4 p.i. The depletion of NK cells caused mortality only in the NV group (50% by day 10 p.i.), although this group and the 1B vaccinated mice showed an increased bacterial burden in the liver at day 4 p.i. Our results suggest that the importance of PMNs in inactivated vaccines depends on the adjuvant chosen. The results also demonstrated that the importance of NK cells is greater in live vaccines than in inactivated vaccines.
Collapse
Affiliation(s)
- N Ortega
- Departamento de Sanidad Animal, Universidad de Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Tavares E, Miñano FJ, Maldonado R, Dascombe MJ. Endotoxin fever in granulocytopenic rats: evidence that brain cyclooxygenase-2 is more important than circulating prostaglandin E2. J Leukoc Biol 2006; 80:1375-87. [PMID: 16997862 DOI: 10.1189/jlb.0106064] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PGE(2) is a recognized mediator of many fevers, and cyclooxygenase (COX) is the major therapeutic target for antipyretic therapy. The source, as well as the site of action of PGE(2), as an endogenous pyrogen, is widely accepted as being central, but PGE(2) in the circulation, possibly from leukocytes, may also contribute to the development of fever. However, bacterial infections are important causes of high fever in patients receiving myelosuppressive chemotherapy, and such fevers persist despite the use of COX inhibitors. In the study reported here, the febrile response to bacterial LPS was measured in rats made leukopenic by cyclophosphamide. A striking increase in LPS fever occurred in these granulocytopenic rats when compared with febrile responses in normal animals. Unlike LPS fever in normal rats, fever in granulocytopenic rats was neither accompanied by an increase in blood PGE(2) nor inhibited by ibuprofen. Both leukopenic and normal rats showed LPS-induced COX-2-immunoreactivity in cells associated with brain blood vessels. Furthermore, LPS induced an increase of PGE(2) in cerebrospinal fluid. Induction of COX-2-expression and PGE(2) production was inhibited by ibuprofen in normal but not in leukopenic rats. Although the results presented are, in part, confirmatory, they add new information to this field and open a number of important questions as yet unresolved. Overall, the present results indicate that, in contrast to immunocompetent rats, leukocytes and/or other mechanisms other than PGE(2) are implicated in the mechanisms restricting and reducing the enhanced febrile response to endotoxin in immunosuppressed hosts.
Collapse
Affiliation(s)
- Eva Tavares
- Laboratory for Clinical and Experimental Pharmacology, University Hospital of Valme, Avda Bellavista s/n, Seville 41014, Spain
| | | | | | | |
Collapse
|
79
|
Plant L, Wan H, Jonsson AB. MyD88-dependent signaling affects the development of meningococcal sepsis by nonlipooligosaccharide ligands. Infect Immun 2006; 74:3538-46. [PMID: 16714586 PMCID: PMC1479290 DOI: 10.1128/iai.00128-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Toll-like receptors (TLRs) and the adaptor myeloid differentiation factor 88 (MyD88) are important in the innate immune defenses of the host to microbial infections. Meningococcal ligands signaling via TLRs control inflammatory responses, and stimulation can result in fulminant meningococcal sepsis. In this study, we show that the responses to nonlipooligosaccharide (non-LOS) ligands of meningococci are MyD88 dependent. An isogenic LOS-deficient mutant of the serogroup C meningococcal strain FAM20 caused fatal disease in wild type C57BL/6 mice that was not observed in MyD88-/- mice. Fatality correlated with high proinflammatory cytokine and C5a levels in serum, high neutrophil numbers in blood, and increased bacteremia at 24 h postinfection in the wild-type mice. Infection with the parent strain FAM20 resulted in fatality in 100% of the wild-type mice and 50% of the MyD88-/- mice. We conclude that both LOS and another neisserial ligand cause meningococcal sepsis in an in vivo mouse model and confirm that meningococcal LOS can act via both the MyD88- dependent and -independent pathways, while the non-LOS meningococcal ligand(s) acts only via the MyD88-dependent pathway.
Collapse
Affiliation(s)
- Laura Plant
- Department of Medical Biochemistry and Microbiology, Biomedical Centrum, Uppsala University, 751 23 Uppsala, Sweden.
| | | | | |
Collapse
|
80
|
Rodríguez T, Pérez O, Ménager N, Ugrinovic S, Bracho G, Mastroeni P. Interactions of proteoliposomes from serogroup B Neisseria meningitidis with bone marrow-derived dendritic cells and macrophages: adjuvant effects and antigen delivery. Vaccine 2005; 23:1312-21. [PMID: 15652674 DOI: 10.1016/j.vaccine.2004.07.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 07/19/2004] [Indexed: 11/17/2022]
Abstract
Exposure to proteoliposomes from serogroup B Neisseria meningitidis (PL) induced up-regulation of MHC-II, MHC-I, CD40, CD80 and CD86 expression on the surface of murine bone marrow-derived dendritic cells (DC). CD40, CD80 and CD86 were up-regulated on bone marrow-derived macrophages (MPhi) upon stimulation with PL. Both DC and MPhi released TNFalpha, but only DC produced IL12(p70) in response to PL. A small increase in the expression of MHC-II, CD40 and CD86, as well as production of IL12(p70), was observed on the cell surface of DC, but not MPhi from LPS-non-responder C3H/HeJ after exposure to PL. DC, but not MPhi, incubated with PL containing ovalbumin (PL-OVA) presented OVA-specific peptides to CD4+ and CD8+ OVA-specific T-cell hybridomas. These data clearly indicate that PL exert an immunomodulatory effect on DC and MPhi, with some contribution of non-LPS components besides the main role of LPS. The work also shows the potential of PL as a general system to deliver antigens to DC for presentation to CD4+ and CD8+ T-cells.
Collapse
Affiliation(s)
- Tamara Rodríguez
- Department of Immunology, Finlay Institute, PO Box 16017, Havana, Cuba
| | | | | | | | | | | |
Collapse
|
81
|
Shen L, Fahey JV, Hussey SB, Asin SN, Wira CR, Fanger MW. Synergy between IL-8 and GM-CSF in reproductive tract epithelial cell secretions promotes enhanced neutrophil chemotaxis. Cell Immunol 2005; 230:23-32. [PMID: 15541716 DOI: 10.1016/j.cellimm.2004.08.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 11/29/2022]
Abstract
Neutrophils occur in tissues of the female reproductive tract (FRT) under non-infected conditions. These cells generally enter tissues under the influence of chemoattractants called chemokines. Primary epithelial cells (EC) from FRT were a potent source of chemokines, IL-8 being the chief neutrophil chemoattractant secreted. Blocking with neutralizing anti-IL-8 showed that IL-8 did not account for all of the chemoattraction observed. A mixture of 25 ng/mL rIL-8 and 1 ng/mL rGM-CSF mediated 2.7-fold more chemotaxis than that expected if the two agents were additive. We then found that GM-CSF was produced by EC in amounts that synergised strongly with IL-8 to enhance chemotaxis. Treatment of uterine EC conditioned medium with saturating doses of anti-IL-8 plus anti-GM-CSF antibodies produced an 84% inhibition of chemotaxis. These findings demonstrate that the majority of neutrophil chemoattractant activity produced by FRT EC results from the synergistic effects of IL-8 and GM-CSF.
Collapse
Affiliation(s)
- Li Shen
- Department of Immunology and Microbiology, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Overview and History of Chemokines and Their Receptors. CURRENT TOPICS IN MEMBRANES 2005. [DOI: 10.1016/s1063-5823(04)55001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
83
|
Sadeyen JR, Trotereau J, Velge P, Marly J, Beaumont C, Barrow PA, Bumstead N, Lalmanach AC. Salmonella carrier state in chicken: comparison of expression of immune response genes between susceptible and resistant animals. Microbes Infect 2004; 6:1278-86. [PMID: 15555534 DOI: 10.1016/j.micinf.2004.07.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 07/19/2004] [Indexed: 01/05/2023]
Abstract
Asymptomatic Salmonella enterica serovar Enteritidis carrier state in poultry has serious consequences on food safety and public health due to the risks of food poisoning following consumption of contaminated products. An understanding the mechanisms of persistence of Salmonella in the digestive tract of chicken can be achieved by a better knowledge of the defects in the control of infection in susceptible versus resistant animals. The gene expression of innate immune response factors including anti-microbial molecules, inflammatory and anti-infectious cytokines was studied in the caecal lymphoid tissue associated with the carrier state. Expression levels of these genes were assessed by real-time PCR and were compared in two inbred lines of chickens differing in resistance to the carrier state following oral inoculation of S. enterica serovar Enteritidis at 1 week of age. No correlation was observed between resistance/susceptibility to caecal carrier state and level of interleukin (IL)-1beta, IL-8, IL-18, inducible NO synthase (iNOS) and natural resistance associated macrophage protein 1 (NRAMP1). A high baseline level of defensin gene expression was recorded in young animals from the susceptible line. In contrast, a significantly low expression of interferon-gamma (IFN-gamma) gene was observed in these susceptible infected animals in comparison to resistant ones and healthy counterparts. IFN-gamma expression level represents a valuable indication of immunodeficiency associated with persistence of Salmonella in the chicken digestive tract, and IFN-gamma thus represents a factor to consider in the development of prophylactic measures for the reduction of Salmonella carrier state.
Collapse
Affiliation(s)
- Jean-Rémy Sadeyen
- Unité de Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, Centre de Recherche de Tours, 37380 Nouzilly, France
| | | | | | | | | | | | | | | |
Collapse
|
84
|
von Stebut E, Metz M, Milon G, Knop J, Maurer M. Early macrophage influx to sites of cutaneous granuloma formation is dependent on MIP-1alpha /beta released from neutrophils recruited by mast cell-derived TNFalpha. Blood 2003; 101:210-5. [PMID: 12393677 DOI: 10.1182/blood-2002-03-0921] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages (MPhi) play a crucial role in the development of cutaneous granulomas (CGs) initiated by foreign bodies or invasive microorganisms. However, little is known about how MPhi are recruited to sites of CG formation. To test whether mast cells (MCs) contribute to early MPhi recruitment to developing granulomas, CGs were induced in MC-deficient Kit(W)/Kit(W-v) mice by injection of polyacrylamide gel (PAG). Kit(W)/Kit(W-v) mice as well as mice deficient in the MC product TNFalpha exhibited markedly reduced MPhi numbers in CGs. MPhi recruitment was restored in Kit(W)/Kit(W-v) mice reconstituted with MCs from Kit(+/+) or TNFalpha(+/+), but not from TNFalpha(-/-) mice. MC-TNFalpha-dependent MPhi influx required prior recruitment of MIP-1alpha/beta-producing neutrophils (PMNs), as PMN depletion before induction of CGs completely inhibited MPhi influx, which was restored after reconstitution with PMN supernatants. These findings indicate that MPhi recruitment to cutaneous PAG- induced granulomas is the result of a sequence of inflammatory processes initiated by MC-derived TNFalpha followed by PMN influx and MIP-1a/beta release.
Collapse
|
85
|
Abstract
Macrophage inflammatory protein-1alpha (MIP-1alpha) and MIP-1beta are highly related members of the CC chemokine subfamily. Despite their structural similarities, MIP-1alpha and MIP-1beta show diverging signaling capacities. Depending on the MIP-1 subtype and its NH(2)-terminal processing, one or more of the CC chemokine receptors CCR1, CCR2, CCR3 and CCR5 are recognized. Since both human MIP-1alpha subtypes (LD78alpha and LD78beta) and MIP-1beta signal through CCR5, the major co-receptor for M-tropic HIV-1 strains, these chemokines are capable of inhibiting HIV-1 infection in susceptible cells. In this review, different aspects of human and mouse MIP-1alpha and MIP-1beta are discussed, including their protein and gene structures, their regulated production, their receptor usage and biological activities and their role in several pathologies including HIV-1 infection.
Collapse
Affiliation(s)
- Patricia Menten
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B-3000, Leuven Belgium
| | | | | |
Collapse
|
86
|
Ko HJ, Lim SS. Production of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta by human polymorphonuclear neutrophils stimulated with Porphyromonas endodontalis lipopolysaccharide. J Endod 2002; 28:754-7. [PMID: 12470018 DOI: 10.1097/00004770-200211000-00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p < 0.05), and this expression occurred in a time- and dose-dependent manner. E. coli LPS induced higher levels of cytokines than P. endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.
Collapse
Affiliation(s)
- Hyun Jung Ko
- Department of Conservative Dentistry, College of Dentistry, Seoul National University, Korea
| | | |
Collapse
|
87
|
Al‐Mohanna F, Saleh S, Parhar RS, Collison K. IL‐12‐dependent nuclear factor‐κB activation leads to de novo synthesis and release of IL‐8 and TNF‐α in human neutrophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.72.5.995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Futwan Al‐Mohanna
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Soad Saleh
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ranjit S. Parhar
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Kate Collison
- Department of Biological and Medical Research, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
88
|
Crepaldi L, Silveri L, Calzetti F, Pinardi C, Cassatella MA. Molecular basis of the synergistic production of IL-1 receptor antagonist by human neutrophils stimulated with IL-4 and IL-10. Int Immunol 2002; 14:1145-53. [PMID: 12356680 DOI: 10.1093/intimm/dxf079] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study, we report that the release of IL-1 receptor antagonist (IL-1ra) from IL-4-stimulated neutrophils is markedly enhanced in the presence of IL-10. We also show that up-regulation of IL-1ra release by IL-10 in IL-4-stimulated neutrophils takes place through IL-1ra mRNA stabilization and enhancement of IL-1ra de novo synthesis. Furthermore, we report that the ability of IL-10 to up-regulate IL-1ra mRNA expression in IL-4-treated neutrophils requires 5-6 h and it is preceded by the acquisition of the capacity to activate Stat3 tyrosine phosphorylation. This latter response to IL-10 was strictly dependent on the levels of expression of IL-10R1, which were in fact significantly increased by IL-4 in cultured neutrophils via a signaling pathway sensitive to the serine/threonine kinase inhibitor H-7. Collectively, our data emphasize the central role of IL-10R1 expression in regulating cell responsiveness to IL-10. In addition, the fact that IL-10 strongly up-regulates IL-1ra production in IL-4-activated neutrophils uncovers a novel mechanism whereby IL-10 and IL-4 cooperate to negatively modulate the inflammatory responses.
Collapse
Affiliation(s)
- Luca Crepaldi
- Department of Pathology, General Pathology Unit, University of Verona, Strada Le Grazie 4, 37134 Verona, Italy
| | | | | | | | | |
Collapse
|
89
|
Khan AQ, Shen Y, Wu ZQ, Wynn TA, Snapper CM. Endogenous pro- and anti-inflammatory cytokines differentially regulate an in vivo humoral response to Streptococcus pneumoniae. Infect Immun 2002; 70:749-61. [PMID: 11796608 PMCID: PMC127731 DOI: 10.1128/iai.70.2.749-761.2002] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proinflammatory cytokines play a critical role in innate host defense against extracellular bacteria. However, little is known regarding the effects of these cytokines on the adaptive humoral response. Mice injected with a neutralizing anti-tumor necrosis factor alpha (TNF-alpha) monoclonal antibody (MAb) at the time of primary immunization with intact Streptococcus pneumoniae (strain R36A) showed a substantial reduction in both the primary immunoglobulin G (IgG) response specific for the cell wall protein, pneumococcal surface protein A (PspA), as well as in the development of PspA-specific memory. In contrast, anti-TNF-alpha MAb injected only at the time of secondary immunization with R36A failed to alter the boosted anti-PspA response. TNF-alpha was required only within the first 48 to 72 h after primary immunization with R36A and was induced both by non-B and non-T cells and by lymphoid cells, within 2 to 6 h after immunization, with levels returning to normal by 24 h. Thus, the early innate release of TNF-alpha was critical for optimal stimulation of the subsequent adaptive humoral response to R36A. Additional proinflammatory (interleukin 1 [IL-1], IL-6, IL-12, and gamma interferon [IFN-gamma]) as well as anti-inflammatory (IL-4 and IL-10) cytokines were also transiently induced. Mice genetically deficient in IL-6, IFN-gamma, or IL-12 also showed a reduced IgG anti-PspA response of all IgG isotypes. In contrast, IL-4(-/-) and IL-10(-/-) mice immunized with R36A showed a significant elevation in the IgG anti-PspA response, except that there was decreased IgG1 in IL-4(-/-) mice. In this regard, a marked enhancement in the induction of proinflammatory cytokines was observed in the absence of IL-10, relative to controls. Ig isotype titers specific for the phosphorycholine determinant of C-polysaccharide were similarly regulated, but to a much more modest degree. These data suggest that proinflammatory and anti-inflammatory cytokines differentially regulate an in vivo protein- and polysaccharide-specific Ig response to an extracellular bacteria.
Collapse
Affiliation(s)
- Abdul Q Khan
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
90
|
Liu RK, Cao CF, Meng HX, Gao Y. Polymorphonuclear neutrophils and their mediators in gingival tissues from generalized aggressive periodontitis. J Periodontol 2001; 72:1545-53. [PMID: 11759866 DOI: 10.1902/jop.2001.72.11.1545] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Impaired polymorphonuclear neutrophil (PMN) functions were generally considered to be related to the onset of generalized aggressive periodontitis (GAgP). However, some research has indicated that the hyperreactivity of PMN seems to be involved in the inflammatory response of GAgP. The present study's main purpose was to provide more evidence about the role of PMN in the pathogenesis of GAgP by surveying PMN infiltration in gingiva and its relationship with the expression of their mediators including intercellular adhesion molecule-1 (ICAM-1), interleukin-8 (IL-8), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha). The inflammatory response in GAgP was also compared with that in adult periodontitis (AP) and periodontally healthy subjects. Since these PMN mediators were reported to be produced mainly by macrophages, the association between the expression of these PMN mediators and the distribution of macrophages was also investigated. METHODS A total of 25 gingival specimens were obtained from 10 GAgP patients, 10 AP patients, and 5 periodontally healthy subjects. Serial sections were obtained from each specimen, and the following techniques were adopted to investigate the distribution and interrelation of different cells and cytokines. Infiltration of PMN was observed by using hematoxylin and eosin staining. Distribution of the macrophages, identified as CD68+, was shown by using immunohistochemistry. Immunohistochemistry and in situ hybridization were used to detect the expression of ICAM-1, IL-8, IL-1beta, and TNF-alpha in gingival tissues. These techniques were performed in serial sections from each individual specimen. RESULTS Large numbers of infiltrating PMNs were observed in gingiva from GAgP. In gingiva from both GAgP and AP, the strongest protein and mRNA expression of IL-8, ICAM-1, IL-1beta, and TNF-alpha were located in pocket epithelium and adjacent connective tissue with large numbers of infiltrating PMNs. In tissues without abundant PMN infiltration, the appearance of positive cells expressing IL-8, ICAM-1, IL-1beta, and TNF-alpha was scattered. CD68+ was distributed sparsely in connective tissue and was hardly seen in pocket epithelium with large numbers of PMN infiltration. The degree of leukocyte infiltration and connective tissue destruction in gingiva from GAgP patients was not distinctly different from that in gingiva from AP. The gingival specimens with heavy PMN infiltration from both GAgP and AP patients presented strong expressions of IL-1beta and TNF-alpha; showed more extensive inflammatory cell infiltration; had severe connective tissue destruction; and presented severe elongation and ulceration of pocket epithelium. In gingiva from healthy subjects, inflammation was minor with visually no PMN, CD68+, or the positive cells of IL-8, ICAM-1, IL-1beta and TNF-alpha expression. CONCLUSIONS Enhanced accumulation of PMN, which is associated with the upregulation of IL-8, ICAM-1, IL-1beta, and TNF-alpha expression, relates to the severity and activity of GAgP. In addition to macrophages, PMN and/or epithelial cells might also be important sources of IL-8, IL-1beta, and TNF-alpha production in gingiva.
Collapse
Affiliation(s)
- R K Liu
- Department of Periodontology, School of Stomatology, Peking University, Beijing, China.
| | | | | | | |
Collapse
|
91
|
Kolb-Mäurer A, Unkmeir A, Kämmerer U, Hübner C, Leimbach T, Stade A, Kämpgen E, Frosch M, Dietrich G. Interaction of Neisseria meningitidis with human dendritic cells. Infect Immun 2001; 69:6912-22. [PMID: 11598066 PMCID: PMC100071 DOI: 10.1128/iai.69.11.6912-6922.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection with Neisseria meningitidis serogroup B is responsible for fatal septicemia and meningococcal meningitis. The severity of disease directly correlates with the production of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha), interleukin-1 (IL-1), IL-6, and IL-8. However, the source of these cytokines has not been clearly defined yet. Since bacterial infection involves the activation of dendritic cells (DCs), we analyzed the interaction of N. meningitidis with monocyte-derived DCs. Using N. meningitidis serogroup B wild-type and unencapsulated bacteria, we found that capsule expression significantly impaired neisserial adherence to DCs. In addition, phagocytic killing of the bacteria in the phagosome is reduced by at least 10- to 100-fold. However, all strains induced strong secretion of proinflammatory cytokines TNF-alpha, IL-6, and IL-8 by DCs (at least 1,000-fold at 20 h postinfection [p.i.]), with significantly increased cytokine levels being measurable by as early as 6 h p.i. Levels of IL-1beta, in contrast, were increased only 200- to 400-fold at 20 h p.i. with barely measurable induction at 6 h p.i. Moreover, comparable amounts of cytokines were induced by bacterium-free supernatants of Neisseria cultures containing neisserial lipooligosaccharide as the main factor. Our data suggest that activated DCs may be a significant source of high levels of proinflammatory cytokines in neisserial infection and thereby may contribute to the pathology of meningococcal disease.
Collapse
Affiliation(s)
- A Kolb-Mäurer
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, 97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
Neutropenia makes normal mice more susceptible to infection with spv (+) but not spv (-) Salmonella dublin. This shows the important role of polymorphonuclear leukocytes in resistance to Salmonella that can grow in host macrophages. Polymorphonuclear leukocytes, part of the innate immune system, kill Salmonella in a complement-dependent manner, and work in concert with macrophages.
Collapse
Affiliation(s)
- J Fierer
- Infectious Diseases Section (111F), Department of Medicine, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| |
Collapse
|
93
|
Crepaldi L, Gasperini S, Lapinet JA, Calzetti F, Pinardi C, Liu Y, Zurawski S, de Waal Malefyt R, Moore KW, Cassatella MA. Up-regulation of IL-10R1 expression is required to render human neutrophils fully responsive to IL-10. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2312-22. [PMID: 11490020 DOI: 10.4049/jimmunol.167.4.2312] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that IL-10 fails to trigger Stat3 and Stat1 tyrosine phosphorylation in freshly isolated human neutrophils. In this study, we report that IL-10 can nonetheless induce Stat3 tyrosine phosphorylation and the binding of Stat1 and Stat3 to the IFN-gamma response region or the high-affinity synthetic derivative of the c-sis-inducible element in neutrophils that have been cultured for at least 3 h with LPS. Similarly, the ability of IL-10 to up-regulate suppressor of cytokine signaling (SOCS)-3 mRNA was dramatically enhanced in cultured neutrophils and, as a result, translated into the SOCS-3 protein. Since neutrophils' acquisition of responsiveness to IL-10 required de novo protein synthesis, we assessed whether expression of IL-10R1 or IL-10R2 was modulated in cultured neutrophils. We detected constitutive IL-10R1 mRNA and protein expression in circulating neutrophils, at levels which were much lower than those observed in autologous monocytes or lymphocytes. In contrast, IL-10R2 expression was comparable in both cell types. However, IL-10R1 (but not IL-10R2) mRNA and protein expression was substantially increased in neutrophils stimulated by LPS. The ability of IL-10 to activate Stat3 tyrosine phosphorylation and SOCS-3 synthesis and to regulate IL-1 receptor antagonist and macrophage-inflammatory protein 1beta release in LPS-treated neutrophils correlated with this increased IL-10R1 expression, and was abolished by neutralizing anti-IL-10R1 and anti-IL-10R2 Abs. Our results demonstrate that the capacity of neutrophils to respond to IL-10, as assessed by Stat3 tyrosine phosphorylation, SOCS-3 expression, and modulation of cytokine production, is very dependent on the level of expression of IL-10R1.
Collapse
Affiliation(s)
- L Crepaldi
- Department of Pathology, General Pathology Unit, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|