51
|
Cook FA, Cook SJ. Inhibition of RAF dimers: it takes two to tango. Biochem Soc Trans 2021; 49:237-251. [PMID: 33367512 PMCID: PMC7924995 DOI: 10.1042/bst20200485] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 pathway promotes cell proliferation and survival and RAS and BRAF proteins are commonly mutated in cancer. This has fuelled the development of small molecule kinase inhibitors including ATP-competitive RAF inhibitors. Type I and type I½ ATP-competitive RAF inhibitors are effective in BRAFV600E/K-mutant cancer cells. However, in RAS-mutant cells these compounds instead promote RAS-dependent dimerisation and paradoxical activation of wild-type RAF proteins. RAF dimerisation is mediated by two key regions within each RAF protein; the RKTR motif of the αC-helix and the NtA-region of the dimer partner. Dimer formation requires the adoption of a closed, active kinase conformation which can be induced by RAS-dependent activation of RAF or by the binding of type I and I½ RAF inhibitors. Binding of type I or I½ RAF inhibitors to one dimer partner reduces the binding affinity of the other, thereby leaving a single dimer partner uninhibited and able to activate MEK. To overcome this paradox two classes of drug are currently under development; type II pan-RAF inhibitors that induce RAF dimer formation but bind both dimer partners thus allowing effective inhibition of both wild-type RAF dimer partners and monomeric active class I mutant RAF, and the recently developed "paradox breakers" which interrupt BRAF dimerisation through disruption of the αC-helix. Here we review the regulation of RAF proteins, including RAF dimers, and the progress towards effective targeting of the wild-type RAF proteins.
Collapse
Affiliation(s)
- Frazer A. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J. Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
52
|
Alabi S, Jaime-Figueroa S, Yao Z, Gao Y, Hines J, Samarasinghe KTG, Vogt L, Rosen N, Crews CM. Mutant-selective degradation by BRAF-targeting PROTACs. Nat Commun 2021; 12:920. [PMID: 33568647 PMCID: PMC7876048 DOI: 10.1038/s41467-021-21159-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/14/2021] [Indexed: 12/26/2022] Open
Abstract
Over 300 BRAF missense mutations have been identified in patients, yet currently approved drugs target V600 mutants alone. Moreover, acquired resistance inevitably emerges, primarily due to RAF lesions that prevent inhibition of BRAF V600 with current treatments. Therefore, there is a need for new therapies that target other mechanisms of activated BRAF. In this study, we use the Proteolysis Targeting Chimera (PROTAC) technology, which promotes ubiquitination and degradation of neo-substrates, to address the limitations of BRAF inhibitor-based therapies. Using vemurafenib-based PROTACs, we achieve low nanomolar degradation of all classes of BRAF mutants, but spare degradation of WT RAF family members. Our lead PROTAC outperforms vemurafenib in inhibiting cancer cell growth and shows in vivo efficacy in a Class 2 BRAF xenograft model. Mechanistic studies reveal that BRAFWT is spared due to weak ternary complex formation in cells owing to its quiescent inactivated conformation, and activation of BRAFWT sensitizes it to degradation. This study highlights the degree of selectivity achievable with degradation-based approaches by targeting mutant BRAF-driven cancers while sparing BRAFWT, providing an anti-tumor drug modality that expands the therapeutic window. Hundreds of BRAF mutations have been identified in patients with cancer but currently approved drugs only target BRAF V600 mutants. Here, the authors develop a vemurafenib-based PROTAC that induces degradation of all classes of BRAF mutants without affecting wild-type RAF proteins.
Collapse
Affiliation(s)
| | - Saul Jaime-Figueroa
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Zhan Yao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yijun Gao
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Hines
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Lea Vogt
- Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Neal Rosen
- Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig M Crews
- Department of Pharmacology, New Haven, CT, USA. .,Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA. .,Department of Chemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
53
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
54
|
Sheffels E, Sealover NE, Theard PL, Kortum RL. Anchorage-independent growth conditions reveal a differential SOS2 dependence for transformation and survival in RAS-mutant cancer cells. Small GTPases 2021; 12:67-78. [PMID: 31062644 PMCID: PMC7781674 DOI: 10.1080/21541248.2019.1611168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/15/2019] [Accepted: 04/20/2019] [Indexed: 02/07/2023] Open
Abstract
The RAS family of genes (HRAS, NRAS, and KRAS) is mutated in around 30% of human tumours. Wild-type RAS isoforms play an important role in mutant RAS-driven oncogenesis, indicating that RasGEFs may play a significant role in mutant RAS-driven transformation. We recently reported a hierarchical requirement for SOS2 in mutant RAS-driven transformation in mouse embryonic fibroblasts, with KRAS>NRAS>HRAS (Sheffels et al., 2018). However, whether SOS2 deletion differentially affects mutant RAS isoform-dependent transformation in human tumour cell lines has not been tested. After validating sgRNAs that efficiently deleted HRAS and NRAS, we showed that the differential requirement for SOS2 to support anchorage-independent (3D) growth, which we previously demonstrated in MEFs, held true in cancer cells. KRAS-mutant cells showed a high dependence on SOS2 for 3D growth, as previously shown, whereas HRAS-mutant cells did not require SOS2 for 3D growth. This differential requirement was not due to differences in RTK-stimulated WT RAS activation, as SOS2 deletion reduced RTK-stimulated WT RAS/PI3K/AKT signalling in both HRAS and KRAS mutated cell lines. Instead, this differential requirement of SOS2 to promote transformation was due to the differential sensitivity of RAS-mutated cancer cells to reductions in WT RAS/PI3K/AKT signalling. KRAS mutated cancer cells required SOS2/PI3K signaling to protect them from anoikis, whereas survival of both HRAS and NRAS mutated cancer cells was not altered by SOS2 deletion. Finally, we present an integrated working model of SOS signaling in the context of mutant KRAS based on our findings and those of others.
Collapse
Affiliation(s)
- Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Patricia L. Theard
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
55
|
de la Cova CC, Townley R, Greenwald I. Negative feedback by conserved kinases patterns the degradation of Caenorhabditis elegans Raf in vulval fate patterning. Development 2020; 147:226094. [PMID: 33144396 DOI: 10.1242/dev.195941] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Abstract
Activation of a canonical EGFR-Ras-Raf-ERK cascade initiates patterning of multipotent vulval precursor cells (VPCs) of Caenorhabditis elegans We have previously shown that this pathway includes a negative-feedback component in which MPK-1/ERK activity targets the upstream kinase LIN-45/Raf for degradation by the SEL-10/FBXW7 E3 ubiquitin ligase. This regulation requires a Cdc4 phosphodegron (CPD) in LIN-45 that is conserved in BRAF. Here, we identify and characterize the minimal degron that encompasses the CPD and is sufficient for SEL-10-mediated, MPK-1-dependent protein degradation. A targeted screen of conserved protein kinase-encoding genes yielded gsk-3 (an ortholog of human GSK3B) and cdk-2 (a CDK2-related kinase) as required for LIN-45 degron-mediated turnover. Genetic analysis revealed that LIN-45 degradation is blocked at the second larval stage due to cell cycle quiescence, and that relief of this block during the third larval stage relies on activation of CDKs. Additionally, activation of MPK-1 provides spatial pattern to LIN-45 degradation but does not bypass the requirement for gsk-3 and cdk-2 This analysis supports a model whereby MPK-1/ERK, GSK-3/GSK3 and CDK-2/CDK2, along with SEL-10/FBXW7, constitute a regulatory network that exerts spatial and temporal control of LIN-45/Raf degradation during VPC patterning.
Collapse
Affiliation(s)
- Claire C de la Cova
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Robert Townley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.,Department of Biological Sciences, University of Wisconsin Milwaukee, Milwaukee, WI 53201, USA
| | - Iva Greenwald
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
56
|
Vido MJ, Rock J, Aplin AE. Role of serine 365 in BRAF V600E sensitivity to RAF inhibition. Pigment Cell Melanoma Res 2020; 34:696-702. [PMID: 33000894 DOI: 10.1111/pcmr.12932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/31/2020] [Accepted: 09/18/2020] [Indexed: 01/04/2023]
Abstract
The serine-threonine kinase, BRAF, is an upstream regulator of the MEK-ERK1/2 pathway and is commonly mutated in cancer. 14-3-3 proteins bind to two sites in BRAF, N-terminal S365, and C-terminal S729. 14-3-3 binding modulates the activity and dimerization of both wild-type and non-V600 mutant forms of BRAF. In BRAF V600E mutants, the C-terminal S729 site affects dimerization of truncated splice variants. The N-terminal, S365, is removed in BRAF V600E splice variants but its importance in full-length BRAF V600 mutants remains uncertain. We tested the role of S365 in dimerization and RAF inhibitor resistance in full-length BRAF V600E. Mutating BRAF S365 site to an alanine (S365A) reduced 14-3-3 association and increased BRAF V600E homodimerization. BRAF V600E S365A displayed reduced sensitivity to RAF inhibitor at the level of MEK-ERK1/2 signaling, cell growth, and cell viability. These data suggest that alteration or removal of the S365 14-3-3 binding site may contribute to RAF inhibitor resistance.
Collapse
Affiliation(s)
- Michael J Vido
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Justin Rock
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
57
|
Liau NPD, Venkatanarayan A, Quinn JG, Phung W, Malek S, Hymowitz SG, Sudhamsu J. Dimerization Induced by C-Terminal 14-3-3 Binding Is Sufficient for BRAF Kinase Activation. Biochemistry 2020; 59:3982-3992. [PMID: 32970425 DOI: 10.1021/acs.biochem.0c00517] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Ras-RAF-MEK-ERK signaling axis, commonly mutated in human cancers, is highly regulated to prevent aberrant signaling in healthy cells. One of the pathway modulators, 14-3-3, a constitutive dimer, induces RAF dimerization and activation by binding to a phosphorylated motif C-terminal to the RAF kinase domain. Recent work has suggested that a C-terminal "DTS" region in BRAF is necessary for this 14-3-3-mediated activation. We show that the catalytic activity and ATP binding affinity of the BRAF:14-3-3 complex is insensitive to the presence or absence of the DTS, while the ATP sites of both BRAF molecules are identical and available for binding. We also present a crystal structure of the apo BRAF:14-3-3 complex showing that the DTS is not required to attain the catalytically active conformation of BRAF. Rather, BRAF dimerization induced by 14-3-3 is the key step in activation, allowing the active BRAF:14-3-3 tetramer to achieve catalytic activity comparable to the constitutively active oncogenic BRAF V600E mutant.
Collapse
|
58
|
Yuan J, Dong X, Yap J, Hu J. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. J Hematol Oncol 2020; 13:113. [PMID: 32807225 PMCID: PMC7433213 DOI: 10.1186/s13045-020-00949-4] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is characterized as a complex disease caused by coordinated alterations of multiple signaling pathways. The Ras/RAF/MEK/ERK (MAPK) signaling is one of the best-defined pathways in cancer biology, and its hyperactivation is responsible for over 40% human cancer cases. To drive carcinogenesis, this signaling promotes cellular overgrowth by turning on proliferative genes, and simultaneously enables cells to overcome metabolic stress by inhibiting AMPK signaling, a key singular node of cellular metabolism. Recent studies have shown that AMPK signaling can also reversibly regulate hyperactive MAPK signaling in cancer cells by phosphorylating its key components, RAF/KSR family kinases, which affects not only carcinogenesis but also the outcomes of targeted cancer therapies against the MAPK signaling. In this review, we will summarize the current proceedings of how MAPK-AMPK signalings interplay with each other in cancer biology, as well as its implications in clinic cancer treatment with MAPK inhibition and AMPK modulators, and discuss the exploitation of combinatory therapies targeting both MAPK and AMPK as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Jimin Yuan
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Geriatric Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Xiaoduo Dong
- Shenzhen People's Hospital, 1017 Dongmen North Road, Shenzhen, 518020, China
| | - Jiajun Yap
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jiancheng Hu
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
| |
Collapse
|
59
|
Targeting mitochondria in melanoma: Interplay between MAPK signaling pathway and mitochondrial dynamics. Biochem Pharmacol 2020; 178:114104. [PMID: 32562785 DOI: 10.1016/j.bcp.2020.114104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Melanoma is a malignant proliferative disease originated in melanocytes, characterized by high metastatic activity and by the activation of oncogenes, such as B-RAF (40-60% of cases). Recent studies have shown that vemurafenib (a MAPK inhibitor) promoted disturbance of mitochondrial bioenergetics, although underlying mechanisms are not fully comprehended. Here we showed that MAPK inhibition by vemurafenib in B-RAFV600E-mutated human melanoma culminated in the inhibition of DRP1 phosphorylation, associated to a large mitochondrial network remodeling to the hyperfused phenotype, and increased oxidative phosphorylation capacity. Such alterations may be associated to melanoma resistance to vemurafenib, since the impairment of oxidative phosphorylation increased the vemurafenib cytotoxicity. These results point to the potential of mitochondrial dynamics as a targetable pathway in melanoma.
Collapse
|
60
|
Miningou N, Blackwell KT. The road to ERK activation: Do neurons take alternate routes? Cell Signal 2020; 68:109541. [PMID: 31945453 PMCID: PMC7127974 DOI: 10.1016/j.cellsig.2020.109541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/29/2023]
Abstract
The ERK cascade is a central signaling pathway that regulates a wide variety of cellular processes including proliferation, differentiation, learning and memory, development, and synaptic plasticity. A wide range of inputs travel from the membrane through different signaling pathway routes to reach activation of one set of output kinases, ERK1&2. The classical ERK activation pathway beings with growth factor activation of receptor tyrosine kinases. Numerous G-protein coupled receptors and ionotropic receptors also lead to ERK through increases in the second messengers calcium and cAMP. Though both types of pathways are present in diverse cell types, a key difference is that most stimuli to neurons, e.g. synaptic inputs, are transient, on the order of milliseconds to seconds, whereas many stimuli acting on non-neural tissue, e.g. growth factors, are longer duration. The ability to consolidate these inputs to regulate the activation of ERK in response to diverse signals raises the question of which factors influence the difference in ERK activation pathways. This review presents both experimental studies and computational models aimed at understanding the control of ERK activation and whether there are fundamental differences between neurons and other cells. Our main conclusion is that differences between cell types are quite subtle, often related to differences in expression pattern and quantity of some molecules such as Raf isoforms. In addition, the spatial location of ERK is critical, with regulation by scaffolding proteins producing differences due to colocalization of upstream molecules that may differ between neurons and other cells.
Collapse
Affiliation(s)
- Nadiatou Miningou
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, United States of America
| | - Kim T Blackwell
- Interdisciplinary Program in Neuroscience and Bioengineering Department, George Mason University, Fairfax, VA 22030, United States of America.
| |
Collapse
|
61
|
Degirmenci U, Wang M, Hu J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020; 9:E198. [PMID: 31941155 PMCID: PMC7017232 DOI: 10.3390/cells9010198] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
The RAS/RAF/MEK/ERK (MAPK) signaling cascade is essential for cell inter- and intra-cellular communication, which regulates fundamental cell functions such as growth, survival, and differentiation. The MAPK pathway also integrates signals from complex intracellular networks in performing cellular functions. Despite the initial discovery of the core elements of the MAPK pathways nearly four decades ago, additional findings continue to make a thorough understanding of the molecular mechanisms involved in the regulation of this pathway challenging. Considerable effort has been focused on the regulation of RAF, especially after the discovery of drug resistance and paradoxical activation upon inhibitor binding to the kinase. RAF activity is regulated by phosphorylation and conformation-dependent regulation, including auto-inhibition and dimerization. In this review, we summarize the recent major findings in the study of the RAS/RAF/MEK/ERK signaling cascade, particularly with respect to the impact on clinical cancer therapy.
Collapse
Affiliation(s)
- Ufuk Degirmenci
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
| | - Mei Wang
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
62
|
Overcoming Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutated Tumours. JOURNAL OF ONCOLOGY 2020; 2020:1079827. [PMID: 32411231 PMCID: PMC7199609 DOI: 10.1155/2020/1079827] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/21/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-mutated cancers and discusses novel preclinical approaches to overcoming resistance.
Collapse
|
63
|
Terrell EM, Durrant DE, Ritt DA, Sealover NE, Sheffels E, Spencer-Smith R, Esposito D, Zhou Y, Hancock JF, Kortum RL, Morrison DK. Distinct Binding Preferences between Ras and Raf Family Members and the Impact on Oncogenic Ras Signaling. Mol Cell 2019; 76:872-884.e5. [PMID: 31606273 PMCID: PMC7001861 DOI: 10.1016/j.molcel.2019.09.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 07/22/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022]
Abstract
The Ras GTPases are frequently mutated in human cancer, and, although the Raf kinases are essential effectors of Ras signaling, the tumorigenic properties of specific Ras-Raf complexes are not well characterized. Here, we examine the ability of individual Ras and Raf proteins to interact in live cells using bioluminescence resonance energy transfer (BRET) technology. We find that C-Raf binds all mutant Ras proteins with high affinity, whereas B-Raf exhibits a striking preference for mutant K-Ras. This selectivity is mediated by the acidic, N-terminal segment of B-Raf and requires the K-Ras polybasic region for high-affinity binding. In addition, we find that C-Raf is critical for mutant H-Ras-driven signaling and that events stabilizing B-Raf/C-Raf dimerization, such as Raf inhibitor treatment or certain B-Raf mutations, can allow mutant H-Ras to engage B-Raf with increased affinity to promote tumorigenesis, thus revealing a previously unappreciated role for C-Raf in potentiating B-Raf function.
Collapse
Affiliation(s)
- Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - David E Durrant
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Nancy E Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Erin Sheffels
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Dominic Esposito
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Robert L Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
64
|
BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep 2019; 25:1501-1510.e3. [PMID: 30404005 DOI: 10.1016/j.celrep.2018.10.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/11/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022] Open
Abstract
Expression of aberrantly spliced BRAF V600E isoforms (BRAF V600E ΔEx) mediates resistance in 13%-30% of melanoma patients progressing on RAF inhibitors. BRAF V600E ΔEx confers resistance, in part, through enhanced dimerization. Here, we uncoupled BRAF V600E ΔEx dimerization from maintenance of MEK-ERK1/2 signaling. Furthermore, we show BRAF V600E ΔEx association with its substrate, MEK, is enhanced and required for RAF inhibitor resistance. RAF inhibitor treatment increased phosphorylation at serine 729 (S729) in BRAF V600E ΔEx. Mutation of S729 to a non-phosphorylatable residue reduced BRAF V600E ΔEx-MEK interaction, reduced dimerization or oligomerization, and increased RAF inhibitor sensitivity. Conversely, mutation of the BRAF dimerization domain elicited partial effects on MEK association and RAF inhibitor sensitivity. Our data implicate BRAF S729 in resistance to RAF inhibitor and underscore the importance of substrate association with BRAF V600E ΔEx. These findings may provide opportunities to target resistance driven by aberrantly spliced forms of BRAF V600E.
Collapse
|
65
|
Liu Z, Wang M, Wang H, Fang L, Gou S. Platinum-Based Modification of Styrylbenzylsulfones as Multifunctional Antitumor Agents: Targeting the RAS/RAF Pathway, Enhancing Antitumor Activity, and Overcoming Multidrug Resistance. J Med Chem 2019; 63:186-204. [DOI: 10.1021/acs.jmedchem.9b01223] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhikun Liu
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Meng Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, China
| | - Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China
| |
Collapse
|
66
|
Weinberg F, Griffin R, Fröhlich M, Heining C, Braun S, Spohr C, Iconomou M, Hollek V, Röring M, Horak P, Kreutzfeldt S, Warsow G, Hutter B, Uhrig S, Neumann O, Reuss D, Heiland DH, von Kalle C, Weichert W, Stenzinger A, Brors B, Glimm H, Fröhling S, Brummer T. Identification and characterization of a BRAF fusion oncoprotein with retained autoinhibitory domains. Oncogene 2019; 39:814-832. [PMID: 31558800 DOI: 10.1038/s41388-019-1021-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Fusion proteins involving the BRAF serine/threonine kinase occur in many cancers. The oncogenic potential of BRAF fusions has been attributed to the loss of critical N-terminal domains that mediate BRAF autoinhibition. We used whole-exome and RNA sequencing in a patient with glioblastoma multiforme to identify a rearrangement between TTYH3, encoding a membrane-resident, calcium-activated chloride channel, and BRAF intron 1, resulting in a TTYH3-BRAF fusion protein that retained all features essential for BRAF autoinhibition. Accordingly, the BRAF moiety of the fusion protein alone, which represents full-length BRAF without the amino acids encoded by exon 1 (BRAFΔE1), did not induce MEK/ERK phosphorylation or transformation. Likewise, neither the TTYH3 moiety of the fusion protein nor full-length TTYH3 provoked ERK pathway activity or transformation. In contrast, TTYH3-BRAF displayed increased MEK phosphorylation potential and transforming activity, which were caused by TTYH3-mediated tethering of near-full-length BRAF to the (endo)membrane system. Consistent with this mechanism, a synthetic approach, in which BRAFΔE1 was tethered to the membrane by fusing it to the cytoplasmic tail of CD8 also induced transformation. Furthermore, we demonstrate that TTYH3-BRAF signals largely independent of a functional RAS binding domain, but requires an intact BRAF dimer interface and activation loop phosphorylation sites. Cells expressing TTYH3-BRAF exhibited increased MEK/ERK signaling, which was blocked by clinically achievable concentrations of sorafenib, trametinib, and the paradox breaker PLX8394. These data provide the first example of a fully autoinhibited BRAF protein whose oncogenic potential is dictated by a distinct fusion partner and not by a structural change in BRAF itself.
Collapse
Affiliation(s)
- Florian Weinberg
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martina Fröhlich
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Christoph Heining
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Heidelberg, Germany.,University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Mary Iconomou
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Viola Hollek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Horak
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, DKFZ, Heidelberg, Germany.,Division of Theoretical Bioinformatics, DKFZ, Heidelberg, Germany
| | - Barbara Hutter
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Sebastian Uhrig
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Olaf Neumann
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Reuss
- DKTK, Heidelberg, Germany.,Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Translational NeuroOncology Research Group, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, Munich, Germany.,DKTK, Munich, Germany
| | - Albrecht Stenzinger
- DKTK, Heidelberg, Germany.,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany.,DKTK, Heidelberg, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, NCT Dresden, Dresden, and DKFZ, Heidelberg, Germany.,University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, NCT Heidelberg and DKFZ, Heidelberg, Germany. .,DKTK, Heidelberg, Germany.
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany. .,Comprehensive Cancer Centre Freiburg, University of Freiburg, Freiburg, Germany. .,DKTK Partner Site Freiburg and DKFZ, Heidelberg, Germany.
| |
Collapse
|
67
|
Kondo Y, Ognjenović J, Banerjee S, Karandur D, Merk A, Kulhanek K, Wong K, Roose JP, Subramaniam S, Kuriyan J. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019; 366:109-115. [PMID: 31604311 DOI: 10.1126/science.aay0543] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo-electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical "active" conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jana Ognjenović
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Saikat Banerjee
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathryn Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
68
|
Adaptive Responses as Mechanisms of Resistance to BRAF Inhibitors in Melanoma. Cancers (Basel) 2019; 11:cancers11081176. [PMID: 31416288 PMCID: PMC6721815 DOI: 10.3390/cancers11081176] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
: The introduction of v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors in melanoma patients with BRAF (V600E) mutations has demonstrated significant clinical benefits. However, rarely do tumours regress completely. Frequently, the reason for this is that therapies targeting specific oncogenic mutations induce a number of intrinsic compensatory mechanisms, also known as adaptive responses or feedback loops, that enhance the pro-survival and pro-proliferative capacity of a proportion of the original tumour population, thereby resulting in tumour progression. In this review we will summarize the known adaptive responses that limit BRAF mutant therapy and discuss potential novel combinatorial therapies to overcome resistance.
Collapse
|
69
|
Braun C, Schneider N, Pei D, Bosserhoff A, Kuphal S. Inhibition of peptidyl-prolyl isomerase (PIN1) and BRAF signaling to target melanoma. Am J Transl Res 2019; 11:4425-4437. [PMID: 31396346 PMCID: PMC6684922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/01/2018] [Indexed: 06/10/2023]
Abstract
PIN1 is a phosphorylation-dependent peptidyl-prolyl cis/trans isomerase, overexpressed in many cancers, including melanoma. Our immunohistochemistry data of melanoma patient tissue underline the up-regulation of PIN1 in metastases. Here, we demonstrate important functions of PIN1 and its selective and cell permeable inhibitor 37 for the treatment of melanoma. To analyze its possible role in oncogenesis and as a therapeutic target, we first suppressed PIN1 expression by a siRNA pool. PIN1 knockdown potently inhibited melanoma cell proliferation and vascular mimicry by influencing several cancer-relevant pathways. Furthermore, inhibitor 37 inhibited cell growth in melanoma and induced apoptosis. Normal healthy melanocytes, keratinocytes and fibroblasts are not affected by the PIN1 inhibitor 37. Combinatorial treatment of melanoma cells is with Vemurafenib as a common therapeutic option for BRAF-mutated melanoma and inhibitor 37 resulted in a strong, synergistic effect on apoptosis of melanoma cell lines. In summary, targeting PIN1 offers a promising therapeutic approach to simultaneously downregulate multiple cancer-driving pathways in cancer.
Collapse
Affiliation(s)
- Christina Braun
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-NürnbergFahrstrasse 17, Erlangen 91054, Germany
| | - Nadja Schneider
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-NürnbergFahrstrasse 17, Erlangen 91054, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University484 West 12th Avenue, Columbus, Ohio 43220, United States
| | - Anja Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-NürnbergFahrstrasse 17, Erlangen 91054, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-NürnbergFahrstrasse 17, Erlangen 91054, Germany
| |
Collapse
|
70
|
Boned Del Río I, Young LC, Sari S, Jones GG, Ringham-Terry B, Hartig N, Rejnowicz E, Lei W, Bhamra A, Surinova S, Rodriguez-Viciana P. SHOC2 complex-driven RAF dimerization selectively contributes to ERK pathway dynamics. Proc Natl Acad Sci U S A 2019; 116:13330-13339. [PMID: 31213532 PMCID: PMC6613145 DOI: 10.1073/pnas.1902658116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite the crucial role of RAF kinases in cell signaling and disease, we still lack a complete understanding of their regulation. Heterodimerization of RAF kinases as well as dephosphorylation of a conserved "S259" inhibitory site are important steps for RAF activation but the precise mechanisms and dynamics remain unclear. A ternary complex comprised of SHOC2, MRAS, and PP1 (SHOC2 complex) functions as a RAF S259 holophosphatase and gain-of-function mutations in SHOC2, MRAS, and PP1 that promote complex formation are found in Noonan syndrome. Here we show that SHOC2 complex-mediated S259 RAF dephosphorylation is critically required for growth factor-induced RAF heterodimerization as well as for MEK dissociation from BRAF. We also uncover SHOC2-independent mechanisms of RAF and ERK pathway activation that rely on N-region phosphorylation of CRAF. In DLD-1 cells stimulated with EGF, SHOC2 function is essential for a rapid transient phase of ERK activation, but is not required for a slow, sustained phase that is instead driven by palmitoylated H/N-RAS proteins and CRAF. Whereas redundant SHOC2-dependent and -independent mechanisms of RAF and ERK activation make SHOC2 dispensable for proliferation in 2D, KRAS mutant cells preferentially rely on SHOC2 for ERK signaling under anchorage-independent conditions. Our study highlights a context-dependent contribution of SHOC2 to ERK pathway dynamics that is preferentially engaged by KRAS oncogenic signaling and provides a biochemical framework for selective ERK pathway inhibition by targeting the SHOC2 holophosphatase.
Collapse
Affiliation(s)
- Isabel Boned Del Río
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Lucy C Young
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Sibel Sari
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Greg G Jones
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Benjamin Ringham-Terry
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Nicole Hartig
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Ewa Rejnowicz
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Winnie Lei
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms
| | - Amandeep Bhamra
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Silvia Surinova
- Proteomics Research Core Facility, University College London Cancer Institute, WC1E 6DD London, United Kingdom
| | - Pablo Rodriguez-Viciana
- University College London Cancer Institute, University College London, WC1E 6DD London, United Kingdoms;
| |
Collapse
|
71
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
72
|
SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat Commun 2019; 10:2532. [PMID: 31182717 PMCID: PMC6557854 DOI: 10.1038/s41467-019-10367-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted inhibition of the ERK-MAPK pathway, upregulated in a majority of human cancers, has been hindered in the clinic by drug resistance and toxicity. The MRAS-SHOC2-PP1 (SHOC2 phosphatase) complex plays a key role in RAF-ERK pathway activation by dephosphorylating a critical inhibitory site on RAF kinases. Here we show that genetic inhibition of SHOC2 suppresses tumorigenic growth in a subset of KRAS-mutant NSCLC cell lines and prominently inhibits tumour development in autochthonous murine KRAS-driven lung cancer models. On the other hand, systemic SHOC2 ablation in adult mice is relatively well tolerated. Furthermore, we show that SHOC2 deletion selectively sensitizes KRAS- and EGFR-mutant NSCLC cells to MEK inhibitors. Mechanistically, SHOC2 deletion prevents MEKi-induced RAF dimerization, leading to more potent and durable ERK pathway suppression that promotes BIM-dependent apoptosis. These results present a rationale for the generation of SHOC2 phosphatase targeted therapies, both as a monotherapy and to widen the therapeutic index of MEK inhibitors. Targeted inhibition of the ERK-MAPK pathway is challenged by the development of resistance and toxicity. Here, the authors show that SHOC2 genetic inhibition impairs lung tumour development and improves MEK inhibitor efficacy in RAS- and EGFR-mutant cells.
Collapse
|
73
|
Lill D, Rukhlenko OS, Mc Elwee AJ, Kashdan E, Timmer J, Kholodenko BN. Mapping connections in signaling networks with ambiguous modularity. NPJ Syst Biol Appl 2019; 5:19. [PMID: 31149348 PMCID: PMC6533310 DOI: 10.1038/s41540-019-0096-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Modular Response Analysis (MRA) is a suite of methods that under certain assumptions permits the precise reconstruction of both the directions and strengths of connections between network modules from network responses to perturbations. Standard MRA assumes that modules are insulated, thereby neglecting the existence of inter-modular protein complexes. Such complexes sequester proteins from different modules and propagate perturbations to the protein abundance of a downstream module retroactively to an upstream module. MRA-based network reconstruction detects retroactive, sequestration-induced connections when an enzyme from one module is substantially sequestered by its substrate that belongs to a different module. Moreover, inferred networks may surprisingly depend on the choice of protein abundances that are experimentally perturbed, and also some inferred connections might be false. Here, we extend MRA by introducing a combined computational and experimental approach, which allows for a computational restoration of modular insulation, unmistakable network reconstruction and discrimination between solely regulatory and sequestration-induced connections for a range of signaling pathways. Although not universal, our approach extends MRA methods to signaling networks with retroactive interactions between modules arising from enzyme sequestration effects.
Collapse
Affiliation(s)
- Daniel Lill
- Institute of Physics, University of Freiburg, Freiburg, Germany
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | | | | | - Eugene Kashdan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Boris N. Kholodenko
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
74
|
Kurimchak AM, Shelton C, Herrera-Montávez C, Duncan KE, Chernoff J, Duncan JS. Intrinsic Resistance to MEK Inhibition through BET Protein-Mediated Kinome Reprogramming in NF1-Deficient Ovarian Cancer. Mol Cancer Res 2019; 17:1721-1734. [PMID: 31043489 DOI: 10.1158/1541-7786.mcr-18-1332] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/14/2019] [Accepted: 04/29/2019] [Indexed: 11/16/2022]
Abstract
Mutation or deletion of Neurofibromin 1 (NF1), an inhibitor of RAS signaling, frequently occurs in epithelial ovarian cancer (EOC), supporting therapies that target downstream RAS effectors, such as the RAF-MEK-ERK pathway. However, no comprehensive studies have been carried out testing the efficacy of MEK inhibition in NF1-deficient EOC. Here, we performed a detailed characterization of MEK inhibition in NF1-deficient EOC cell lines using kinome profiling and RNA sequencing. Our studies showed MEK inhibitors (MEKi) were ineffective at providing durable growth inhibition in NF1-deficient cells due to kinome reprogramming. MEKi-mediated destabilization of FOSL1 resulted in induced expression of receptor tyrosine kinases (RTK) and their downstream RAF and PI3K signaling, thus overcoming MEKi therapy. MEKi synthetic enhancement screens identified BRD2 and BRD4 as integral mediators of the MEKi-induced RTK signatures. Inhibition of bromo and extra terminal (BET) proteins using BET bromodomain inhibitors blocked MEKi-induced RTK reprogramming, indicating that BRD2 and BRD4 represent promising therapeutic targets in combination with MEKi to block resistance due to kinome reprogramming in NF1-deficient EOC. IMPLICATIONS: Our findings suggest MEK inhibitors will likely not be effective as single-agent therapies in NF1-deficient EOC due to kinome reprogramming. Cotargeting BET proteins in combination with MEKis to block reprogramming at the transcriptional level may provide an epigenetic strategy to overcome MEKi resistance in NF1-deficient EOC.
Collapse
Affiliation(s)
- Alison M Kurimchak
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Claude Shelton
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | - Kelly E Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan Chernoff
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - James S Duncan
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania.
| |
Collapse
|
75
|
Erickson KE, Rukhlenko OS, Posner RG, Hlavacek WS, Kholodenko BN. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Semin Cancer Biol 2019; 54:162-173. [PMID: 29518522 PMCID: PMC6123307 DOI: 10.1016/j.semcancer.2018.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023]
Abstract
RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.
Collapse
Affiliation(s)
- Keesha E Erickson
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oleksii S Rukhlenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Richard G Posner
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Boris N Kholodenko
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
76
|
Terrell EM, Morrison DK. Ras-Mediated Activation of the Raf Family Kinases. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033746. [PMID: 29358316 DOI: 10.1101/cshperspect.a033746] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade comprised of the Raf, MEK, and ERK protein kinases constitutes a key effector cascade used by the Ras GTPases to relay signals regulating cell growth, survival, proliferation, and differentiation. Of the ERK cascade components, the regulation of the Raf kinases is by far the most complex, involving changes in subcellular localization, protein and lipid interactions, as well as alterations in the Raf phosphorylation state. The Raf kinases interact directly with active, membrane-localized Ras, and this interaction is often the first step in the Raf activation process, which ultimately results in ERK activation and the downstream phosphorylation of cellular targets that will specify a particular biological response. Here, we will examine our current understanding of how Ras promotes Raf activation, focusing on the molecular mechanisms that contribute to the Raf activation/inactivation cycle.
Collapse
Affiliation(s)
- Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| |
Collapse
|
77
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
78
|
Zou J, Lei T, Guo P, Yu J, Xu Q, Luo Y, Ke R, Huang D. Mechanisms shaping the role of ERK1/2 in cellular senescence (Review). Mol Med Rep 2018; 19:759-770. [PMID: 30535440 PMCID: PMC6323238 DOI: 10.3892/mmr.2018.9712] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/10/2018] [Indexed: 01/19/2023] Open
Abstract
Senescence is a result of cellular stress and is a potential mechanism for regulating cancer. As a member of the mitogen-activated protein kinase family, ERK1/2 (extracellular signal-regulated protein kinase) has an important role in delivering extracellular signals to the nucleus, and these signals regulate the cell cycle, cell proliferation and cell development. Previous studies demonstrated that ERK1/2 is closely associated with cell aging; however other previous studies suggested that ERK1/2 exerts an opposite effect on aging models and target proteins, even within the same cell model. Recent studies demonstrated that the effect of ERK1/2 on aging is likely associated with its target proteins and regulators, negative feedback loops, phosphorylated ERK1/2 factors and ERK1/2 translocation from the cytoplasm to the nucleus. The present review aims to examine the mechanism of ERK1/2 and discuss its role in cellular outcomes and novel drug development.
Collapse
Affiliation(s)
- Junrong Zou
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tingting Lei
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Pei Guo
- Department of Pathology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518110, P.R. China
| | - Jason Yu
- Department of Pharmacology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Qichao Xu
- Department of Pharmacology, The People's Hospital of Xinyu City, Xinyu, Jiangxi 338025, P.R. China
| | - Yunfei Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| | - Deqiang Huang
- Research Institute of Digestive Diseases, Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
79
|
Bugaj LJ, Sabnis AJ, Mitchell A, Garbarino JE, Toettcher JE, Bivona TG, Lim WA. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science 2018; 361:361/6405/eaao3048. [PMID: 30166458 DOI: 10.1126/science.aao3048] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/16/2018] [Indexed: 12/16/2022]
Abstract
The Ras-Erk (extracellular signal-regulated kinase) pathway encodes information in its dynamics; the duration and frequency of Erk activity can specify distinct cell fates. To enable dynamic encoding, temporal information must be accurately transmitted from the plasma membrane to the nucleus. We used optogenetic profiling to show that both oncogenic B-Raf mutations and B-Raf inhibitors can cause corruption of this transmission, so that short pulses of input Ras activity are distorted into abnormally long Erk outputs. These changes can reshape downstream transcription and cell fates, resulting in improper decisions to proliferate. These findings illustrate how altered dynamic signal transmission properties, and not just constitutively increased signaling, can contribute to cell proliferation and perhaps cancer, and how optogenetic profiling can dissect mechanisms of signaling dysfunction in disease.
Collapse
Affiliation(s)
- L J Bugaj
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A J Sabnis
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - A Mitchell
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J E Garbarino
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - J E Toettcher
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - T G Bivona
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - W A Lim
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.,Center for Systems and Synthetic Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
80
|
Yuan J, Ng WH, Lam PYP, Wang Y, Xia H, Yap J, Guan SP, Lee ASG, Wang M, Baccarini M, Hu J. The dimer-dependent catalytic activity of RAF family kinases is revealed through characterizing their oncogenic mutants. Oncogene 2018; 37:5719-5734. [PMID: 29930381 PMCID: PMC6202329 DOI: 10.1038/s41388-018-0365-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022]
Abstract
Although extensively studied for three decades, the molecular mechanisms that regulate the RAF/MEK/ERK kinase cascade remain ambiguous. Recent studies identified the dimerization of RAF as a key event in the activation of this cascade. Here, we show that in-frame deletions in the β3-αC loop activate ARAF as well as BRAF and other oncogenic kinases by enforcing homodimerization. By characterizing these RAF mutants, we find that ARAF has less allosteric and catalytic activity than the other two RAF isoforms, which arises from its non-canonical APE motif. Further, these RAF mutants exhibit a strong oncogenic potential, and a differential inhibitor resistance that correlates with their dimer affinity. Using these unique mutants, we demonstrate that active RAFs, including the BRAF(V600E) mutant, phosphorylate MEK in a dimer-dependent manner. This study characterizes a special category of oncogenic kinase mutations, and elucidates the molecular basis that underlies the differential ability of RAF isoforms to stimulate MEK-ERK pathway. Further, this study reveals a unique catalytic feature of RAF family kinases that can be exploited to control their activities for cancer therapies.
Collapse
Affiliation(s)
- Jimin Yuan
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Paula Y P Lam
- Division of Cellular and Molecular Research, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Yu Wang
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Hongping Xia
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Jiajun Yap
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Shou Ping Guan
- Division of Cellular and Molecular Research, Singapore, Singapore
| | - Ann S G Lee
- Division of Medical Sciences, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Office of Clinical & Academic Faculty Affairs, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore, Singapore
| | - Mei Wang
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Manuela Baccarini
- Max F. Perutz Laboratories, University of Vienna, Doktor-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, Singapore, Singapore.
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
81
|
Lubrano S, Comelli L, Piccirilli C, Marranci A, Dapporto F, Tantillo E, Gemignani F, Gutkind JS, Salvetti A, Chiorino G, Cozza G, Chiariello M, Galli A, Poliseno L, Cervelli T. Development of a yeast-based system to identify new hBRAFV600E functional interactors. Oncogene 2018; 38:1355-1366. [PMID: 30237439 DOI: 10.1038/s41388-018-0496-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/30/2018] [Accepted: 08/14/2018] [Indexed: 11/09/2022]
Abstract
BRAFV600E is a mutant Ser-Thr protein kinase that plays a crucial role in many types of cancer, including melanoma. Despite several aspects of BRAFV600E biology have been already elucidated, the proteins that regulate its expression and activity remain largely unknown, hampering our capacity to control its unrestrained effects. Here, we propose yeast Saccharomyces cerevisiae as a model system that can be used to achieve a better understanding of the regulation of human BRAFV600E.By showing that in osmotic stress conditions hBRAFV600E can rescue the growth of strains carrying a double or triple deletion in MAPKKK belonging to the HOG pathway, we demonstrate that this oncogenic kinase is active in yeast even if it does not have an ortholog. Moreover, we report that, in the yeast ptp3∆ptc1∆ strain that is deleted in the genes encoding for two phosphatases responsible for Hog1 de-phoshorylation, hBRAFV600E mimics the toxicity observed in the presence of constitutive Hog1 activation. Finally, we exploit such a toxicity to perform a functional screening of a human cDNA library, looking for cDNAs able to rescue yeast growth. In this way, we identify SMIM10, a mitochondrial protein that in melanoma cells selectively downregulates BRAFV600E RNA and protein levels, by acting indirectly at the post-transcriptional level. Upon SMIM10 overexpression, BRAFV600E melanoma cells show disrupted mitochondrial structure/function and undergo senescence. They also show decreased ability to proliferate and form colonies, as well as increased sensitivity to the BRAF inhibitor vemurafenib. Interestingly, the analysis of TCGA melanoma samples indicates that patients with higher SMIM10 levels have a better prognosis. Therefore, these data suggest that SMIM10 exerts an oncosuppressive role in melanoma cells.Taken together, our results unveil the potential of S. cerevisiae to study hBRAFV600E, to populate the network of its functional interactors and, in doing so, to uncover new cancer-associated genes with therapeutic potential.
Collapse
Affiliation(s)
- Simone Lubrano
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.,Department of Biology, University of Pisa, Pisa, Italy
| | - Laura Comelli
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy
| | | | - Andrea Marranci
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy
| | | | - Elena Tantillo
- Scuola Normale Superiore, Pisa, Italy.,FPS-Pisa Science Foundation, Pisa, Italy
| | | | - J Silvio Gutkind
- Department of Pharmacology, UC San Diego Moores Cancer Center, La Jolla, CA, USA
| | - Alessandra Salvetti
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanna Chiorino
- Lab of Cancer Genomics, Fondazione Edo and Elvo Tempia, Biella, Italy
| | - Giorgio Cozza
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Mario Chiariello
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.,Signal Transduction Unit, Core Research Laboratory, ISPRO, Siena, Italy
| | - Alvaro Galli
- Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.
| | - Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy. .,Institute of Clinical Physiology, IFC-CNR, Pisa, Italy.
| | | |
Collapse
|
82
|
García-Gómez R, Bustelo XR, Crespo P. Protein-Protein Interactions: Emerging Oncotargets in the RAS-ERK Pathway. Trends Cancer 2018; 4:616-633. [PMID: 30149880 DOI: 10.1016/j.trecan.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/03/2018] [Accepted: 07/08/2018] [Indexed: 12/20/2022]
Abstract
Given the implication of aberrant RAS-extracellular signal-regulated kinase (ERK) signaling in the development of a large number of tumor types, this route is under intense scrutiny to identify new anticancer drugs. Most avenues in that direction have been primarily focused on the inhibition of the catalytic activity of the kinases that participate in this pathway. Although promising, the efficacy of these therapies is short lived due to undesired toxicity and/or drug resistance problems. As an alternative path, new efforts are now being devoted to the targeting of protein-protein interactions (PPIs) involved in the flow of RAS-ERK signals. Many of these efforts have shown promising results in preclinical models. In this review, we summarize recent progress made in this area.
Collapse
Affiliation(s)
- Rocío García-Gómez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Xosé R Bustelo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain; Centro de Investigación del Cáncer, Universidad de Salamanca, Salamanca 37007, Spain; Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca 37007, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain.
| |
Collapse
|
83
|
Yeh E, Dao DQ, Wu ZY, Kandalam SM, Camacho FM, Tom C, Zhang W, Krencik R, Rauen KA, Ullian EM, Weiss LA. Patient-derived iPSCs show premature neural differentiation and neuron type-specific phenotypes relevant to neurodevelopment. Mol Psychiatry 2018; 23:1687-1698. [PMID: 29158583 PMCID: PMC5962360 DOI: 10.1038/mp.2017.238] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/13/2017] [Accepted: 10/09/2017] [Indexed: 01/01/2023]
Abstract
Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events.
Collapse
Affiliation(s)
- E Yeh
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - D Q Dao
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Z Y Wu
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - S M Kandalam
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - F M Camacho
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - C Tom
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - W Zhang
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - R Krencik
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA
| | - K A Rauen
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - E M Ullian
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - L A Weiss
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
84
|
Dissecting RAF Inhibitor Resistance by Structure-based Modeling Reveals Ways to Overcome Oncogenic RAS Signaling. Cell Syst 2018; 7:161-179.e14. [PMID: 30007540 DOI: 10.1016/j.cels.2018.06.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/09/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022]
Abstract
Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.
Collapse
|
85
|
Kidger AM, Sipthorp J, Cook SJ. ERK1/2 inhibitors: New weapons to inhibit the RAS-regulated RAF-MEK1/2-ERK1/2 pathway. Pharmacol Ther 2018; 187:45-60. [PMID: 29454854 DOI: 10.1016/j.pharmthera.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The RAS-regulated RAF-MEK1/2-ERK1/2 signalling pathway is de-regulated in a variety of cancers due to mutations in receptor tyrosine kinases (RTKs), negative regulators of RAS (such as NF1) and core pathway components themselves (RAS, BRAF, CRAF, MEK1 or MEK2). This has driven the development of a variety of pharmaceutical agents to inhibit RAF-MEK1/2-ERK1/2 signalling in cancer and both RAF and MEK inhibitors are now approved and used in the clinic. There is now much interest in targeting at the level of ERK1/2 for a variety of reasons. First, since the pathway is linear from RAF-to-MEK-to-ERK then ERK1/2 are validated as targets per se. Second, innate resistance to RAF or MEK inhibitors involves relief of negative feedback and pathway re-activation with all signalling going through ERK1/2, validating the use of ERK inhibitors with RAF or MEK inhibitors as an up-front combination. Third, long-term acquired resistance to RAF or MEK inhibitors involves a variety of mechanisms (KRAS or BRAF amplification, MEK mutation, etc.) which re-instate ERK activity, validating the use of ERK inhibitors to forestall acquired resistance to RAF or MEK inhibitors. The first potent highly selective ERK1/2 inhibitors have now been developed and are entering clinical trials. They have one of three discrete mechanisms of action - catalytic, "dual mechanism" or covalent - which could have profound consequences for how cells respond and adapt. In this review we describe the validation of ERK1/2 as anti-cancer drug targets, consider the mechanism of action of new ERK1/2 inhibitors and how this may impact on their efficacy, anticipate factors that will determine how tumour cells respond and adapt to ERK1/2 inhibitors and consider ERK1/2 inhibitor drug combinations.
Collapse
Affiliation(s)
- Andrew M Kidger
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| | - James Sipthorp
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom
| | - Simon J Cook
- Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, United Kingdom.
| |
Collapse
|
86
|
Dankner M, Rose AAN, Rajkumar S, Siegel PM, Watson IR. Classifying BRAF alterations in cancer: new rational therapeutic strategies for actionable mutations. Oncogene 2018. [DOI: 10.1038/s41388-018-0171-x] [Citation(s) in RCA: 337] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
87
|
Eblen ST. Extracellular-Regulated Kinases: Signaling From Ras to ERK Substrates to Control Biological Outcomes. Adv Cancer Res 2018; 138:99-142. [PMID: 29551131 DOI: 10.1016/bs.acr.2018.02.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The extracellular-regulated kinases ERK1 and ERK2 are evolutionarily conserved, ubiquitous serine-threonine kinases that are involved in regulating cellular signaling in both normal and pathological conditions. Their expression is critical for development and their hyperactivation is a major factor in cancer development and progression. Since their discovery as one of the major signaling mediators activated by mitogens and Ras mutation, we have learned much about their regulation, including their activation, binding partners and substrates. In this review I will discuss some of what has been discovered about the members of the Ras to ERK pathway, including regulation of their activation by growth factors and cell adhesion pathways. Looking downstream of ERK activation I will also highlight some of the many ERK substrates that have been discovered, including those involved in feedback regulation, cell migration and cell cycle progression through the control of transcription, pre-mRNA splicing and protein synthesis.
Collapse
Affiliation(s)
- Scott T Eblen
- Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
88
|
Lavoie H, Sahmi M, Maisonneuve P, Marullo SA, Thevakumaran N, Jin T, Kurinov I, Sicheri F, Therrien M. MEK drives BRAF activation through allosteric control of KSR proteins. Nature 2018; 554:549-553. [PMID: 29433126 DOI: 10.1038/nature25478] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/22/2017] [Indexed: 01/29/2023]
Abstract
RAF family kinases have prominent roles in cancer. Their activation is dependent on dimerization of their kinase domains, which has emerged as a hindrance for drug development. In mammals, RAF family kinases include three catalytically competent enzymes (ARAF, BRAF and CRAF) and two pseudokinases (KSR1 and KSR2) that have been described as scaffolds owing to their apparent ability to bridge RAF isoforms and their substrate, mitogen-activated protein kinase kinase (MEK). Kinase suppressor of Ras (KSR) pseudokinases were also shown to dimerize with kinase-competent RAFs to stimulate catalysis allosterically. Although GTP-bound RAS can modulate the dimerization of RAF isoforms by engaging their RAS-binding domains, KSR1 and KSR2 lack an RAS-binding domain and therefore the regulatory principles underlying their dimerization with other RAF family members remain unknown. Here we show that the selective heterodimerization of BRAF with KSR1 is specified by direct contacts between the amino-terminal regulatory regions of each protein, comprising in part a novel domain called BRS in BRAF and the coiled-coil-sterile α motif (CC-SAM) domain in KSR1. We also discovered that MEK binding to the kinase domain of KSR1 asymmetrically drives BRAF-KSR1 heterodimerization, resulting in the concomitant stimulation of BRAF catalytic activity towards free MEK molecules. These findings demonstrate that KSR-MEK complexes allosterically activate BRAF through the action of N-terminal regulatory region and kinase domain contacts and challenge the accepted role of KSR as a scaffold for MEK recruitment to RAF.
Collapse
Affiliation(s)
- Hugo Lavoie
- Institute for Research in Immunology and Cancer Laboratory of Intracellular Signaling Université de Montréal C.P. 6128, Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer Laboratory of Intracellular Signaling Université de Montréal C.P. 6128, Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada
| | - Sara A Marullo
- Institute for Research in Immunology and Cancer Laboratory of Intracellular Signaling Université de Montréal C.P. 6128, Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada
| | - Neroshan Thevakumaran
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Ting Jin
- Institute for Research in Immunology and Cancer Laboratory of Intracellular Signaling Université de Montréal C.P. 6128, Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada
| | - Igor Kurinov
- NE-CAT APS, Building 436E, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Marc Therrien
- Institute for Research in Immunology and Cancer Laboratory of Intracellular Signaling Université de Montréal C.P. 6128, Succursale Centre-Ville Montréal, Québec H3C 3J7, Canada.,Département de pathologie et biologie cellulaire, Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
89
|
Verlande A, Krafčíková M, Potěšil D, Trantírek L, Zdráhal Z, Elkalaf M, Trnka J, Souček K, Rauch N, Rauch J, Kolch W, Uldrijan S. Metabolic stress regulates ERK activity by controlling KSR-RAF heterodimerization. EMBO Rep 2018; 19:320-336. [PMID: 29263201 PMCID: PMC5797961 DOI: 10.15252/embr.201744524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 11/15/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022] Open
Abstract
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.
Collapse
Affiliation(s)
- Amandine Verlande
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michaela Krafčíková
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Moustafa Elkalaf
- Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Trnka
- Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Souček
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Laboratory of Cytokinetics, Institute of Biophysics, Academy of Sciences, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Nora Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Jens Rauch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Conway Institute, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Stjepan Uldrijan
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
90
|
Chen M, Wan L, Zhang J, Zhang J, Mendez L, Clohessy JG, Berry K, Victor J, Yin Q, Zhu Y, Wei W, Pandolfi PP. Deregulated PP1α phosphatase activity towards MAPK activation is antagonized by a tumor suppressive failsafe mechanism. Nat Commun 2018; 9:159. [PMID: 29335436 PMCID: PMC5768788 DOI: 10.1038/s41467-017-02272-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is frequently aberrantly activated in advanced cancers, including metastatic prostate cancer (CaP). However, activating mutations or gene rearrangements among MAPK signaling components, such as Ras and Raf, are not always observed in cancers with hyperactivated MAPK. The mechanisms underlying MAPK activation in these cancers remain largely elusive. Here we discover that genomic amplification of the PPP1CA gene is highly enriched in metastatic human CaP. We further identify an S6K/PP1α/B-Raf signaling pathway leading to activation of MAPK signaling that is antagonized by the PML tumor suppressor. Mechanistically, we find that PP1α acts as a B-Raf activating phosphatase and that PML suppresses MAPK activation by sequestering PP1α into PML nuclear bodies, hence repressing S6K-dependent PP1α phosphorylation, 14-3-3 binding and cytoplasmic accumulation. Our findings therefore reveal a PP1α/PML molecular network that is genetically altered in human cancer towards aberrant MAPK activation, with important therapeutic implications.
Collapse
Affiliation(s)
- Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lourdes Mendez
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Kelsey Berry
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Joshua Victor
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Qing Yin
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Yuan Zhu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
91
|
Eisenhardt AE, Sprenger A, Röring M, Herr R, Weinberg F, Köhler M, Braun S, Orth J, Diedrich B, Lanner U, Tscherwinski N, Schuster S, Dumaz N, Schmidt E, Baumeister R, Schlosser A, Dengjel J, Brummer T. Phospho-proteomic analyses of B-Raf protein complexes reveal new regulatory principles. Oncotarget 2018; 7:26628-52. [PMID: 27034005 PMCID: PMC5042004 DOI: 10.18632/oncotarget.8427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/07/2016] [Indexed: 12/19/2022] Open
Abstract
B-Raf represents a critical physiological regulator of the Ras/RAF/MEK/ERK-pathway and a pharmacological target of growing clinical relevance, in particular in oncology. To understand how B-Raf itself is regulated, we combined mass spectrometry with genetic approaches to map its interactome in MCF-10A cells as well as in B-Raf deficient murine embryonic fibroblasts (MEFs) and B-Raf/Raf-1 double deficient DT40 lymphoma cells complemented with wildtype or mutant B-Raf expression vectors. Using a multi-protease digestion approach, we identified a novel ubiquitination site and provide a detailed B-Raf phospho-map. Importantly, we identify two evolutionary conserved phosphorylation clusters around T401 and S419 in the B-Raf hinge region. SILAC labelling and genetic/biochemical follow-up revealed that these clusters are phosphorylated in the contexts of oncogenic Ras, sorafenib induced Raf dimerization and in the background of the V600E mutation. We further show that the vemurafenib sensitive phosphorylation of the T401 cluster occurs in trans within a Raf dimer. Substitution of the Ser/Thr-residues of this cluster by alanine residues enhances the transforming potential of B-Raf, indicating that these phosphorylation sites suppress its signaling output. Moreover, several B-Raf phosphorylation sites, including T401 and S419, are somatically mutated in tumors, further illustrating the importance of phosphorylation for the regulation of this kinase.
Collapse
Affiliation(s)
- Anja E Eisenhardt
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Adrian Sprenger
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany.,INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Michael Röring
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Ricarda Herr
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Florian Weinberg
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Martin Köhler
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), ALU, Freiburg, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, ALU, Freiburg, Germany
| | - Britta Diedrich
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany
| | - Ulrike Lanner
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Natalja Tscherwinski
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Simon Schuster
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Nicolas Dumaz
- INSERM U976 and Universitéi Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Enrico Schmidt
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany
| | - Ralf Baumeister
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany
| | - Andreas Schlosser
- Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Jörn Dengjel
- Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Department of Dermatology, University Medical Centre, ALU, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), ALU, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University (ALU), Freiburg, Germany.,Institute of Biology III, Faculty of Biology, ALU, Freiburg, Germany.,Centre for Biological Systems Analysis (ZBSA), Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
92
|
Wang B, Krall EB, Aguirre AJ, Kim M, Widlund HR, Doshi MB, Sicinska E, Sulahian R, Goodale A, Cowley GS, Piccioni F, Doench JG, Root DE, Hahn WC. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. Cell Rep 2017; 18:1543-1557. [PMID: 28178529 DOI: 10.1016/j.celrep.2017.01.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 12/10/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages. ATXN1L deletion, which reduces CIC protein, or ectopic expression of ETV1, ETV4, or ETV5 also modulated sensitivity to trametinib. ATXN1L expression inversely correlates with response to MAPKi inhibition in clinical studies. These observations identify the ATXN1L-CIC-ETS transcription factor axis as a mediator of resistance to MAPKi.
Collapse
Affiliation(s)
- Belinda Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elsa Beyer Krall
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew James Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Miju Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hans Ragnar Widlund
- Department of Dermatology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Mihir Bhavik Doshi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ewa Sicinska
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Molecular Oncologic Pathology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Rita Sulahian
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amy Goodale
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | | | | | | - William Chun Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
93
|
Zaballos MA, Santisteban P. Key signaling pathways in thyroid cancer. J Endocrinol 2017; 235:R43-R61. [PMID: 28838947 DOI: 10.1530/joe-17-0266] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
Whole genome sequencing approaches have provided unprecedented insights into the genetic lesions responsible for the onset, progression and dedifferentiation of various types of thyroid carcinomas. Through these efforts, the MAPK and PI3K signaling cascades have emerged as the main activation pathways implicated in thyroid tumorigenesis. The nature of these essential pathways is highly complex, with hundreds of components, multiple points of crosstalk, different subcellular localizations and with the ability to potentially regulate many cellular processes. Small-molecule inhibitors targeting key kinases of these pathways hold great promise as novel therapeutics and several have reached clinical trials. However, while some remarkable responses have been reported, the development of resistance remains a matter of concern and limits the benefit for patients. In this review, we discuss the latest findings on the major components of the MAPK and PI3K pathways, including their mechanisms of activation in physiological and pathological contexts, their genetic alterations with respect to the different types of thyroid carcinomas and the more relevant drugs designed to block their activity.
Collapse
Affiliation(s)
- Miguel A Zaballos
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas 'Alberto Sols'Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
94
|
RAF inhibitors promote RAS-RAF interaction by allosterically disrupting RAF autoinhibition. Nat Commun 2017; 8:1211. [PMID: 29084939 PMCID: PMC5662619 DOI: 10.1038/s41467-017-01274-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
First-generation RAF inhibitors paradoxically induce ERK signaling in normal and tumor cells exhibiting RAS activity. Compound-induced RAF dimerization through stabilization of the RAF ON/active state by inhibitors has emerged as a critical contributing factor. RAF inhibitors also enhance RAS−RAF association. Although this event is thought to play a key role in priming RAF activation, the underlying mechanism is not known. Here we report that RAF inhibitors induce the disruption of intramolecular interactions between the kinase domain and its N-terminal regulatory region independently of RAS activity. This provides a molecular basis to explain the induction of RAS−RAF association by RAF inhibitors, as well as the co-operativity observed between RAS activity and RAF kinase inhibitors in driving RAF activation. Profiling of second-generation RAF inhibitors confirmed their improved mode of action, but also revealed liabilities that allowed us to discern two properties of an ideal RAF inhibitor: high-binding affinity to all RAF paralogs and maintenance of the OFF/autoinhibited state of the enzyme. RAF family kinases transmit signals from activated RAS at the plasma membrane to downstream kinases to control cell proliferation, differentiation and survival. Here the authors shed light on the molecular mechanisms whereby small molecule RAF inhibitors induce RAS-RAF association and paradoxical RAF activation.
Collapse
|
95
|
Merchant M, Moffat J, Schaefer G, Chan J, Wang X, Orr C, Cheng J, Hunsaker T, Shao L, Wang SJ, Wagle MC, Lin E, Haverty PM, Shahidi-Latham S, Ngu H, Solon M, Eastham-Anderson J, Koeppen H, Huang SMA, Schwarz J, Belvin M, Kirouac D, Junttila MR. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLoS One 2017; 12:e0185862. [PMID: 28982154 PMCID: PMC5628883 DOI: 10.1371/journal.pone.0185862] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/20/2017] [Indexed: 12/19/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathway dysregulation is implicated in >30% of all cancers, rationalizing the development of RAF, MEK and ERK inhibitors. While BRAF and MEK inhibitors improve BRAF mutant melanoma patient outcomes, these inhibitors had limited success in other MAPK dysregulated tumors, with insufficient pathway suppression and likely pathway reactivation. In this study we show that inhibition of either MEK or ERK alone only transiently inhibits the MAPK pathway due to feedback reactivation. Simultaneous targeting of both MEK and ERK nodes results in deeper and more durable suppression of MAPK signaling that is not achievable with any dose of single agent, in tumors where feedback reactivation occurs. Strikingly, combined MEK and ERK inhibition is synergistic in RAS mutant models but only additive in BRAF mutant models where the RAF complex is dissociated from RAS and thus feedback productivity is disabled. We discovered that pathway reactivation in RAS mutant models occurs at the level of CRAF with combination treatment resulting in a markedly more active pool of CRAF. However, distinct from single node targeting, combining MEK and ERK inhibitor treatment effectively blocks the downstream signaling as assessed by transcriptional signatures and phospho-p90RSK. Importantly, these data reveal that MAPK pathway inhibitors whose activity is attenuated due to feedback reactivation can be rescued with sufficient inhibition by using a combination of MEK and ERK inhibitors. The MEK and ERK combination significantly suppresses MAPK pathway output and tumor growth in vivo to a greater extent than the maximum tolerated doses of single agents, and results in improved anti-tumor activity in multiple xenografts as well as in two Kras mutant genetically engineered mouse (GEM) models. Collectively, these data demonstrate that combined MEK and ERK inhibition is functionally unique, yielding greater than additive anti-tumor effects and elucidates a highly effective combination strategy in MAPK-dependent cancer, such as KRAS mutant tumors.
Collapse
Affiliation(s)
- Mark Merchant
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - John Moffat
- Department of Biochemical and Cellular Pharmacology, Genentech, Inc., South San Francisco, California, United States of America
| | - Gabriele Schaefer
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jocelyn Chan
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Xi Wang
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Christine Orr
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Jason Cheng
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Thomas Hunsaker
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Lily Shao
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Stephanie J. Wang
- Department of Biological Engineering, The Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Marie-Claire Wagle
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Eva Lin
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California, United States of America
| | - Peter M. Haverty
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California, United States of America
| | - Sheerin Shahidi-Latham
- Department of Drug Metabolism and Pharmacokinetics, Genentech, Inc., South San Francisco, California, United States of America
| | - Hai Ngu
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Margaret Solon
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Jeffrey Eastham-Anderson
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Hartmut Koeppen
- Department of Pathology, Genentech, Inc., South San Francisco, California, United States of America
| | - Shih-Min A. Huang
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, California, United States of America
| | - Jacob Schwarz
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, California, United States of America
| | - Marcia Belvin
- Department of Cancer Immunology, Genentech, Inc., South San Francisco, California, United States of America
| | - Daniel Kirouac
- Department of Pre-clinical & Translational Pharmacokinetics Genentech, Inc., South San Francisco, California, United States of America
| | - Melissa R. Junttila
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California, United States of America
| |
Collapse
|
96
|
Neiswender JV, Kortum RL, Bourque C, Kasheta M, Zon LI, Morrison DK, Ceol CJ. KIT Suppresses BRAF V600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling. Cancer Res 2017; 77:5820-5830. [PMID: 28947418 DOI: 10.1158/0008-5472.can-17-0473] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/17/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAFV600E); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAFV600E); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAFV600E-mutant human melanoma cell line. We found that pathway stimulation upstream of BRAFV600E could paradoxically reduce signaling downstream of BRAFV600E, and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAFV600E signaling. In vivo, expression of wild-type BRAF delayed melanoma onset, but only in a kit-dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAFV600E-driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR.
Collapse
Affiliation(s)
- James V Neiswender
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Robert L Kortum
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland.,Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Caitlin Bourque
- Howard Hughes Medical Institute, Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Melissa Kasheta
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Leonard I Zon
- Howard Hughes Medical Institute, Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, Maryland
| | - Craig J Ceol
- Program in Molecular Medicine, Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
97
|
Wynn ML, Egbert M, Consul N, Chang J, Wu ZF, Meravjer SD, Schnell S. Inferring Intracellular Signal Transduction Circuitry from Molecular Perturbation Experiments. Bull Math Biol 2017; 80:1310-1344. [PMID: 28455685 DOI: 10.1007/s11538-017-0270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/15/2017] [Indexed: 12/28/2022]
Abstract
The development of network inference methodologies that accurately predict connectivity in dysregulated pathways may enable the rational selection of patient therapies. Accurately inferring an intracellular network from data remains a very challenging problem in molecular systems biology. Living cells integrate extremely robust circuits that exhibit significant heterogeneity, but still respond to external stimuli in predictable ways. This phenomenon allows us to introduce a network inference methodology that integrates measurements of protein activation from perturbation experiments. The methodology relies on logic-based networks to provide a predictive approximation of the transfer of signals in a network. The approach presented was validated in silico with a set of test networks and applied to investigate the epidermal growth factor receptor signaling of a breast epithelial cell line, MFC10A. In our analysis, we predict the potential signaling circuitry most likely responsible for the experimental readouts of several proteins in the mitogen-activated protein kinase and phosphatidylinositol-3 kinase pathways. The approach can also be used to identify additional necessary perturbation experiments to distinguish between a set of possible candidate networks.
Collapse
Affiliation(s)
- Michelle L Wynn
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine & Bioinformatics, and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Megan Egbert
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nikita Consul
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Columbia University College of Physicians & Surgeons, New York, NY, USA
| | - Jungsoo Chang
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zhi-Fen Wu
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sofia D Meravjer
- Division of Hematology & Oncology and Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Computational Medicine & Bioinformatics, and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
98
|
Varga A, Ehrenreiter K, Aschenbrenner B, Kocieniewski P, Kochanczyk M, Lipniacki T, Baccarini M. RAF1/BRAF dimerization integrates the signal from RAS to ERK and ROKα. Sci Signal 2017; 10:eaai8482. [PMID: 28270557 DOI: 10.1126/scisignal.aai8482] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Downstream of growth factor receptors and of the guanine triphosphatase (GTPase) RAS, heterodimers of the serine/threonine kinases BRAF and RAF1 are critical upstream kinases and activators of the mitogen-activated protein kinase (MAPK) module containing the mitogen-activated and extracellular signal-regulated kinase kinase (MEK) and their targets, the extracellular signal-regulated kinase (ERK) family. Either direct or scaffold protein-mediated interactions among the components of the ERK module (the MAPKKKs BRAF and RAF1, MEK, and ERK) facilitate signal transmission. RAF1 also has essential functions in the control of tumorigenesis and migration that are mediated through its interaction with the kinase ROKα, an effector of the GTPase RHO and regulator of cytoskeletal rearrangements. We combined mutational and kinetic analysis with mathematical modeling to show that the interaction of RAF1 with ROKα is coordinated with the role of RAF1 in the ERK pathway. We found that the phosphorylated form of RAF1 that interacted with and inhibited ROKα was generated during the interaction of RAF1 with the ERK module. This mechanism adds plasticity to the ERK pathway, enabling signal diversification at the level of both ERK and RAF. Furthermore, by connecting ERK activation with the regulation of ROKα and cytoskeletal rearrangements by RAF1, this mechanism has the potential to precisely coordinate the proper timing of proliferation with changes in cell shape, adhesion, or motility.
Collapse
Affiliation(s)
- Andrea Varga
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Karin Ehrenreiter
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Bertram Aschenbrenner
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Pawel Kocieniewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochanczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Manuela Baccarini
- Department of Microbiology, Immunology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| |
Collapse
|
99
|
Goyal Y, Jindal GA, Pelliccia JL, Yamaya K, Yeung E, Futran AS, Burdine RD, Schüpbach T, Shvartsman SY. Divergent effects of intrinsically active MEK variants on developmental Ras signaling. Nat Genet 2017; 49:465-469. [PMID: 28166211 PMCID: PMC5621734 DOI: 10.1038/ng.3780] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022]
Abstract
Germline mutations in Ras pathway components are associated with a large class of human developmental abnormalities, known as RASopathies, that are characterized by a range of structural and functional phenotypes, including cardiac defects and neurocognitive delays. Although it is generally believed that RASopathies are caused by altered levels of pathway activation, the signaling changes in developing tissues remain largely unknown. We used assays with spatiotemporal resolution in Drosophila melanogaster (fruit fly) and Danio rerio (zebrafish) to quantify signaling changes caused by mutations in MAP2K1 (encoding MEK), a core component of the Ras pathway that is mutated in both RASopathies and cancers in humans. Surprisingly, we discovered that intrinsically active MEK variants can both increase and reduce the levels of pathway activation in vivo. The sign of the effect depends on cellular context, implying that some of the emerging phenotypes in RASopathies may be caused by increased, as well as attenuated, levels of Ras signaling.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Granton A. Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - José L. Pelliccia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Kei Yamaya
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eyan Yeung
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alan S. Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Rebecca D. Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Stanislav Y. Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
100
|
Tang YF, Zhang YB, Feng XD, Lin SH, Qiao N, Sun ZY, Zhou WP. Role of 14-3-3 proteins in human diseases. Shijie Huaren Xiaohua Zazhi 2017; 25:509-520. [DOI: 10.11569/wcjd.v25.i6.509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
14-3-3 proteins are a family of highly conserved small proteins. By interacting with target proteins, 14-3-3 proteins are involved in regulating multiple cellular processes, such as signal transduction, cell cycle regulation, apoptosis, cellular metabolism, cytoskeleton organization and malignant transformation. Mounting evidence suggests that 14-3-3 proteins play an important role in a wide variety of human diseases, such as human cancers and nervous system diseases. This review aims to summarize the current knowledge on the expression, regulation and biological function of 14-3-3 to highlight the role of 14-3-3 proteins in human diseases.
Collapse
|