51
|
Comparative characteristics of the VP7 and VP4 antigenic epitopes of the rotaviruses circulating in Russia (Nizhny Novgorod) and the Rotarix and RotaTeq vaccines. Arch Virol 2015; 160:1693-703. [DOI: 10.1007/s00705-015-2439-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/24/2015] [Indexed: 11/26/2022]
|
52
|
|
53
|
|
54
|
Abstract
Whereas active immunity refers to the process of exposing the individual to an antigen to generate an adaptive immune response, passive immunity refers to the transfer of antibodies from one individual to another. Passive immunity provides immediate but short-lived protection, lasting several weeks up to 3 or 4 months. Passive immunity can occur naturally, when maternal antibodies are transferred to the fetus through the placenta or from breast milk to the gut of the infant. It can also be produced artificially, when antibody preparations derived from sera or secretions of immunized donors or, more recently, different antibody producing platforms are transferred via systemic or mucosal route to nonimmune individuals. Passive immunization has recently become an attractive approach because of the emergence of new and drug-resistant microorganisms, diseases that are unresponsive to drug therapy and individuals with an impaired immune system who are unable to respond to conventional vaccines. This chapter addresses the contributions of natural and artificial acquired passive immunity in understanding the concept of passive immunization. We will mainly focus on administration of antibodies for protection against various infectious agents entering through mucosal surfaces.
Collapse
|
55
|
Desselberger U. Rotaviruses. Virus Res 2014; 190:75-96. [PMID: 25016036 DOI: 10.1016/j.virusres.2014.06.016] [Citation(s) in RCA: 284] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/26/2014] [Accepted: 06/26/2014] [Indexed: 01/12/2023]
|
56
|
Sanchez MV, Ebensen T, Schulze K, Cargnelutti D, Blazejewska P, Scodeller EA, Guzmán CA. Intranasal delivery of influenza rNP adjuvanted with c-di-AMP induces strong humoral and cellular immune responses and provides protection against virus challenge. PLoS One 2014; 9:e104824. [PMID: 25140692 PMCID: PMC4139298 DOI: 10.1371/journal.pone.0104824] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/17/2014] [Indexed: 12/17/2022] Open
Abstract
There is a critical need for new influenza vaccines able to protect against constantly emerging divergent virus strains. This will be sustained by the induction of vigorous cellular responses and humoral immunity capable of acting at the portal of entry of this pathogen. In this study we evaluate the protective efficacy of intranasal vaccination with recombinant influenza nucleoprotein (rNP) co-administrated with bis-(3′,5′)-cyclic dimeric adenosine monophosphate (c-di-AMP) as adjuvant. Immunization of BALB/c mice with two doses of the formulation stimulates high titers of NP-specific IgG in serum and secretory IgA at mucosal sites. This formulation also promotes a strong Th1 response characterized by high secretion of INF-γ and IL-2. The immune response elicited promotes efficient protection against virus challenge. These results suggest that c-di-AMP is a potent mucosal adjuvant which may significantly contribute towards the development of innovative mucosal vaccines against influenza.
Collapse
Affiliation(s)
- Maria Victoria Sanchez
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- * E-mail:
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Diego Cargnelutti
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Paulina Blazejewska
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Hannover, Germany
| | - Eduardo A. Scodeller
- Laboratory of Virology, Institute of Experimental Medicine and Biology of Cuyo (IMBECU-CCT, CONICET), Mendoza, Argentina
| | - Carlos A. Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
57
|
Abstract
ABSTRACT
Antibodies can impact pathogens in the presence or in the absence of effector cells or effector molecules such as complement, and experiments can often sort out with precision the mechanisms by which an antibody inhibits a pathogen
in vitro
. In addition,
in vivo
models, particularly those engineered to knock in or knock out effector cells or effector molecules, are excellent tools for understanding antibody functions. However, it is highly likely that multiple antibody functions occur simultaneously or sequentially in the presence of an infecting organism
in vivo
. The most critical incentive for measuring antibody functions is to provide a basis for vaccine development and for the development of therapeutic antibodies. In this respect, some functions, such as virus neutralization, serve to inhibit the acquisition of a pathogen or limit its pathogenesis. However, antibodies can also enhance replication or contribute to pathogenesis. This review emphasizes those antibody functions that are potentially beneficial to the host. In addition, this review will focus on the effects of antibodies on organisms themselves, rather than on the toxins the organisms may produce.
Collapse
|
58
|
Forthal DN. Functions of Antibodies. Microbiol Spectr 2014; 2:1-17. [PMID: 25215264 PMCID: PMC4159104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- Donald N. Forthal
- Chief, Infectious Diseases, University of California, Irvine, 3044 Hewitt Hall, Irvine, CA 92617, 949-824-3366
| |
Collapse
|
59
|
Sapparapu G, Sims AL, Aiyegbo MS, Shaikh FY, Harth EM, Crowe JE. Intracellular neutralization of a virus using a cell-penetrating molecular transporter. Nanomedicine (Lond) 2014; 9:1613-24. [DOI: 10.2217/nnm.13.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aims: Antibodies are the principal mediator of immunity against reinfection with viruses. Antibodies typically neutralize viruses by binding to virion particles in solution prior to attachment to susceptible cells. Once viruses enter cells, conventional antibodies cannot inhibit virus infection or replication. It is desirable to develop an efficient and nontoxic method for the introduction of virus-inhibiting antibodies into cells. Materials & methods: In this article, we report a new method for the delivery of small recombinant antibody fragments into virus-infected cells using a dendrimer-based molecular transporter. Results & conclusion: The construct penetrated virus-infected cells efficiently and inhibited virus replication. This method provides a novel approach for the immediate delivery of inhibitory antibodies directed to virus proteins that are exposed only in the intracellular environment. This approach circumvents the current and rather complicated expression of inhibitory antibodies in cells following gene transfer. Original submitted 9 March 2013; Revised submitted 8 July 2013
Collapse
Affiliation(s)
| | - Artez L Sims
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, USA
| | - Mohammed S Aiyegbo
- The Vanderbilt Vaccine Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Fyza Y Shaikh
- The Vanderbilt Vaccine Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
| | - Eva M Harth
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Institute of Chemical Biology, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science & Engineering, Nashville, TN 37232, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center, Nashville, TN 37232, USA
- Department of Pathology, Microbiology & Immunology, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Vanderbilt Institute of Nanoscale Science & Engineering, Nashville, TN 37232, USA
| |
Collapse
|
60
|
Rodríguez M, Wood C, Sanchez-López R, Castro-Acosta RM, Ramírez OT, Palomares LA. Understanding internalization of rotavirus VP6 nanotubes by cells: towards a recombinant vaccine. Arch Virol 2014; 159:1005-15. [PMID: 24232915 DOI: 10.1007/s00705-013-1916-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
Rotavirus VP6 nanotubes are an attractive option for a recombinant vaccine against rotavirus disease. Protection against rotavirus infection and an adjuvant effect have been observed upon immunization with VP6 nanotubes. However, little information exists on how VP6 nanotubes interact with cells and trigger an immune response. In this work, the interaction between VP6 nanotubes and different cell lines was characterized. VP6 nanotubes were not cytotoxic to any of the animal or human cell lines tested. Uptake of nanotubes into cells was cell-line-dependent, as only THP1 and J774 macrophage cells internalized them. Moreover, the size and spatial arrangement of VP6 assembled into nanotubes allowed their uptake by macrophages, as double-layered rotavirus-like particles also displaying VP6 in their surface were not taken up. The internalization of VP6 nanotubes was inhibited by methyl-β-cyclodextrin, but not by genistein, indicating that nanotube entry is specific, depends on the presence of cholesterol in the plasma membrane, and does not require the activity of tyrosine kinases. The information generated here expands our understanding of the interaction of protein nanotubes with cells, which is useful for the application of VP6 nanotubes as a vaccine.
Collapse
|
61
|
The assembly conformation of rotavirus VP6 determines its protective efficacy against rotavirus challenge in mice. Vaccine 2014; 32:2874-7. [DOI: 10.1016/j.vaccine.2014.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
62
|
Li T, Lin H, Zhang Y, Li M, Wang D, Che Y, Zhu Y, Li S, Zhang J, Ge S, Zhao Q, Xia N. Improved characteristics and protective efficacy in an animal model of E. coli-derived recombinant double-layered rotavirus virus-like particles. Vaccine 2014; 32:1921-31. [PMID: 24530406 DOI: 10.1016/j.vaccine.2014.01.093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 12/11/2022]
Abstract
Live rotavirus vaccines that are effective in middle- and high-income countries have been found to be less immunogenic and effective in infants in resource-limited settings. The virus-like particle (VLP) approach is promising for rotavirus vaccine development, but challenges remain for VLP production at large scale. In this study, rotavirus capsid VP2 and VP6 proteins were expressed in Escherichia coli and were assembled with high efficiency into homogeneous single-layered VP6-VLPs or double-layered VP2/6-VLPs (dl2/6-VLPs) through a post-purification assembly process. The dl2/6-VLPs were observed to have better thermal stability and antigenicity. Although the immunogenicity of VP6 trimers, VP6-VLPs and dl2/6-VLPs was comparable, the efficacy of the dl2/6-VLPs to protect against rotavirus-induced diarrhea in pups was significantly higher than that of the trimeric VP6 or the VP6-VLPs when assessed using a mouse maternal antibody model. Taken together, the recombinant dl2/6-VLP antigen, which is highly analogous to rotavirus virion-derived double-layered particles, is a viable candidate for vaccine development and has the potential to be a parenterally administered safe and efficacious rotavirus vaccine.
Collapse
Affiliation(s)
- Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Haijun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yue Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Min Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Daning Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yaojian Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Yinbin Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Shaowei Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China.
| | - Qinjian Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University, Xiamen 361005, Fujian, PR China; School of Public Health, Xiamen University, Xiamen 361005, Fujian, PR China
| |
Collapse
|
63
|
Mutations in toll-like receptor 3 are associated with elevated levels of rotavirus-specific IgG antibodies in IgA-deficient but not IgA-sufficient individuals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:298-301. [PMID: 24371259 DOI: 10.1128/cvi.00666-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Double-stranded RNA (dsRNA) triggers immune-mediated responses through toll-like receptor 3 (TLR3), which is involved in innate antiviral defense. Low expression of TLR3 was recently suggested to contribute to susceptibility to rotavirus infection. Thus, we investigated the role of two TLR3 polymorphisms (rs3775291 and rs5743305), both of which resulted in reduced protein function or expression, in healthy blood donors and IgA-deficient (IgAD) individuals. These polymorphisms were associated with elevated rotavirus-specific IgG titers in IgAD individuals but not in healthy individuals. Thus, we propose that TLR3 signaling does not contribute to the rotavirus-specific antibody response in IgA-sufficient individuals, whereas it is associated with elevated antibody titers in IgAD individuals.
Collapse
|
64
|
Blutt SE, Conner ME. The gastrointestinal frontier: IgA and viruses. Front Immunol 2013; 4:402. [PMID: 24348474 PMCID: PMC3842584 DOI: 10.3389/fimmu.2013.00402] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/08/2013] [Indexed: 11/16/2022] Open
Abstract
Viral gastroenteritis is one of the leading causes of diseases that kill ~2.2 million people worldwide each year. IgA is one of the major immune effector products present in the gastrointestinal tract yet its importance in protection against gastrointestinal viral infections has been difficult to prove. In part this has been due to a lack of small and large animal models in which pathogenesis of and immunity to gastrointestinal viral infections is similar to that in humans. Much of what we have learned about the role of IgA in the intestinal immune response has been obtained from experimental animal models of rotavirus infection. Rotavirus-specific intestinal IgA appears to be one of the principle effectors of long term protection against rotavirus infection. Thus, there has been a focus on understanding the immunological pathways through which this virus-specific IgA is induced during infection. In addition, the experimental animal models of rotavirus infection provide excellent systems in which new areas of research on viral-specific intestinal IgA including the long term maintenance of viral-specific IgA.
Collapse
Affiliation(s)
- Sarah E Blutt
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|
65
|
Protection from Clostridium difficile infection in CD4 T Cell- and polymeric immunoglobulin receptor-deficient mice. Infect Immun 2013; 82:522-31. [PMID: 24478068 DOI: 10.1128/iai.01273-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile rivals methicillin-resistant Staphylococcus aureus as the primary hospital-acquired infection. C. difficile infection (CDI) caused by toxins A and/or B can manifest as mild diarrhea to life-threatening pseudomembranous colitis. Although most patients recover fully from CDI, ~20% undergo recurrent disease. Several studies have demonstrated a correlation between anti-toxin antibody (Ab) and decreased recurrence; however, the contributions of the systemic and mucosal Ab responses remain unclear. Our goal was to use the CDI mouse model to characterize the protective immune response to C. difficile. C57BL/6 mice infected with epidemic C. difficile strain BI17 developed protective immunity against CDI and did not develop CDI upon rechallenge; they generated systemic IgG and IgA as well as mucosal IgA Ab to toxin. To determine if protective immunity to C. difficile could be generated in immunodeficient individuals, we infected CD4(-/-) mice and found that they generated both mucosal and serum IgA anti-toxin Abs and were protected from CDI upon rechallenge, with protection dependent on major histocompatibility complex class II (MHCII) expression; no IgG anti-toxin Ab was found. We found that protection was likely due to neutralizing mucosal IgA Ab. In contrast, pIgR(-/-) mice, which lack the receptor to transcytose polymeric Ab across the epithelium, were also protected from CDI, suggesting that although mucosal anti-toxin Ab may contribute to protection, it is not required. We conclude that protection from CDI can occur by several mechanisms and that the mechanism of protection is determined by the state of immunocompetence of the host.
Collapse
|
66
|
Muramatsu M, Yoshida R, Miyamoto H, Tomabechi D, Kajihara M, Maruyama J, Kimura T, Manzoor R, Ito K, Takada A. Heterosubtypic antiviral activity of hemagglutinin-specific antibodies induced by intranasal immunization with inactivated influenza viruses in mice. PLoS One 2013; 8:e71534. [PMID: 23977065 PMCID: PMC3745432 DOI: 10.1371/journal.pone.0071534] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/28/2013] [Indexed: 01/27/2023] Open
Abstract
Influenza A virus subtypes are classified on the basis of the antigenicity of their envelope glycoproteins, hemagglutinin (HA; H1–H17) and neuraminidase. Since HA-specific neutralizing antibodies are predominantly specific for a single HA subtype, the contribution of antibodies to the heterosubtypic immunity is not fully understood. In this study, mice were immunized intranasally or subcutaneously with viruses having the H1, H3, H5, H7, H9, or H13 HA subtype, and cross-reactivities of induced IgG and IgA antibodies to recombinant HAs of the H1–H16 subtypes were analyzed. We found that both subcutaneous and intranasal immunizations induced antibody responses to multiple HAs of different subtypes, whereas IgA was not detected remarkably in mice immunized subcutaneously. Using serum, nasal wash, and trachea-lung wash samples of H9 virus-immunized mice, neutralizing activities of cross-reactive antibodies were then evaluated by plaque-reduction assays. As expected, no heterosubtypic neutralizing activity was detected by a standard neutralization test in which viruses were mixed with antibodies prior to inoculation into cultured cells. Interestingly, however, a remarkable reduction of plaque formation and extracellular release of the H12 virus, which was bound by the H9-induced cross-reactive antibodies, was observed when infected cells were subsequently cultured with the samples containing HA-specific cross-reactive IgA. This heterosubtypic plaque reduction was interfered when the samples were pretreated with anti-mouse IgA polyclonal serum. These results suggest that the majority of HA-specific cross-reactive IgG and IgA antibodies produced by immunization do not block cellular entry of viruses, but cross-reactive IgA may have the potential to inhibit viral egress from infected cells and thus to play a role in heterosubtypic immunity against influenza A viruses.
Collapse
Affiliation(s)
- Mieko Muramatsu
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Reiko Yoshida
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Hiroko Miyamoto
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Daisuke Tomabechi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junki Maruyama
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takashi Kimura
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Rashid Manzoor
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ayato Takada
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
67
|
Tokuhara D, Álvarez B, Mejima M, Hiroiwa T, Takahashi Y, Kurokawa S, Kuroda M, Oyama M, Kozuka-Hata H, Nochi T, Sagara H, Aladin F, Marcotte H, Frenken LGJ, Iturriza-Gómara M, Kiyono H, Hammarström L, Yuki Y. Rice-based oral antibody fragment prophylaxis and therapy against rotavirus infection. J Clin Invest 2013; 123:3829-38. [PMID: 23925294 DOI: 10.1172/jci70266] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/13/2013] [Indexed: 12/30/2022] Open
Abstract
Rotavirus-induced diarrhea is a life-threatening disease in immunocompromised individuals and in children in developing countries. We have developed a system for prophylaxis and therapy against rotavirus disease using transgenic rice expressing the neutralizing variable domain of a rotavirus-specific llama heavy-chain antibody fragment (MucoRice-ARP1). MucoRice-ARP1 was produced at high levels in rice seeds using an overexpression system and RNAi technology to suppress the production of major rice endogenous storage proteins. Orally administered MucoRice-ARP1 markedly decreased the viral load in immunocompetent and immunodeficient mice. The antibody retained in vitro neutralizing activity after long-term storage (>1 yr) and boiling and conferred protection in mice even after heat treatment at 94°C for 30 minutes. High-yield, water-soluble, and purification-free MucoRice-ARP1 thus forms the basis for orally administered prophylaxis and therapy against rotavirus infections.
Collapse
Affiliation(s)
- Daisuke Tokuhara
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Tamminen K, Lappalainen S, Huhti L, Vesikari T, Blazevic V. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice. PLoS One 2013; 8:e70409. [PMID: 23922988 PMCID: PMC3724941 DOI: 10.1371/journal.pone.0070409] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/18/2013] [Indexed: 01/14/2023] Open
Abstract
Rotavirus (RV) and norovirus (NoV) are the two major causes of viral gastroenteritis (GE) in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1) derived virus-like particles (VLPs) of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6), the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50%) as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs) and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.
Collapse
Affiliation(s)
- Kirsi Tamminen
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Suvi Lappalainen
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Leena Huhti
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Timo Vesikari
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
| | - Vesna Blazevic
- Vaccine Research Center, University of Tampere School of Medicine, Tampere, Finland
- * E-mail:
| |
Collapse
|
69
|
Esteban LE, Temprana CF, Argüelles MH, Glikmann G, Castello AA. Antigenicity and immunogenicity of rotavirus VP6 protein expressed on the surface of Lactococcus lactis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:298598. [PMID: 23984337 PMCID: PMC3741945 DOI: 10.1155/2013/298598] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/25/2013] [Accepted: 07/09/2013] [Indexed: 12/19/2022]
Abstract
Group A rotaviruses are the major etiologic agents of acute gastroenteritis worldwide in children and young animals. Among its structural proteins, VP6 is the most immunogenic and is highly conserved within this group. Lactococcus lactis is a food-grade, Gram-positive, and nonpathogenic lactic acid bacteria that has already been explored as a mucosal delivery system of heterologous antigens. In this work, the nisin-controlled expression system was used to display the VP6 protein at the cell surface of L. lactis. Conditions for optimal gene expression were established by testing different nisin concentrations, cell density at induction, and incubation times after induction. Cytoplasmic and cell wall protein extracts were analyzed by Western blot and surface expression was confirmed by flow cytometry. Both analysis provided evidence that VP6 was efficiently expressed and displayed on the cell surface of L. lactis. Furthermore, the humoral response of mice immunized with recombinant L. lactis was evaluated and the displayed recombinant VP6 protein proved to be immunogenic. In conclusion, this is the first report of displaying VP6 protein on the surface of L. lactis to induce a specific immune response against rotavirus. These results provide the basis for further evaluation of this VP6-displaying L. lactis as a mucosal delivery vector in a mouse model of rotavirus infection.
Collapse
Affiliation(s)
- L. E. Esteban
- Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
| | - C. F. Temprana
- Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
| | - M. H. Argüelles
- Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
| | - G. Glikmann
- Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
| | - A. A. Castello
- Laboratorio de Inmunología y Virología (LIV), Universidad Nacional de Quilmes, Bernal, B1876BXD Buenos Aires, Argentina
| |
Collapse
|
70
|
Corthésy B. Multi-faceted functions of secretory IgA at mucosal surfaces. Front Immunol 2013; 4:185. [PMID: 23874333 PMCID: PMC3709412 DOI: 10.3389/fimmu.2013.00185] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 06/24/2013] [Indexed: 01/06/2023] Open
Abstract
Secretory IgA (SIgA) plays an important role in the protection and homeostatic regulation of intestinal, respiratory, and urogenital mucosal epithelia separating the outside environment from the inside of the body. This primary function of SIgA is referred to as immune exclusion, a process that limits the access of numerous microorganisms and mucosal antigens to these thin and vulnerable mucosal barriers. SIgA has been shown to be involved in avoiding opportunistic pathogens to enter and disseminate in the systemic compartment, as well as tightly controlling the necessary symbiotic relationship existing between commensals and the host. Clearance by peristalsis appears thus as one of the numerous mechanisms whereby SIgA fulfills its function at mucosal surfaces. Sampling of antigen-SIgA complexes by microfold (M) cells, intimate contact occurring with Peyer’s patch dendritic cells (DC), down-regulation of inflammatory processes, modulation of epithelial, and DC responsiveness are some of the recently identified processes to which the contribution of SIgA has been underscored. This review aims at presenting, with emphasis at the biochemical level, how the molecular complexity of SIgA can serve these multiple and non-redundant modes of action.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory, Department of Immunology and Allergy, University State Hospital Lausanne (CHUV) , Lausanne , Switzerland
| |
Collapse
|
71
|
Lappalainen S, Tamminen K, Vesikari T, Blazevic V. Comparative immunogenicity in mice of rotavirus VP6 tubular structures and virus-like particles. Hum Vaccin Immunother 2013; 9:1991-2001. [PMID: 23777748 DOI: 10.4161/hv.25249] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Rotavirus (RV) is the most important cause of severe gastroenteritis in children worldwide. Current live RV vaccines are efficacious but show lower efficacy in developing countries, as well as a low risk of intussusception. This has led to the development of parenteral non-live candidate vaccines against RV. RV capsid VP6 protein is highly conserved and the most abundant RV protein forming highly immunogenic oligomeric structures with multivalent antigen expression. Both recombinant VP6 (rVP6) or double-layered (dl) 2/6-virus-like particles (VLPs), might be considered as the simplest RV subunit vaccine candidates. Human rVP6 protein and dl2/6-VLPs were produced in Sf9 insect cells by baculovirus expression system. Formation of rVP6 tubules and VLPs were confirmed by electron microscopy. BALB/c mice were immunized intramuscularly, and immune responses were analyzed. Both rVP6 and dl2/6-VLPs induced a balanced Th1-type and Th2-type response and high levels of serum IgG antibodies with cross-reactivity against different RV strains (Wa, SC2, BrB, 69M, L26, WC3, and RRV). In addition, mucosal VP6-specific IgG and IgA antibodies were detected in feces and vaginal washes (VW) of immunized animals. Importantly, VWs of immunized mice inhibited RV Wa and RRV infection in vitro. Immunization with either protein preparation induced a similar level of VP6-specific, interferon-γ secreting CD4(+) T cells in response to different RVs or the 18-mer peptide (AA 242-259), a VP6-specific CD4(+) T cell epitope. RV rVP6 and dl2/6-VLPs induced equally strong humoral and cellular responses against RV in mice and therefore, may be considered as non-live vaccine candidates against RV.
Collapse
Affiliation(s)
- Suvi Lappalainen
- Vaccine Research Center; University of Tampere Medical School; Tampere, Finland
| | | | | | | |
Collapse
|
72
|
Aiyegbo MS, Sapparapu G, Spiller BW, Eli IM, Williams DR, Kim R, Lee DE, Liu T, Li S, Woods VL, Nannemann DP, Meiler J, Stewart PL, Crowe JE. Human rotavirus VP6-specific antibodies mediate intracellular neutralization by binding to a quaternary structure in the transcriptional pore. PLoS One 2013; 8:e61101. [PMID: 23671563 PMCID: PMC3650007 DOI: 10.1371/journal.pone.0061101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 03/05/2013] [Indexed: 11/17/2022] Open
Abstract
Several live attenuated rotavirus (RV) vaccines have been licensed, but the mechanisms of protective immunity are still poorly understood. The most frequent human B cell response is directed to the internal protein VP6 on the surface of double-layered particles, which is normally exposed only in the intracellular environment. Here, we show that the canonical VP6 antibodies secreted by humans bind to such particles and inhibit viral transcription. Polymeric IgA RV antibodies mediated an inhibitory effect against virus replication inside cells during IgA transcytosis. We defined the recognition site on VP6 as a quaternary epitope containing a high density of charged residues. RV human mAbs appear to bind to a negatively-charged patch on the surface of the Type I channel in the transcriptionally active particle, and they sterically block the channel. This unique mucosal mechanism of viral neutralization, which is not apparent from conventional immunoassays, may contribute significantly to human immunity to RV.
Collapse
Affiliation(s)
- Mohammed S Aiyegbo
- Department of Pathology, Microbiology and Immunology, Vanderbilt Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Vega CG, Bok M, Vlasova AN, Chattha KS, Gómez-Sebastián S, Nuñez C, Alvarado C, Lasa R, Escribano JM, Garaicoechea LL, Fernandez F, Bok K, Wigdorovitz A, Saif LJ, Parreño V. Recombinant monovalent llama-derived antibody fragments (VHH) to rotavirus VP6 protect neonatal gnotobiotic piglets against human rotavirus-induced diarrhea. PLoS Pathog 2013; 9:e1003334. [PMID: 23658521 PMCID: PMC3642062 DOI: 10.1371/journal.ppat.1003334] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/18/2013] [Indexed: 12/22/2022] Open
Abstract
Group A Rotavirus (RVA) is the leading cause of severe diarrhea in children. The aims of the present study were to determine the neutralizing activity of VP6-specific llama-derived single domain nanoantibodies (VHH nanoAbs) against different RVA strains in vitro and to evaluate the ability of G6P[1] VP6-specific llama-derived single domain nanoantibodies (VHH) to protect against human rotavirus in gnotobiotic (Gn) piglets experimentally inoculated with virulent Wa G1P[8] rotavirus. Supplementation of the daily milk diet with 3B2 VHH clone produced using a baculovirus vector expression system (final ELISA antibody -Ab- titer of 4096; virus neutralization -VN- titer of 256) for 9 days conferred full protection against rotavirus associated diarrhea and significantly reduced virus shedding. The administration of comparable levels of porcine IgG Abs only protected 4 out of 6 of the animals from human RVA diarrhea but significantly reduced virus shedding. In contrast, G6P[1]-VP6 rotavirus-specific IgY Abs purified from eggs of hyperimmunized hens failed to protect piglets against human RVA-induced diarrhea or virus shedding when administering similar quantities of Abs. The oral administration of VHH nanoAb neither interfered with the host's isotype profiles of the Ab secreting cell responses to rotavirus, nor induced detectable host Ab responses to the treatment in serum or intestinal contents. This study shows that the oral administration of rotavirus VP6-VHH nanoAb is a broadly reactive and effective treatment against rotavirus-induced diarrhea in neonatal pigs. Our findings highlight the potential value of a broad neutralizing VP6-specific VHH nanoAb as a treatment that can complement or be used as an alternative to the current strain-specific RVA vaccines. Nanobodies could also be scaled-up to develop pediatric medication or functional food like infant milk formulas that might help treat RVA diarrhea. Group A rotavirus (RVA) is the most common cause of severe diarrhea in human infants worldwide. Live-attenuated rotavirus vaccines are available to prevent rotavirus diarrhea in children, although their efficacy in impoverished areas has been questioned, in addition to not being suitable for children suffering from immune deficiencies. Since no rotavirus-specific treatments are available as an alternative, we investigated llama-derived single-chain antibody fragments (VHH) as preventive therapy and a potential treatment option. Gnotobiotic piglets were chosen as an animal model because their gastrointestinal physiology and mucosal immune system resemble that of human infants. We evaluated the broad neutralizing activity of a VHH clone (3B2) to different genotypes of RVA circulating in humans, and tested the efficacy of oral administration of 3B2 VHH as a functional milk to prevent the diarrhea induced by one of the most prevalent human RVA strains (G1P[8]). Supplementation of the milk diet with 3B2 twice a day for 9 days conferred full protection against rotavirus-associated diarrhea and significantly reduced virus shedding in gnotobiotic piglets experimentally inoculated with a human RVA. This study demonstrates the potential application of VHH to prevent rotavirus-induced diarrhea, and suggests that VHHs should be further investigated as a suitable treatment for gastroenteritis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/pharmacology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/pharmacology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Camelids, New World
- Capsid Proteins/antagonists & inhibitors
- Capsid Proteins/genetics
- Capsid Proteins/immunology
- Diarrhea/drug therapy
- Diarrhea/genetics
- Diarrhea/immunology
- Diarrhea/virology
- Humans
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/pharmacology
- Rotavirus/genetics
- Rotavirus/immunology
- Rotavirus Infections/drug therapy
- Rotavirus Infections/genetics
- Rotavirus Infections/immunology
- Rotavirus Infections/virology
- Swine
Collapse
Affiliation(s)
- Celina G. Vega
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Marina Bok
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Anastasia N. Vlasova
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Kuldeep S. Chattha
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Nuñez
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Carmen Alvarado
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Rodrigo Lasa
- Alternative Gene Expression S.L. (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - José M. Escribano
- Departamento de Biotecnología. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Lorena L. Garaicoechea
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Fernando Fernandez
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Karin Bok
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Andrés Wigdorovitz
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
| | - Linda J. Saif
- Food Animal Health Research Program, The Ohio Agricultural Research and Development Center, Veterinary Preventive Medicine Department, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (LJS); (VP)
| | - Viviana Parreño
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA Castelar, Buenos Aires, Argentina
- * E-mail: (LJS); (VP)
| |
Collapse
|
74
|
Deal EM, Lahl K, Narváez CF, Butcher EC, Greenberg HB. Plasmacytoid dendritic cells promote rotavirus-induced human and murine B cell responses. J Clin Invest 2013; 123:2464-74. [PMID: 23635775 DOI: 10.1172/jci60945] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/26/2013] [Indexed: 12/22/2022] Open
Abstract
B cell-dependent immunity to rotavirus, an important intestinal pathogen, plays a significant role in viral clearance and protects against reinfection. Human in vitro and murine in vivo models of rotavirus infection were used to delineate the role of primary plasmacytoid DCs (pDCs) in initiating B cell responses. Human pDCs were necessary and sufficient for B cell activation induced by rotavirus. Type I IFN recognition by B cells was essential for rotavirus-mediated B cell activation in vitro and murine pDCs and IFN-α/β-mediated B cell activation after in vivo intestinal rotavirus infection. Furthermore, rotavirus-specific serum and mucosal antibody responses were defective in mice lacking functional pDCs at the time of infection. These data demonstrate that optimal B cell activation and virus-specific antibody secretion following mucosal infection were a direct result of pDC-derived type I IFN. Importantly, viral shedding significantly increased in pDC-deficient mice, suggesting that pDC-dependent antibody production influences viral clearance. Thus, mucosal pDCs critically influence the course of rotavirus infection through rotavirus recognition and subsequent IFN production and display powerful adjuvant properties to initiate and enhance humoral immunity.
Collapse
Affiliation(s)
- Emily M Deal
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305-5105, USA
| | | | | | | | | |
Collapse
|
75
|
Agnello D, Denimal D, Lavaux A, Blondeau-Germe L, Lu B, Gerard NP, Gerard C, Pothier P. Intrarectal immunization and IgA antibody-secreting cell homing to the small intestine. THE JOURNAL OF IMMUNOLOGY 2013; 190:4836-47. [PMID: 23547118 DOI: 10.4049/jimmunol.1202979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
According to the current paradigm, lymphocyte homing to the small intestine requires the expression of two tissue-specific homing receptors, the integrin α4β7 and the CCL25 receptor CCR9. In this study, we investigated the organ distribution and the homing molecule expression of IgA Ab-secreting cells (ASCs) induced by intrarectal immunization with a particulate Ag, in comparison with other mucosal immunization routes. Intrarectal immunization induces gut-homing IgA ASCs that localize not only in the colon but also in the small intestine, although they are not responsive to CCL25, unlike IgA ASCs induced by oral immunization. The mucosal epithelial chemokine CCL28, known to attract all IgA ASCs, does not compensate for the lack of CCL25 responsiveness, because the number of Ag-specific cells is not decreased in the gut of CCR10-deficient mice immunized by the intrarectal route. However, Ag-specific IgA ASCs induced by intrarectal immunization express the integrin α4β7, and their number is considerably decreased in the gut of β7-deficient mice immunized by the intrarectal route, indicating that α4β7 enables these cells to migrate into the small intestine, even without CCL25 responsiveness. In contrast, IgA ASCs induced by intranasal immunization express low α4β7 levels and are usually excluded from the gut. Paradoxically, after intranasal immunization, Ag-specific IgA ASCs are significantly increased in the small intestine of β7-deficient mice, demonstrating that lymphocyte homing is a competitive process and that integrin α4β7 determines not only the intestinal tropism of IgA ASCs elicited in GALTs but also the intestinal exclusion of lymphocytes primed in other inductive sites.
Collapse
Affiliation(s)
- Davide Agnello
- Laboratoire de Virologie et Centre National de Référence des Virus Entériques, Centre Hospitalier Universitaire de Dijon, 21070 Dijon Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Longet S, Miled S, Lötscher M, Miescher SM, Zuercher AW, Corthésy B. Human plasma-derived polymeric IgA and IgM antibodies associate with secretory component to yield biologically active secretory-like antibodies. J Biol Chem 2012; 288:4085-94. [PMID: 23250751 DOI: 10.1074/jbc.m112.410811] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins.
Collapse
Affiliation(s)
- Stéphanie Longet
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Rue du Bugnon, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
An important activity of mucosal surfaces is the production of antibodies (Abs) referred to as secretory immunoglobulin A (SIgA) that serve as a first line of defense to repel pathogenic microorganisms and provide a finely tuned balance to guarantee controlled survival of essential commensal bacteria. By excluding bacteria from the epithelial cell, SIgA participates in the cross-talk between the host and its intestinal content, ensuring appropriate homeostasis under normal conditions. Besides the classical view of immune exclusion function, SIgA Abs exhibit the striking feature to adhere to gastrointestinal M cells residing in the follicle-associated epithelium in organized structures called Peyer's patches. Selective binding of SIgA results in transport across the microfold (M) cells, a process that facilitates the association of the Ab with dendritic cells (DCs) located in the underlying subepithelial dome region of Peyer's patches. Limited entry of free SIgA and SIgA-coated bacteria via this pathway is crucial to the modulation of local immune responses in an environment that limits the onset of pro-inflammatory circuits. Such a mechanism would ensure homeostasis by allowing antigen recognition under neutralized conditions and by avoiding tissue dissemination, two features that endow SIgA with non-inflammatory properties in the mucosal environment.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, University State Hospital (CHUV), Rue du Bugnon, 1011 Lausanne, Switzerland.
| |
Collapse
|
78
|
In vitro neutralisation of rotavirus infection by two broadly specific recombinant monovalent llama-derived antibody fragments. PLoS One 2012; 7:e32949. [PMID: 22403728 PMCID: PMC3293919 DOI: 10.1371/journal.pone.0032949] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/07/2012] [Indexed: 01/02/2023] Open
Abstract
Rotavirus is the main cause of viral gastroenteritis in young children. Therefore, the development of inexpensive antiviral products for the prevention and/or treatment of rotavirus disease remains a priority. Previously we have shown that a recombinant monovalent antibody fragment (referred to as Anti-Rotavirus Proteins or ARP1) derived from a heavy chain antibody of a llama immunised with rotavirus was able to neutralise rotavirus infection in a mouse model system. In the present work we investigated the specificity and neutralising activity of two llama antibody fragments, ARP1 and ARP3, against 13 cell culture adapted rotavirus strains of diverse genotypes. In addition, immunocapture electron microscopy (IEM) was performed to determine binding of ARP1 to clinical isolates and cell culture adapted strains. ARP1 and ARP3 were able to neutralise a broad variety of rotavirus serotypes/genotypes in vitro, and in addition, IEM showed specific binding to a variety of cell adapted strains as well as strains from clinical specimens. These results indicated that these molecules could potentially be used as immunoprophylactic and/or immunotherapeutic products for the prevention and/or treatment of infection of a broad range of clinically relevant rotavirus strains.
Collapse
|
79
|
Vanlandschoot P, Stortelers C, Beirnaert E, Ibañez LI, Schepens B, Depla E, Saelens X. Nanobodies®: New ammunition to battle viruses. Antiviral Res 2011; 92:389-407. [DOI: 10.1016/j.antiviral.2011.09.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/30/2011] [Accepted: 09/06/2011] [Indexed: 01/23/2023]
|
80
|
The human immunoglobulin A Fc receptor FcαRI: a multifaceted regulator of mucosal immunity. Mucosal Immunol 2011; 4:612-24. [PMID: 21937986 DOI: 10.1038/mi.2011.36] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunoglobulin A (IgA) is commonly recognized as the most prevalent antibody (Ab) at mucosal sites with an important role in defense by shielding mucosal surfaces from invasion by pathogens. However, its potential to both actively dampen excessive immune responses or to initiate potent proinflammatory cellular processes is less well known. Interestingly, either functional outcome is mediated through interaction with the myeloid IgA Fc receptor FcαRI (CD89). Monomeric interaction of IgA with FcαRI triggers inhibitory signals that block activation via other receptors, whereas multimeric FcαRI crosslinking induces phagocytosis, reactive oxygen species production, antigen presentation, Ab-dependent cellular cytotoxicity, and cytokine release. Thus, FcαRI acts as a regulator between anti- and proinflammatory responses of IgA. As such, the biology of FcαRI, and its multifaceted role in immunity will be the focus of this review.
Collapse
|
81
|
Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4:603-11. [PMID: 21975936 PMCID: PMC3774538 DOI: 10.1038/mi.2011.41] [Citation(s) in RCA: 868] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.
Collapse
Affiliation(s)
- Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208,Biomedical Sciences Program, University at Albany School of Public Health, Albany, NY 12201,To whom correspondence should be addressed: and
| | | | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland,To whom correspondence should be addressed: and
| |
Collapse
|
82
|
Matrix protein-specific IgA antibody inhibits measles virus replication by intracellular neutralization. J Virol 2011; 85:11090-7. [PMID: 21865386 DOI: 10.1128/jvi.00768-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measles virus (MV) is still an imposing threat to public health. The matrix (M) protein has been shown not only to function as a structure block in the assembled MV virions, but also to regulate viral RNA synthesis, playing an important role in MV's replication and assembly. In the present study, we generated a panel of IgG monoclonal antibodies (MAbs) against M protein and successfully obtained one IgA MAb (5H7) from the IgG panel. Employing the polarized Vero cells grown in the two-chamber transwell model, we investigated whether M-specific 5H7 IgA MAb could suppress MV's replication and assembly. The data presented indicate that, while failing to show the activities of traditional neutralization and immune exclusion, M-specific IgA MAb was able to effectively inhibit viral replication by intracellular neutralization (78%), supporting the notion that the M protein is important for MV assembly and replication and implying that the M protein was an effective target antigen. The data also showed that MV had a long entry and assembly phase during viral replication, providing an extended window for IgA intervention. The colocalization of M proteins and M-specific 5H7 IgA MAbs demonstrated that the intracellular neutralization was due to the direct binding of the M-specific 5H7 IgA MAbs to the M proteins. In summary, the present study has added another example showing that IgA antibodies targeting internal viral antigens could proactively participate in mucosal immune protection by intracellular neutralization and has provided evidence that M protein might be included as a target antigen in future MV vaccine design.
Collapse
|
83
|
Abstract
A “Meeting on Upstream Rotavirus Vaccines and Emerging Vaccine Producers” was held at the World Health Organization in Geneva, Switzerland on March 28–30, 2006. The purpose was to discuss, evaluate, and weigh the importance of additional rotavirus vaccine candidates following the successful international licensure of rotavirus vaccines by two major pharmaceutical companies (GlaxoSmithKline and Merck) that had been in development for many years. Both licensed vaccines are composed of live rotaviruses that are delivered orally as have been all candidate rotavirus vaccines evaluated in humans. Each is built on the experience gained with previous candidates whose development had either been discontinued or, in the case of the previously licensed rhesus rotavirus reassortant vaccine (Rotashield), was withdrawn by its manufacturer after the discovery of a rare association with intussusception. Although which alternative candidate vaccines should be supported for development and where this should be done are controversial topics, there was general agreement expressed at the Geneva meeting that further development of alternative candidates is a high priority. This development will help insure that the most safe, effective and economic vaccines are available to children in Third World nations where the vast majority of the >600,000 deaths due to rotavirus occur each year. This review is intended to provide the history and present status of rotavirus vaccines as well as a perspective on the future development of candidate vaccines as a means of promulgating plans suggested at the Geneva meeting.
Collapse
Affiliation(s)
- Richard L Ward
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | | | | |
Collapse
|
84
|
|
85
|
Abstract
Although immunoglobulin (Ig) A is commonly recognized as the most prevalent antibody subclass at mucosal sites with an important role in mucosal defense, its potential as a therapeutic monoclonal antibody is less well known. However, IgA has multifaceted anti-, non-, and pro-inflammatory functions that can be exploited for different immunotherapeutical strategies, which will be the focus of this review.
Collapse
Affiliation(s)
- Jantine E Bakema
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | |
Collapse
|
86
|
Abstract
The immunological mediators that clear rotavirus antigenemia or viremia remain undefined. Immunodeficient mice and antibody transfer were used to test whether lymphocytes or rotavirus-specific serum antibodies are essential for resolving antigenemia. Clearance of antigenemia required lymphocytes, but neither T nor B lymphocytes were absolutely required. Transfer of convalescent-phase or nonneutralizing rotavirus-specific serum antibodies to the systemic compartment of severe-combined-immunodeficient (SCID) mice temporarily suppressed the onset or level of chronic rotavirus antigenemia. Our findings provide the first report demonstrating that clearance of rotavirus antigenemia and possibly viremia are mediated by multiple effector lymphocyte subsets and serum antibodies.
Collapse
|
87
|
Sui Z, Chen Q, Fang F, Zheng M, Chen Z. Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine 2010; 28:7690-8. [DOI: 10.1016/j.vaccine.2010.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 01/01/2023]
|
88
|
Development of a Bacillus subtilis-based rotavirus vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1647-55. [PMID: 20810679 DOI: 10.1128/cvi.00135-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis vaccine strains engineered to express either group A bovine or murine rotavirus VP6 were tested in adult mice for their ability to induce immune responses and provide protection against rotavirus challenge. Mice were inoculated intranasally with spores or vegetative cells of the recombinant strains of B. subtilis. To enhance mucosal immunity, whole cholera toxin (CT) or a mutant form (R192G) of Escherichia coli heat-labile toxin (mLT) were included as adjuvants. To evaluate vaccine efficacy, the immunized mice were challenged orally with EDIM EW murine rotavirus and monitored daily for 7 days for virus shedding in feces. Mice immunized with either VP6 spore or VP6 vegetative cell vaccines raised serum anti-VP6 IgG enzyme-linked immunosorbent assay (ELISA) titers, whereas only the VP6 spore vaccines generated fecal anti-VP6 IgA ELISA titers. Mice in groups that were immunized with VP6 spore vaccines plus CT or mLT showed significant reductions in virus shedding, whereas the groups of mice immunized with VP6 vegetative cell vaccines showed no difference in virus shedding compared with mice immunized with control spores or cells. These results demonstrate that intranasal inoculation with B. subtilis spore-based rotavirus vaccines is effective in generating protective immunity against rotavirus challenge in mice.
Collapse
|
89
|
Mantis NJ, Forbes SJ. Secretory IgA: arresting microbial pathogens at epithelial borders. Immunol Invest 2010; 39:383-406. [PMID: 20450284 DOI: 10.3109/08820131003622635] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Secretory IgA (SIgA) is the predominant class of antibody found in intestinal secretions. Although SIgA's role in protecting the intestinal epithelium from the enteric pathogens and toxins has long been recognized, surprisingly little is known about the molecular mechanisms by which this is achieved. The present review summarizes the current understanding of how SIgA functions to prevent microbial pathogens and toxins from gaining access to the intestinal epithelium. We also discuss recent work from our laboratory examining the interaction of a particular protective monoclonal IgA with Salmonella and propose, based on this work, that SIgA has a previously unrecognized capacity to directly interfere with microbial virulence at mucosal surfaces.
Collapse
Affiliation(s)
- Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, University at Albany School of Public Health, Albany, New York 12208, USA.
| | | |
Collapse
|
90
|
Strugnell RA, Wijburg OLC. The role of secretory antibodies in infection immunity. Nat Rev Microbiol 2010; 8:656-67. [PMID: 20694027 DOI: 10.1038/nrmicro2384] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mucosal secretory immune system provides an important primary defence against disease, as studies of humans with mucosal humoral immunodeficiencies suggest that the absence of secretory immunoglobulin A leads to an increase in mucosal infections. However, the infection risks posed do not seem to provide the evolutionary drive to retain constitutive secretion of often 'hard won' protein, suggesting that secretory antibodies may have some other important function (or functions). This Review examines the evidence that secretory antibodies provide an important defence against infection in specific animal models and explores complementary explanations for the evolution of the secretory immune system.
Collapse
Affiliation(s)
- Richard A Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria, VIC 3010 Australia.
| | | |
Collapse
|
91
|
Guo L, Zheng M, Ding Y, Li D, Yang Z, Wang H, Chen Q, Sui Z, Fang F, Chen Z. Protection against multiple influenza A virus subtypes by intranasal administration of recombinant nucleoprotein. Arch Virol 2010; 155:1765-75. [PMID: 20652335 DOI: 10.1007/s00705-010-0756-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
Abstract
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.
Collapse
Affiliation(s)
- Lina Guo
- Shanghai Institute of Biological Products, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Corthésy B. Role of secretory immunoglobulin A and secretory component in the protection of mucosal surfaces. Future Microbiol 2010; 5:817-29. [PMID: 20441552 DOI: 10.2217/fmb.10.39] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The contribution of secretory immunoglobulin A (SIgA) antibodies in the defense of mucosal epithelia plays an important role in preventing pathogen adhesion to host cells, therefore blocking dissemination and further infection. This mechanism, referred to as immune exclusion, represents the dominant mode of action of the antibody. However, SIgA antibodies combine multiple facets, which together confer properties extending from intracellular and serosal neutralization of antigens, activation of non-inflammatory pathways and homeostatic control of the endogenous microbiota. The sum of these features suggests that future opportunities for translational application from research-based knowledge to clinics include the mucosal delivery of bioactive antibodies capable of preserving immunoreactivity in the lung, gastrointestinal tract, the genito-urinary tract for the treatment of infections. This article covers topics dealing with the structure of SIgA, the dissection of its mode of action in epithelia lining different mucosal surfaces and its potential in immunotherapy against infectious pathogens.
Collapse
Affiliation(s)
- Blaise Corthésy
- R&D Laboratory of the Department of Immunology & Allergy, University State Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland.
| |
Collapse
|
93
|
Cuburu N, Kweon MN, Hervouet C, Cha HR, Pang YYS, Holmgren J, Stadler K, Schiller JT, Anjuère F, Czerkinsky C. Sublingual immunization with nonreplicating antigens induces antibody-forming cells and cytotoxic T cells in the female genital tract mucosa and protects against genital papillomavirus infection. THE JOURNAL OF IMMUNOLOGY 2010; 183:7851-9. [PMID: 19933861 DOI: 10.4049/jimmunol.0803740] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have recently reported that the sublingual (s.l.) mucosa is an efficient site for inducing systemic and mucosal immune responses. In this study, the potential of s.l. immunization to induce remote Ab responses and CD8(+) cytotoxic responses in the female genital tract was examined in mice by using a nonreplicating Ag, OVA, and cholera toxin (CT) as an adjuvant. Sublingual administration of OVA and CT induced Ag-specific IgA and IgG Abs in blood and in cervicovaginal secretions. These responses were associated with large numbers of IgA Ab-secreting cells (ASCs) in the genital mucosa. Genital ASC responses were similar in magnitude and isotype distribution after s.l., intranasal, or vaginal immunization and were superior to those seen after intragastric immunization. Genital, but not blood or spleen, IgA ASC responses were inhibited by treatment with anti-CCL28 Abs, suggesting that the chemokine CCL28 plays a major role in the migration of IgA ASC progenitors to the reproductive tract mucosa. Furthermore, s.l. immunization with OVA induced OVA-specific effector CD8(+) cytolytic T cells in the genital mucosa, and these responses required coadministration of the CT adjuvant. Furthermore, s.l. administration of human papillomavirus virus-like particles with or without the CT adjuvant conferred protection against genital challenge with human papillomavirus pseudovirions. Taken together, these findings underscore the potential of s.l. immunization as an efficient vaccination strategy for inducing genital immune responses and should impact on the development of vaccines against sexually transmitted diseases.
Collapse
Affiliation(s)
- Nicolas Cuburu
- Laboratory Sciences Division, International Vaccine Institute, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Albert Christophersen O, Haug A. More about hypervirulent avian influenza: Is the world now better prepared? MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/08910600701343286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Anna Haug
- Norwegian University of Life Science (UMB), Arboretveien, Ås, Norway
| |
Collapse
|
95
|
Greenberg HB, Estes MK. Rotaviruses: from pathogenesis to vaccination. Gastroenterology 2009; 136:1939-51. [PMID: 19457420 PMCID: PMC3690811 DOI: 10.1053/j.gastro.2009.02.076] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
Abstract
Rotaviruses cause life-threatening gastroenteritis in children worldwide; the enormous disease burden has focused efforts to develop vaccines and led to the discovery of novel mechanisms of gastrointestinal virus pathogenesis and host responses to infection. Two live-attenuated vaccines for gastroenteritis (Rotateq [Merck] and Rotarix) have been licensed in many countries. This review summarizes the latest data on these vaccines, their effectiveness, and challenges to global vaccination. Recent insights into rotavirus pathogenesis also are discussed, including information on extraintestinal infection, viral antagonists of the interferon response, and the first described viral enterotoxin. Rotavirus-induced diarrhea now is considered to be a disease that can be prevented through vaccination, although there are many challenges to achieving global effectiveness. Molecular biology studies of rotavirus replication and pathogenesis have identified unique viral targets that might be useful in developing therapies for immunocompromised children with chronic infections.
Collapse
Affiliation(s)
- Harry B. Greenberg
- Senior Associate Dean for Research, Joseph D. Grant Professor of Medicine and Microbiology & Immunology, Stanford University School of Medicine, Alway Bldg, Rm M-121
- 300 Pasteur Dr, Stanford, CA 94305-5119, phone: 650-725-9722, fax: 650-725-7368
| | - Mary K. Estes
- Cullen Endowed Chair of Molecular and Human Virology, Departments of Molecular Virology and Microbiology and Medicine -GI, Baylor College of Medicine, One Baylor Plaza BCM-385, Houston, TX 77030-3498, 713-798-3585, 713-798-3586 fax
| |
Collapse
|
96
|
Llama-derived single-chain antibody fragments directed to rotavirus VP6 protein possess broad neutralizing activity in vitro and confer protection against diarrhea in mice. J Virol 2008; 82:9753-64. [PMID: 18632867 DOI: 10.1128/jvi.00436-08] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Group A rotavirus is one of the most common causes of severe diarrhea in human infants and newborn animals. Rotavirus virions are triple-layered particles. The outer capsid proteins VP4 and VP7 are highly variable and represent the major neutralizing antigens. The inner capsid protein VP6 is conserved among group A rotaviruses, is highly immunogenic, and is the target antigen of most immunodiagnosis tests. Llama-derived single-chain antibody fragments (VHH) are the smallest molecules with antigen-binding capacity and can therefore be expected to have properties different from conventional antibodies. In this study a library containing the VHH genes of a llama immunized with recombinant inner capsid protein VP6 was generated. Binders directed to VP6, in its native conformation within the viral particle, were selected and characterized. Four selected VHH directed to conformational epitopes of VP6 recognized all human and animal rotavirus strains tested and could be engineered for their use in immunodiagnostic tests for group A rotavirus detection. Three of the four VHH neutralized rotavirus in vivo independently of the strain serotype. Furthermore, this result was confirmed by in vivo partial protection against rotavirus challenge in a neonatal mouse model. The present study demonstrates for the first time a broad neutralization activity of VP6 specific VHH in vitro and in vivo. Neutralizing VHH directed to VP6 promise to become an essential tool for the prevention and treatment of rotavirus diarrhea.
Collapse
|
97
|
Marcotte H, Pant N, Hammarström L. Engineered lactobody-producing lactobacilli: a novel form of therapy against rotavirus infection. Future Virol 2008. [DOI: 10.2217/17460794.3.4.327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Rotavirus infections remain a major cause of morbidity and mortality worldwide, accounting for an estimated 600,000 deaths each year. New vaccines have been released recently but the lag time between vaccine administration and induction of an immune response can be critical in epidemic situations. A model system has been developed in which Lactobacillus, a ‘Generally Regarded As Safe’ microorganism, can be transformed with antibody fragment-encoding vectors. This allows in situ production of functional variable domains of llama heavy chain antibodies (VHH antibody fragments) against rotavirus in the intestinal tract. The modified bacteria were shown to be protective in a mouse pup model. Our approach represents a novel system for the induction of passive immunity that can be rapidly applied to populations at risk, for example through drinking water, rehydrating solutions or as a food supplement.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Clinical Immunology, Karolinska Institutet at Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Neha Pant
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
98
|
Roux X, Dubuquoy C, Durand G, Tran-Tolla TL, Castagné N, Bernard J, Petit-Camurdan A, Eléouët JF, Riffault S. Sub-nucleocapsid nanoparticles: a nasal vaccine against respiratory syncytial virus. PLoS One 2008; 3:e1766. [PMID: 18335041 PMCID: PMC2262139 DOI: 10.1371/journal.pone.0001766] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 02/06/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Bronchiolitis caused by the respiratory syncytial virus (RSV) in infants less than two years old is a growing public health concern worldwide, and there is currently no safe and effective vaccine. A major component of RSV nucleocapsid, the nucleoprotein (N), has been so far poorly explored as a potential vaccine antigen, even though it is a target of protective anti-viral T cell responses and is remarkably conserved between human RSV A and B serotypes. We recently reported a method to produce recombinant N assembling in homogenous rings composed of 10-11 N subunits enclosing a bacterial RNA. These nanoparticles were named sub-nucleocapsid ring structure (N SRS). METHODOLOGY AND PRINCIPAL FINDINGS The vaccine potential of N SRS was evaluated in a well-characterized and widely acknowledged mouse model of RSV infection. BALB/c adult mice were immunized intranasally with N SRS adjuvanted with the detoxified E. coli enterotoxin LT(R192G). Upon RSV challenge, vaccinated mice were largely protected against virus replication in the lungs, with a mild inflammatory lymphocytic and neutrophilic reaction in their airways. Mucosal immunization with N SRS elicited strong local and systemic immunity characterized by high titers of IgG1, IgG2a and IgA anti-N antibodies, antigen-specific CD8(+) T cells and IFN-gamma-producing CD4(+) T cells. CONCLUSIONS/SIGNIFICANCE This is the first report of using nanoparticles formed by the recombinant nucleocapsid protein as an efficient and safe intra-nasal vaccine against RSV.
Collapse
Affiliation(s)
- Xavier Roux
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Catherine Dubuquoy
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Guillaume Durand
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Thi-Lan Tran-Tolla
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Nathalie Castagné
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Julie Bernard
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | - Agnès Petit-Camurdan
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
| | | | - Sabine Riffault
- Unité de Virologie et Immunologie Moléculaires (UR892), INRA, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
99
|
Kallewaard NL, McKinney BA, Gu Y, Chen A, Prasad BVV, Crowe JE. Functional Maturation of the Human Antibody Response to Rotavirus. THE JOURNAL OF IMMUNOLOGY 2008; 180:3980-9. [DOI: 10.4049/jimmunol.180.6.3980] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
100
|
Desselberger U. Second European Rotavirus Biology Meeting. Future Virol 2007. [DOI: 10.2217/17460794.2.5.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ulrich Desselberger
- Molecular Immunology International Centre for Genetic Engineering & Biotechnology (ICGEB), Padriciano 99, 34012 Trieste, Italy, and, Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|