51
|
Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY, Zhang PX, Dai SD, Dong QZ, Han Y, Zhang S, Cui QZ, Wang EH. delta-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222:76-88. [PMID: 20593408 DOI: 10.1002/path.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a member of the catenin family, little is known about the clinical significance and possible mechanism of delta-catenin expression in numerous tumours. We examined the expression of delta-catenin by immunohistochemistry in 115 cases of non-small cell lung cancer (NSCLC) (including 65 cases with follow-up records and 50 cases with paired lymph node metastasis lesions). The mRNA and protein expression of delta-catenin was also detected in 30 cases of paired lung cancer tissues and normal lung tissues by RT-PCR and western blotting, respectively. Co-immunoprecipitation was used to examine whether delta-catenin competitively bound to E-cadherin with p120ctn in lung cancer cells or not. The effects of delta-catenin on the activity of small GTPases and the biological behaviour of lung cancer cells were explored by pull-down assay, flow cytometry, MTT, and Matrigel invasive assay. The results showed that the mRNA and protein expression of delta-catenin was increased in lung cancer tissues; the positive expression rate of delta-catenin was significantly increased in adenocarcinoma, stage III-IV, paired lymph node metastasis lesions, and primary tumours with lymph node metastasis (all p < 0.05); and the postoperative survival period of patients with delta-catenin-positive expression was shorter than that of patients with delta-catenin-negative expression (p < 0.05). No competition between delta-catenin and p120ctn for binding to E-cadherin in cytoplasm was found in two lung cancer cell lines. By regulating the activity of small GTPases and changing the cell cycle, delta-catenin could promote the proliferation and invasion of lung cancer cells. We conclude that delta-catenin is an oncoprotein overexpressed in NSCLC and that increased delta-catenin expression is critical for maintenance of the malignant phenotype of lung cancer.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang J, Fu XQ, Lei WL, Wang T, Sheng AL, Luo ZG. Nuclear factor kappaB controls acetylcholine receptor clustering at the neuromuscular junction. J Neurosci 2010; 30:11104-13. [PMID: 20720118 PMCID: PMC6633475 DOI: 10.1523/jneurosci.2118-10.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 11/21/2022] Open
Abstract
At the vertebrate neuromuscular junction (NMJ), acetylcholine receptor (AChR) clustering is stimulated by motor neuron-derived glycoprotein Agrin and requires a number of intracellular signal or structural proteins, including AChR-associated scaffold protein Rapsyn. Here, we report a role of nuclear factor kappaB (NF-kappaB), a well known transcription factor involved in a variety of immune responses, in regulating AChR clustering at the NMJ. We found that downregulating the expression of RelA/p65 subunit of NF-kappaB or inhibiting NF-kappaB activity by overexpression of mutated form of IkappaB (inhibitor kappaB), which is resistant to proteolytic degradation and thus constitutively keeps NF-kappaB inactive in the cytoplasma, impeded the formation of AChR clusters in cultured C2C12 muscle cells stimulated by Agrin. In contrast, overexpression of RelA/p65 promoted AChR clustering. Furthermore, we investigated the mechanism by which NF-kappaB regulates AChR clustering. Interestingly, we found that downregulating the expression of RelA/p65 caused a marked reduction in the protein and mRNA level of Rapsyn and upregulation of RelA/p65 enhanced Rapsyn promoter activity. Mutation of NF-kappaB binding site on Rapsyn promoter prevented responsiveness to RelA/p65 regulation. Moreover, forced expression of Rapsyn in RelA/p65 downregulated muscle cells partially rescued AChR clusters, suggesting that NF-kappaB regulates AChR clustering, at least partially through the transcriptional regulation of Rapsyn. In line with this notion, genetic ablation of RelA/p65 selectively in the skeletal muscle caused a reduction of AChR density at the NMJ and a decrease in the level of Rapsyn. Thus, NF-kappaB signaling controls AChR clustering through transcriptional regulation of synaptic protein Rapsyn.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiu-Qing Fu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen-Liang Lei
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tong Wang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ai-Li Sheng
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen-Ge Luo
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
53
|
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
54
|
Sasai N, Nakao M, Defossez PA. Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Res 2010; 38:5015-22. [PMID: 20403812 PMCID: PMC2926618 DOI: 10.1093/nar/gkq280] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.
Collapse
|
55
|
Abstract
BTB-zinc finger transcription factors play many important roles in metazoan development. In these proteins, the BTB domain is critical for dimerization and for recruiting cofactors to target genes. Identification of these cofactors is important for understanding how BTB-zinc finger proteins influence transcription. Here we show that the novel but conserved protein EOR-2 is an obligate binding partner of the BTB-zinc finger protein EOR-1 in Caenorhabditis elegans. EOR-1 and EOR-2 function together to promote multiple Ras/ERK-dependent cell fates during development, and we show that EOR-1 is a robust substrate of ERK in vitro. A point mutation (L81F) in the EOR-1 BTB domain reduces both ERK phosphorylation and EOR-2 binding and eliminates all detectable biological function without affecting EOR-1 expression levels, localization, or dimerization. This point mutation lies near the predicted charged pocket region of the EOR-1 BTB dimer, a region that, in other BTB-zinc finger proteins, has been proposed to interact with corepressors or coactivators. We also show that a conserved zinc finger-like motif in EOR-2 is required for binding to EOR-1, that the interaction between EOR-1 and EOR-2 is direct, and that EOR-2 can bind to the human BTB-zinc finger protein PLZF. We propose that EOR-2 defines a new family of cofactors for BTB-zinc finger transcription factors that may have conserved roles in other organisms.
Collapse
Affiliation(s)
- Kelly Howell
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Swathi Arur
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Tim Schedl
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Meera V. Sundaram
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104 and Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
56
|
Soubry A, Staes K, Parthoens E, Noppen S, Stove C, Bogaert P, van Hengel J, van Roy F. The transcriptional repressor Kaiso localizes at the mitotic spindle and is a constituent of the pericentriolar material. PLoS One 2010; 5:e9203. [PMID: 20169156 PMCID: PMC2821401 DOI: 10.1371/journal.pone.0009203] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 01/26/2010] [Indexed: 11/18/2022] Open
Abstract
Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer.
Collapse
Affiliation(s)
- Adelheid Soubry
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katrien Staes
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eef Parthoens
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sam Noppen
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christophe Stove
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Pieter Bogaert
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolanda van Hengel
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Frans van Roy
- Department for Molecular Biomedical Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
57
|
Isoform- and dose-sensitive feedback interactions between paired box 6 gene and delta-catenin in cell differentiation and death. Exp Cell Res 2010; 316:1070-81. [PMID: 20074565 DOI: 10.1016/j.yexcr.2010.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/17/2009] [Accepted: 01/04/2010] [Indexed: 12/11/2022]
Abstract
Pax6, a mammalian homolog of the Drosophila paired box gene family member expressed in stem and progenitor cells, resides at the top of the genetic hierarchy in controlling cell fates and morphogenesis. While Pax6 activation can lead to mitotic arrest, premature neurogenesis, and apoptosis, the underlying molecular mechanisms have not been resolved. Here we report that either Pax6(+5a) or Pax6(-5a) was sufficient to promote, whereas their knockdown reduced the expression of delta-catenin (CTNND2), a neural specific member of the armadillo/beta-catenin superfamily. Pax6(+5a) elicited stronger effects on delta-catenin than Pax6(-5a). Inducible Pax6(+5a) expression demonstrated a biphasic and dose-dependent regulation of delta-catenin expression and cell fates. A moderate upregulation of Pax6(+5a) promoted delta-catenin expression and induced neurite-like cellular protrusions, but increasing expression of Pax6(+5a) reversed these processes. Furthermore, sustained high expression of Pax6(+5a) triggered apoptosis as determined by the reduction of phospho-Bad, Bcl-2, survivin and procaspases, as well as the increases in Bax and cleaved poly(ADP-ribose) polymerase. Importantly, re-introducing delta-catenin by ectopic expression elicited a feedback suppression on Pax6(+5a) expression and reduced Pax6(+5a) induced apoptosis. Therefore, delta-catenin expression is not only controlled by Pax6, but it also provides a feedback suppression mechanism for their functional interactions with important implications in cellular morphogenesis, apoptosis, and cancer.
Collapse
|
58
|
Gu D, Sater AK, Ji H, Cho K, Clark M, Stratton SA, Barton MC, Lu Q, McCrea PD. Xenopus delta-catenin is essential in early embryogenesis and is functionally linked to cadherins and small GTPases. J Cell Sci 2009; 122:4049-61. [PMID: 19843587 DOI: 10.1242/jcs.031948] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Catenins of the p120 subclass display an array of intracellular localizations and functions. Although the genetic knockout of mouse delta-catenin results in mild cognitive dysfunction, we found severe effects of its depletion in Xenopus. delta-catenin in Xenopus is transcribed as a full-length mRNA, or as three (or more) alternatively spliced isoforms designated A, B and C. Further structural and functional complexity is suggested by three predicted and alternative translation initiation sites. Transcript analysis suggests that each splice isoform is expressed during embryogenesis, with the B and C transcript levels varying according to developmental stage. Unlike the primarily neural expression of delta-catenin reported in mammals, delta-catenin is detectable in most adult Xenopus tissues, although it is enriched in neural structures. delta-catenin associates with classical cadherins, with crude embryo fractionations further revealing non-plasma-membrane pools that might be involved in cytoplasmic and/or nuclear functions. Depletion of delta-catenin caused gastrulation defects, phenotypes that were further enhanced by co-depletion of the related p120-catenin. Depletion was significantly rescued by titrated p120-catenin expression, suggesting that these catenins have shared roles. Biochemical assays indicated that delta-catenin depletion results in reduced cadherin levels and cell adhesion, as well as perturbation of RhoA and Rac1. Titrated doses of C-cadherin, dominant-negative RhoA or constitutively active Rac1 significantly rescued delta-catenin depletion. Collectively, our experiments indicate that delta-catenin has an essential role in amphibian development, and has functional links to cadherins and Rho-family GTPases.
Collapse
Affiliation(s)
- Dongmin Gu
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Oh M, Kim H, Yang I, Park JH, Cong WT, Baek MC, Bareiss S, Ki H, Lu Q, No J, Kwon I, Choi JK, Kim K. GSK-3 phosphorylates delta-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated proteolysis. J Biol Chem 2009; 284:28579-89. [PMID: 19706605 DOI: 10.1074/jbc.m109.002659] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Delta-catenin was first identified because of its interaction with presenilin-1, and its aberrant expression has been reported in various human tumors and in patients with Cri-du-Chat syndrome, a form of mental retardation. However, the mechanism whereby delta-catenin is regulated in cells has not been fully elucidated. We investigated the possibility that glycogen-synthase kinase-3 (GSK-3) phosphorylates delta-catenin and thus affects its stability. Initially, we found that the level of delta-catenin was greater and the half-life of delta-catenin was longer in GSK-3beta(-/-) fibroblasts than those in GSK-3beta(+/+) fibroblasts. Furthermore, four different approaches designed to specifically inhibit GSK-3 activity, i.e. GSK-3-specific chemical inhibitors, Wnt-3a conditioned media, small interfering RNAs, and GSK-3alpha and -3beta kinase dead constructs, consistently showed that the levels of endogenous delta-catenin in CWR22Rv-1 prostate carcinoma cells and primary cortical neurons were increased by inhibiting GSK-3 activity. In addition, it was found that both GSK-3alpha and -3beta interact with and phosphorylate delta-catenin. The phosphorylation of DeltaC207-delta-catenin (lacking 207 C-terminal residues) and T1078A delta-catenin by GSK-3 was noticeably reduced compared with that of wild type delta-catenin, and the data from liquid chromatography-tandem mass spectrometry analyses suggest that the Thr(1078) residue of delta-catenin is one of the GSK-3 phosphorylation sites. Treatment with MG132 or ALLN, specific inhibitors of proteosome-dependent proteolysis, increased delta-catenin levels and caused an accumulation of ubiquitinated delta-catenin. It was also found that GSK-3 triggers the ubiquitination of delta-catenin. These results suggest that GSK-3 interacts with and phosphorylates delta-catenin and thereby negatively affects its stability by enabling its ubiquitination/proteosome-mediated proteolysis.
Collapse
Affiliation(s)
- Minsoo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Jordan BA, Kreutz MR. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci 2009; 32:392-401. [PMID: 19524307 DOI: 10.1016/j.tins.2009.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2008] [Revised: 04/16/2009] [Accepted: 04/24/2009] [Indexed: 02/06/2023]
Abstract
In neurons multiple signaling pathways converge in the nucleus to regulate the expression of genes associated with long-term structural changes of synapto-dendritic input. Of pivotal importance for this type of transcriptional regulation is synapse-to-nucleus communication. Several studies suggest that the nuclear transport of proteins from synapses is involved in this signaling process, including evidence that synapses contain proteins with nuclear localization sequences and components of the nuclear import machinery. Here, we review the evidence for synapse-to-nucleus signaling by means of retrograde transport of proteins from distal processes. We discuss the mechanisms involved in their translocation and their role in the control of nuclear gene expression. Finally, we summarize the current thinking regarding the functional implications of nuclear signaling and address open questions in this evolving area of neuroscience.
Collapse
Affiliation(s)
- Bryen A Jordan
- Albert Einstein College of Medicine, Dominick P. Purpura Department of Neuroscience, Bronx, NY 10461, USA
| | | |
Collapse
|
61
|
Horii T, Morita S, Kimura M, Hatada I. Epigenetic regulation of adipocyte differentiation by a Rho guanine nucleotide exchange factor, WGEF. PLoS One 2009; 4:e5809. [PMID: 19503838 PMCID: PMC2686168 DOI: 10.1371/journal.pone.0005809] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 05/04/2009] [Indexed: 11/26/2022] Open
Abstract
Epigenetic regulation, including DNA methylation, plays an important role in several differentiation processes and possibly in adipocyte differentiation. To search for genes that show methylation change during adipogenesis, genome-wide DNA methylation analysis in insulin-induced adipogenesis of 3T3-L1 preadipocyte cells was performed using a method called microarray-based integrated analysis of methylation by isoschizomers (MIAMI). The MIAMI revealed that Hpa II sites of exon 1 in a Rho guanine nucleotide exchange factor 19 (ARHGEF19; WGEF) gene were demethylated during adipocyte differentiation of 3T3-L1 cells. Deletion of the region containing cytosine-guanine (CpG) sites that showed methylation change suppressed transcriptional activity in the reporter assay, indicating that this region regulates WGEF transcription. WGEF expression in 3T3-L1 cells was reduced during adipocyte differentiation, and high-fat diet-induced obese mice also showed lower expression of WGEF gene than control mice in white adipose tissue. Additionally, forced expression of WGEF in 3T3-L1 cells down-regulated the expression of adipogenic marker genes and inhibited the adipogenic program. This study clarified that adipogenesis was regulated by WGEF expression through DNA methylation change.
Collapse
Affiliation(s)
- Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- * E-mail:
| |
Collapse
|
62
|
Nam S, Min K, Hwang H, Lee HO, Lee JH, Yoon J, Lee H, Park S, Lee J. Control of rapsyn stability by the CUL-3-containing E3 ligase complex. J Biol Chem 2009; 284:8195-206. [PMID: 19158078 PMCID: PMC3282941 DOI: 10.1074/jbc.m808230200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 01/13/2009] [Indexed: 11/06/2022] Open
Abstract
Rapsyn is a postsynaptic protein required for clustering of nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. Here we report the mechanism for posttranslational control of rapsyn protein stability. We confirmed that C18H9.7-encoded RPY-1 is a rapsyn homolog in Caenorhabditis elegans by showing that human rapsyn rescued rpy-1 mutant phenotypes in nematodes, as determined by levamisole assays and micropost array behavioral assays. We found that RPY-1 was degraded in the absence of functional UNC-29, a non-alpha subunit of the receptor, in an allele-specific manner, but not in the absence of other receptor subunits. The cytoplasmic loop of UNC-29 was found to be critical for RPY-1 stability. Through RNA interference screening, we found that UBC-1, UBC-12, NEDD-8, and RBX-1 were required for degradation of RPY-1. We identified cullin (CUL)-3 as a component of E3 ligase and KEL-8 as the substrate adaptor of RPY-1. Mammalian rapsyn was ubiquitinated by the CUL3/KLHL8-containing E3 ligase in vitro, and the knockdown of KLHL-8, a mammalian KEL-8 homolog, inhibited rapsyn ubiquitination in vivo, implying evolutionary conservation of the rapsyn stability control machinery. kel-8 suppression and rpy-1 overexpression in C. elegans produced a phenotype similar to that of a loss-of-function mutation of rpy-1, suggesting that control of rapsyn abundance is important for proper function of the receptor. Our results suggest a link between the control of rapsyn abundance and congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Seunghee Nam
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Kyoengwoo Min
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hyejin Hwang
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hae-ock Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Jung Hwa Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Jongbok Yoon
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Hyunsook Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Sungsu Park
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| | - Junho Lee
- Research Center for
Cellulomics, Institute of Molecular Biology and Genetics, School of Biological
Sciences, Seoul National University, 151-742 Seoul, Korea, the
Division of Nano Sciences (BK21),
Ewha Womans University, 120-750 Seoul, Korea,
Protein Network Research Center,
Department of Biochemistry, Yonsei University, 134 Shinchon, 120-749 Seoul,
Korea
| |
Collapse
|
63
|
Iioka H, Doerner SK, Tamai K. Kaiso is a bimodal modulator for Wnt/beta-catenin signaling. FEBS Lett 2009; 583:627-32. [PMID: 19166851 DOI: 10.1016/j.febslet.2009.01.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/16/2022]
Abstract
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and beta-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an Apc(Min/+) background.
Collapse
Affiliation(s)
- Hidekazu Iioka
- BRB 723, Department of Genetics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
64
|
Kim H, Oh M, Lu Q, Kim K. E-Cadherin negatively modulates delta-catenin-induced morphological changes and RhoA activity reduction by competing with p190RhoGEF for delta-catenin. Biochem Biophys Res Commun 2008; 377:636-641. [PMID: 18930028 PMCID: PMC2614342 DOI: 10.1016/j.bbrc.2008.10.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
delta-Catenin is a member of the p120-catenin subfamily of armadillo proteins. Here, we describe distinctive features of delta-catenin localization and its association with E-cadherin in HEK293 epithelial cells. In HEK293 cells maintained in low cell densities, approximately 15% of cells overexpressing delta-catenin showed dendrite-like process formation, but there was no detectable change in RhoA activity. In addition, delta-catenin was localized mainly in the cytoplasm and was associated with p190RhoGEF. However, at high cell densities, delta-catenin localization was shifted to the plasma membrane. The association of delta-catenin with E-cadherin was strengthened, whereas its interaction with p190RhoGEF was weakened. In mouse embryonic fibroblast cell, ectopic expression of E-cadherin decreased the effect of delta-catenin on the reduction of RhoA activity as well as on dendrite-like process formation. These results suggest that delta-catenin is more dominantly bound to E-cadherin than to p190RhoGEF, and that delta-catenin's function is dependent on its cellular binding partner.
Collapse
Affiliation(s)
- Hangun Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Bldg. 1-211, 300 Yongbong-dong, Gwangju 500-757, Republic of Korea
| | - Minsoo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Bldg. 1-211, 300 Yongbong-dong, Gwangju 500-757, Republic of Korea
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Bldg. 1-211, 300 Yongbong-dong, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
65
|
Brockhausen J, Cole RN, Gervásio OL, Ngo ST, Noakes PG, Phillips WD. Neural agrin increases postsynaptic ACh receptor packing by elevating rapsyn protein at the mouse neuromuscular synapse. Dev Neurobiol 2008; 68:1153-69. [PMID: 18506821 DOI: 10.1002/dneu.20654] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescence resonance energy transfer (FRET) experiments at neuromuscular junctions in the mouse tibialis anterior muscle show that postsynaptic acetylcholine receptors (AChRs) become more tightly packed during the first month of postnatal development. Here, we report that the packing of AChRs into postsynaptic aggregates was reduced in 4-week postnatal mice that had reduced amounts of the AChR-associated protein, rapsyn, in the postsynaptic membrane (rapsyn(+/-) mice). We hypothesize that nerve-derived agrin increases postsynaptic expression and targeting of rapsyn, which then drives the developmental increase in AChR packing. Neural agrin treatment elevated the expression of rapsyn in C2 myotubes by a mechanism that involved slowing of rapsyn protein degradation. Similarly, exposure of synapses in postnatal muscle to exogenous agrin increased rapsyn protein levels and elevated the intensity of anti-rapsyn immunofluorescence, relative to AChR, in the postsynaptic membrane. This increase in the rapsyn-to-AChR immunofluorescence ratio was associated with tighter postsynaptic AChR packing and slowed AChR turnover. Acute blockade of synaptic AChRs with alpha-bungarotoxin lowered the rapsyn-to-AChR immunofluorescence ratio, suggesting that AChR signaling also helps regulate the assembly of extra rapsyn in the postsynaptic membrane. The results suggest that at the postnatal neuromuscular synapse agrin signaling elevates the expression and targeting of rapsyn to the postsynaptic membrane, thereby packing more AChRs into stable, functionally-important AChR aggregates.
Collapse
Affiliation(s)
- Jennifer Brockhausen
- School of Medical Sciences (Physiology), Bosch Institute, University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
66
|
Reid G, Gallais R, Métivier R. Marking time: the dynamic role of chromatin and covalent modification in transcription. Int J Biochem Cell Biol 2008; 41:155-63. [PMID: 18805503 DOI: 10.1016/j.biocel.2008.08.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 12/31/2022]
Abstract
The expression of genes subject to strict regulation can be a highly dynamic, cyclical process that sequentially achieves and then limits transcription. Kinetic investigations of the estrogen responsive pS2 (TFF1) promoter, to determine the occupancy of factors or the occurrence of covalent marks on chromatin, have provided the most comprehensive picture of the complexity of transcriptional cycling to date. Cycles are initiated by the assembly of intermediate transcription factors that in turn provoke conscription of the basal transcription machinery. These events then achieve activation of the polymerase II complex, which is subsequently followed by limitation of productivity through the action of repressive complexes. This latter phase resets the target promoter, through acting on chromatin structure, such that a subsequent cycle can be initiated. In consequence, transcription is dependent upon cis-acting elements (DNA and nucleosomes) that either interact with or are modified by trans-acting factors. Induced local structural changes to chromatin encompassing regulatory elements of gene promoters include alteration of the positional phasing of nucleosomes, substitution by variant histones, post-translational modification of nucleosomes, changes in the methylation of CpG dinucleotides and breaks in the sugar-phosphate backbone of DNA. A primary function of covalent modification of chromatin may be to drive a sequential progression of reversible interactions that achieve and regulate gene expression.
Collapse
Affiliation(s)
- George Reid
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
67
|
Wang J, Ruan NJ, Qian L, Lei WL, Chen F, Luo ZG. Wnt/beta-catenin signaling suppresses Rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction. J Biol Chem 2008; 283:21668-75. [PMID: 18541538 DOI: 10.1074/jbc.m709939200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic interaction between positive and negative signals is necessary for remodeling of postsynaptic structures at the neuromuscular junction. Here we report that Wnt3a negatively regulates acetylcholine receptor (AChR) clustering by repressing the expression of Rapsyn, an AChR-associated protein essential for AChR clustering. In cultured myotubes, treatment with Wnt3a or overexpression of beta-catenin, the condition mimicking the activation of the Wnt canonical pathway, inhibited Agrin-induced formation of AChR clusters. Moreover, Wnt3a treatment promoted dispersion of AChR clusters, and this effect was prevented by DKK1, an antagonist of the Wnt canonical pathway. Next, we investigated possible mechanisms underlying Wnt3a regulation of AChR clustering in cultured muscle cells. Interestingly, we found that Wnt3a treatment caused a decrease in the protein level of Rapsyn. In addition, Rapsyn promoter activity in cultured muscle cells was inhibited by the treatment with Wnt3a or beta-catenin overexpression. Forced expression of Rapsyn driven by a promoter that is not responsive to Wnt3a prevented the dispersing effect of Wnt3a on AChR clusters, suggesting that Wnt3a indeed acts to disperse AChR clusters by down-regulating the expression of Rapsyn. The role of Wnt/beta-catenin signaling in dispersing AChR clusters was also investigated in vivo by electroporation of Wnt3a or beta-catenin into mouse limb muscles, where ectopic Wnt3a or beta-catenin caused disassembly of postsynaptic apparatus. Together, these results suggest that Wnt/beta-catenin signaling plays a negative role for postsynaptic differentiation at the neuromuscular junction, probably by regulating the expression of synaptic proteins, such as Rapsyn.
Collapse
Affiliation(s)
- Jia Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
68
|
Kim H, Han JR, Park J, Oh M, James SE, Chang S, Lu Q, Lee KY, Ki H, Song WJ, Kim K. Delta-catenin-induced dendritic morphogenesis. An essential role of p190RhoGEF interaction through Akt1-mediated phosphorylation. J Biol Chem 2008; 283:977-87. [PMID: 17993462 PMCID: PMC2265781 DOI: 10.1074/jbc.m707158200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Delta-catenin was first identified through its interaction with Presenilin-1 and has been implicated in the regulation of dendrogenesis and cognitive function. However, the molecular mechanisms by which delta-catenin promotes dendritic morphogenesis were unclear. In this study, we demonstrated delta-catenin interaction with p190RhoGEF, and the importance of Akt1-mediated phosphorylation at Thr-454 residue of delta-catenin in this interaction. We have also found that delta-catenin overexpression decreased the binding between p190RhoGEF and RhoA, and significantly lowered the levels of GTP-RhoA but not those of GTP-Rac1 and -Cdc42. Delta-catenin T454A, a defective form in p190RhoGEF binding, did not decrease the binding between p190RhoGEF and RhoA. Delta-catenin T454A also did not lower GTP-RhoA levels and failed to induce dendrite-like process formation in NIH 3T3 fibroblasts. Furthermore, delta-catenin T454A significantly reduced the length and number of mature mushroom shaped spines in primary hippocampal neurons. These results highlight signaling events in the regulation of delta-catenin-induced dendrogenesis and spine morphogenesis.
Collapse
Affiliation(s)
- Hangun Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Jeong Ran Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Jaejun Park
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Minsoo Oh
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Sarah E. James
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, U.S.A
| | - Sunghoe Chang
- Department of Life Science, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Qun Lu
- Department of Anatomy and Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, U.S.A
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Hyunkyoung Ki
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Woo-Joo Song
- Graduate Program in Neuroscience and Institute for Brain Science and Technology, Inje University, Daejeon, Korea
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
69
|
Kang H, Tian L, Son YJ, Zuo Y, Procaccino D, Love F, Hayworth C, Trachtenberg J, Mikesh M, Sutton L, Ponomareva O, Mignone J, Enikolopov G, Rimer M, Thompson W. Regulation of the intermediate filament protein nestin at rodent neuromuscular junctions by innervation and activity. J Neurosci 2007; 27:5948-57. [PMID: 17537965 PMCID: PMC6672248 DOI: 10.1523/jneurosci.0621-07.2007] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The intermediate filament nestin is localized postsynaptically at rodent neuromuscular junctions. The protein forms a filamentous network beneath and between the synaptic gutters, surrounds myofiber nuclei, and is associated with Z-discs adjacent to the junction. In situ hybridization shows that nestin mRNA is synthesized selectively by synaptic myonuclei. Although weak immunoreactivity is present in myelinating Schwann cells that wrap the preterminal axon, nestin is not detected in the terminal Schwann cells (tSCs) that cover the nerve terminal branches. However, after denervation of muscle, nestin is upregulated in tSCs and in SCs within the nerve distal to the lesion site. In contrast, immunoreactivity is strongly downregulated in the muscle fiber. Transgenic mice in which the nestin neural enhancer drives expression of a green fluorescent protein (GFP) reporter show that the regulation in SCs is transcriptional. However, the postsynaptic expression occurs through enhancer elements distinct from those responsible for regulation in SCs. Application of botulinum toxin shows that the upregulation in tSCs and the loss of immunoreactivity in muscle fibers occurs with blockade of transmitter release. Extrinsic stimulation of denervated muscle maintains the postsynaptic expression of nestin but does not affect the upregulation in SCs. Thus, a nestin-containing cytoskeleton is promoted in the postsynaptic muscle fiber by nerve-evoked muscle activity but suppressed in tSCs by transmitter release. Nestin antibodies and GFP driven by nestin promoter elements serve as excellent markers for the reactive state of SCs. Vital imaging of GFP shows that SCs grow a dynamic set of processes after denervation.
Collapse
Affiliation(s)
- Hyuno Kang
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Le Tian
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Young-Jin Son
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Yi Zuo
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Diane Procaccino
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Flora Love
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Christopher Hayworth
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Joshua Trachtenberg
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Michelle Mikesh
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Lee Sutton
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Olga Ponomareva
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - John Mignone
- Cold Spring Harbor Laboratories, Cold Spring Harbor, New York 11724
| | | | - Mendell Rimer
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| | - Wesley Thompson
- Section of Neurobiology, Institute of Neuroscience, and Institute for Cell and Molecular Biology, University of Texas, Austin, Texas 78712, and
| |
Collapse
|
70
|
Sansom OJ, Maddison K, Clarke AR. Mechanisms of disease: methyl-binding domain proteins as potential therapeutic targets in cancer. NATURE CLINICAL PRACTICE. ONCOLOGY 2007; 4:305-15. [PMID: 17464338 DOI: 10.1038/ncponc0812] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Accepted: 11/02/2006] [Indexed: 12/22/2022]
Abstract
The methyl-CpG-binding domain (MBD) proteins 'read' and interpret the methylation moieties on DNA, and thus are critical mediators of many epigenetic processes. Currently, the MBD family comprises five members; MBD1, MBD2, MBD3, MBD4 and MeCP2. Although not a 'classical' MBD protein, Kaiso also mediates transcriptional repression by using zinc finger domains to bind its targets. Since DNA hypermethylation is a well-recognized mechanism underlying gene silencing events in both tumorigenesis and drug resistance, it is likely that the MBD proteins may be important modulators of tumorigenesis. We review the recent work addressing this possibility, and discuss several of the MBD proteins as potentially excellent novel therapeutic targets.
Collapse
Affiliation(s)
- Owen J Sansom
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | | | |
Collapse
|
71
|
Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 2007; 8:20. [PMID: 17343736 PMCID: PMC1828165 DOI: 10.1186/1471-2199-8-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 03/07/2007] [Indexed: 12/31/2022] Open
Abstract
Background Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. Results We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA methyltransferase inhibitor 5-azaCdR in combination with trichostatin A (TSA) downregulated podoplanin mRNA levels in MG63 cells, and region-specific in vitro methylation of the distal promoter suggested that DNA methylation rather enhanced than hindered PDPN transcription in both cell types. Conclusion These data establish that in human osteoblast-like MG63 cells, Sp1 and Sp3 stimulate basal PDPN transcription in a concerted, yet independent manner, whereas Saos-2 cells lack sufficient nuclear Sp protein amounts for transcriptional activation. Moreover, a highly methylated chromatin conformation of the distal promoter region confers cell-type specific podoplanin upregulation versus Saos-2 cells.
Collapse
Affiliation(s)
- Brigitte Hantusch
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Romana Kalt
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Sigurd Krieger
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Christina Puri
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | - Dontscho Kerjaschki
- Institute of Clinical Pathology, Medical University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
72
|
Madhavan R, Zhao XT, Reynolds AB, Peng HB. Involvement of p120 catenin in myopodial assembly and nerve-muscle synapse formation. ACTA ACUST UNITED AC 2007; 66:1511-27. [PMID: 17031840 DOI: 10.1002/neu.20320] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
At developing neuromuscular junctions (NMJs), muscles initially contact motor axons by microprocesses, or myopodia, which are induced by nerves and nerve-secreted agrin, but it is unclear how myopodia are assembled and how they influence synaptic differentiation at the NMJ. Here, we report that treatment of cultured muscle cells with agrin transiently depleted p120 catenin (p120ctn) from cadherin junctions in situ, and increased the tyrosine phosphorylation and decreased the cadherin-association of p120ctn in cell extracts. Whereas ectopic expression of wild-type p120ctn in muscle generated myopodia in the absence of agrin, expression of a specific dominant-negative mutant form of p120ctn, which blocks filopodial assembly in nonmuscle cells, suppressed nerve- and agrin-induction of myopodia. Significantly, approaching neurites triggered reduced acetylcholine receptor (AChR) clustering along the edges of muscle cells expressing mutant p120ctn than of control cells, although the ability of the mutant cells to cluster AChRs was itself normal. Our results indicate a novel role of p120ctn in agrin-induced myopodial assembly and suggest that myopodia increase muscle-nerve contacts and muscle's access to neural agrin to promote NMJ formation.
Collapse
Affiliation(s)
- Raghavan Madhavan
- Department of Biology, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
73
|
Daniel JM. Dancing in and out of the nucleus: p120ctn and the transcription factor Kaiso. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:59-68. [PMID: 17050009 DOI: 10.1016/j.bbamcr.2006.08.052] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 08/30/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
The catenin p120 (hereafter p120(ctn)) was first identified as a Src kinase substrate and subsequently characterized as an Armadillo catenin member of the cell-cell adhesion cadherin-catenin complex. In the past decade, many studies have revealed roles for p120(ctn) in regulating Rho family GTPase activity and E-cadherin stability and turnover, events that occur predominantly at the plasma membrane or in the cytoplasm. However, the recent discovery of the nuclear BTB/POZ-ZF transcription factor Kaiso as a p120(ctn) binding partner, coupled with the detection of p120(ctn) in the nucleus of some cell lines and tumor tissues, suggested that like the classical beta-catenin, p120(ctn) undergoes nucleocytoplasmic trafficking and regulates gene expression. Indeed, p120(ctn) has a classic nuclear localization signal and does traffic to the nucleus. Moreover, nuclear p120(ctn) regulates Kaiso DNA-binding and transcriptional activity, similar to beta-catenin's modulation of TCF/LEF transcription activity. However unlike beta-catenin, p120(ctn) does not appear to be a transcriptional activator. Hence it remains to be determined whether the sole role of nuclear p120(ctn) is regulation of Kaiso or whether p120(ctn) binds and regulates other transcription factors or nuclear proteins.
Collapse
Affiliation(s)
- Juliet M Daniel
- Department of Biology, LSB-331, McMaster University, 1280 Main St. West, Hamilton, ON, Canada L8S 4K1.
| |
Collapse
|
74
|
Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD. Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals. Dev Cell 2006; 11:683-95. [PMID: 17084360 DOI: 10.1016/j.devcel.2006.09.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/14/2006] [Accepted: 09/26/2006] [Indexed: 12/13/2022]
Abstract
p120-catenin is an Arm repeat protein that interacts with varied components such as cadherin, small G proteins, kinases, and the Kaiso transcriptional repressor. Despite recent advances in understanding the roles that p120-catenin and Kaiso play in downstream modulation of Wnt/beta-catenin signaling, the identity of the upstream regulators of the p120-catenin/Kaiso pathway have remained unclear. Here, we find that p120-catenin binds Frodo, which itself interacts with the Wnt pathway protein Dishevelled (Dsh). In Xenopus laevis, we demonstrate that Wnt signals result in Frodo-mediated stabilization of p120-catenin, which, in turn, promotes Kaiso sequestration or removal from the nucleus. Our results point to Dsh and Frodo as upstream regulators of the p120-catenin/Kaiso signaling pathway. Importantly, this suggests that Wnt signals acting through Dsh regulate the stability of p120-catenin in addition to that of beta-catenin, and that each catenin promotes its respective signal in parallel to regulate distinct, as well as shared, direct downstream gene targets.
Collapse
Affiliation(s)
- Jae-il Park
- Department of Biochemistry and Molecular Biology and Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
Adherens junctions have been traditionally viewed as building blocks of tissue architecture. The foundations for this view began to change with the discovery that a central component of AJs, beta-catenin, can also function as a transcriptional cofactor in Wnt signaling. In recent years, conventional views have similarly been shaken about the other two major AJ catenins, alpha-catenin and p120-catenin. Catenins have emerged as molecular sensors that integrate cell-cell junctions and cytoskeletal dynamics with signaling pathways that govern morphogenesis, tissue homeostasis, and even intercellular communication between different cell types within a tissue. These findings reveal novel aspects of AJ function in normal tissues and offer insights into how changes in AJs and their associated proteins and cytoskeletal dynamics impact wound-repair and cancer.
Collapse
Affiliation(s)
- Mirna Perez-Moreno
- Howard Hughes Medical Institute, Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
76
|
Kelly KF, Daniel JM. POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol 2006; 16:578-87. [PMID: 16996269 DOI: 10.1016/j.tcb.2006.09.003] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/22/2006] [Accepted: 09/07/2006] [Indexed: 02/05/2023]
Abstract
The BTB/POZ-ZF [Broad complex, Tramtrack, Bric à brac (BTB) or poxvirus and zinc finger (POZ)-zinc finger] protein family comprises a diverse group of transcription factors. POZ-ZF proteins have been implicated in many biological processes, including B cell fate determination, DNA damage responses, cell cycle progression and a multitude of developmental events, including gastrulation, limb formation and hematopoietic stem cell fate determination. Consequently, dysfunction of vertebrate POZ-ZF proteins, such as promyelocytic leukemia zinc finger (PLZF), B cell lymphoma 6 (Bcl-6), hypermethylated in cancer 1 (HIC-1), Kaiso, ZBTB7 and Fanconi anemia zinc finger (FAZF), has been linked directly or indirectly to tumorigenesis and developmental disorders. Here, we discuss recent advances in the POZ-ZF field and the implications for the design of future studies to elucidate the biological roles of these unique transcription factors.
Collapse
Affiliation(s)
- Kevin F Kelly
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | | |
Collapse
|
77
|
van Hengel J, van Roy F. Diverse functions of p120ctn in tumors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:78-88. [PMID: 17030444 DOI: 10.1016/j.bbamcr.2006.08.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 01/11/2023]
Abstract
p120ctn is a member of the Armadillo protein family. It stabilizes the cadherin-catenin adhesion complex at the plasma membrane, but also has additional roles in the cytoplasm and nucleus. Extensive alternative mRNA splicing and multiple phosphorylation sites generate additional complexity. Evidence is emerging that complete loss, downregulation or mislocalization of p120ctn correlates with progression of different types of human tumors. It remains to be determined whether a causal relationship exists between specific isoform expression, subcellular localization or selective phosphorylation of p120ctn on the one hand and tumor prognosis on the other.
Collapse
Affiliation(s)
- Jolanda van Hengel
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Gent (Zwijnaarde), Belgium
| | | |
Collapse
|
78
|
McCrea PD, Park JI. Developmental functions of the P120-catenin sub-family. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1773:17-33. [PMID: 16942809 DOI: 10.1016/j.bbamcr.2006.06.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/21/2006] [Accepted: 06/26/2006] [Indexed: 01/11/2023]
Abstract
For more than a decade, cell, developmental and cancer investigators have brought about a wide interest in the biology of catenin proteins, an attraction being their varied functions within differing cellular compartments. While the diversity of catenin localizations and roles has been intriguing, it has also posed a challenge to the clear interpretation of loss- or gain-of-function developmental phenotypes. The most deeply studied member of the larger catenin family is beta-catenin, whose contributions span areas including cell adhesion and intracellular signaling/ transcriptional control. More recently, attention has been directed towards p120-catenin, which in conjunction with the p120-catenin sub-family members ARVCF- and delta-catenins, are the subjects of this review. Although the requirement for vertebrate versus invertebrate p120-catenin are at variance, vertebrate p120-catenin sub-family members may each inter-link cadherin, cytoskeletal and gene regulatory functions in embryogenesis and disease.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Biochemistry and Molecular Biology, Program in Genes and Development, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston TX 77030, USA.
| | | |
Collapse
|
79
|
Filion GJP, Zhenilo S, Salozhin S, Yamada D, Prokhortchouk E, Defossez PA. A family of human zinc finger proteins that bind methylated DNA and repress transcription. Mol Cell Biol 2006; 26:169-81. [PMID: 16354688 PMCID: PMC1317629 DOI: 10.1128/mcb.26.1.169-181.2006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vertebrates, densely methylated DNA is associated with inactive transcription. Actors in this process include proteins of the MBD family that can recognize methylated CpGs and repress transcription. Kaiso, a structurally unrelated protein, has also been shown to bind methylated CGCGs through its three Krüppel-like C2H2 zinc fingers. The human genome contains two uncharacterized proteins, ZBTB4 and ZBTB38, that contain Kaiso-like zinc fingers. We report that ZBTB4 and ZBTB38 bind methylated DNA in vitro and in vivo. Unlike Kaiso, they can bind single methylated CpGs. When transfected in mouse cells, the proteins colocalize with foci of heavily methylated satellite DNA and become delocalized upon loss of DNA methylation. Chromatin immunoprecipitation suggests that both of these proteins specifically bind to the methylated allele of the H19/Igf2 differentially methylated region. ZBTB4 and ZBTB38 repress the transcription of methylated templates in transfection assays. The two genes have distinct tissue-specific expression patterns, but both are highly expressed in the brain. Our results reveal the existence of a family of Kaiso-like proteins that bind methylated CpGs. Like proteins of the MBD family, they are able to repress transcription in a methyl-dependent manner, yet their tissue-specific expression pattern suggests nonoverlapping functions.
Collapse
|
80
|
Macpherson PCD, Cieslak D, Goldman D. Myogenin-dependent nAChR clustering in aneural myotubes. Mol Cell Neurosci 2006; 31:649-60. [PMID: 16443371 DOI: 10.1016/j.mcn.2005.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Revised: 12/07/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022] Open
Abstract
During development of the neuromuscular junction, nerve-derived agrin and the cell substrate laminin stimulate postsynaptic nAChR clustering. This clustering is dependent on activation of the tyrosine kinase, MuSK, which signals receptor clustering via a rapsyn-dependent mechanism. Myogenin is a muscle-specific transcription factor that controls myoblast differentiation and nAChR gene expression. Here, we used RNA interference to investigate if myogenin is also necessary for nAChR clustering. We find that myogenin expression is essential for robust nAChR clustering and cannot be compensated by the muscle regulatory factors MyoD, myf5, and MRF4. In addition, we show that clustering cannot be rescued in myogenin-depleted myotubes by simply overexpressing the essential clustering molecules MuSK, rapsyn, and nAChRs. These data suggest that myogenin controls the expression of molecules crucial to nAChR clustering in addition to its role in regulating nAChR gene expression.
Collapse
Affiliation(s)
- Peter C D Macpherson
- Molecular and Behavioral Neurosciences Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
81
|
Prokhortchouk A, Sansom O, Selfridge J, Caballero IM, Salozhin S, Aithozhina D, Cerchietti L, Meng FG, Augenlicht LH, Mariadason JM, Hendrich B, Melnick A, Prokhortchouk E, Clarke A, Bird A. Kaiso-deficient mice show resistance to intestinal cancer. Mol Cell Biol 2006; 26:199-208. [PMID: 16354691 PMCID: PMC1317619 DOI: 10.1128/mcb.26.1.199-208.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 07/09/2005] [Accepted: 10/10/2005] [Indexed: 12/31/2022] Open
Abstract
Kaiso is a BTB domain protein that associates with the signaling molecule p120-catenin and binds to the methylated sequence mCGmCG or the nonmethylated sequence CTGCNA to modulate transcription. In Xenopus laevis, xKaiso deficiency leads to embryonic death accompanied by premature gene activation in blastulae and upregulation of the xWnt11 gene. Kaiso has also been proposed to play an essential role in mammalian synapse-specific transcription. We disrupted the Kaiso gene in mice to assess its role in mammalian development. Kaiso-null mice were viable and fertile, with no detectable abnormalities of development or gene expression. However, when crossed with tumor-susceptible Apc(Min/+) mice, Kaiso-null mice showed a delayed onset of intestinal tumorigenesis. Kaiso was found to be upregulated in murine intestinal tumors and is expressed in human colon cancers. Our data suggest that Kaiso plays a role in intestinal cancer and may therefore represent a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Anna Prokhortchouk
- Wellcome Trust Centre for Cell Biology, The King's Buildings, Edinburgh University, Edinburgh EH9 3JR, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Kaiso belongs to the zinc finger and broad-complex, tramtrack and bric-a-brac/poxvirus and zinc finger (BTB/POZ) protein family that has been implicated in tumorigenesis. Kaiso was first discovered in a complex with the armadillo-domain protein p120ctn and later shown to function as a transcriptional repressor. As p120ctn seems to relieve Kaiso-mediated repression, its altered intracellular localization in some cancer cells might result in aberrant Kaiso nuclear activity. Intriguingly, Kaiso's target genes include both methylated and sequence-specific recognition sites. The latter include genes that are modulated by the canonical Wnt (beta-catenin-T-cell factor) signalling pathway. Further interest in Kaiso stems from findings that its cytoplasmic versus nuclear localization is modulated by complex cues from the microenvironment.
Collapse
Affiliation(s)
- Frans M van Roy
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | | |
Collapse
|
83
|
Defossez PA, Kelly KF, Filion GJP, Pérez-Torrado R, Magdinier F, Menoni H, Nordgaard CL, Daniel JM, Gilson E. The human enhancer blocker CTC-binding factor interacts with the transcription factor Kaiso. J Biol Chem 2005; 280:43017-23. [PMID: 16230345 DOI: 10.1074/jbc.m510802200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CTC-binding factor (CTCF) is a DNA-binding protein of vertebrates that plays essential roles in regulating genome activity through its capacity to act as an enhancer blocker. We performed a yeast two-hybrid screen to identify protein partners of CTCF that could regulate its activity. Using full-length CTCF as bait we recovered Kaiso, a POZ-zinc finger transcription factor, as a specific binding partner. The interaction occurs through a C-terminal region of CTCF and the POZ domain of Kaiso. CTCF and Kaiso are co-expressed in many tissues, and CTCF was specifically co-immunoprecipitated by several Kaiso monoclonal antibodies from nuclear lysates. Kaiso is a bimodal transcription factor that recognizes methylated CpG dinucleotides or a conserved unmethylated sequence (TNGCAGGA, the Kaiso binding site). We identified one consensus unmethylated Kaiso binding site in close proximity to the CTCF binding site in the human 5' beta-globin insulator. We found, in an insulation assay, that the presence of this Kaiso binding site reduced the enhancer-blocking activity of CTCF. These data suggest that the Kaiso-CTCF interaction negatively regulates CTCF insulator activity.
Collapse
Affiliation(s)
- Pierre-Antoine Defossez
- CNRS UMR5161, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Angus LM, Chakkalakal JV, Méjat A, Eibl JK, Bélanger G, Megeney LA, Chin ER, Schaeffer L, Michel RN, Jasmin BJ. Calcineurin-NFAT signaling, together with GABP and peroxisome PGC-1α, drives utrophin gene expression at the neuromuscular junction. Am J Physiol Cell Physiol 2005; 289:C908-17. [PMID: 15930144 DOI: 10.1152/ajpcell.00196.2005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We examined whether calcineurin-NFAT (nuclear factors of activated T cells) signaling plays a role in specifically directing the expression of utrophin in the synaptic compartment of muscle fibers. Immunofluorescence experiments revealed the accumulation of components of the calcineurin-NFAT signaling cascade within the postsynaptic membrane domain of the neuromuscular junction. RT-PCR analysis using synaptic vs. extrasynaptic regions of muscle fibers confirmed these findings by showing an accumulation of calcineurin transcripts within the synaptic compartment. We also examined the effect of calcineurin on utrophin gene expression. Pharmacological inhibition of calcineurin in mice with either cyclosporin A or FK506 resulted in a marked decrease in utrophin A expression at synaptic sites, whereas constitutive activation of calcineurin had the opposite effect. Mutation of the previously identified NFAT binding site in the utrophin A promoter region, followed by direct gene transfer studies in mouse muscle, led to an inhibition in the synaptic expression of a lacZ reporter gene construct. Transfection assays performed with cultured myogenic cells indicated that calcineurin acted additively with GA binding protein (GABP) to transactivate utrophin A gene expression. Because both GABP- and calcineurin-mediated pathways are targeted by peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), we examined whether this coactivator contributes to utrophin gene expression. In vitro and in vivo transfection experiments showed that PGC-1α alone induces transcription from the utrophin A promoter. Interestingly, this induction is largely potentiated by coexpression of PGC-1α with GABP. Together, these studies indicate that the synaptic expression of utrophin is also driven by calcineurin-NFAT signaling and occurs in conjunction with signaling events that involve GABP and PGC-1α.
Collapse
Affiliation(s)
- Lindsay M Angus
- Department of Cellular and Molecular Medicine, and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Losen M, Stassen MHW, Martínez-Martínez P, Machiels BM, Duimel H, Frederik P, Veldman H, Wokke JHJ, Spaans F, Vincent A, De Baets MH. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. ACTA ACUST UNITED AC 2005; 128:2327-37. [PMID: 16150851 DOI: 10.1093/brain/awh612] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Myasthenia gravis is usually caused by autoantibodies to the acetylcholine receptor (AChR). The AChR is clustered and anchored in the postsynaptic membrane of the neuromuscular junction (NMJ) by a cytoplasmic protein called rapsyn. We previously showed that resistance to experimental autoimmune myasthenia gravis (EAMG) in aged rats correlates with increased rapsyn concentration at the NMJ. It is possible, therefore, that endogenous rapsyn expression may be an important determinant of AChR loss and neuromuscular transmission failure in the human disease, and that upregulation of rapsyn expression could be used therapeutically. To examine first a potential therapeutic application of rapsyn upregulation, we induced acute EAMG in young rats by passive transfer of AChR antibody, mAb 35, and used in vivo electroporation to over-express rapsyn unilaterally in one tibialis anterior. We looked at the compound muscle action potentials (CMAPs) in the tibialis anterior, at rapsyn and AChR expression by quantitative radioimmunoassay and immunofluorescence, and at the morphology of the NMJs, comparing the electroporated and untreated muscles, as well as the control and EAMG rats. In control rats, transfected muscle fibres had extrasynaptic rapsyn aggregates, as well as slightly increased rapsyn and AChR concentrations at the NMJ. In EAMG rats, despite deposits of the membrane attack complex, the rapsyn-overexpressing muscles showed no decrement in the CMAPs, no loss of AChR, and the majority had normal postsynaptic folds, whereas endplates of untreated muscles showed typical AChR loss and morphological damage. These data suggest not only that increasing rapsyn expression could be a potential treatment for selected muscles of myasthenia gravis patients, but also lend support to the hypothesis that individual differences in innate rapsyn expression could be a factor in determining disease severity.
Collapse
MESH Headings
- Action Potentials/physiology
- Acute Disease
- Animals
- Electromyography/methods
- Female
- Fluorescent Antibody Technique/methods
- Immunohistochemistry/methods
- Microscopy, Confocal/methods
- Microscopy, Electron/methods
- Muscle Proteins/analysis
- Muscle Proteins/genetics
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myasthenia Gravis, Autoimmune, Experimental/genetics
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Neuromuscular Junction/genetics
- Neuromuscular Junction/pathology
- Neuromuscular Junction/physiopathology
- Radioimmunoassay/methods
- Rats
- Rats, Inbred Lew
- Receptors, Cholinergic/genetics
- Synaptic Transmission/genetics
- Synaptic Transmission/physiology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Mario Losen
- Department of Neurology, Research Institute Brain and Behaviour, University of Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
p120 is the prototypic member of the p120 subfamily of armadillo-related proteins that includes p0071, delta-catenin/NPRAP, ARVCF and the more distantly related plakophilins 1-3. Like armadillo, beta-catenin and plakoglobin these proteins are involved in mediating cell-cell adhesion. Besides their junctional localization they also reveal a cytoplasmic and nuclear localization. Non-cadherin-associated, cytoplasmic p120 functions in Rho signaling and regulation of cytoskeletal organization and actin dynamics. The nuclear function remains largely unsolved. Some characteristics seem to be shared by the various members of the family but it seems unlikely that p120-related proteins have solely redundant functions and compete for interactions with identical binding partners. Stabilization of cadherins at the membrane seems a common function of p120, p0071, delta-catenin and ARVCF but it is not yet known if and how these proteins confer distinct properties to cellular junctions. Moreover, p0071, NPRAP and ARVCF have a C-terminal PDZ-binding motif that is lacking in p120 pointing to distinct roles of these proteins. PDZ domains are found in a series of proteins involved in establishing cell polarity in epithelial cells. Thus, p120 proteins may not only be master regulators of cadherin abundance and activity but play additional roles in regulating cell polarity. This review focuses on the putative roles of p120 proteins in cell polarity.
Collapse
Affiliation(s)
- Mechthild Hatzfeld
- Institute of Physiological Chemistry, University of Halle, Hollystrasse 1, D-06097 Halle, Germany.
| |
Collapse
|
87
|
Kelly KF, Otchere AA, Graham M, Daniel JM. Nuclear import of the BTB/POZ transcriptional regulator Kaiso. J Cell Sci 2005; 117:6143-52. [PMID: 15564377 DOI: 10.1242/jcs.01541] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Kaiso is a BTB/POZ transcription factor that functions in vitro as a transcriptional repressor of the matrix metalloproteinase gene matrilysin and the non-canonical Wnt signaling gene Wnt-11, and as an activator of the acetylcholine-receptor-clustering gene rapsyn. Similar to other BTB/POZ proteins (e.g. Bcl-6, PLZF, HIC-1), endogenous Kaiso localizes predominantly to the nuclei of mammalian cells. To date, however, the mechanism of nuclear import for most POZ transcription factors, including Kaiso, remain unknown. Here, we report the identification and characterization of a highly basic nuclear localization signal (NLS) in Kaiso. The functionality of this NLS was verified by its ability to target a heterologous beta-galactosidase/green-fluorescent-protein fusion protein to nuclei. The mutation of one positively charged lysine to alanine in the NLS of full-length Kaiso significantly inhibited its nuclear localization in various cell types. In addition, wild-type Kaiso, but not NLS-defective Kaiso, interacted directly with the nuclear import receptor Importin-alpha2 both in vitro and in vivo. Finally, minimal promoter assays using a sequence-specific Kaiso-binding-site fusion with luciferase as reporter demonstrated that the identified NLS was crucial for Kaiso-mediated transcriptional repression. The identification of a Kaiso NLS thus clarifies the mechanism by which Kaiso translocates to the nucleus to regulate transcription of genes with diverse roles in cell growth and development.
Collapse
Affiliation(s)
- Kevin F Kelly
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | | | | | | |
Collapse
|
88
|
Spring CM, Kelly KF, O'Kelly I, Graham M, Crawford HC, Daniel JM. The catenin p120ctn inhibits Kaiso-mediated transcriptional repression of the β-catenin/TCF target gene matrilysin. Exp Cell Res 2005; 305:253-65. [PMID: 15817151 DOI: 10.1016/j.yexcr.2005.01.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/15/2004] [Accepted: 01/05/2005] [Indexed: 01/11/2023]
Abstract
The POZ-zinc finger transcription factor Kaiso was first identified as a specific binding partner for the Armadillo catenin and cell adhesion cofactor, p120ctn. Kaiso is a unique POZ protein with bi-modal DNA-binding properties; it associates with a sequence-specific DNA consensus Kaiso binding site (KBS) or methylated CpG dinucleotides, and regulates transcription of artificial promoters containing either site. Interestingly, the promoter of the Wnt/beta-catenin/TCF target gene matrilysin possesses two conserved copies of the KBS, which suggested that Kaiso might regulate matrilysin expression. In this study, we demonstrate using chromatin immunoprecipitation analysis that Kaiso associates with the matrilysin promoter in vivo. Minimal promoter assays further confirmed that Kaiso specifically repressed transcription of the matrilysin promoter; mutation of the KBS element or RNAi-mediated depletion of Kaiso abrogated this effect. More importantly, Kaiso blocked beta-catenin-mediated activation of the matrilysin promoter. Consistent with our previous findings, both Kaiso-DNA binding and Kaiso-mediated transcriptional repression of the matrilysin promoter were inhibited by overexpression of wild-type p120ctn, but not by a p120ctn mutant exhibiting impaired nuclear import. Collectively, our data establish Kaiso as a sequence-specific transcriptional repressor of the matrilysin promoter, and suggest that p120ctn and beta-catenin act in a synergistic manner, via distinct mechanisms, to activate matrilysin expression.
Collapse
Affiliation(s)
- Christopher M Spring
- Department of Biology, LSB-331, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1
| | | | | | | | | | | |
Collapse
|
89
|
Soubry A, van Hengel J, Parthoens E, Colpaert C, Van Marck E, Waltregny D, Reynolds AB, van Roy F. Expression and nuclear location of the transcriptional repressor Kaiso is regulated by the tumor microenvironment. Cancer Res 2005; 65:2224-33. [PMID: 15781635 DOI: 10.1158/0008-5472.can-04-2020] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Kaiso is a BTB/POZ zinc finger protein originally described as an interaction partner of p120ctn. In cultured cell lines, Kaiso is found almost exclusively in the nucleus, where it generally acts as a transcriptional repressor. Here, we describe the first in situ immunolocalization studies of Kaiso expression in normal and cancerous tissues. Surprisingly, we found striking differences between its behavior in monolayers of different cell lines, three-dimensional cell culture systems, and in vivo. Although nuclear localization was sometimes observed in tissues, Kaiso was more often found in the cytoplasm, and in some cell types it was absent. In general, Kaiso and p120ctn did not colocalize in the nucleus. To examine this phenomenon more carefully, tumor cells exhibiting strong nuclear Kaiso staining in vitro were injected into nude mice and grown as xenografts. The latter showed a progressive translocation of Kaiso towards the cytoplasm over time, and even complete loss of expression, especially in the center of the tumor nodules. When xenografted tumors were returned to cell culture, Kaiso was re-expressed and was once again found in the nucleus. Translocation of Kaiso to the cytoplasm and down-regulation of its levels were also observed under particular experimental conditions in vitro, such as formation of spheroids and acini. These data strongly imply an unexpected influence of the microenvironment on Kaiso expression and localization. As transcriptional repression is a nuclear event, this phenomenon is likely a crucial factor in the regulation of Kaiso function.
Collapse
Affiliation(s)
- Adelheid Soubry
- Molecular Cell Biology Unit, Department for Molecular Biomedical Research, VIB-Ghent University, Ghent
| | | | | | | | | | | | | | | |
Collapse
|