51
|
Wang Q, Li J, Zhang X, Liu Q, Liu C, Ma G, Cao L, Gong P, Cai Y, Zhang G. Protective immunity of recombinant Mycobacterium bovis BCG expressing rhomboid gene against Eimeria tenella challenge. Vet Parasitol 2009; 160:198-203. [DOI: 10.1016/j.vetpar.2008.11.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 10/22/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
|
52
|
Bueno SM, González PA, Cautivo KM, Mora JE, Leiva ED, Tobar HE, Fennelly GJ, Eugenin EA, Jacobs WR, Riedel CA, Kalergis AM. Protective T cell immunity against respiratory syncytial virus is efficiently induced by recombinant BCG. Proc Natl Acad Sci U S A 2008; 105:20822-7. [PMID: 19075247 PMCID: PMC2634951 DOI: 10.1073/pnas.0806244105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the leading causes of childhood hospitalization and a major health burden worldwide. Unfortunately, because of an inefficient immunological memory, RSV infection provides limited immune protection against reinfection. Furthermore, RSV can induce an inadequate Th2-type immune response that causes severe respiratory tract inflammation and obstruction. It is thought that effective RSV clearance requires the induction of balanced Th1-type immunity, involving the activation of IFN-gamma-secreting cytotoxic T cells. A recognized inducer of Th1 immunity is Mycobacterium bovis bacillus Calmette-Guérin (BCG), which has been used in newborns for decades in several countries as a tuberculosis vaccine. Here, we show that immunization with recombinant BCG strains expressing RSV antigens promotes protective Th1-type immunity against RSV in mice. Activation of RSV-specific T cells producing IFN-gamma and IL-2 was efficiently obtained after immunization with recombinant BCG. This type of T cell immunity was protective against RSV challenge and caused a significant reduction of inflammatory cell infiltration in the airways. Furthermore, mice immunized with recombinant BCG showed no weight loss and reduced lung viral loads. These data strongly support recombinant BCG as an efficient vaccine against RSV because of its capacity to promote protective Th1 immunity.
Collapse
Affiliation(s)
- Susan M. Bueno
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Pablo A. González
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Kelly M. Cautivo
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Jorge E. Mora
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Eduardo D. Leiva
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Hugo E. Tobar
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
| | - Glenn J. Fennelly
- The Lewis M. Fraad Department of Pediatrics, Jacobi Medical Center, Bronx, NY 10461
- Departments of Pediatrics and
| | | | - William R. Jacobs
- Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Laboratorio de Biologia Celular y Farmacologia, Universidad Andrés Bello, Santiago 8370146, Chile
| | - Alexis M. Kalergis
- Millennium Nucleus on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas and
- Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
53
|
Lü L, Cao HD, Zeng HQ, Wang PL, Wang LJ, Liu SN, Xiang TX. Recombinant Mycobacterium smegmatis mc(2)155 vaccine expressing outer membrane protein 26 kDa antigen affords therapeutic protection against Helicobacter pylori infection. Vaccine 2008; 27:972-8. [PMID: 19111590 DOI: 10.1016/j.vaccine.2008.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 12/04/2008] [Accepted: 12/05/2008] [Indexed: 11/30/2022]
Abstract
Orally administered recombinant Mycobacterium smegmatis (rM. smegmatis) vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, in the present study, we evaluated the capacity of the outer membrane protein 26kDa antigen (Omp26) of Helicobacter pylori (H. pylori) to induce therapeutic protection against H. pylori infection in mice. Omp26 was cloned and expressed in M. smegmatis mc(2)155 as a fusion with the Mycobacterium fortuitum beta-lactamase protein under the control of the up-regulated M. fortuitum beta-lactamase promoter, pBlaF. The rM. smegmatis strain was shown to be relatively stable in vitro in terms of plasmid stability and bacterial persistence. We found that oral immunization of H. pylori-infected mice with rM. smegmatis-Omp26 induced protection, i.e., significant reduction in bacterial colonization in the stomach. The protection was strongly related to serum specific antibodies with a Th(1) and Th(2) profile as well as to local cytokines in the stomach and spleen. These findings suggest that Omp26 is a promising vaccine candidate antigen for use in a therapeutic vaccine against H. pylori. The rM. smegmatis expressing Omp26 antigen could constitute an effective, low-cost combined vaccine against H. pylori.
Collapse
Affiliation(s)
- Lin Lü
- Department of Gastroenterology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | |
Collapse
|
54
|
Chade DC, Borra RC, Nascimento IP, Villanova FE, Leite LCC, Andrade E, Srougi M, Ramos KL, Andrade PM. Immunomodulatory effects of recombinant BCG expressing pertussis toxin on TNF-alpha and IL-10 in a bladder cancer model. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:78. [PMID: 19040745 PMCID: PMC2647907 DOI: 10.1186/1756-9966-27-78] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 11/28/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a rBCG-S1PT strain that induced a stronger cellular immune response than BCG. This preclinical study was designed to compare the modulatory effects of BCG and rBCG-S1PT on bladder TNF-alpha and IL-10 expression and to evaluate antitumour activity. METHODS For Experiment I, the MB49 bladder cancer cell line was used in C57BL/6 mice. Chemical cauterization of the bladder was performed to promote intravesical tumor implantation. Mice were treated by intravesical instillation with BCG, rBCG-S1PT or PBS once a week for four weeks. After 35 days the bladders were removed and weighed. TNF- and IL-10 cytokine responses were measured by qPCR. Experiment II was performed in the same manner as Experiment I, except the animals were not challenged with MB49 tumor cells. RESULTS rBCG-S1PT immunotherapy resulted in bladder weight reduction, compared to the BCG and control group. There were increases in TNF-alpha in the BCG-treated group, as well as increases in TNF-alpha and IL-10 mRNA in the rBCG-S1PT group. CONCLUSION These data indicate a significant reduction of bladder tumor volume for the rBCG group, compared to the BCG and PBS groups. This suggests that rBCG could be a useful substitute for wild-type BCG and that the potential modulation between TNF-alpha and IL-10 cytokine productions may have therapeutic value.
Collapse
Affiliation(s)
- Daher C Chade
- Division of Urology, Laboratory of Medical Investigation University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
da Silva Ramos Rocha A, Conceição FR, Grassmann AA, Lagranha VL, Dellagostin OA. B subunit ofEscherichia coliheat-labile enterotoxin as adjuvant of humoral immune response in recombinant BCG vaccination. Can J Microbiol 2008; 54:677-86. [DOI: 10.1139/w08-056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The B subunit of Escherichia coli heat-labile enterotoxin (LTB), a nontoxic molecule with potent biological properties, is a powerful mucosal and parenteral adjuvant that induces a strong immune response against co-administered or coupled antigens. In this paper, the effect of LTB on the humoral immune response to recombinant BCG (rBCG) vaccination was evaluated. Isogenic mice were immunized with rBCG expressing the R1 repeat region of the P97 adhesin of Mycoplasma hyopneumoniae alone (rBCG/R1) or fused to LTB (rBCG/LTBR1). Anti-R1 systemic antibody levels (IgG1, IgG2a, IgG2b, IgG3, IgM, and IgA) were measured by ELISA using recombinant R1 as antigen. With the exception of IgM, LTB doubled the anti-R1 antibody levels in rBCG vaccination. The IgG1/IgG2a mean ratio showed that both rBCG/LTBR1 and rBCG/R1 induced a mixed Th1/Th2 immune response. Interestingly, anti-R1 serum IgA was induced only by rBCG/LTBR1. These results demonstrate that LTB has an adjuvant effect on the humoral immune response to recombinant antigens expressed in BCG.
Collapse
Affiliation(s)
- Andréa da Silva Ramos Rocha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - André Alex Grassmann
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Valeska Lizzi Lagranha
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| | - Odir Antônio Dellagostin
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas, RS 96010-900, Brazil
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
- Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil
| |
Collapse
|
56
|
Fry SR, Chen AY, Daggard G, Mukkur TKS. Parenteral immunization of mice with a genetically inactivated pertussis toxin DNA vaccine induces cell-mediated immunity and protection. J Med Microbiol 2008; 57:28-35. [PMID: 18065664 DOI: 10.1099/jmm.0.47527-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The immunogenicity and protective efficacy of a DNA vaccine encoding a genetically inactivated S1 domain of pertussis toxin was evaluated using a murine respiratory challenge model of Bordetella pertussis infection. It was found that mice immunized via the intramuscular route elicited a purely cell-mediated immune response to the DNA vaccine, with high levels of gamma interferon (IFN-gamma) and interleukin (IL)-2 detected in the S1-stimulated splenocyte supernatants and no serum IgG. Despite the lack of an antibody response, the lungs of DNA-immunized mice were cleared of B. pertussis at a significantly faster rate compared with mock-immunized mice following an aerosol challenge. To gauge the true potential of this S1 DNA vaccine, the immune response and protective efficacy of the commercial diphtheria-tetanus-acellular pertussis (DTaP) vaccine were included as the gold standard. Immunization with DTaP elicited a typically strong T-helper (Th)2-polarized immune response with significantly higher titres of serum IgG than in the DNA vaccine group, but a relatively weak Th1 response with low levels of IFN-gamma and IL-2 detected in the supernatants of antigen-stimulated splenocytes. DTaP-immunized mice cleared the aerosol challenge more efficiently than DNA-immunized mice, with no detectable pathogen after day 7 post-challenge.
Collapse
Affiliation(s)
- Scott R Fry
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Austen Y Chen
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Grant Daggard
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Trilochan K S Mukkur
- Department of Biological and Physical Sciences, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| |
Collapse
|
57
|
Expression of Babesia bovis rhoptry-associated protein 1 (RAP1) in Brucella abortus S19. Microbes Infect 2008; 10:635-41. [PMID: 18462974 DOI: 10.1016/j.micinf.2008.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/21/2022]
Abstract
Brucella abortus strain 19 (live vaccine) induces a strong humoral and cellular immune response and therefore, it is an attractive vector for the delivery of heterologous antigens. The objective of the present study was to express the rhoptry-associated protein (RAP1) of Babesia bovis in B. abortus S19, as a model for heterologous expression of immunostimulatory antigens from veterinary pathogens. A plasmid for the expression of recombinant proteins fused to the aminoterminal of the outer membrane lipoprotein OMP19 was created, pursuing the objective of increasing the immunogenicity of the recombinant antigen being expressed by its association to a lipid moiety. Recombinant strains of B. abortus S19 expressing RAP1 as a fusion protein either with the first amino acids of beta-galactosidase (S19pBB-RAP1) or B. abortus OMP19 (S19pBB19-RAP1) were generated. Plasmid stability and the immunogenicity of the heterologous proteins were analyzed. Mice immunized with S19pBB-RAP1 or S19pBB19-RAP1 developed specific humoral immune response to RAP1, IgG2a being the predominant antibody isotype. Furthermore, a specific cellular immune response to recombinant RAP1 was elicited in vitro by lymphocytes from mice immunized with both strains. Therefore, we concluded that B. abortus S19 expressing RAP1 is immunostimulatory and may provide the basis for combined heterologous vaccines for babesiosis and brucellosis.
Collapse
|
58
|
Optimized immune response elicited by a DNA vaccine expressing pneumococcal surface protein a is characterized by a balanced immunoglobulin G1 (IgG1)/IgG2a ratio and proinflammatory cytokine production. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:499-505. [PMID: 18184825 DOI: 10.1128/cvi.00400-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously shown that DNA immunization with PspA (pneumococcal surface protein A) DNA is able to elicit protection comparable to that elicited by immunization with PspA protein (with alum as adjuvant), even though the antibody levels elicited by DNA immunization are lower than those elicited by immunization with the protein. This work aims at characterizing the ability of sera to bind to the pneumococcal surface and to mediate complement deposition, using BALB/c wild-type and interleukin-4 knockout mice. We observed that higher anti-PspA levels correlated with intense antibody binding to the pneumococcal surface, while elevated complement deposition was observed with sera that presented balanced immunoglobulin G1 (IgG1)/IgG2a ratios, such as those from DNA-immunized mice. Furthermore, we demonstrated that gamma interferon and tumor necrosis factor alpha were strongly induced after intraperitoneal pneumococcal challenge only in mice immunized with the DNA vaccine. We therefore postulate that although both DNA and recombinant protein immunizations are able to protect mice against intraperitoneal pneumococcal challenge, an optimized response would be achieved by using a DNA vaccine and other strategies capable of inducing balanced Th1/Th2 responses.
Collapse
|
59
|
Nascimento IP, Dias WO, Quintilio W, Christ AP, Moraes JF, Vancetto MDC, Ribeiro-Dos-Santos G, Raw I, Leite LCC. Neonatal immunization with a single dose of recombinant BCG expressing subunit S1 from pertussis toxin induces complete protection against Bordetella pertussis intracerebral challenge. Microbes Infect 2007; 10:198-202. [PMID: 18248757 DOI: 10.1016/j.micinf.2007.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 09/21/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
The currently used pertussis vaccines are highly efficacious; however, neonates are susceptible to whooping cough up to the sixth month. In agreement, DTP-immunized neonate mice were not protected against intracerebral challenge with Bordetella pertussis. Neonate mice immunized with either DTP or a recombinant-BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin do not show a humoral immune response against PT. On the other hand, rBCG-Pertussis induces higher PT-specific IFN-gamma production and an increase in both IFN-gamma(+) and TNF-alpha(+)-CD4(+)-T cells than the whole cell pertussis vaccine and confers protection against a lethal intracerebral challenge with B. pertussis.
Collapse
Affiliation(s)
- Ivan P Nascimento
- Centro de Biotecnologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Borsuk S, Mendum TA, Fagundes MQ, Michelon M, Cunha CW, McFadden J, Dellagostin OA. Auxotrophic complementation as a selectable marker for stable expression of foreign antigens in Mycobacterium bovis BCG. Tuberculosis (Edinb) 2007; 87:474-80. [PMID: 17888740 DOI: 10.1016/j.tube.2007.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 06/20/2007] [Accepted: 07/19/2007] [Indexed: 10/22/2022]
Abstract
Mycobacterium bovis BCG has the potential to be an effective live vector for multivalent vaccines. However, most mycobacterial cloning vectors rely on antibiotic resistance genes as selectable markers, which would be undesirable in any practical vaccine. Here we report the use of auxotrophic complementation as a selectable marker that would be suitable for use in a recombinant vaccine. A BCG auxotrophic for the amino acid leucine was constructed by knocking out the leuD gene by unmarked homologous recombination. Expression of leuD on a plasmid not only allowed complementation, but also acted as a selectable marker. Removal of the kanamycin resistance gene, which remained necessary for plasmid manipulations in Escherichia coli, was accomplished by two different methods: restriction enzyme digestion followed by re-ligation before BCG transformation, or by Cre-loxP in vitro recombination mediated by the bacteriophage P1 Cre Recombinase. Stability of the plasmid was evaluated during in vitro and in vivo growth of the recombinant BCG in comparison to selection by antibiotic resistance. The new system was highly stable even during in vivo growth, as the selective pressure is maintained, whereas the conventional vector was unstable in the absence of selective pressure. This new system will now allow the construction of potential recombinante vaccine strains using stable multicopy plasmid vectors without the inclusion of antibiotic resistance markers.
Collapse
Affiliation(s)
- Sibele Borsuk
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP-354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
61
|
Santangelo MP, McIntosh D, Bigi F, Armôa GRG, Campos ASD, Ruybal P, Dellagostin OA, McFadden J, Mendum T, Gicquel B, Winter N, Farber M, Cataldi A. Mycobacterium bovis BCG as a delivery system for the RAP-1 antigen from Babesia bovis. Vaccine 2007; 25:1104-13. [PMID: 17049681 DOI: 10.1016/j.vaccine.2006.09.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 09/15/2006] [Accepted: 09/15/2006] [Indexed: 11/20/2022]
Abstract
Babesia bovis is the causative agent of babesiosis, a tick-borne disease that is a major cause of loss to livestock production in Latin America. Vaccination against Babesia species represents a major challenge against cattle morbidity and mortality in enzootic areas. The aim of this study was to evaluate the capacity of Bacille Calmette-Guerin (BCG) to deliver the rhoptry associated protein (RAP-1) antigen of B. bovis and to stimulate specific cellular and humoral immune responses in mice. Two of five mycobacterial expression vectors efficiently expressed the antigen. These constructs were subsequently studied in vivo following three immunization protocols. The construct with the greatest in vivo stability proved to be the one that induced the strongest immune responses. Our data support the hypothesis that specific T lymphocyte priming by rBCG can be employed as a component of a combined vaccine strategy to induce long-lasting humoral and cellular immune responsiveness towards B. bovis and encourage further work on the application of rBCG to the development of Babesia vaccines.
Collapse
Affiliation(s)
- M P Santangelo
- Institute of Biotechnology, CICVyA-INTA, Los Reseros y Las Cabañas, 1712 Castelar, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Varaldo PB, Miyaji EN, Vilar MM, Campos AS, Dias WO, Armôa GRG, Tendler M, Leite LCC, McIntosh D. Mycobacterial codon optimization of the gene encoding the Sm14 antigen of Schistosoma mansoni in recombinant Mycobacterium bovis Bacille Calmette-Guérin enhances protein expression but not protection against cercarial challenge in mice. ACTA ACUST UNITED AC 2006; 48:132-9. [PMID: 16965361 DOI: 10.1111/j.1574-695x.2006.00133.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A mycobacterial codon-optimized gene encoding the Sm14 antigen of Schistosoma mansoni was generated using oligonucleotide assembly. This synthetic gene enhanced approximately fourfold the protein expression level in recombinant Mycobacterium bovis Bacille Calmette-Guérin (rBCG) when compared to that obtained using the native gene in the same expression vector. Immunization of mice with rBCG expressing Sm14 via the synthetic gene induced specific cellular Th1-predominant immune responses, as determined by interferon-gamma production of Sm14-stimulated splenocytes, which were comparable to those recorded in animals immunized with an rBCG strain expressing the native gene. Administration of a single dose of the rBCG-Sm14 construct carrying the synthetic gene conferred protection against cercarial challenge in outbred Swiss mice, at a level equivalent to those provided by either a single dose of rBCG expressing the native gene or three doses of Escherichia coli-derived recombinant Sm14. Our data demonstrated that despite improving the level of antigen expression, the codon optimization strategy did not result in enhanced immunity or protection against cercarial S. mansoni challenge.
Collapse
Affiliation(s)
- Paula B Varaldo
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Kamachi K, Arakawa Y. Development of safer pertussis DNA vaccine expressing non-toxic C180 polypeptide of pertussis toxin S1 subunit. Vaccine 2006; 25:1000-6. [PMID: 17050047 DOI: 10.1016/j.vaccine.2006.09.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 09/05/2006] [Accepted: 09/26/2006] [Indexed: 11/18/2022]
Abstract
A toxic N-terminal 180-amino-acid fragment (C180) of pertussis toxin S1 subunit has the most potent ability to induce protective immunity against pertussis toxin (PT) following DNA-based immunization [Kamachi K, Arakawa Y. Infect Immun 2004;72:4293-6]. For the development of a safer pertussis DNA vaccine, three plasmids encoding mutant C180 (C180-R9K, C180-E129G and C180-R9K/E129G) were constructed and tested for their protective immunogenicity and cytotoxicity. All of the gene gun delivery of the plasmid, performed by inserting the mutant C180 gene into a mammalian expression vector pcDNA3.1, successfully induced anti-PT IgG antibody production without the loss of immunogenicity in mice. The immunizations of mice with the plasmids significantly inhibited leukocytosis-promoting activity by PT. Among stably transfected Chinese hamster ovary (CHO) cells expressing mutant C180, the expression of C180-R9K and C180-R9K/E129G was non-toxic to the transfectants, confirming that these mutant C180s have no cytotoxicity to mammalian cells. These results indicate that C180-R9K and C180-R9K/E129G genes, especially C180-R9K/E129G, are candidates for safe and effective antigen DNAs in the development of pertussis DNA vaccine.
Collapse
Affiliation(s)
- Kazunari Kamachi
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama, Tokyo 208-0011, Japan.
| | | |
Collapse
|
64
|
Michelon A, Conceição FR, Binsfeld PC, da Cunha CW, Moreira AN, Argondizzo AP, McIntosh D, Armôa GRG, Campos AS, Farber M, McFadden J, Dellagostin OA. Immunogenicity of Mycobacterium bovis BCG expressing Anaplasma marginale MSP1a antigen. Vaccine 2006; 24:6332-9. [PMID: 16781025 DOI: 10.1016/j.vaccine.2006.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 05/11/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Humoral and cellular immune responses of mice inoculated with recombinant Mycobacterium bovis BCG expressing the MSP1a antigen of Anaplasma marginale were evaluated. The msp1a gene was amplified by PCR and cloned into the mycobacterial expression vectors pUS2000 and pMIP12. Immunization of isogenic BALB/c mice with the rBCG/pUS2000-msp1a construct induced significant seroconversion to MSP1a (p<0.001), which was 26 times above pre-immunization levels at day 63 post-initial immunization and which remained stable for the duration of the experiment (6 months). In contrast, rBCG/pMIP12-msp1a induced seroconversion at a level of 6 times above pre-immunization values, which peaked at day 63. Western blot analysis showed that sera derived from mice vaccinated with either rBCG construct recognized both native and recombinant forms of A. marginale MSP1a. In contrast to the humoral response data, immunization with rBCG/pMIP12-msp1a was found to induce a markedly stronger cellular response than that recorded for BCG/pUS2000-msp1a. These observations clearly demonstrated the immunogenicity of recombinant BCG expressing the MSP1a antigen and suggested that the immune responses were influenced by the level of antigen expression. The results of this research warrant studies of recombinant M. bovis BCG expressing MSP1a in cattle to test for protective antibody production for control of bovine anaplasmosis.
Collapse
Affiliation(s)
- André Michelon
- Centro de Biotecnologia, Universidade Federal de Pelotas, CP 354, 96010-900 Pelotas, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Medeiros MA, Armôa GRG, Dellagostin OA, McIntosh D. Induction of humoral immunity in response to immunization with recombinant Mycobacterium bovis BCG expressing the S1 subunit of Bordetella pertussis toxin. Can J Microbiol 2006; 51:1015-20. [PMID: 16462859 DOI: 10.1139/w05-095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two recombinant Mycobacterium bovis BCG (rBCG) vaccine strains were developed for the expression of cytoplasmically located S1 subunit of pertussis toxin, with expression driven by the hsp60 promoter of M. bovis (rBCG/pPB10) or the pAN promoter of Mycobacterium paratuberculosis (rBCG/pPB12). Both strains showed stable expression of equivalent levels of recombinant S1 in vitro and induced long-term (up to 8 months) humoral immune responses in BALB/c mice, although these responses differed quantitatively and qualitatively. Specifically, rBCG/pPB12 induced markedly higher levels of IgG1 than did rBCG/pPB10, and mice immunized with the former strain developed specific long-term memory to S1, as indicated by the production of high levels of S1-specific IgG in response to a sublethal challenge with pertussis toxin 15 months after initial immunization. When considered in combination with previous studies, our data encourage further evaluation of rBCG as a potential means of developing a low-cost whooping cough vaccine based on defined antigens.
Collapse
Affiliation(s)
- Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
66
|
Cayabyab MJ, Hovav AH, Hsu T, Krivulka GR, Lifton MA, Gorgone DA, Fennelly GJ, Haynes BF, Jacobs WR, Letvin NL. Generation of CD8+ T-cell responses by a recombinant nonpathogenic Mycobacterium smegmatis vaccine vector expressing human immunodeficiency virus type 1 Env. J Virol 2006; 80:1645-52. [PMID: 16439521 PMCID: PMC1367151 DOI: 10.1128/jvi.80.4.1645-1652.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Because the vaccine vectors currently being evaluated in human populations all have significant limitations in their immunogenicity, novel vaccine strategies are needed for the elicitation of cell-mediated immunity. The nonpathogenic, rapidly growing mycobacterium Mycobacterium smegmatis was engineered as a vector expressing full-length human immunodeficiency virus type 1 (HIV-1) HXBc2 envelope protein. Immunization of mice with recombinant M. smegmatis led to the expansion of major histocompatibility complex class I-restricted HIV-1 epitope-specific CD8(+) T cells that were cytolytic and secreted gamma interferon. Effector and memory T lymphocytes were elicited, and repeated immunization generated a stable central memory pool of virus-specific cells. Importantly, preexisting immunity to Mycobacterium bovis BCG had only a marginal effect on the immunogenicity of recombinant M. smegmatis. This mycobacterium may therefore be a useful vaccine vector.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Department of Medicine, Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave., Boston, MA 02130, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Dennehy M, Williamson AL. Factors influencing the immune response to foreign antigen expressed in recombinant BCG vaccines. Vaccine 2005; 23:1209-24. [PMID: 15652663 DOI: 10.1016/j.vaccine.2004.08.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Accepted: 08/26/2004] [Indexed: 11/30/2022]
Abstract
A wide range of recombinant BCG vaccine candidates containing foreign viral, bacterial, parasite or immunomodulatory genetic material have been developed and evaluated, primarily in animal models, for immune response to the foreign antigen. This review considers some of the factors that may influence the immunogenicity of these vaccines. The influence of levels and timing of expression of the foreign antigen and the use of targeting sequences are considered in the first section. Genetic and functional stability of rBCG is reviewed in the second section. In the last section, the influence of dose and route of immunization, strain of BCG and the animal model used are discussed.
Collapse
Affiliation(s)
- Maureen Dennehy
- The Biovac Institute, Private Bag X3, Pinelands, 7430 Cape Town, South Africa.
| | | |
Collapse
|
68
|
Kamachi K, Arakawa Y. Expression of a C terminally truncated form of pertussis toxin S1 subunit effectively induces protection against pertussis toxin following DNA-based immunization. Infect Immun 2004; 72:4293-6. [PMID: 15213178 PMCID: PMC427423 DOI: 10.1128/iai.72.7.4293-4296.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four plasmids encoding different C terminally and N terminally truncated pertussis toxin S1 subunits of Bordetella pertussis were constructed and tested for inducibility of protection against pertussis toxin in mice after DNA-based immunization. The region encoding an N-terminal 180-amino-acid fragment of the S1 subunit had the most potent ability to induce protective immunity.
Collapse
Affiliation(s)
- Kazunari Kamachi
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayma-shi, Tokyo 208-0011, Japan.
| | | |
Collapse
|
69
|
Varaldo PB, Leite LCC, Dias WO, Miyaji EN, Torres FIG, Gebara VC, Armôa GRG, Campos AS, Matos DCS, Winter N, Gicquel B, Vilar MM, McFadden J, Almeida MS, Tendler M, McIntosh D. Recombinant Mycobacterium bovis BCG expressing the Sm14 antigen of Schistosoma mansoni protects mice from cercarial challenge. Infect Immun 2004; 72:3336-43. [PMID: 15155638 PMCID: PMC415698 DOI: 10.1128/iai.72.6.3336-3343.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Sm14 antigen of Schistosoma mansoni was cloned and expressed in Mycobacterium bovis BCG as a fusion with the Mycobacterium fortuitum beta-lactamase protein under the control of its promoter, pBlaF*; the protein was localized in the bacterial cell wall. The rBCG-Sm14 strain was shown to be relatively stable in cultured murine and bovine monocytes in terms of infectivity, bacterial persistence, and plasmid stability. The immunization of mice with rBCG-Sm14 showed no induction of anti-Sm14 antibodies; however, splenocytes of immunized mice released increased levels of gamma interferon upon stimulation with recombinant Sm14 (rSm14), indicating an induction of a Th1-predominant cellular response against Sm14. Mice immunized with one or two doses of rBCG-Sm14 and challenged with live S. mansoni cercaria showed a 48% reduction in worm burden, which was comparable to that obtained by immunization with three doses of rSm14 purified from Escherichia coli. The data presented here further enhance the status of Sm14 as a promising candidate antigen for the control of schistosomiasis and indicate that a one-dose regimen of rBCG-Sm14 could be considered a convenient means to overcome many of the practical problems associated with the successful implementation of a multiple-dose vaccine schedule in developing countries.
Collapse
Affiliation(s)
- Paula B Varaldo
- Centro de Biotecnologia, Instituto Butantan, São Paulo SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mazzantini RP, Miyaji EN, Dias WO, Sakauchi D, Nascimento ALTO, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LCC. Adjuvant activity of Mycobacterium bovis BCG expressing CRM197 on the immune response induced by BCG expressing tetanus toxin fragment C. Vaccine 2004; 22:740-6. [PMID: 14741167 DOI: 10.1016/j.vaccine.2003.08.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In order to develop a combined recombinant Mycobacterium bovis BCG (rBCG) vaccine against diphtheria, pertussis and tetanus (DPT), we have constructed different strains of rBCG expressing tetanus toxin fragment C (FC), driven by the up-regulated M. fortuitum beta-lactamase promoter, pBlaF*. Tetanus toxin FC was expressed in comparable levels in native form or in fusion with the beta-lactamase exportation signal sequence; however, in both constructs it was localized to the cytosol. Immunization of mice with rBCG-FC or its combination with rBCG expressing CRM197, induced anti-tetanus toxin antibodies with a Th2 immunoglobulin profile. Administration of a subimmunizing dose of the diphtheria-tetanus toxoid vaccine showed that rBCG-FC primed mice for production of an intense humoral response. Interestingly, the combination of rBCG-FC and rBCG-CRM197 reduced the time required for maturation of the immune response and increased anti-tetanus toxin antibody levels, suggesting adjuvant properties for rBCG-CRM197; this combination induced 75% protection in mice challenged with 100 minimum lethal doses (MLD) of tetanus toxin. Antisera from guinea pigs immunized with this combination were shown to neutralize tetanus toxin and diphtheria toxin. Our results suggest reciprocal adjuvant effects of rBCG-FC and rBCG-CRM197, which may contribute to induction of a more effective immune response against both diseases.
Collapse
Affiliation(s)
- Rogerio P Mazzantini
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kamachi K, Konda T, Arakawa Y. DNA vaccine encoding pertussis toxin S1 subunit induces protection against Bordetella pertussis in mice. Vaccine 2003; 21:4609-15. [PMID: 14575775 DOI: 10.1016/s0264-410x(03)00441-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pertussis toxin (PT) is the major virulence factor of Bordetella pertussis, and detoxified PT is a crucial antigen of acellular pertussis vaccine. Here, plasmid DNA expressing the pertussis toxin S1 subunit (pcDNA/S1) of B. pertussis was evaluated for immunogenicity and for the ability to induce protection against PT challenge or B. pertussis infection in mice. The gene gun delivery of pcDNA/S1, performed by inserting the S1 gene into a mammalian expression vector, successfully induced anti-PT IgG antibody production. Immunization of mice with pcDNA/S1 significantly inhibited leukocytosis-promoting activity caused by PT or B. pertussis. In addition, pcDNA/S1 induced significant protection against intracerebral challenge with a lethal dose of B. pertussis. The results of the present study demonstrated that a DNA vaccine encoding the PT-S1 subunit induced protection against B. pertussis infection in mice. Thus, this vaccine preparation is potentially applicable for the production of novel vaccines against B. pertussis infection.
Collapse
Affiliation(s)
- Kazunari Kamachi
- Department of Bacterial Pathogenesis and Infection Control, National Institute of Infectious Diseases, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | | | | |
Collapse
|
72
|
Dietrich G, Viret JF, Hess J. Novel vaccination strategies based on recombinant Mycobacterium bovis BCG. Int J Med Microbiol 2003; 292:441-51. [PMID: 12635927 DOI: 10.1078/1438-4221-00227] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this manuscript, we will review the utilization of Mycobacterium bovis Bacille Calmette-Guerin (BCG) as a vaccine against tuberculosis (TB) and as a carrier system for heterologous antigens. BCG is one of the most widely used vaccines. Novel techniques in genome manipulation allow the construction of virulence-attenuated recombinant (r)-BCG strains that can be employed as homologous vaccines, or as heterologous antigen delivery systems, for priming pathogen-specific immunity against infectious diseases, including TB. Several approaches are available for heterologous antigen expression and compartmentalization in BCG and recent findings show the potential to modulate and direct the immune responses induced by r-BCG strains as desired. Recent achievements in complete genome analysis of various target pathogens, combined with a better understanding of protective pathogen-specific immune responses, form the basis for the rational design of a new generation of recombinant mycobacterial vaccines against a multitude of infectious diseases.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- BCG Vaccine/genetics
- BCG Vaccine/immunology
- Cattle
- Communicable Disease Control
- Genetic Vectors
- Humans
- Mycobacterium bovis/genetics
- Recombination, Genetic
- Tuberculosis/prevention & control
- Tuberculosis Vaccines/immunology
- Vaccination/methods
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Guido Dietrich
- Bacterial Vaccine Research, Berna Biotech Ltd., Berne, Switzerland.
| | | | | |
Collapse
|
73
|
Bastos RG, Dellagostin OA, Barletta RG, Doster AR, Nelson E, Osorio FA. Construction and immunogenicity of recombinant Mycobacterium bovis BCG expressing GP5 and M protein of porcine reproductive respiratory syndrome virus. Vaccine 2002; 21:21-9. [PMID: 12443659 DOI: 10.1016/s0264-410x(02)00443-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium bovis BCG was used to express a truncated form of GP5 (lacking the first 30 NH(2)-terminal residues) and M protein of porcine reproductive and respiratory syndrome virus (PRRSV). The PRRSV proteins were expressed in BCG under control of the mycobacterial hsp60 gene promoter either in the mycobacterial cytoplasm (BCGGP5cyt and BCGMcyt) or as MT19-fusion proteins on the mycobacterial surface (BCGGP5surf and BCGMsurf). Mice inoculated with BCGGP5surf and BCGMsurf developed antibodies against the viral proteins at 30 days post-inoculation (dpi) as detected by ELISA and Western blot. By 60 dpi, the animals developed titer of neutralizing antibodies of 8. A PRRSV-specific gamma interferon response was also detected in splenocytes of recombinant BCG-inoculated mice at 60 and 90 dpi. These results indicate that BCG was able to express antigens of PRRSV and elicit an immune response against the viral proteins in mice.
Collapse
Affiliation(s)
- Reginaldo G Bastos
- Department of Veterinary and Biomedical Sciences, University of Nebraska at Lincoln, Lincoln, NE 68583-0905, USA
| | | | | | | | | | | |
Collapse
|
74
|
Lee SF, Halperin SA, Knight JB, Tait A. Purification and immunogenicity of a recombinant Bordetella pertussis S1S3FHA fusion protein expressed by Streptococcus gordonii. Appl Environ Microbiol 2002; 68:4253-8. [PMID: 12200273 PMCID: PMC124097 DOI: 10.1128/aem.68.9.4253-4258.2002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.
Collapse
Affiliation(s)
- Song F Lee
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | | | | | |
Collapse
|
75
|
Medeiros MA, Dellagostin OA, Armôa GRG, Degrave WM, de Mendonça-Lima L, Lopes MQ, Costa JF, Mcfadden J, McIntosh D. Comparative evaluation of Mycobacterium vaccae as a surrogate cloning host for use in the study of mycobacterial genetics. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1999-2009. [PMID: 12101288 DOI: 10.1099/00221287-148-7-1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium vaccae represents an alternative mycobacterial cloning host that has been largely overlooked to date. The main reason for this may be the reported non-transformability of this species, specifically the so-called Stanford strain (NCTC 11659), with expression vectors that use kanamycin resistance as a selection method. However, this strain can be transformed using hygromycin resistance as an alternative selectable phenotype. The present study has shown that in contrast to previous reports, M. vaccae (ATCC 15483) is capable of being transformed with a range of vectors encoding kanamycin resistance as the selectable marker. Thereafter, the expression of the lacZ reporter gene in M. vaccae, Mycobacterium bovis BCG and Mycobacterium smegmatis mc(2)155 was evaluated using a range of characterized mycobacterial promoter sequences (hsp60, hsp70, PAN, 18kDa and 16S rRNA) cloned in the same promoter probe vector. In general, the promoters showed similar levels of activity in the three species, demonstrating that existing expression systems can readily be employed with M. vaccae (ATCC 15483). This was further confirmed by the observation that M. vaccae was capable of stable, in vitro expression of recombinant S1 subunit of pertussis toxin at levels equivalent to those obtained with BCG and M. smegmatis. Analysis of structural and functional stability of a range of vectors demonstrated that the incidence of instability noted for M. vaccae was lower than that recorded for M. smegmatis. Taken together, the results indicate that M. vaccae is an additional cloning host which may prove useful for specific aspects of mycobacterial biology and provide increased flexibility to the field of recombinant protein technology for mycobacteria.
Collapse
Affiliation(s)
- Marco A Medeiros
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| | | | - Geraldo R G Armôa
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| | - Wim M Degrave
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Leila de Mendonça-Lima
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Márcia Q Lopes
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Joseane F Costa
- Department of Biochemistry and Molecular Biology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil3
| | - Johnjoe Mcfadden
- School of Biological Sciences, University of Surrey, Guildford, Surrey, UK4
| | - Douglas McIntosh
- Laboratory of Recombinant Technology, Bio-Manguinhos, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil1
| |
Collapse
|
76
|
Pertussis: An Old Disease That is Still With Us *. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2002. [DOI: 10.1097/00019048-200206000-00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
77
|
Méderlé I, Bourguin I, Ensergueix D, Badell E, Moniz-Peireira J, Gicquel B, Winter N. Plasmidic versus insertional cloning of heterologous genes in Mycobacterium bovis BCG: impact on in vivo antigen persistence and immune responses. Infect Immun 2002; 70:303-14. [PMID: 11748196 PMCID: PMC127622 DOI: 10.1128/iai.70.1.303-314.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bivalent recombinant strains of Mycobacterium bovis BCG (rBCG) expressing the early regulatory nef and the structural gag(p26) genes from the simian immunodeficiency virus (SIV) SIVmac251 were engineered so that both genes were cotranscribed from a synthetic operon. The expression cassette was cloned into a multicopy-replicating vector, and the expression levels of both nef and gag in the bivalent rBCG(nef-gag) strain were found to be comparable to those of monovalent rBCG(nef) or rBCG(gag) strains. However, extrachromosomal cloning of the nef-gag operon into a replicative plasmid resulted in strains of low genetic stability that rapidly lost the plasmid in vivo. Thus, the nef-gag operon was inserted site specifically into the BCG chromosome by means of mycobacteriophage Ms6-derived vectors. The resulting integrative rBCG(nef-gag) strains showed very high genetic stability both in vitro and in vivo. The in vivo expression of the heterologous genes was much longer lived when the expression cassette was inserted into the BCG chromosome. In one of the strains obtained, integrative cloning did not reduce the expression levels of the genes even though a single copy was present. Accordingly, this strain induced cellular immune responses of the same magnitude as that of the replicative rBCG strain containing several copies of the genes.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Bacteriophages
- Cells, Cultured
- Chromosomes, Bacterial
- Cloning, Molecular/methods
- DNA, Viral
- Female
- Gene Expression
- Gene Products, gag/genetics
- Gene Products, gag/immunology
- Gene Products, nef/genetics
- Gene Products, nef/immunology
- Genetic Vectors/genetics
- Macrophages/cytology
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mutagenesis, Insertional/methods
- Mutagenesis, Site-Directed
- Mycobacterium bovis/genetics
- Mycobacterium bovis/virology
- Operon
- Plasmids
- Simian Immunodeficiency Virus/genetics
- Simian Immunodeficiency Virus/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- I Méderlé
- Unité de Génétique Mycobactérienne, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | | | | | |
Collapse
|
78
|
Affiliation(s)
- N Ohara
- Nagasaki University School of Dentistry, Sakamoto 1-7-1, 852-8588, Nagasaki, Japan.
| | | |
Collapse
|
79
|
Abstract
Our knowledge of pathogenesis, clinical presentation and prevention of pertussis has improved substantially over recent years. We now better understand the function of long-known virulence factors for Bordetella pertussis, and genome sequencing has identified a multitude of new proteins; their functions are yet to be elucidated. Furthermore, improved diagnostic tools have revealed the broad spectrum of disease, and new insights into the host's immune response have been gained. Finally, the development, evaluation, licensing and implementation of several new acellular pertussis vaccines with high acceptance have changed the epidemiology of pertussis in many countries (i.e. a shift towards an increasing burden of disease in adolescent persons and adults). These developments are likely to have great impact on the daily practice not only of paediatricians, but also of general practitioners, internists, gynaecologists and many other specialists in adolescent and adult medicine. The present review provides an update on recent progress.
Collapse
Affiliation(s)
- U Heininger
- University Children's Hospital, Basel, Switzerland.
| |
Collapse
|
80
|
Smith AM, Guzmán CA, Walker MJ. The virulence factors ofBordetella pertussis: a matter of control. FEMS Microbiol Rev 2001; 25:309-33. [PMID: 11348687 DOI: 10.1111/j.1574-6976.2001.tb00580.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a contagious childhood respiratory disease. Increasing public concern over the safety of whole-cell vaccines led to decreased immunisation rates and a subsequent increase in the incidence of the disease. Research into the development of safer, more efficacious, less reactogenic vaccine preparations was concentrated on the production and purification of detoxified B. pertussis virulence factors. These virulence factors include adhesins such as filamentous haemagglutinin, fimbriae and pertactin, which allow B. pertussis to bind to ciliated epithelial cells in the upper respiratory tract. Once attachment is initiated, toxins produced by the bacterium enable colonisation to proceed by interfering with host clearance mechanisms. B. pertussis co-ordinately regulates the expression of virulence factors via the Bordetella virulence gene (bvg) locus, which encodes a response regulator responsible for signal-mediated activation and repression. This strict regulation mechanism allows the bacterium to express different gene subsets in different environmental niches within the host, according to the stage of disease progression.
Collapse
Affiliation(s)
- A M Smith
- Department of Biological Sciences, University of Wollongong, Wollongong. N.S.W. 2522, Australia
| | | | | |
Collapse
|
81
|
Miyaji EN, Mazzantini RP, Dias WO, Nascimento AL, Marcovistz R, Matos DS, Raw I, Winter N, Gicquel B, Rappuoli R, Leite LC. Induction of neutralizing antibodies against diphtheria toxin by priming with recombinant Mycobacterium bovis BCG expressing CRM(197), a mutant diphtheria toxin. Infect Immun 2001; 69:869-74. [PMID: 11159980 PMCID: PMC97964 DOI: 10.1128/iai.69.2.869-874.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BCG, the attenuated strain of Mycobacterium bovis, has been widely used as a vaccine against tuberculosis and is thus an important candidate as a live carrier for multiple antigens. With the aim of developing a recombinant BCG (rBCG) vaccine against diphtheria, pertussis, and tetanus (DPT), we analyzed the potential of CRM(197), a mutated nontoxic derivative of diphtheria toxin, as the recombinant antigen for a BCG-based vaccine against diphtheria. Expression of CRM(197) in rBCG was achieved using Escherichia coli-mycobacterium shuttle vectors under the control of pBlaF*, an upregulated beta-lactamase promoter from Mycobacterium fortuitum. Immunization of mice with rBCG-CRM(197) elicited an anti-diphtheria toxoid antibody response, but the sera of immunized mice were not able to neutralize diphtheria toxin (DTx) activity. On the other hand, a subimmunizing dose of the conventional diphtheria-tetanus vaccine, administered in order to mimic an infection, showed that rBCG-CRM(197) was able to prime the induction of a humoral response within shorter periods. Interestingly, the antibodies produced showed neutralizing activity only when the vaccines had been given as a mixture in combination with rBCG expressing tetanus toxin fragment C (FC), suggesting an adjuvant effect of rBCG-FC on the immune response induced by rBCG-CRM(197). Isotype analysis of the anti-diphtheria toxoid antibodies induced by the combined vaccines, but not rBCG-CRM(197) alone, showed an immunoglobulin G1-dominant profile, as did the conventional vaccine. Our results show that rBCG expressing CRM(197) can elicit a neutralizing humoral response and encourage further studies on the development of a DPT vaccine with rBCG.
Collapse
Affiliation(s)
- E N Miyaji
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|