51
|
Pfisterer N, Ammer-Herrmenau C, Antweiler K, Küffer S, Ellenrieder V, Neesse A. Dynamics of intestinal and intratumoral microbiome signatures in genetically engineered mice and human pancreatic ductal adenocarcinoma. Pancreatology 2023; 23:663-673. [PMID: 37541802 DOI: 10.1016/j.pan.2023.07.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Emerging evidence has recently revealed a prominent role of the microbiome in pancreatic ductal adenocarcinoma (PDAC). However, while most observations were made in patients, mouse models still require a precise characterization of their disease-related microbiome to employ them for mechanistic and interventional preclinical studies. METHODS To investigate the fecal and tumoral microbiome of LSL-KrasG12D/+;LSL-Trp53R172H/+;Pdx-1-Cre (KPC) and control (CTRL) mice, Oxford Nanopore sequencing was applied. Feces were collected from 10 KPC mice and 10 CTRLs at 3 timepoints (6 weeks, 12 weeks, and when tumor-bearing (KPC) or 6 months (CTRL), respectively). Metagenomic sequencing was performed on feces DNA. KPC tumor and healthy pancreas DNA samples were subjected to 16S rRNA gene sequencing. Bacterial marker components were detected in KPC tumor tissue over time by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC). RESULTS Murine fecal samples showed a significantly different microbiome compared to age-matched healthy CTRLs regarding beta diversity (p = 0.001, R2 = 0.2-0.25 for Bray-Curtis). Adjusted human PDAC classifiers predicted disease status from feces of KPC mice achieving area under the receiver operating characteristic (AUROC) values of 80%. Furthermore, KPC tumors harbored significantly more bacterial components than healthy pancreas. Also the microbial composition differs significantly between KPC tumors and healthy pancreas tissue (p = 0.042 for Bray-Curtis). Microbiota found highly abundant in human PDAC samples were considerably more abundant in KPC tumors as compared to healthy pancreas samples (p-value <0.001). CONCLUSION KPC fecal samples show similarities with the microbial composition of stool samples from human PDAC patients.
Collapse
Affiliation(s)
- Nina Pfisterer
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, 37075, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Christoph Ammer-Herrmenau
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, 37075, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Kai Antweiler
- Institute of Medical Statistics, University Medical Center Goettingen, 37073, Goettingen, Germany
| | - Stefan Küffer
- Institute of Pathology, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Volker Ellenrieder
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, 37075, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, 37075, Goettingen, Germany
| | - Albrecht Neesse
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Goettingen, 37075, Goettingen, Germany; Clinical Research Unit KFO5002, University Medical Center Goettingen, 37075, Goettingen, Germany.
| |
Collapse
|
52
|
Dorst D, Smeets EMM, Klein C, Frielink C, Geijs D, Trajkovic-Arsic M, Cheung PFY, Stommel MWJ, Gotthardt M, Siveke JT, Aarntzen EHJG, van Lith SAM. Fibroblast Activation Protein-Targeted Photodynamic Therapy of Cancer-Associated Fibroblasts in Murine Models for Pancreatic Ductal Adenocarcinoma. Mol Pharm 2023; 20:4319-4330. [PMID: 37485886 PMCID: PMC10410663 DOI: 10.1021/acs.molpharmaceut.3c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Patients with pancreatic ductal adenocarcinoma (PDAC) have a dismal 5 year survival of 9%. One important limiting factor for treatment efficacy is the dense tumor-supporting stroma. The cancer-associated fibroblasts in this stroma deposit excessive amounts of extracellular matrix components and anti-inflammatory mediators, which hampers the efficacy of chemo- and immunotherapies. Systemic depletion of all activated fibroblasts is, however, not feasible nor desirable and therefore a local approach should be pursued. Here, we provide a proof-of-principle of using fibroblast activation protein (FAP)-targeted photodynamic therapy (tPDT) to treat PDAC. FAP-targeting antibody 28H1 and irrelevant control antibody DP47GS were conjugated to the photosensitizer IRDye700DX (700DX) and the chelator diethylenetriaminepentaacetic acid. In vitro binding and cytotoxicity were evaluated using the fibroblast cell-line NIH-3T3 stably transfected with FAP. Biodistribution of 111In-labeled antibody-700DX constructs was determined in mice carrying syngeneic tumors of the murine PDAC cell line PDAC299, and in a genetically engineered PDAC mouse model (CKP). Then, tPDT was performed by exposing the subcutaneous or the spontaneous PDAC tumors to 690 nm light. Induction of apoptosis after treatment was assessed using automated analyses of immunohistochemistry for cleaved caspase-3. 28H1-700DX effectively bound to 3T3-FAP cells and induced cytotoxicity upon exposure to 690 nm light, whereas no binding or cytotoxic effects were observed for DP47GS-700DX. Although both 28H1-700DX and DP47GS-700DX accumulated in subcutaneous PDAC299 tumors, autoradiography demonstrated that only 28H1-700DX reached the tumor core. On the contrary, control antibody DP47GS-700DX was only present at the tumor rim. In CKP mice, both antibodies accumulated in the tumor, but tumor-to-blood ratios of 28H1-700DX were higher than that of the control. Notably, in vivo FAP-tPDT caused upregulation of cleaved caspase-3 staining in both subcutaneous and in spontaneous tumors. In conclusion, we have shown that tPDT is a feasible approach for local depletion of FAP-expressing stromal cells in murine models for PDAC.
Collapse
Affiliation(s)
- Daphne
N. Dorst
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Esther M. M. Smeets
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Christian Klein
- Roche
Pharma Research and Early Development, Innovation
Center Zurich, 8952 Schlieren, Switzerland
| | - Cathelijne Frielink
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Daan Geijs
- Department
of Pathology, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Marija Trajkovic-Arsic
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Phyllis F. Y. Cheung
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Martijn W. J. Stommel
- Department
of Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Jens T. Siveke
- Bridge
Institute of Experimental Tumour Therapy, West German Cancer Center,
University Hospital Essen, University of
Duisburg-Essen, 47057 Essen, Germany
- Division
of Solid Tumour Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer
Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Erik H. J. G. Aarntzen
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| | - Sanne A. M. van Lith
- Department
of Medical Imaging, Radboud University Medical
Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
53
|
Huang J, Tsang WY, Li ZH, Guan XY. The Origin, Differentiation, and Functions of Cancer-Associated Fibroblasts in Gastrointestinal Cancer. Cell Mol Gastroenterol Hepatol 2023; 16:503-511. [PMID: 37451403 PMCID: PMC10462789 DOI: 10.1016/j.jcmgh.2023.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Emerging evidence has shown the importance of the tumor microenvironment in tumorigenesis and progression. Cancer-associated fibroblasts (CAFs) are one of the most infiltrated stroma cells of the tumor microenvironment in gastrointestinal tumors. CAFs play crucial roles in tumor development and therapeutic response by biologically secreting soluble factors or structurally remodeling the extracellular matrix. Conceivably, CAFs may become excellent targets for tumor prevention and treatment. However, the limited knowledge of the heterogeneity of CAFs represents a huge challenge for clinically targeting CAFs. In this review, we summarize the newest understanding of gastrointestinal CAFs, with a special focus on their origin, differentiation, and function. We also discuss the current understanding of CAF subpopulations as shown by single-cell technologies.
Collapse
Affiliation(s)
- Jiao Huang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wai-Ying Tsang
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhi-Hong Li
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; State Key Laboratory for Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, The University of Hong Kong, Shenzhen Hospital, Shenzhen, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
| |
Collapse
|
54
|
Khabipov A, Trung DN, van der Linde J, Miebach L, Lenz M, Erne F, von Bernstorff W, Schulze T, Kersting S, Bekeschus S, Partecke LI. CCR4 Blockade Diminishes Intratumoral Macrophage Recruitment and Augments Survival of Syngeneic Pancreatic Cancer-Bearing Mice. Biomedicines 2023; 11:1517. [PMID: 37371612 DOI: 10.3390/biomedicines11061517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Pancreatic cancer is known for its tumor microenvironment (TME), which is rich in stromal and immune cells supporting cancer growth and therapy resistance. In particular, tumor-associated macrophages (TAMs) are known for their angiogenesis- and metastasis-promoting properties, which lead to the failure of conventional therapies for pancreatic cancer. Hence, treatment options targeting TAMs are needed. The C-C chemokine receptor type 4 (CCR4) is critical for immune cell recruitment into the TME, and in this paper we explore the effects of its genetic or immunotherapeutic blockade in pancreatic-cancer-bearing mice. Murine PDA6606 pancreatic cancer cells and murine peritoneal macrophages were used for in vitro migration assays. In vivo, a syngeneic, orthotropic pancreatic cancer model was established. Tumor growth and survival were monitored under prophylactic and therapeutic application of a CCR4 antagonist (AF-399/420/18025) in wildtype (CCR4wt) and CCR4-knockout (CCR4-/-) mice. Immune infiltration was monitored in tumor tissue sections and via flow cytometry of lysed tumors. PDA6606 cells induced less migration in CCR4-/- than in CCR4wt macrophages in vitro. Pancreatic TAM infiltration was higher, and survival was reduced in CCR4wt mice compared to CCR4-/- mice. Antagonizing CCR4 in wildtype mice revealed similar results as in CCR4-/- mice without antagonization. Prophylactic CCR4 antagonist application in wildtype mice was more efficient than therapeutic antagonization. CCR4 seems to be critically involved in TAM generation and tumor progression in pancreatic cancer. CCR4 blockade may help prolong the relapse-free period after curative surgery in pancreatic cancer and improve prognosis.
Collapse
Affiliation(s)
- Aydar Khabipov
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Dung Nguyen Trung
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Julia van der Linde
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Lea Miebach
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Maik Lenz
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Felix Erne
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Wolfram von Bernstorff
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Tobias Schulze
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Stephan Kersting
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany
| | - Lars Ivo Partecke
- Department of General, Thoracic, Visceral, and Vascular Surgery, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
- Department of General, Visceral, and Thoracic Surgery, Helios Clinic Schleswig, St. Jurgener Str. 1-3, 24837 Schleswig, Germany
| |
Collapse
|
55
|
Li XX, Li H, Jin LQ, Tan YB. Exploration and Validation of Pancreatic Cancer Hub Genes Based on Weighted Gene Co-Expression Network Analysis and Immune Infiltration Score Analysis. Pharmgenomics Pers Med 2023; 16:467-480. [PMID: 37252337 PMCID: PMC10216855 DOI: 10.2147/pgpm.s403116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Objective To find pancreatic cancer (PC)-related hub genes based on weighted gene co-expression network analysis (WGCNA) construction and immune infiltration score analysis and validate them immunohistochemically by clinical cases, to generate new concepts or therapeutic targets for the early diagnosis and treatment of PC. Material and Methods In this study, WGCNA and immune infiltration score were utilized to identify the relevant core modules of PC and the hub genes within these core modules. Results Using WGCNA analysis, data from PC and normal pancreas integrated with TCGA and GTEX were analyzed and brown modules were chosen from the six modules. Five hub genes, including DPYD, FXYD6, MAP6, FAM110B, and ANK2, were discovered to have differential survival significance via validation tests utilizing survival analysis curves and the GEPIA database. The DPYD gene was the only gene associated with PC survival side effects. Validation of the Human Protein Atlas (HPA) database and immunohistochemical testing of clinical samples showed positive results for DPYD expression in PC. Conclusion In this study, we identified DPYD, FXYD6, MAP6, FAM110B, and ANK2, as immune-related candidate markers for PC. Only the DPYD gene had a negative impact on the survival of PC patients. Through validation of the HPA database and immunohistochemical testing of clinical cases, we believe that the DPYD gene brings novel ideas and therapeutic targets in the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
| | - Hong Li
- Department of Radiology, Affiliated Renhe Hospital of China Three Gorges University, Hubei, 443001, People’s Republic of China
| | - Li-Quan Jin
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| | - Yun-Bo Tan
- Dali University of Clinical Medicine School, Dali, Yunnan, 671000, People’s Republic of China
- Department of General Surgery, The First of Affiliated Hospital of Dali University, Dali, Yunnan, 671000, People’s Republic of China
| |
Collapse
|
56
|
Chang J, Lo ZHY, Alenizi S, Kovacevic Z. Re-Shaping the Pancreatic Cancer Tumor Microenvironment: A New Role for the Metastasis Suppressor NDRG1. Cancers (Basel) 2023; 15:2779. [PMID: 37345116 DOI: 10.3390/cancers15102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 06/23/2023] Open
Abstract
Pancreatic cancer (PaC) is a highly aggressive disease, with poor response to current treatments and 5-year survival rates of 10-15%. PaC progression is facilitated by its interaction with the complex and multifaceted tumor microenvironment (TME). In the TME, cancer cells and surrounding stromal cells constantly communicate with each other via the secretion and uptake of factors including cytokines, chemokines, growth factors, metabolites, and extracellular vesicles (EVs), reshaping the landscape of PaC. Recent studies demonstrated that the metastasis suppressor N-myc downstream regulated 1 (NDRG1) not only inhibits oncogenic signaling pathways in PaC cells but also alters the communication between PaC cells and the surrounding stroma. In fact, NDRG1 was found to influence the secretome of PaC cells, alter cancer cell metabolism, and interfere with intracellular trafficking and intercellular communication between PaC cells and surrounding fibroblasts. This review will present recent advancements in understanding the role of NDRG1 in PaC progression, with a focus on how this molecule influences PaC-stroma communication and its potential for re-shaping the PaC TME.
Collapse
Affiliation(s)
- Jiawei Chang
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| | - Zoe H Y Lo
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Shafi Alenizi
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
| | - Zaklina Kovacevic
- School of Medical Sciences, Faculty of Medicine & Health, University of Sydney, Sydney 2006, Australia
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine & Health, University of NSW, Sydney 2052, Australia
| |
Collapse
|
57
|
Swietlik JJ, Bärthel S, Falcomatà C, Fink D, Sinha A, Cheng J, Ebner S, Landgraf P, Dieterich DC, Daub H, Saur D, Meissner F. Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation. Nat Commun 2023; 14:2642. [PMID: 37156840 PMCID: PMC10167354 DOI: 10.1038/s41467-023-38171-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Cell-selective proteomics is a powerful emerging concept to study heterocellular processes in tissues. However, its high potential to identify non-cell-autonomous disease mechanisms and biomarkers has been hindered by low proteome coverage. Here, we address this limitation and devise a comprehensive azidonorleucine labeling, click chemistry enrichment, and mass spectrometry-based proteomics and secretomics strategy to dissect aberrant signals in pancreatic ductal adenocarcinoma (PDAC). Our in-depth co-culture and in vivo analyses cover more than 10,000 cancer cell-derived proteins and reveal systematic differences between molecular PDAC subtypes. Secreted proteins, such as chemokines and EMT-promoting matrisome proteins, associated with distinct macrophage polarization and tumor stromal composition, differentiate classical and mesenchymal PDAC. Intriguingly, more than 1,600 cancer cell-derived proteins including cytokines and pre-metastatic niche formation-associated factors in mouse serum reflect tumor activity in circulation. Our findings highlight how cell-selective proteomics can accelerate the discovery of diagnostic markers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jonathan J Swietlik
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Diana Fink
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Ankit Sinha
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stefan Ebner
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Landgraf
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Henrik Daub
- NEOsphere Biotechnologies GmbH, Martinsried, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Chair of Translational Cancer Research and Institute of Experimental Cancer Therapy, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany.
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.
- Institute of Innate Immunity, Department of Systems Immunology and Proteomics, Medical Faculty, University of Bonn, Bonn, Germany.
| |
Collapse
|
58
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
59
|
de Scordilli M, Michelotti A, Zara D, Palmero L, Alberti M, Noto C, Totaro F, Foltran L, Guardascione M, Iacono D, Ongaro E, Fasola G, Puglisi F. Preoperative treatments in borderline resectable and locally advanced pancreatic cancer: current evidence and new perspectives. Crit Rev Oncol Hematol 2023; 186:104013. [PMID: 37116817 DOI: 10.1016/j.critrevonc.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Surgery is the only curative treatment for non-metastatic pancreatic adenocarcinoma, but less than 20% of patients present a resectable disease at diagnosis. Treatment strategies and disease definition for borderline resectable pancreatic cancer (BRPC) and locally advanced pancreatic cancer (LAPC) vary in the different cancer centres. Preoperative chemotherapy (CT) is the standard of care for both BRPC and LAPC patients, however literature data are still controversial concerning the type, dose and duration of the different CT regimens, as well as regarding the integration of radiotherapy (RT) or chemoradiation (CRT) in the therapeutic algorithm. In this unsettled debate, we aimed at focusing on the therapeutic regimens currently in use and relative literature data, to report international trials comparing the available therapeutic options or explore the introduction of new pharmacological agents, and to analyse possible new scenarios in microenvironment evaluation before and after neoadjuvant therapies or in patients' selection at a molecular level.
Collapse
Affiliation(s)
- Marco de Scordilli
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Anna Michelotti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Oncology, ASUFC University Hospital of Udine, 33100 Udine, Italy.
| | - Diego Zara
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Lorenza Palmero
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Martina Alberti
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Oncology, ASUFC University Hospital of Udine, 33100 Udine, Italy.
| | - Claudia Noto
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Fabiana Totaro
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Luisa Foltran
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Michela Guardascione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Donatella Iacono
- Department of Oncology, ASUFC University Hospital of Udine, 33100 Udine, Italy.
| | - Elena Ongaro
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| | - Gianpiero Fasola
- Department of Oncology, ASUFC University Hospital of Udine, 33100 Udine, Italy.
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy; Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
60
|
Kondo T, Kanai M, Matsubara J, Yamaguchi D, Ura T, Kou T, Itani T, Nomura M, Funakoshi T, Yokoyama A, Doi K, Tamaoki M, Yoshimura M, Uza N, Yamada T, Masui T, Minamiguchi S, Matsumoto S, Ishikawa H, Muto M. Association between homologous recombination gene variants and efficacy of oxaliplatin-based chemotherapy in advanced pancreatic cancer: prospective multicenter observational study. Med Oncol 2023; 40:144. [PMID: 37039943 DOI: 10.1007/s12032-023-02011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Next-generation sequencing (NGS)-based gene profiling can identify patients with pancreatic cancer with homologous recombinant repair gene pathogenic variants (HRRv). Several retrospective studies have reported a positive association between HRRv and the efficacy of platinum-based chemotherapy. However, this association remains to be validated in a prospective study. This multicenter, prospective, observational study included patients with histologically confirmed unresectable or recurrent pancreatic cancer who required systemic chemotherapy. Patients who were oxaliplatin-naïve patients were eligible. The HRRv status was measured using a College of American Pathologists-accredited NGS panel. One-year overall survival rate (1yr-OS%) was calculated after initiation of oxaliplatin-based chemotherapy and was set as the primary endpoint. Forty patients were enrolled between August 2018 and March 2020. The NGS success rate was 95% (38/40). HRRv was detected in 11 patients (27.5%). Oxaliplatin-based chemotherapy was administered to 9 of 11 patients with HRRv (81.8%) and 15 of 29 patients with non-HRRv (51.7%). The 1yr-OS% after initiation of oxaliplatin-based chemotherapy was 44.4% [95% confidence interval (CI) 13.7-71.9] and 57.1% (95% CI 28.4-78.0) in HRRv-positive and -negative cohorts, respectively. These data suggested that HRRv status alone could not be a potential predictive marker of oxaliplatin-based chemotherapy in patients with advanced pancreatic cancer. These results were in line with the results of a recent phase II study reporting the limited efficacy of poly(adenosine diphosphate-ribose) polymerase inhibitor in patients with pancreatic cancer who harbored HRRv other than BRCA. Future studies investigating patients with biallelic HRRv in the first-line setting are warranted.Trial registration UMIN000033655.
Collapse
Affiliation(s)
- Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Masashi Kanai
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Junichi Matsubara
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Daisuke Yamaguchi
- Department of Medical Oncology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Takashi Ura
- Department of Clinical Oncology, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Tadayuki Kou
- Department of Gastroenterology and Hepatology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Toshinao Itani
- Department of Gastroenterology, Kobe City Nishi-Kobe Medical Center, Hyogo, Japan
| | - Motoo Nomura
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Taro Funakoshi
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akira Yokoyama
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Keitaro Doi
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Tamaoki
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yamada
- Clinical Genetics Unit, Kyoto University Hospital, Kyoto, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Hokkaido, Japan
| | - Toshihiko Masui
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Shigemi Matsumoto
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Manabu Muto
- Department of Clinical Oncology, Kyoto University Hospital, 54 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
61
|
Joshi VB, Gutierrez Ruiz OL, Razidlo GL. The Cell Biology of Metastatic Invasion in Pancreatic Cancer: Updates and Mechanistic Insights. Cancers (Basel) 2023; 15:cancers15072169. [PMID: 37046830 PMCID: PMC10093482 DOI: 10.3390/cancers15072169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related mortality worldwide. This is largely due to the lack of routine screening protocols, an absence of symptoms in early-stage disease leading to late detection, and a paucity of effective treatment options. Critically, the majority of patients either present with metastatic disease or rapidly develop metastatic disease. Thus, there is an urgent need to deepen our understanding of metastasis in PDAC. During metastasis, tumor cells escape from the primary tumor, enter the circulation, and travel to a distant site to form a secondary tumor. In order to accomplish this relatively rare event, tumor cells develop an enhanced ability to detach from the primary tumor, migrate into the surrounding matrix, and invade across the basement membrane. In addition, cancer cells interact with the various cell types and matrix proteins that comprise the tumor microenvironment, with some of these factors working to promote metastasis and others working to suppress it. In PDAC, many of these processes are not well understood. The purpose of this review is to highlight recent advances in the cell biology of the early steps of the metastatic cascade in pancreatic cancer. Specifically, we will examine the regulation of epithelial-to-mesenchymal transition (EMT) in PDAC and its requirement for metastasis, summarize our understanding of how PDAC cells invade and degrade the surrounding matrix, and discuss how migration and adhesion dynamics are regulated in PDAC to optimize cancer cell motility. In addition, the role of the tumor microenvironment in PDAC will also be discussed for each of these invasive processes.
Collapse
Affiliation(s)
- Vidhu B Joshi
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Omar L Gutierrez Ruiz
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gina L Razidlo
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
62
|
Bärthel S, Falcomatà C, Rad R, Theis FJ, Saur D. Single-cell profiling to explore pancreatic cancer heterogeneity, plasticity and response to therapy. NATURE CANCER 2023; 4:454-467. [PMID: 36959420 DOI: 10.1038/s43018-023-00526-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer entity characterized by a heterogeneous genetic landscape and an immunosuppressive tumor microenvironment. Recent advances in high-resolution single-cell sequencing and spatial transcriptomics technologies have enabled an in-depth characterization of both malignant and host cell types and increased our understanding of the heterogeneity and plasticity of PDAC in the steady state and under therapeutic perturbation. In this Review we outline single-cell analyses in PDAC, discuss their implications on our understanding of the disease and present future perspectives of multimodal approaches to elucidate its biology and response to therapy at the single-cell level.
Collapse
Affiliation(s)
- Stefanie Bärthel
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
| | - Chiara Falcomatà
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, Munich, Germany
- German Cancer Consortium Partner Site Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- School of Computation, Information and Technology (CIT), Technische Universität München, Munich, Germany
| | - Dieter Saur
- Division of Translational Cancer Research, German Cancer Research Center and German Cancer Consortium, Heidelberg, Germany.
- Institute of Experimental Cancer Therapy, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany.
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, Munich, Germany.
| |
Collapse
|
63
|
Kiemen AL, Damanakis AI, Braxton AM, He J, Laheru D, Fishman EK, Chames P, Pérez CA, Wu PH, Wirtz D, Wood LD, Hruban RH. Tissue clearing and 3D reconstruction of digitized, serially sectioned slides provide novel insights into pancreatic cancer. MED 2023; 4:75-91. [PMID: 36773599 PMCID: PMC9922376 DOI: 10.1016/j.medj.2022.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 11/23/2022] [Indexed: 01/26/2023]
Abstract
Pancreatic cancer is currently the third leading cause of cancer death in the United States. The clinical hallmarks of this disease include abdominal pain that radiates to the back, the presence of a hypoenhancing intrapancreatic lesion on imaging, and widespread liver metastases. Technologies such as tissue clearing and three-dimensional (3D) reconstruction of digitized serially sectioned hematoxylin and eosin-stained slides can be used to visualize large (up to 2- to 3-centimeter cube) tissues at cellular resolution. When applied to human pancreatic cancers, these 3D visualization techniques have provided novel insights into the basis of a number of the clinical characteristics of this disease. Here, we describe the clinical features of pancreatic cancer, review techniques for clearing and the 3D reconstruction of digitized microscope slides, and provide examples that illustrate how 3D visualization of human pancreatic cancer at the microscopic level has revealed features not apparent in 2D microscopy and, in so doing, has closed the gap between bench and bedside. Compared with animal models and 2D microscopy, studies of human tissues in 3D can reveal the difference between what can happen and what does happen in human cancers.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Alexander Ioannis Damanakis
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of General, Visceral, Cancer and Transplant Surgery, University Hospital of Cologne, Cologne, Germany
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Jin He
- Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel Laheru
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elliot K Fishman
- Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Patrick Chames
- Antibody Therapeutics and Immunotargeting Team, Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Cristina Almagro Pérez
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Chemical & Biomolecular Engineering, The Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
64
|
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X, Xu J. Mesenchymal Stromal Cell-Based Targeted Therapy Pancreatic Cancer: Progress and Challenges. Int J Mol Sci 2023; 24:ijms24043559. [PMID: 36834969 PMCID: PMC9966548 DOI: 10.3390/ijms24043559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high mortality rates and poor prognoses. Despite rapid progress in the diagnosis and treatment of pancreatic cancer, the efficacy of current therapeutic strategies remains limited. Hence, better alternative therapeutic options for treating pancreatic cancer need to be urgently explored. Mesenchymal stromal cells (MSCs) have recently received much attention as a potential therapy for pancreatic cancer owing to their tumor-homing properties. However, the specific antitumor effect of MSCs is still controversial. To this end, we aimed to focus on the potential anti-cancer treatment prospects of the MSC-based approach and summarize current challenges in the clinical application of MSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| |
Collapse
|
65
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
66
|
Alonso-Nocelo M, Ruiz-Cañas L, Sancho P, Görgülü K, Alcalá S, Pedrero C, Vallespinos M, López-Gil JC, Ochando M, García-García E, David Trabulo SM, Martinelli P, Sánchez-Tomero P, Sánchez-Palomo C, Gonzalez-Santamaría P, Yuste L, Wörmann SM, Kabacaoğlu D, Earl J, Martin A, Salvador F, Valle S, Martin-Hijano L, Carrato A, Erkan M, García-Bermejo L, Hermann PC, Algül H, Moreno-Bueno G, Heeschen C, Portillo F, Cano A, Sainz B. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma. Gut 2023; 72:345-359. [PMID: 35428659 PMCID: PMC9872246 DOI: 10.1136/gutjnl-2021-325564] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/21/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models. DESIGN Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, K-Ras +/LSL-G12D;Trp53 LSL-R172H;Pdx1-Cre mice (KPC) and the K-Ras +/LSL-G12D;Pdx1-Cre mice (KC) were crossed with Loxl2 allele floxed mice (Loxl2Exon2 fl/fl) or conditional Loxl2 overexpressing mice (R26Loxl2 KI/KI) to generate KPCL2KO or KCL2KO and KPCL2KI or KCL2KI mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation. RESULTS Using these PDAC mouse models, we show that while Loxl2 ablation had little effect on primary tumour development and growth, its loss significantly decreased metastasis and increased overall survival. We attribute this effect to non-cell autonomous factors, primarily ECM remodelling. Loxl2 overexpression, on the other hand, promoted primary and metastatic tumour growth and decreased overall survival, which could be linked to increased EMT and stemness. We also identified tumour-associated macrophage-secreted oncostatin M (OSM) as an inducer of LOXL2 expression, and show that targeting macrophages in vivo affects Osm and Loxl2 expression and collagen fibre alignment. CONCLUSION Taken together, our findings establish novel pathophysiological roles and functions for LOXL2 in PDAC, which could be potentially exploited to treat metastatic disease.
Collapse
Affiliation(s)
- Marta Alonso-Nocelo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Ruiz-Cañas
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Sancho
- Translational Research Unit, Hospital Miguel Servet, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain
| | - Kıvanç Görgülü
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Sonia Alcalá
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Coral Pedrero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mireia Vallespinos
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Carlos López-Gil
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marina Ochando
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Elena García-García
- Departamento de Anatomía Patológica, Hospital Universitario Fundación Alcorcón, Alcorcón, Spain
| | - Sara Maria David Trabulo
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Paola Martinelli
- Institute for Cancer Research, Comprehensive Cancer Center, Medizinische Universitat Wien, Wien, Austria
| | - Patricia Sánchez-Tomero
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Sánchez-Palomo
- Departamento de Anatomía, Histologia y Neurociencia, Universidad Autónoma de Madrid, Madrid, Spain
| | - Patricia Gonzalez-Santamaría
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Lourdes Yuste
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
| | - Sonja Maria Wörmann
- Ahmed Cancer Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Derya Kabacaoğlu
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alberto Martin
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Fernando Salvador
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
| | - Sandra Valle
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Laura Martin-Hijano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Alcala University, Madrid, Spain
| | - Mert Erkan
- University Research Center for Translational Medicine - KUTTAM, Istanbul, Turkey
| | - Laura García-Bermejo
- Biomarkers and Therapeutic Targets Group, Area 4, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - Gema Moreno-Bueno
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
- Fundación MD Anderson Internacional, Madrid, Spain
| | - Christopher Heeschen
- Stem Cells and Cancer Group, Molecular Pathology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Francisco Portillo
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Amparo Cano
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer and Human Molecular Genetics, Instituto de Investigación Sanitaria IdiPAZ, Madrid, Spain
- Breast Cancer Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Bruno Sainz
- Departament of Biochemistry, Universidad Autónoma de Madrid (UAM), Departament of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| |
Collapse
|
67
|
Farhadi A, Homayouni Tabrizi M, Sadeghi S, Vala D, Khosravi T. Targeted delivery and anticancer effects of Chrysin-loaded chitosan-folic acid coated solid lipid nanoparticles in pancreatic malignant cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:315-333. [PMID: 36063019 DOI: 10.1080/09205063.2022.2121589] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this survey was to load Chrysin (CHY) on solid lipid nanoparticles (SLNs) and decorate the nanoparticles with folate-bound chitosan to increase the effectiveness of the treatment. CHY-SCF-NPs were synthesized by homogenizing and sonication methods and characterized. FA binding and encapsulation efficiency (HPLC), antioxidant capacity (ABTS and DPPH), cell viability assay (MTT), programmed cell death analysis (fluorescence staining, flow cytometry, and qPCR), and angiogenesis (CAM and molecular analysis) assay were done for assessment of therapeutic efficiency of CHY-SCF-NPs. Increases in size and change in surface charge of CHY-SLNs (PS: 84.3 nm and ZP: -18 mV) were reported after coating with folate-bound chitosan (PS: 125 nm and ZP: +34.9 mV). CHY-SCF-NPs inhibited PANC, MCF-7, A2780, and HepG2 as malignant cells and HFF as normal cells with IC50∼53, 55, 249, and >250 µg/mL, respectively. Also, CHY-SCF-NPs scavenged ABTS (IC50: 123.73 µg/mL), and DPPH (IC50: 108.7 µg/mL) free radicals and suppressed angiogenesis in the CAM and qPCR assays. Up-regulation of Bax and caspase 9 genes as well as the fluorescence staining and cell cycle results confirmed the pro-apoptotic properties of CHY-SCF-NPs. CHY-SCF-NPs can be considered a promising anti-cancer candidate for preclinical and clinical studies of pancreatic cancer.
Collapse
Affiliation(s)
- Amin Farhadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Soroush Sadeghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Danial Vala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Tina Khosravi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
68
|
Brumskill S, Barrera LN, Calcraft P, Phillips C, Costello E. Inclusion of cancer-associated fibroblasts in drug screening assays to evaluate pancreatic cancer resistance to therapeutic drugs. J Physiol Biochem 2023; 79:223-234. [PMID: 34865180 PMCID: PMC9905179 DOI: 10.1007/s13105-021-00857-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.
Collapse
Affiliation(s)
- Sarah Brumskill
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | - Lawrence N Barrera
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Peter Calcraft
- Redx Oncology, Alderley Park, Macclesfield, Cheshire, UK
| | | | - Eithne Costello
- Institute of Translational Medicine, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, 2nd Floor Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
69
|
Bibliometric Analysis of Hotspots and Frontiers of Immunotherapy in Pancreatic Cancer. Healthcare (Basel) 2023; 11:healthcare11030304. [PMID: 36766879 PMCID: PMC9914338 DOI: 10.3390/healthcare11030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most common malignant neoplasms with an increasing incidence, low rate of early diagnosis, and high degree of malignancy. In recent years, immunotherapy has made remarkable achievements in various cancer types including pancreatic cancer, due to the long-lasting antitumor responses elicited in the human body. Immunotherapy mainly relies on mobilizing the host's natural defense mechanisms to regulate the body state and exert anti-tumor effects. However, no bibliometric research about pancreatic cancer immunotherapy has been reported to date. This study aimed to assess research trends and offer possible new research directions in pancreatic cancer immunotherapy. METHODS The articles and reviews related to pancreatic cancer immunotherapy were collected from the Web of Science Core Collection. CiteSpace, VOSviewer, and an online platform, and were used to analyze co-authorship, citation, co-citation, and co-occurrence of terms retrieved from the literature highlighting the scientific advances in pancreatic cancer immunotherapy. RESULTS We collected 2475 publications and the number of articles was growing year by year. The United States had a strong presence worldwide with the most articles. The most contributing institution was Johns Hopkins University (103 papers). EM Jaffee was the most productive researcher with 43 papers, and L Zheng and RH Vonderheide ranked second and third, with 34 and 29 papers, respectively. All the keywords were grouped into four clusters: "immunotherapy", "clinical treatment study", "tumor immune cell expression", "tumor microenvironment". In the light of promising hotspots, keywords with recent citation bursts can be summarized into four aspects: immune microenvironment, adaptive immunotherapy, immunotherapy combinations, and molecular and gene therapy. CONCLUSIONS In recent decades, immunotherapy showed great promise for many cancer types, so various immunotherapy approaches have been introduced to treat pancreatic cancer. Understanding the mechanisms of immunosuppressive microenvironment, eliminating immune suppression and blocking immune checkpoints, and combining traditional treatments will be hotspots for future research.
Collapse
|
70
|
Zhao Z, Lin Z, Guo X, Al-danakh A, He H, Qin H, Ma C, Zhang N, Tan G. Ubiquitin-Specific Protease 43 Impacts Pancreatic Ductal Adenocarcinoma Prognosis by Altering Its Proliferation and Infiltration of Surrounding Immune Cells. J Immunol Res 2023; 2023:4311388. [PMID: 37050932 PMCID: PMC10083889 DOI: 10.1155/2023/4311388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 04/14/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a devastating cancer, and the therapy options for PDAC remain restricted. The distinctive tumor immunological microenvironment (TIME) of PDAC, comprising a high number of stromal cells and a limited infiltration of cytotoxic T lymphocytes (CTLs), rendered immunotherapy ineffective. The protein level of ubiquitin-specific protease 43 (USP43) was a prognostic predictor in numerous cancers; however, its function in PDAC is limited. This article focuses on the influence of USP43 expression on PDAC prognosis and TIME alteration. Methods Based on TCGA database and tissue microarray staining, the expression of USP43 in PDAC was evaluated. The association between USP43 and prognosis was then investigated using tissue samples and online databases. In PDAC tumor tissues, the correlation between USP43 expression and clinicopathological characteristics, immune cell infiltration, and prognosis was investigated. The expression of USP43 in PDAC cell lines was evaluated using quantitative polymerase chain reaction. Using a cell counting kit-8 (CCK-8) and a cell colony formation test, the viability of the cells was determined. On the basis of online databases and tissue samples, the link between USP43 and immune cell infiltration around PDAC was also examined. For statistical analyses, the software GraphPad, R, and SPSS 26.0 were utilized. Results The expression of USP43 was considerably higher in PDAC compared to normal pancreatic tissue in both the TCGA database and the tissue microarrays of PDAC patients (P < 0.001). High USP43 expression was associated with poor overall survival in both the TCGA database and the tissue microarray of PDAC patients (P = 0.046 and 0.021, respectively). USP43 overexpression promoted PANC-1 cell proliferation (P = 0.0018), but USP43 knockdown decreased PANC02 cell proliferation (P < 0.001). According to the TCGA database, USP43 is associated with T cell activation and inhibits CD8+ T cell activation in PDAC, as proven by a study of cell lines. Moreover, in both TCGA and PDAC cell lines, USP43 expression was negatively linked with the chemokine signaling pathway. Conclusions Overexpression of USP43 is a potential prognostic indicator for PDAC patients. USP43 is a potential biomarker associated with T cell activation, suppression of CD8+ T cell enrichment, and the cytokine signal pathway. Future multicenter studies are needed to confirm our findings and their potential application in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Ziqi Zhao
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhikun Lin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, China
| | - Xin Guo
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Abdullah Al-danakh
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hui He
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Henan Qin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chi Ma
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ningning Zhang
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guang Tan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Liaoning Key Laboratory of Molecular Targeted Drugs in Hepatobiliary and Pancreatic Cancer, Dalian, China
| |
Collapse
|
71
|
Meng Q, Fang Z, Mao X, Tang R, Liang C, Hua J, Wang W, Shi S, Yu X, Xu J. Metabolic reprogramming of cancer-associated fibroblasts in pancreatic cancer contributes to the intratumor heterogeneity of PET-CT. Comput Struct Biotechnol J 2023; 21:2631-2639. [PMID: 37153537 PMCID: PMC10160596 DOI: 10.1016/j.csbj.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Intratumor heterogeneity of positron emission tomography-computed tomography (PET-CT) is reflected by variable 18F-fluorodeoxyglucose (FDG) uptake. Increasing evidence has shown that neoplastic and non-neoplastic components can affect the total 18F-FDG uptake in tumors. Cancer-associated fibroblasts (CAFs) is considered as the main non-neoplastic components in tumor microenvironment (TME) of pancreatic cancer. Our study aims to explore the impact of metabolic changes in CAFs on heterogeneity of PET-CT. A total of 126 patients with pancreatic cancer underwent PET-CT and endoscopic ultrasound elastography (EUS-EG) before treatment. High maximum standardized uptake value (SUVmax) from the PET-CT was positively correlated with the EUS-derived strain ratio (SR) and indicated poor prognosis of patients. In addition, single-cell RNA analysis showed that CAV1 affected glycolytic activity and correlated with glycolytic enzyme expression in fibroblasts in pancreatic cancer. We also observed the negative correlation between CAV1 and glycolytic enzyme expression in the tumor stroma by using immunohistochemistry (IHC) assay in the SUVmax-high and SUVmax-low groups of pancreatic cancer patients. Additionally, CAFs with high glycolytic activity contributed to pancreatic cancer cell migration, and blocking CAF glycolysis reversed this process, suggesting that glycolytic CAFs promote malignant biological behavior in pancreatic cancer. In summary, our research demonstrated that the metabolic reprogramming of CAFs affects total 18F-FDG uptake in tumors. Thus, an increase in glycolytic CAFs with decreased CAV1 expression promotes tumor progression, and high SUVmax may be a marker for therapy targeting the neoplastic stroma. Further studies should clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zengli Fang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xiaoqi Mao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence to: Chief of the Chinese Study Group for Pancreatic Cancer (CSPAC); Chair of the Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center; Director of the Pancreatic Cancer Institute, Fudan University, No. 270 Dong'An Road, Xuhui District, Shanghai 200032, China.
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence to: Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Shanghai 200032, China.
| |
Collapse
|
72
|
Ning Y, Lin K, Fang J, Ding Y, Zhang Z, Chen X, Zhao Q, Wang H, Wang F. Gastrointestinal pan-cancer landscape of tumor matrix heterogeneity identifies biologically distinct matrix stiffness subtypes predicting prognosis and chemotherapy efficacy. Comput Struct Biotechnol J 2023; 21:2744-2758. [PMID: 37181656 PMCID: PMC10173364 DOI: 10.1016/j.csbj.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/16/2023] Open
Abstract
Gastrointestinal (GI) cancers are a heterogeneous group of primary solid tumors, arising in GI tract from the esophagus to rectum. Matrix stiffness (MS) is a critical physical factor for cancer progression; however, its importance in tumor progression remains to be comprehensively recognized. Herein, we conducted a comprehensive pan-cancer analysis of MS subtypes across seven GI-cancer types. Using unsupervised clustering based on literature-derived MS-specific pathway signatures, the GI-tumor samples were divided into three MS subtypes, termed as the Soft, Mixed and Stiff. Then, distinct prognoses, biological features, tumor microenvironments and mutation landscapes among three MS subtypes were revealed. The Stiff tumor subtype was associated with the poorest prognosis, the most malignant biological behaviors, and the immunosuppressive tumor stromal microenvironment. Furthermore, multiple machine learning algorithms were used to develop an 11-gene MS-signature to identify the MS subtypes of GI-caner and predict chemotherapy sensitivity, which were further validated in two external GI-cancer cohorts. This novel MS-based classification on GI-cancers could enhance our understanding of the important role of MS in tumor progression, and may have implications for the optimization of individualized cancer management.
Collapse
Affiliation(s)
- Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Kun Lin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Ding
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Zhang Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiaojia Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Lab of Intestinal and Colorectal Diseases, Wuhan, China
- Corresponding authors at: Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
73
|
Kamitani N, Nakamae I, Yoneda-Kato N, Kato JY, Sho M. Preclinical evaluation of pentagamavunone-1 as monotherapy and combination therapy for pancreatic cancer in multiple xenograft models. Sci Rep 2022; 12:22419. [PMID: 36575213 PMCID: PMC9794715 DOI: 10.1038/s41598-022-26863-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
We previously reported that pentagamavunone-1 (PGV-1) effectively inhibited cell proliferation in many types of human tumors, including pancreatic cancer, by inducing M phase (prometaphase) arrest, senescence, and apoptosis with few side effects. However, a detailed evaluation of the effects of PGV-1 on pancreatic cancer cells in an in vivo setting has not yet been conducted. The present study investigated the potential efficacy of PGV-1 as both monotherapy and combination therapy for pancreatic cancer using multiple xenograft mouse assays. A cell-line derived xenograft model (CDX-M) with pancreatic cancer cell line and a patient-derived xenograft mouse model (PDX-M) using resected pancreatic cancer samples without neoadjuvant chemotherapy were established in both heterotopic and orthotopic manners. PGV-1 effectively suppressed tumor formation at the heterotopic and orthotopic sites in CDX-M than in untreated mice. Combination therapy with PGV-1 and gemcitabine more effectively suppressed tumor formation than monotherapy with PGV-1 or gemcitabine when administered after tumor formation. Monotherapy with PGV-1 or gemcitabine less effectively suppressed tumor formation in PDX-M than in CDX-M, whereas combination therapy with PGV-1 and gemcitabine more effectively suppressed tumor formation. PGV-1 as monotherapy and combination therapy with gemcitabine effectively inhibited tumor formation and has potential as an anticancer candidate for pancreatic cancer.
Collapse
Affiliation(s)
- Naoki Kamitani
- grid.410814.80000 0004 0372 782XDepartment of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522 Japan
| | - Ikuko Nakamae
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Noriko Yoneda-Kato
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Jun-ya Kato
- grid.260493.a0000 0000 9227 2257Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101 Japan
| | - Masayuki Sho
- grid.410814.80000 0004 0372 782XDepartment of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara 634-8522 Japan
| |
Collapse
|
74
|
Feng Y, Li P, Yang F, Xu K. Establishment of a prognostic prediction system based on tumor microenvironment of pancreatic cancer. Medicine (Baltimore) 2022; 101:e32364. [PMID: 36595826 PMCID: PMC9794356 DOI: 10.1097/md.0000000000032364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is an inflammatory tumor. Tumor microenvironment (TME) plays an important role in the development of PC. This study aims to explore hub genes of TME and establish a prognostic prediction system for PC. METHODS High throughput RNA-sequencing and clinical data of PC were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium database, respectively. PC patients were divided into high- and low-score group by using stromal, immune scores system based on ESTIMATE. Differentially expressed genes between high- and low-score patients were screened and survival-related differentially expressed genes were identified as candidate genes by univariate Cox regression analysis. Final variables for establishment of the prognostic prediction system were determined by LASSO analysis and multivariate Cox regression analysis. The predictive power of the prognostic system was evaluated by internal and external validation. RESULTS A total of 210 candidate genes were identified by stromal, immune scores system, and survival analyses. Finally, the prognostic risk score system was constructed by the following genes: FAM57B, HTRA3, CXCL10, GABRP, SPRR1B, FAM83A, and LY6D. In process of internal validation, Harrell concordance index (C-index) of this prognostic risk score system was 0.73, and the area under the receiver operating characteristic curve value of 1-year, 2-year, and 3-year overall survival period was 0.67, 0.76 and 0.86, respectively. In the external validation set, the survival prediction C-index was 0.71, and the area under the curve was 0.81, 0.72, and 0.78 at 1-year, 2-year, and 3-year, respectively. CONCLUSION This prognostic risk score system based on TME demonstrated a good predictive capacity to the prognosis of PC. It may provide information for the treatment strategy and follow-up for patients with PC.
Collapse
Affiliation(s)
- Yan Feng
- Department of Hepatology, the Affiliated Hospital of Panzhihua University, Sichuan, China
| | - Pengcheng Li
- Clinical Medical College, Chengdu Medical College, Sichuan, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, China
- Key Clinical Specialty of Sichuan Province, Sichuan, China
| | - Fang Yang
- Clinical Medical College, Chengdu Medical College, Sichuan, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, China
- Key Clinical Specialty of Sichuan Province, Sichuan, China
| | - Ke Xu
- Clinical Medical College, Chengdu Medical College, Sichuan, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Sichuan, China
- Key Clinical Specialty of Sichuan Province, Sichuan, China
| |
Collapse
|
75
|
Inflammatory Cytokines and Radiotherapy in Pancreatic Ductal Adenocarcinoma. Biomedicines 2022; 10:biomedicines10123215. [PMID: 36551971 PMCID: PMC9775272 DOI: 10.3390/biomedicines10123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains a therapeutic challenge in clinical oncology. Surgery is the only potentially curative treatment. However, the majority of PDAC patients present with locally advanced/unresectable or metastatic disease, where palliative multiagent chemotherapy is the first-line treatment with the therapeutic intent to delay progression and prolong survival. For locally advanced/unresectable pancreatic cancer patients who are treated with chemotherapy, consolidative radiotherapy in the form concurrent chemoradiation or stereotactic ablative radiotherapy improves locoregional control and pain/symptom control. To improve clinical outcomes of PDAC patients, there is a dire need for discoveries that will shed more light on the pathophysiology of the disease and lead to the development of more efficacious treatment strategies. Inflammatory cytokines are known to play a role in mediating tumor progression, chemoresistance, and radioresistance in PDAC. A PubMed search on published articles related to radiotherapy, inflammatory cytokines, and pancreatic cancer patients in the English language was performed. This article primarily focuses on reviewing the clinical literature that examines the association of inflammatory cytokines with clinical outcomes and the effects of radiotherapy on inflammatory cytokines in PDAC patients.
Collapse
|
76
|
Chen Q, Yin H, Liu S, Shoucair S, Ding N, Ji Y, Zhang J, Wang D, Kuang T, Xu X, Yu J, Wu W, Pu N, Lou W. Prognostic value of tumor-associated N1/N2 neutrophil plasticity in patients following radical resection of pancreas ductal adenocarcinoma. J Immunother Cancer 2022; 10:jitc-2022-005798. [PMID: 36600557 PMCID: PMC9730407 DOI: 10.1136/jitc-2022-005798] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an integral part of the tumor microenvironment (TME), tumor-associated neutrophils play a crucial role in tumor development. The objective of this study was to investigate the plasticity of tumor-associated N1 and N2 neutrophils in the TME of pancreatic ductal adenocarcinoma (PDAC), along with its impact on survival and association with immune infiltrations. METHODS The primary and validation cohorts including 90 radical resection patients from September 2012 to May 2016 and 29 radical resection patients from September 2018 to October 2019, respectively, with complete survival data, were enrolled. Immunofluorescence staining was used to identify tumor-associated N1 and N2 neutrophils, and the N1/N2 ratio was used to evaluate N1 and N2 plasticity. Thereafter, the association between tumor-associated N1/N2 neutrophil plasticity, clinical features, and immune infiltrations was investigated. RESULTS There was a significant increase in tumor-associated N2 neutrophils compared with tumor-associated N1 neutrophils. Low N1/N2 ratios were associated with the poorer differentiation of tumors, easier lymph node metastases, and a higher TNM stage. The median overall survival (OS) and recurrence-free survival (RFS) of the high tumor-associated N1 neutrophil group were significantly longer than those of the low group, while the tumor-associated N2 neutrophils played an opposite role. The multivariable analysis revealed that a high N1/N2 ratio was a significant prognostic indicator for OS and RFS. In addition, tumor-associated N1/N2 neutrophils showed an opposite correlation with tumor-infiltrating CD8+ T cells and Tregs. CONCLUSION The plasticity of tumor-associated N1/N2 neutrophils was identified as a crucial prognostic indicator that might reflect the TME and immune escape in patients with PDAC. On further investigation and validation, our findings may be used to further stratify patients with varying prognoses to optimize treatment.
Collapse
Affiliation(s)
- Qiangda Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hanlin Yin
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sami Shoucair
- Department of Surgery, MedStar Health, Baltimore, Maryland, USA,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ni Ding
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China,Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jicheng Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dansong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tiantao Kuang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuefeng Xu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun Yu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Departments of Medicine and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenchuan Wu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ning Pu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenhui Lou
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
77
|
Zhao G, Wang C, Jiao J, Zhang W, Yang H. The novel subclusters based on cancer-associated fibroblast for pancreatic adenocarcinoma. Front Oncol 2022; 12:1045477. [PMID: 36544710 PMCID: PMC9762551 DOI: 10.3389/fonc.2022.1045477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 12/08/2022] Open
Abstract
Introduction Pancreatic adenocarcinoma (PAAD) is a fatal disease characterized by promoting connective tissue proliferation in the stroma. Activated cancer-associated fibroblasts (CAFs) play a key role in fibrogenesis in PAAD. CAF-based tumor typing of PAAD has not been explored. Methods We extracted single-cell sequence transcriptomic data from GSE154778 and CRA001160 datasets from Gene Expression Omnibus or Tumor Immune Single-cell Hub to collect CAFs in PAAD. On the basis of Seurat packages and new algorithms in machine learning, CAF-related subtypes and their top genes for PAAD were analyzed and visualized. We used CellChat package to perform cell-cell communication analysis. In addition, we carried out functional enrichment analysis based on clusterProfiler package. Finally, we explored the prognostic and immunotherapeutic value of these CAF-related subtypes for PAAD. Results CAFs were divided into five new subclusters (CAF-C0, CAF-C1, CAF-C2, CAF-C3, and CAF-C4) based on their marker genes. The five CAF subclusters exhibited distinct signaling patterns, immune status, metabolism features, and enrichment pathways and validated in the pan-cancer datasets. In addition, we found that both CAF-C2 and CAF-C4 subgroups were negatively correlated with prognosis. With their top genes of each subclusters, the sub-CAF2 had significantly relations to immunotherapy response in the patients with pan-cancer and immunotherapy. Discussion We explored the heterogeneity of five subclusters based on CAF in signaling patterns, immune status, metabolism features, enrichment pathways, and prognosis for PAAD.
Collapse
Affiliation(s)
- Guojie Zhao
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Changjing Wang
- The Department of Gastrointestinal surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jian Jiao
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Wei Zhang
- The Seventh Department of General Surgery, HanDan Central Hospital, Handan, Hebei, China
| | - Hongwei Yang
- The First Department of Oncology, HanDan Central Hospital, Handan, Hebei, China,*Correspondence: Hongwei Yang,
| |
Collapse
|
78
|
The Microbiome in PDAC-Vantage Point for Future Therapies? Cancers (Basel) 2022; 14:cancers14235974. [PMID: 36497456 PMCID: PMC9739548 DOI: 10.3390/cancers14235974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Microorganisms have been increasingly implicated in the pathogenesis of malignant diseases, potentially affecting different hallmarks of cancer. Despite the fact that we have recently gained tremendous insight into the existence and interaction of the microbiome with neoplastic cells, we are only beginning to understand and exploit this knowledge for the treatment of human malignancies. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid tumor with limited therapeutic options and a poor long-term survival. Recent data have revealed fascinating insights into the role of the tumoral microbiome in PDAC, with profound implications for survival and potentially therapeutic outcomes. In this review, we outline the current scientific knowledge about the clinical and translational role of the microbiome in PDAC. We describe the microbial compositions in healthy and tumoral pancreatic tissue and point out four major aspects of the microbiome in PDAC: pathogenesis, diagnosis, treatment, and prognosis. However, caution must be drawn to inherent pitfalls in analyzing the intratumoral microbiome. Among others, contamination with environmental microbes is one of the major challenges. To this end, we discuss different decontamination approaches that are crucial for clinicians and scientists alike to foster applicability and physiological relevance in this translational field. Without a definition of an exact and reproducible intratumoral microbial composition, the exploitation of the microbiome as a diagnostic or therapeutic tool remains theoretical.
Collapse
|
79
|
Dixit A, Sarver A, Zettervall J, Huang H, Zheng K, Brekken RA, Provenzano PP. Targeting TNF-α-producing macrophages activates antitumor immunity in pancreatic cancer via IL-33 signaling. JCI Insight 2022; 7:e153242. [PMID: 36256464 PMCID: PMC9746819 DOI: 10.1172/jci.insight.153242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) remains resistant to immune therapies, largely owing to robustly fibrotic and immunosuppressive tumor microenvironments. It has been postulated that excessive accumulation of immunosuppressive myeloid cells influences immunotherapy resistance, and recent studies targeting macrophages in combination with checkpoint blockade have demonstrated promising preclinical results. Yet our understanding of tumor-associated macrophage (TAM) function, complexity, and diversity in PDA remains limited. Our analysis reveals significant macrophage heterogeneity, with bone marrow-derived monocytes serving as the primary source for immunosuppressive TAMs. These cells also serve as a primary source of TNF-α, which suppresses expression of the alarmin IL-33 in carcinoma cells. Deletion of Ccr2 in genetically engineered mice decreased monocyte recruitment, resulting in profoundly decreased TNF-α and increased IL-33 expression, decreased metastasis, and increased survival. Moreover, intervention studies targeting CCR2 with a new orthosteric inhibitor (CCX598) rendered PDA susceptible to checkpoint blockade, resulting in reduced metastatic burden and increased survival. Our data indicate that this shift in antitumor immunity is influenced by increased levels of IL-33, which increases dendritic cell and cytotoxic T cell activity. These data demonstrate that interventions to disrupt infiltration of immunosuppressive macrophages, or their signaling, have the potential to overcome barriers to effective immunotherapeutics for PDA.
Collapse
Affiliation(s)
- Ajay Dixit
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aaron Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jon Zettervall
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kexin Zheng
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rolf A. Brekken
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Paolo P. Provenzano
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- University of Minnesota Physical Sciences in Oncology Center, Minneapolis, Minnesota, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Hematology, Oncology, and Transplantation
- Institute for Engineering in Medicine
- Stem Cell Institute; and
- Center for Multiparametric Imaging of Tumor Immune Microenvironments, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
80
|
Frank KJ, Mulero-Sánchez A, Berninger A, Ruiz-Cañas L, Bosma A, Görgülü K, Wu N, Diakopoulos KN, Kaya-Aksoy E, Ruess DA, Kabacaoğlu D, Schmidt F, Kohlmann L, van Tellingen O, Thijssen B, van de Ven M, Proost N, Kossatz S, Weber WA, Sainz B, Bernards R, Algül H, Lesina M, Mainardi S. Extensive preclinical validation of combined RMC-4550 and LY3214996 supports clinical investigation for KRAS mutant pancreatic cancer. Cell Rep Med 2022; 3:100815. [PMID: 36384095 PMCID: PMC9729824 DOI: 10.1016/j.xcrm.2022.100815] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/05/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Over 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms. We report here on the combined inhibition of SHP2, upstream of KRAS, using the allosteric inhibitor RMC-4550 and of ERK, downstream of KRAS, using LY3214996. This combination shows synergistic anti-cancer activity in vitro, superior disruption of the MAPK pathway, and increased apoptosis induction compared with single-agent treatments. In vivo, we demonstrate good tolerability and efficacy of the combination, with significant tumor regression in multiple pancreatic ductal adenocarcinoma (PDAC) mouse models. Finally, we show evidence that 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) can be used to assess early drug responses in animal models. Based on these results, we will investigate this drug combination in the SHP2 and ERK inhibition in pancreatic cancer (SHERPA; ClinicalTrials.gov: NCT04916236) clinical trial, enrolling patients with KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Katrin J Frank
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Antonio Mulero-Sánchez
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Alexandra Berninger
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Laura Ruiz-Cañas
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Astrid Bosma
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Kıvanç Görgülü
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Nan Wu
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Kalliope N Diakopoulos
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ezgi Kaya-Aksoy
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Dietrich A Ruess
- Department of General and Visceral Surgery, Center of Surgery, Medical Center-University of Freiburg, 79106 Freiburg, Germany
| | - Derya Kabacaoğlu
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Fränze Schmidt
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Larissa Kohlmann
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Bram Thijssen
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Marieke van de Ven
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Natalie Proost
- Mouse Clinic for Cancer and Aging Research, Preclinical Intervention Unit, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Susanne Kossatz
- Department of Nuclear Medicine at Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technische Universität München, 81675 Munich, Germany; Department of Chemistry, Technische Universität München, 85748 Munich, Germany
| | - Wolfgang A Weber
- Department of Nuclear Medicine at Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), Technische Universität München, 81675 Munich, Germany
| | - Bruno Sainz
- Department of Biochemistry, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas "Alberto Sols" (IIBM), CSIC-UAM, 28029 Madrid, Spain; Chronic Diseases and Cancer, Area 3, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Rene Bernards
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Hana Algül
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Marina Lesina
- Comprehensive Cancer Center Munich at Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Sara Mainardi
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
81
|
Hypoxia activated HGF expression in pancreatic stellate cells confers resistance of pancreatic cancer cells to EGFR inhibition. EBioMedicine 2022; 86:104352. [PMID: 36371988 PMCID: PMC9664470 DOI: 10.1016/j.ebiom.2022.104352] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/18/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is an essential target for cancer treatment. However, EGFR inhibitor erlotinib showed limited clinical benefit in pancreatic cancer therapy. Here, we showed the underlying mechanism of tumor microenvironment suppressing the sensitivity of EGFR inhibitor through the pancreatic stellate cell (PSC). METHODS The expression of alpha-smooth muscle actin (α-SMA) and hypoxia marker in human pancreatic cancer tissues were detected by immunohistochemistry, and their correlation with overall survival was evaluated. Human immortalized PSC was constructed and used to investigate the potential effect on pancreatic cancer cell lines in hypoxia and normoxia. Luciferase reporter assay and Chromatin immunoprecipitation were performed to explore the potential mechanisms in vitro. The combined inhibition of EGFR and Met was evaluated in an orthotopic xenograft mouse model of pancreatic cancer. FINDINGS We found that high expression levels of α-SMA and hypoxia markers are associated with poor prognosis of pancreatic cancer patients. Mechanistically, we demonstrated that hypoxia induced the expression and secretion of HGF in PSC via transcription factor HIF-1α. PSC-derived HGF activates Met, the HGF receptor, suppressing the sensitivity of pancreatic cancer cells to EGFR inhibitor in a KRAS-independent manner by activating the PI3K-AKT pathway. Furthermore, we found that the combination of EGFR inhibitor and Met inhibitor significantly suppressed tumor growth in an orthotopic xenograft mouse model. INTERPRETATION Our study revealed a previously uncharacterized HIF1α-HGF-Met-PI3K-AKT signaling axis between PSC and cancer cells and indicated that EGFR inhibition plus Met inhibition might be a promising strategy for pancreatic cancer treatment. FUNDING This study was supported by The National Natural Science Foundation of China.
Collapse
|
82
|
Hu Q, Xu M, Feng J, Xie H, Li J, He Y, Tang G, Guo B. Hyperthermia-induced stellate cell deactivation to enhance dual chemo and pH-responsive photothermal therapy for pancreatic cancers. NANOSCALE 2022; 14:15735-15748. [PMID: 36205175 DOI: 10.1039/d2nr04235e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For pancreatic ductal adenocarcinoma (PDAC) treatment, the deactivation of pancreatic stellate cells (PSCs) by blocking the transforming growth factor β (TGF-β) pathway is a promising strategy to inhibit stroma, enhance drug penetration, and greatly amplify chemotherapeutic efficacy. It is known that photothermal therapy (PTT) locally depletes stroma and enhances permeability but whether and how PTT reacts in the molecular pathway to induce PSC deactivation in PDAC has rarely been investigated so far. Herein, C-G NPs are synthesized by loading both acid-responsive photothermal molecules and gemcitabine for investigating both the combinatory chemophotothermal therapy and the interaction between the PTT and TGF-β pathway in PDAC. Notably, C-G NPs exhibit tumoral acidic pH-activated PTT and succeeded in deactivating PSCs and suppressing the expression level for both TGF-β and collagen fiber. Furthermore, hyperthermia remodels the tumoral extracellular matrix, significantly improves NP penetration, and boosts the ultimate synergistic chemophotothermal therapeutic efficacy. Importantly, the molecular biology study reveals that hyperthermia leads to the decrease in the mRNA expression of TGF-β1, SMAD2, SMAD3, α-SMA, and Collagen I in the tumor tissue, which is the key to suppress tumor progression. This research demonstrates that combinatory chemophotothermal therapy holds great promise for PDAC treatment.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Minjie Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiayu Feng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jingyu Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Ying He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
83
|
Hashimoto A, Handa H, Hata S, Hashimoto S. Orchestration of mesenchymal plasticity and immune evasiveness via rewiring of the metabolic program in pancreatic ductal adenocarcinoma. Front Oncol 2022; 12:1005566. [PMID: 36408139 PMCID: PMC9669439 DOI: 10.3389/fonc.2022.1005566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most fatal cancer in humans, due to its difficulty of early detection and its high metastatic ability. The occurrence of epithelial to mesenchymal transition in preinvasive pancreatic lesions has been implicated in the early dissemination, drug resistance, and cancer stemness of PDAC. PDAC cells also have a reprogrammed metabolism, regulated by driver mutation-mediated pathways, a desmoplastic tumor microenvironment (TME), and interactions with stromal cells, including pancreatic stellate cells, fibroblasts, endothelial cells, and immune cells. Such metabolic reprogramming and its functional metabolites lead to enhanced mesenchymal plasticity, and creates an acidic and immunosuppressive TME, resulting in the augmentation of protumor immunity via cancer-associated inflammation. In this review, we summarize our recent understanding of how PDAC cells acquire and augment mesenchymal features via metabolic and immunological changes during tumor progression, and how mesenchymal malignancies induce metabolic network rewiring and facilitate an immune evasive TME. In addition, we also present our recent findings on the interesting relevance of the small G protein ADP-ribosylation factor 6-based signaling pathway driven by KRAS/TP53 mutations, inflammatory amplification signals mediated by the proinflammatory cytokine interleukin 6 and RNA-binding protein ARID5A on PDAC metabolic reprogramming and immune evasion, and finally discuss potential therapeutic strategies for the quasi-mesenchymal subtype of PDAC.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| | - Haruka Handa
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Soichiro Hata
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University Faculty of Medicine, Sapporo, Japan
- *Correspondence: Ari Hashimoto, ; Shigeru Hashimoto,
| |
Collapse
|
84
|
Yamamoto Y, Kasashima H, Fukui Y, Tsujio G, Yashiro M, Maeda K. The heterogeneity of cancer-associated fibroblast subpopulations: Their origins, biomarkers, and roles in the tumor microenvironment. Cancer Sci 2022; 114:16-24. [PMID: 36197901 PMCID: PMC9807521 DOI: 10.1111/cas.15609] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The prognosis for patients with cancers known for a highly activated stromal reaction, including diffuse-type (scirrhous) gastric cancer, consensus molecular subtype 4 (CMS4) colorectal cancer, and pancreatic ductal adenocarcinoma, is extremely poor. To explore the resistance of conventional therapy for those refractory cancers, detailed classification and investigation of the different subsets of cancer-associated fibroblasts (CAFs) involved are needed. Recent studies with a single-cell transcriptomics strategy (single-cell RNA-seq) have demonstrated that CAF subpopulations contain different origins and marker proteins with the capacity to either promote or suppress cancer progression. Through multiple signaling pathways, CAFs can promote tumor growth, metastasis, and angiogenesis with extracellular matrix (ECM) remodeling; they can also interact with tumor-infiltrating immune cells and modulate the antitumor immunological state in the tumor microenvironment (TME). Here, we review the recent literature on the various subpopulations of CAFs to improve our understanding of the cell-cell interactions in the TME and highlight future avenues for CAF-targeted therapy.
Collapse
Affiliation(s)
- Yurie Yamamoto
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Hiroaki Kasashima
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Yasuhiro Fukui
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Gen Tsujio
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan,Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Masakazu Yashiro
- Molecular Oncology and TherapeuticsOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Maeda
- Department of Gastroenterological SurgeryOsaka Metropolitan University Graduate School of MedicineOsakaJapan
| |
Collapse
|
85
|
Wu W, Wen K, Zhong Y. Research progress in the establishment of pancreatic cancer models and preclinical applications. CANCER INNOVATION 2022; 1:207-219. [PMID: 38089760 PMCID: PMC10686130 DOI: 10.1002/cai2.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2024]
Abstract
Pancreatic cancer (PC) is a highly malignant tumor in the digestive system. The transformation of tissue from normal to pancreatic intraepithelial neoplasm is driven by certain oncogenes, among which the mutation rate of the KRAS gene is as high as 90%. Currently, PC has limited treatment options, low therapeutic effects, and poor prognosis. Thus, more effective methods to combat PC are urgently needed. Some models that can more accurately reflect the biological behaviors and genomic characteristics of PC, such as its morphology, pathology, proliferation, and invasion, are being continuously developed. These include genetic engineering models, orthotopic xenograft models, and heterotopic xenograft models. Using these PC models, scientists have further verified promising drugs and potential therapeutic targets for PC treatment. This is of great significance for limiting the progression of PC with clinical intervention, improving patient outcomes, and improving survival rates.
Collapse
Affiliation(s)
- Weizheng Wu
- Departments of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Kunming Wen
- Departments of General SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
86
|
Bian S, Dong H, Zhao L, Li Z, Chen J, Zhu X, Qiu N, Jia X, Song W, Li Z, Zheng S, Wang H, Song P. Antihypertension Nanoblockers Increase Intratumoral Perfusion of Sequential Cytotoxic Nanoparticles to Enhance Chemotherapy Efficacy against Pancreatic Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201931. [PMID: 36026578 PMCID: PMC9561769 DOI: 10.1002/advs.202201931] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the worst prognosis types of tumors, is characterized by dense extracellular matrix, which compresses tumor vessels and forms a physical barrier to inhibit therapeutic drug penetration and efficacy. Herein, losartan, an antihypertension agent, is applied as a tumor stroma modulator and developed into a nanosystem. A series of lipophilic losartan prodrugs are constructed by esterification of the hydroxyl group on losartan to fatty acids. Based on the self-assembly ability and hydrodynamic diameter, the losartan-linoleic acid conjugate is selected for further investigation. To improve the stability in vivo, nanoassemblies are refined with PEGylation to form losartan nanoblocker (Los NB), and administered via intravenous injection for experiments. On murine models of pancreatic cancer, Los NB shows a greater ability to remodel the tumor microenvironment than free losartan, including stromal depletion, vessel perfusion increase, and hypoxia relief. Furthermore, Los NB pretreatment remarkably enhances the accumulation and penetration of 7-ethyl-10-hydroxycamptothecin (SN38)-loaded nanodrugs (SN38 NPs) in tumor tissues. Expectedly, overall therapeutic efficacy of SN38 NPs is significantly enhanced after Los NB pretreatment. Since losartan is one of the most commonly used antihypertension agents, this study may provide a potential for clinical transformation in stroma-rich PDAC treatment.
Collapse
|
87
|
Wang M, Wu M, Liu X, Shao S, Huang J, Liu B, Liang T. Pyroptosis Remodeling Tumor Microenvironment to Enhance Pancreatic Cancer Immunotherapy Driven by Membrane Anchoring Photosensitizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202914. [PMID: 35981886 PMCID: PMC9561775 DOI: 10.1002/advs.202202914] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Indexed: 05/28/2023]
Abstract
Immunotherapy, the most promising strategy of cancer treatment, has achieved promising outcomes, but its clinical efficacy in pancreatic cancer is limited mainly due to the complicated tumor immunosuppressive microenvironment. As a highly inflammatory form of immunogenic cell death (ICD), pyroptosis provides a great opportunity to alleviate immunosuppression and promote systemic immune responses in solid tumors. Herein, membrane-targeted photosensitizer TBD-3C with aggregation-induced emission (AIE) feature to trigger pyroptosis-aroused cancer immunotherapy via photodynamic therapy (PDT) is applied. The results reveal that pyroptotic cells induced by TBD-3C could stimulate M1-polarization of macrophages, cause maturation of dendritic cells (DCs), and activation of CD8+ cytotoxic T-lymphocytes (CTLs). Pyroptosis-aroused immunological responses could convert immunosuppressive "cold" tumor microenvironment (TME) to immunogenic "hot" TME, which not only inhibits primary pancreatic cancer growth but also attacks the distant tumor. This work establishes a platform with high biocompatibility for light-controlled antitumor immunity and solid tumor immunotherapy aroused by cell pyroptosis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang UniversitySchool of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
- Innovation Center for the Study of Pancreatic DiseasesHangzhou310003P. R. China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic DiseasesHangzhou310003P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Research Center for Healthcare Data ScienceZhejiang LabHangzhou310003P. R. China
| | - Min Wu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
| | - Xingang Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
| | - Shiyi Shao
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang UniversitySchool of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
- Innovation Center for the Study of Pancreatic DiseasesHangzhou310003P. R. China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic DiseasesHangzhou310003P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Research Center for Healthcare Data ScienceZhejiang LabHangzhou310003P. R. China
| | - Junmin Huang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang UniversitySchool of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
- Innovation Center for the Study of Pancreatic DiseasesHangzhou310003P. R. China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic DiseasesHangzhou310003P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Research Center for Healthcare Data ScienceZhejiang LabHangzhou310003P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular EngineeringNational University of Singapore4 Engineering Drive 4Singapore117585Singapore
- Joint School of National University of Singapore and Tianjin UniversityInternational Campus of Tianjin UniversityBinhai New CityFuzhou350207P. R. China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic SurgeryFirst Affiliated HospitalZhejiang UniversitySchool of MedicineHangzhou310003P. R. China
- Zhejiang Provincial Key Laboratory of Pancreatic DiseaseHangzhou310003P. R. China
- Innovation Center for the Study of Pancreatic DiseasesHangzhou310003P. R. China
- Zhejiang Provincial Clinical Research Center for the Study of Hepatobiliary & Pancreatic DiseasesHangzhou310003P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
- Research Center for Healthcare Data ScienceZhejiang LabHangzhou310003P. R. China
| |
Collapse
|
88
|
Liu Y, Wu X, Chen F, Li H, Wang T, Liu N, Sun K, Zhou G, Tao K. Modulating cancer-stroma crosstalk by a nanoparticle-based photodynamic method to pave the way for subsequent therapies. Biomaterials 2022; 289:121813. [PMID: 36152513 DOI: 10.1016/j.biomaterials.2022.121813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
Abstract
Cancer cells and their stromal microenvironment are mutually supportive. Either destroying cancer cells or damaging stromal components cannot guarantee a satisfactory outcome in the long-term treatment. Herein, we showed that the tumor-stroma crosstalk was disturbed by nanoparticle-based photodynamic therapy (PDT) in pancreatic tumor models, leading to the persistent inhibition of extracellular matrix (ECM) secretion and the enhanced therapeutic effect. By employing a conditioned medium method, we found that the nanoparticulate PDT at a sub-lethal dosage down-regulated TGFβ signaling pathways, leading to the decrease in drug resistance, proliferation, and migration of the cancer cells. Meanwhile, pancreatic stellate cells (PSCs) were inactivated by PDT, hindering the secretion of ECM. Combining the results that PDT indiscriminately killed PSCs and cancer cells, we showed that the mutual support between the cancer cells and the stroma was interrupted. We further presented the inhibition of the crosstalk persistently enhanced tumor penetration in stroma-rich pancreatic tumor models. The loosened stroma not only facilitated tumor eradication by subsequent therapy but also improved the efficiency of gemcitabine treatment on monthly later recurrent tumors. Therefore, our work may boost the potential of PDT to be a valuable individual or adjuvant treatment for desmoplastic cancers.
Collapse
Affiliation(s)
- Yan Liu
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xiaodi Wu
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Feifan Chen
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tao Wang
- Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China
| | - Ningning Liu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Kang Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Guangdong Zhou
- Shanghai Key Laboratory of Tissue Engineering, Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China; Research Institute of Plastic Surgery, Wei Fang Medical College, Wei Fang, Shandong, 261042, PR China.
| | - Ke Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
89
|
Hopkins K, Buno K, Romick N, Freitas dos Santos AC, Tinsley S, Wakelin E, Kennedy J, Ladisch M, Allen-Petersen BL, Solorio L. Sustained degradation of hyaluronic acid using an in situ forming implant. PNAS NEXUS 2022; 1:pgac193. [PMID: 36714867 PMCID: PMC9802073 DOI: 10.1093/pnasnexus/pgac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 02/01/2023]
Abstract
In pancreatic cancer, excessive hyaluronic acid (HA) in the tumor microenvironment creates a viscous stroma, which reduces systemic drug transport into the tumor and correlates with poor patient prognosis. HA can be degraded through both enzymatic and nonenzymatic methods to improve mass transport properties. Here, we use an in situ forming implant to provide sustained degradation of HA directly at a local, targeted site. We formulated and characterized an implant capable of sustained release of hyaluronidase (HAase) using 15 kDa poly(lactic-co-glycolic) acid and bovine testicular HAase. The implant releases bioactive HAase to degrade the HA through enzymatic hydrolysis at early timepoints. In the first 24 h, 17.9% of the HAase is released, which can reduce the viscosity of a 10 mg/mL HA solution by 94.1% and deplete the HA content within primary human pancreatic tumor samples and ex vivo murine tumors. At later timepoints, as lower quantities of HAase are released (51.4% released in total over 21 d), the degradation of HA is supplemented by the acidic by-products that accumulate as a result of implant degradation. Acidic conditions degrade HA through nonenzymatic methods. This formulation has potential as an intratumoral injection to allow sustained degradation of HA at the pancreatic tumor site.
Collapse
Affiliation(s)
- Kelsey Hopkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin Buno
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Natalie Romick
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Antonio Carlos Freitas dos Santos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Samantha Tinsley
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Elizabeth Wakelin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jacqueline Kennedy
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Michael Ladisch
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA,Laboratory of Renewable Resources Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
90
|
Focal adhesion kinase priming in pancreatic cancer, altering biomechanics to improve chemotherapy. Biochem Soc Trans 2022; 50:1129-1141. [PMID: 35929603 PMCID: PMC9444069 DOI: 10.1042/bst20220162] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The dense desmoplastic and fibrotic stroma is a characteristic feature of pancreatic ductal adenocarcinoma (PDAC), regulating disease progression, metastasis and response to treatment. Reciprocal interactions between the tumour and stroma are mediated by bidirectional integrin-mediated signalling, in particular by Focal Adhesion Kinase (FAK). FAK is often hyperactivated and overexpressed in aggressive cancers, promoting stromal remodelling and inducing tissue stiffness which can accelerate cancer cell proliferation, survival and chemoresistance. Therapeutic targeting of the PDAC stroma is an evolving area of interest for pre-clinical and clinical research, where a subtle reshaping of the stromal architecture prior to chemotherapy may prove promising in the clinical management of disease and overall patient survival. Here, we describe how transient stromal manipulation (or ‘priming’) via short-term FAK inhibition, rather than chronic treatment, can render PDAC cells exquisitely vulnerable to subsequent standard-of-care chemotherapy. We assess how our priming publication fits with the recent literature and describe in this perspective how this could impact future cancer treatment. This highlights the significance of treatment timing and warrants further consideration of anti-fibrotic therapies in the clinical management of PDAC and other fibrotic diseases.
Collapse
|
91
|
Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis 2022; 11:46. [PMID: 35945203 PMCID: PMC9363460 DOI: 10.1038/s41389-022-00420-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Lipids are essential constituents for malignant tumors, as they are absolutely required for tumor growth and dissemination. Provided by the tumor microenvironment (TME) or by cancer cells themselves through activation of de novo synthesis pathways, they orchestrate a large variety of pro-tumorigenic functions. Importantly, TME cells, especially immune cells, cancer-associated fibroblasts (CAFs) and cancer-associated adipocytes (CAAs), are also prone to changes in their lipid content, which hinder or promote tumor aggressiveness. In this review, we address the significant findings for lipid contribution in tumor progression towards a metastatic disease and in the poor response to therapeutic treatments. We also highlight the benefits of targeting lipid pathways in preclinical models to slow down metastasis development and overcome chemo-and immunotherapy resistance.
Collapse
Affiliation(s)
- Sophie Vasseur
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France
| | - Fabienne Guillaumond
- Centre de Recherche en Cancérologie de Marseille, INSERM, Aix-Marseille Université, CNRS, Institut Paoli-Calmettes, F-13009, Marseille, France.
| |
Collapse
|
92
|
TRPM7 Modulates Human Pancreatic Stellate Cell Activation. Cells 2022; 11:cells11142255. [PMID: 35883700 PMCID: PMC9316618 DOI: 10.3390/cells11142255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023] Open
Abstract
Pancreatic diseases, such as pancreatitis or pancreatic ductal adenocarcinoma, are characterized by the presence of activated pancreatic stellate cells (PSCs). These cells represent key actors in the tumor stroma, as they actively participate in disease development and progression: reprograming these PSCs into a quiescent phenotype has even been proposed as a promising strategy for restoring the hallmarks of a healthy pancreas. Since TRPM7 channels have been shown to regulate hepatic stellate cells proliferation and survival, we aimed to study the role of these magnesium channels in PSC activation and proliferation. PS-1 cells (isolated from a healthy pancreas) were used as a model of healthy PSCs: quiescence or activation were induced using all-trans retinoic acid or conditioned media of pancreatic cancer cells, respectively. The role of TRPM7 was studied by RNA silencing or by pharmacological inhibition. TRPM7 expression was found to be correlated with the activation status of PS-1 cells. TRPM7 expression was able to regulate proliferation through modulation of cell cycle regulators and most importantly p53, via the PI3K/Akt pathway, in a magnesium-dependent manner. Finally, the analysis of TCGA database showed the overexpression of TRPM7 in cancer-associated fibroblasts. Taken together, we provide strong evidences that TRPM7 can be considered as a marker of activated PSCs.
Collapse
|
93
|
Zhu X, Liu D, Li G, Zhi M, Sun J, Qi L, Li J, Pandol SJ, Li L. Exosomal miR-140-3p and miR-143-3p from TGF-β1-treated pancreatic stellate cells target BCL2 mRNA to increase β-cell apoptosis. Mol Cell Endocrinol 2022; 551:111653. [PMID: 35513284 DOI: 10.1016/j.mce.2022.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND People with chronic pancreatitis (CP) normally develop a fibrotic pancreas with reduced β-cell mass. Limited studies have focused on the development and pathogenesis of CP-related diabetes. MiRNAs packaged as exosomes are the key regulators of β-cell dysfunction. This study aimed to define the effect of exosomal miRNA from activated pancreatic stellate cells (PSCs) on β-cells. METHODS Exosomes in the supernatants of mouse PSCs lines were extracted via ultracentrifugation and then identified. The role of exosomes secreted by transforming growth factor-β1 (TGF-β1)-treated PSCs in β-cell function was assessed. MiRNAs were prepared from exosomes extracted from TGF-β1-treated and untreated PSCs (T-Exo or C-Exo), and the miRNA expression profiles were compared by microarray. Then, miR-140-3p and miR-143-3p were overexpressed or inhibited in MIN6 cells and islets to determine their molecular and functional effects. RESULTS Exosomes were the predominant extracellular vesicles secreted by PSCs into the culture medium. The MIN6 cells incubated with T-Exo had less insulin secretion and lower viability than the MIN6 cells incubated with PBS or C-Exo. MiR-140-3p and miR-143-3p were notably upregulated in T-Exo. Enhancing the expression of miR-140-3p and miR-143-3p in β-cells decreased the cell count and viability and increased the cleaved caspase-3 levels. Mechanistically, T-Exo mediated the intercellular transfer of miR-140-3p and miR-143-3p by targeting the B-cell lymphoma 2 gene in recipient β-cells to induce cell death. CONCLUSIONS Exosomal miRNA transfer as a communication mode between PSCs and β-cells, which may be explored for its therapeutic utility.
Collapse
Affiliation(s)
- Xiangyun Zhu
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Dechen Liu
- Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guoqing Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Mengmeng Zhi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Ji Sun
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Jingbo Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China
| | - Stephen J Pandol
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, China.
| |
Collapse
|
94
|
Zhu L, Mao H, Yang L. Advanced iron oxide nanotheranostics for multimodal and precision treatment of pancreatic ductal adenocarcinoma. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1793. [PMID: 35396932 PMCID: PMC9373845 DOI: 10.1002/wnan.1793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Despite current advances in new approaches for cancer detection and treatment, pancreatic cancer remains one of the most lethal cancer types. Difficult to detect early, aggressive tumor biology, and resistance to chemotherapy, radiotherapy, and immunotherapy result in a poor prognosis of pancreatic cancer patients with a 5-year survival of 10%. With advances in cancer nanotechnology, new imaging and drug delivery approaches that allow the development of multifunctional nanotheranostic agents offer opportunities for improving pancreatic cancer treatment using precision oncology. In this review, we will introduce potential applications of innovative theranostic strategies to address major challenges in the treatment of pancreatic cancer at different disease stages. Several important issues concerning targeted delivery of theranostic nanoparticles and tumor stromal barriers are discussed. We then focus on the development of a magnetic iron oxide nanoparticle platform for multimodal therapy of pancreatic cancer, including MRI monitoring targeted nanoparticle/drug delivery, therapeutic response, and tumor re-staging, activation of tumor immune response by immunoactivating nanoparticle and magnetic hyperthermia therapy, and intraoperative interventions for improving the outcome of targeted therapy. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
- Winship Cancer Institute, Atlanta, Georgia, USA
| |
Collapse
|
95
|
Boyd LNC, Andini KD, Peters GJ, Kazemier G, Giovannetti E. Heterogeneity and plasticity of cancer-associated fibroblasts in the pancreatic tumor microenvironment. Semin Cancer Biol 2022; 82:184-196. [PMID: 33737108 DOI: 10.1016/j.semcancer.2021.03.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a notably poor prognosis, in urgent need of improved treatment strategies. The desmoplastic PDAC tumor microenvironment (TME), marked by a high concentration of cancer-associated-fibroblasts (CAFs), is a dynamic part of PDAC pathophysiology which occasions a variety of effects throughout the course of pancreatic tumorigenesis and disease evolution. A better understanding of the desmoplastic TME and CAF biology in particular, should provide new opportunities for improving therapeutics. That CAFs have a tumor-supportive role in oncogenesis is well known, yet research evidence has shown that CAFs also have tumor-repressive functions. In this review, we seek to clarify the intriguing heterogeneity and plasticity of CAFs and their ambivalent role in PDAC tumorigenesis and progression. Additionally, we provide recommendations to advance the implementation of CAF-directed PDAC care. An improved understanding of CAFs' origins, spatial location, functional diversity, and marker determination, as well as CAF behavior during the course of PDAC progression and metastasis will provide essential knowledge for the future improvement of therapeutic strategies for patients suffering from PDAC.
Collapse
Affiliation(s)
- Lenka N C Boyd
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Katarina D Andini
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Godefridus J Peters
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Marii Skłodowskiej-Curie 3a, 80-210, Gdańsk, Poland.
| | - Geert Kazemier
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands.
| | - Elisa Giovannetti
- Department of Medical Oncology, Lab of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, De Boelelaan 1118, 1081 HZ, Postbus 7057, 1007 MB, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini, 13, 56017, San Giuliano Terme PI, Pisa, Italy.
| |
Collapse
|
96
|
Millar‐Haskell CS, Sperduto JL, Slater JH, Thorpe C, Gleghorn JP. Secretion of the disulfide bond generating catalyst QSOX1 from pancreatic tumor cells into the extracellular matrix: association with extracellular vesicles and matrix proteins. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e48. [PMID: 36590238 PMCID: PMC9797115 DOI: 10.1002/jex2.48] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/21/2022] [Accepted: 06/12/2022] [Indexed: 01/05/2023]
Abstract
Quiescin sulfhydryl oxidase 1 (QSOX1) is a disulfide bond generating catalyst that is overexpressed in solid tumors. Expression of QSOX1 is linked to cancer cell invasion, tumor grade, and extracellular matrix (ECM) protein deposition. While the secreted version of QSOX1 is known to be present in various fluids and secretory tissues, its presence in the ECM of cancer is less understood. To characterize secreted QSOX1, we separated conditioned media based on size and density. We discovered that the majority of secreted QSOX1 resides in the EV-depleted fraction and in the soluble protein fraction. Very little QSOX1 could be detected in the EVP fraction. We used immunofluorescence to image subpopulations of EVs and found QSOX1 in Golgi-derived vesicles and medium/large vesicles, but in general, most extracellular QSOX1 was not attributed to these vesicles. Next, we quantified QSOX1 co-localization with the EV marker Alix. For the medium/large EVs, ~98% contained QSOX1 when fibronectin was used as a coating. However, on collagen coatings, only ~60% of these vesicles contained QSOX1, suggesting differences in EV cargo based on ECM coated surfaces. About 10% of small EVs co-localized with QSOX1 on every ECM protein surface except for collagen (0.64%). We next investigated adhesion of QSOX1 to ECM proteins in vitro and in situ and found that QSOX1 preferentially adheres to fibronectin, laminins, and Matrigel compared to gelatin and collagen. This mechanism was found to be, in part, mediated by the formation of mixed disulfides between QSOX1 and cysteine-rich ECM proteins. In summary, we found that QSOX1 (1) is in subpopulations of medium/large EVs, (2) seems to interact with small Alix+ EVs, and (3) adheres to cysteine-rich ECM proteins, potentially through the formation of intermediate disulfides. These observations offer significant insight into how enzymes, such as QSOX1, can facilitate matrix remodeling events in solid tumor progression.
Collapse
Affiliation(s)
| | - John L. Sperduto
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - John H. Slater
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Colin Thorpe
- Department of Chemistry & BiochemistryUniversity of DelawareNewarkDelawareUSA
| | - Jason P. Gleghorn
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
97
|
Han S, Yang W, Qin C, Du Y, Ding M, Yin H, Xu T. Intratumoral fibrosis and patterns of immune infiltration in clear cell renal cell carcinoma. BMC Cancer 2022; 22:661. [PMID: 35710350 PMCID: PMC9205105 DOI: 10.1186/s12885-022-09765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intratumoral fibrosis was positively correlated with histological grade of renal clear cell carcinoma (ccRCC) and intratumoral inflammation. However, the association of intratumoral fibrosis with the immune infiltration of ccRCC was few evaluated. Methods We used the second harmonic generation (SHG)-based imaging technology and evaluated the intratumoral fibrosis in ccRCC, and then divided the patients into the high fibrosis group (HF) and the low fibrosis group (LF). Meanwhile, the Kaplan–Meier survival curve analysis was performed to analyze the relationship between intratumoral fibrosis and the disease-free survival rate. Antibody arrays were used for seeking difference in cytokines and immune infiltration between the HF group (N = 11) and LF group (N = 11). The selected immune infiltration marker was then verified by immunohistochemistry (IHC) staining in 45 ccRCC samples. Results Out of 640 cytokines and immune infiltration markers, we identified 115 proteins that were significantly different in quantity between ccRCC and adjacent normal tissues. In addition, the Venn diagram indicated that six proteins, including Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), were significantly associated with intratumoral fibrosis (p < 0.05). The GO/KEGG enrichment analysis indicated that the proteins associated with intratumoral fibrosis were involved in the immunity and tumor-infiltrating lymphocytes. The expression of the CTLA4 was negatively correlated with collagen level, confirmed by IHC staining of CTLA4 (p < 0.05). Conclusions The study indicated that the intratumoral fibrosis level was negatively correlated with the expression of CTLA4 in the tumor immune microenvironment of the ccRCC, which posed the potential value of targeting the stroma of the tumor, a supplement to immunotherapy. However, the specific mechanism of this association is still unclear and needs further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09765-0.
Collapse
Affiliation(s)
- Songchen Han
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China
| | - Wenbo Yang
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China
| | - Yiqing Du
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China
| | - Mengting Ding
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China
| | - Huaqi Yin
- Department of Urology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, No.11 South Xizhimen Street, Beijing, 100044, China.
| |
Collapse
|
98
|
McAndrews KM, Chen Y, Darpolor JK, Zheng X, Yang S, Carstens JL, Li B, Wang H, Miyake T, de Sampaio PC, Kirtley ML, Natale M, Wu CC, Sugimoto H, LeBleu VS, Kalluri R. Identification of Functional Heterogeneity of Carcinoma-Associated Fibroblasts with Distinct IL6-Mediated Therapy Resistance in Pancreatic Cancer. Cancer Discov 2022; 12:1580-1597. [PMID: 35348629 PMCID: PMC9399904 DOI: 10.1158/2159-8290.cd-20-1484] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/07/2021] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of fibroblasts as part of the host response to cancer. Using single-cell RNA sequencing, multiplex immunostaining, and several genetic mouse models, we identify carcinoma-associated fibroblasts (CAF) with opposing functions in PDAC progression. Depletion of fibroblast activation protein (FAP)+ CAFs results in increased survival, in contrast to depletion of alpha smooth muscle actin (αSMA)+ CAFs, which leads to decreased survival. Tumor-promoting FAP+ CAFs (TP-CAF) and tumor-restraining αSMA+ CAFs (TR-CAF) differentially regulate cancer-associated pathways and accumulation of regulatory T cells. Improved efficacy of gemcitabine is observed when IL6 is deleted from αSMA+ CAFs but not from FAP+ CAFs using dual-recombinase genetic PDAC models. Improved gemcitabine efficacy due to lack of IL6 synergizes with anti-PD-1 immunotherapy to significantly improve survival of PDAC mice. Our study identifies functional heterogeneity of CAFs in PDAC progression and their different roles in therapy response. SIGNIFICANCE PDAC is associated with accumulation of dense stroma consisting of fibroblasts and extracellular matrix that regulate tumor progression. Here, we identify two distinct populations of fibroblasts with opposing roles in the progression and immune landscape of PDAC. Our findings demonstrate that fibroblasts are functionally diverse with therapeutic implications. This article is highlighted in the In This Issue feature, p. 1397.
Collapse
Affiliation(s)
- Kathleen M. McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J. Kebbeh Darpolor
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaofeng Zheng
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julienne L. Carstens
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bingrui Li
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Toru Miyake
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedro Correa de Sampaio
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelle L. Kirtley
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mariangela Natale
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerie S. LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Kellogg School of Management, Northwestern University, Evanston, IL, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
99
|
Agostini A, Orlacchio A, Carbone C, Guerriero I. Understanding Tricky Cellular and Molecular Interactions in Pancreatic Tumor Microenvironment: New Food for Thought. Front Immunol 2022; 13:876291. [PMID: 35711414 PMCID: PMC9193393 DOI: 10.3389/fimmu.2022.876291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/29/2022] [Indexed: 12/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90% of all pancreatic cancer cases and shows a high mortality rate among all solid tumors. PDAC is often associated with poor prognosis, due to the late diagnosis that leads to metastasis development, and limited efficacy of available treatments. The tumor microenvironment (TME) represents a reliable source of novel targets for therapy, and even if many of the biological interactions among stromal, immune, and cancer cells that populate the TME have been studied, much more needs to be clarified. The great limitation in the efficacy of current standard chemoterapy is due to both the dense fibrotic inaccessible TME barrier surrounding cancer cells and the immunological evolution from a tumor-suppressor to an immunosuppressive environment. Nevertheless, combinatorial therapies may prove more effective at overcoming resistance mechanisms and achieving tumor cell killing. To achieve this result, a deeper understanding of the pathological mechanisms driving tumor progression and immune escape is required in order to design rationale-based therapeutic strategies. This review aims to summarize the present knowledge about cellular interactions in the TME, with much attention on immunosuppressive functioning and a specific focus on extracellular matrix (ECM) contribution.
Collapse
Affiliation(s)
- Antonio Agostini
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Medical Oncology, Department of Translational Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY, United States
| | - Carmine Carbone
- Medical Oncology, Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Ilaria Guerriero
- Biogem, Biology and Molecular Genetics Institute, Ariano Irpino, Italy
| |
Collapse
|
100
|
Rizzo R, Onesto V, Forciniti S, Chandra A, Prasad S, Iuele H, Colella F, Gigli G, Del Mercato LL. A pH-sensor scaffold for mapping spatiotemporal gradients in three-dimensional in vitro tumour models. Biosens Bioelectron 2022; 212:114401. [PMID: 35617754 DOI: 10.1016/j.bios.2022.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
The detection of extracellular pH at single cell resolution is challenging and requires advanced sensibility. Sensing pH at high spatial and temporal resolution might provide crucial information in understanding the role of pH and its fluctuations in a wide range of physio-pathological cellular processes, including cancer. Here, a method to embed silica-based fluorescent pH sensors into alginate-based three-dimensional (3D) microgels tumour models, coupled with a computational method for fine data analysis, is presented. By means of confocal laser scanning microscopy, live-cell time-lapse imaging of 3D alginate microgels was performed and the extracellular pH metabolic variations were monitored in both in vitro 3D mono- and 3D co-cultures of tumour and stromal pancreatic cells. The results show that the extracellular pH is cell line-specific and time-dependent. Moreover, differences in pH were also detected between 3D monocultures versus 3D co-cultures, thus suggesting the existence of a metabolic crosstalk between tumour and stromal cells. In conclusion, the system has the potential to image multiple live cell types in a 3D environment and to decipher in real-time their pH metabolic interplay under controlled experimental conditions, thus being also a suitable platform for drug screening and personalized medicine.
Collapse
Affiliation(s)
- Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| | - Valentina Onesto
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Stefania Forciniti
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Helena Iuele
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Francesco Colella
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy; Department of Mathematics and Physics ''Ennio De Giorgi", University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy.
| |
Collapse
|