51
|
Hou JJ, Wang X, Li Y, Su S, Wang YM, Wang BM. The relationship between gut microbiota and proteolytic activity in irritable bowel syndrome. Microb Pathog 2021; 157:104995. [PMID: 34048892 DOI: 10.1016/j.micpath.2021.104995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disease that affects 3.8-9.2% of the world population. It affects the physiology and psychology of patients and increases the burden on families, the healthcare system, society, and economic development. Presently, a large number of studies have shown that compared to healthy individuals, the composition and diversity of gut microbiota in IBS patients have changed, and the proteolytic activity (PA) in fecal supernatant and colonic mucosa of IBS patients has also increased. These findings indicate that the imbalance of intestinal microecology and intestinal protein hydrolysis is closely related to IBS. Furthermore, the intestinal flora is a key substance that regulates the PA and is associated with IBS. The current review described the intestinal microecology and intestinal proteolytic activity of patients with IBS and also discussed the effect of intestinal flora on PA. In summary, this study proposed a pivotal role of gut microbiota and PA in IBS, respectively, and provided an in-depth insight into the diagnosis and treatment targets of IBS as well as the formulation of new treatment strategies for other digestive diseases and protease-related diseases.
Collapse
Affiliation(s)
- Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Bang-Mao Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
52
|
Gottesman-Katz L, Latorre R, Vanner S, Schmidt BL, Bunnett NW. Targeting G protein-coupled receptors for the treatment of chronic pain in the digestive system. Gut 2021; 70:970-981. [PMID: 33272979 PMCID: PMC9716638 DOI: 10.1136/gutjnl-2020-321193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022]
Abstract
Chronic pain is a hallmark of functional disorders, inflammatory diseases and cancer of the digestive system. The mechanisms that initiate and sustain chronic pain are incompletely understood, and available therapies are inadequate. This review highlights recent advances in the structure and function of pronociceptive and antinociceptive G protein-coupled receptors (GPCRs) that provide insights into the mechanisms and treatment of chronic pain. This knowledge, derived from studies of somatic pain, can guide research into visceral pain. Mediators from injured tissues transiently activate GPCRs at the plasma membrane of neurons, leading to sensitisation of ion channels and acute hyperexcitability and nociception. Sustained agonist release evokes GPCR redistribution to endosomes, where persistent signalling regulates activity of channels and genes that control chronic hyperexcitability and nociception. Endosomally targeted GPCR antagonists provide superior pain relief in preclinical models. Biased agonists stabilise GPCR conformations that favour signalling of beneficial actions at the expense of detrimental side effects. Biased agonists of µ-opioid receptors (MOPrs) can provide analgesia without addiction, respiratory depression and constipation. Opioids that preferentially bind to MOPrs in the acidic microenvironment of diseased tissues produce analgesia without side effects. Allosteric modulators of GPCRs fine-tune actions of endogenous ligands, offering the prospect of refined pain control. GPCR dimers might function as distinct therapeutic targets for nociception. The discovery that GPCRs that control itch also mediate irritant sensation in the colon has revealed new targets. A deeper understanding of GPCR structure and function in different microenvironments offers the potential of developing superior treatments for GI pain.
Collapse
Affiliation(s)
- Lena Gottesman-Katz
- Molecular Pathobiology, New York University, New York, New York, USA,Division of Pediatric Gastroenterology, Columbia University Medical Center/New York Presbyterian, New York, New York, USA
| | - Rocco Latorre
- Molecular Pathobiology, New York University, New York, New York, USA
| | - Stephen Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queens University, Kingston, Ontario, Canada
| | - Brian L Schmidt
- Bluestone Center, New York University, New York, New York, USA
| | - Nigel W Bunnett
- Molecular Pathobiology, New York University, New York, New York, USA
| |
Collapse
|
53
|
Mariaule V, Kriaa A, Soussou S, Rhimi S, Boudaya H, Hernandez J, Maguin E, Lesner A, Rhimi M. Digestive Inflammation: Role of Proteolytic Dysregulation. Int J Mol Sci 2021; 22:ijms22062817. [PMID: 33802197 PMCID: PMC7999743 DOI: 10.3390/ijms22062817] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of the proteolytic balance is often associated with diseases. Serine proteases and matrix metalloproteases are involved in a multitude of biological processes and notably in the inflammatory response. Within the framework of digestive inflammation, several studies have stressed the role of serine proteases and matrix metalloproteases (MMPs) as key actors in its pathogenesis and pointed to the unbalance between these proteases and their respective inhibitors. Substantial efforts have been made in developing new inhibitors, some of which have reached clinical trial phases, notwithstanding that unwanted side effects remain a major issue. However, studies on the proteolytic imbalance and inhibitors conception are directed toward host serine/MMPs proteases revealing a hitherto overlooked factor, the potential contribution of their bacterial counterpart. In this review, we highlight the role of proteolytic imbalance in human digestive inflammation focusing on serine proteases and MMPs and their respective inhibitors considering both host and bacterial origin.
Collapse
Affiliation(s)
- Vincent Mariaule
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Souha Soussou
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Soufien Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Houda Boudaya
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Juan Hernandez
- Department of Clinical Sciences, Nantes-Atlantic College of Veterinary Medicine and Food Sciences (Oniris), University of Nantes, 101 Route de Gachet, 44300 Nantes, France;
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, PL80-308 Gdansk, Poland;
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, F-78350 Jouy-en-Josas, France; (V.M.); (A.K.); (S.S.); (S.R.); (H.B.); (E.M.)
- Correspondence:
| |
Collapse
|
54
|
Aguilera-Lizarraga J, Florens MV, Viola MF, Jain P, Decraecker L, Appeltans I, Cuende-Estevez M, Fabre N, Van Beek K, Perna E, Balemans D, Stakenborg N, Theofanous S, Bosmans G, Mondelaers SU, Matteoli G, Ibiza Martínez S, Lopez-Lopez C, Jaramillo-Polanco J, Talavera K, Alpizar YA, Feyerabend TB, Rodewald HR, Farre R, Redegeld FA, Si J, Raes J, Breynaert C, Schrijvers R, Bosteels C, Lambrecht BN, Boyd SD, Hoh RA, Cabooter D, Nelis M, Augustijns P, Hendrix S, Strid J, Bisschops R, Reed DE, Vanner SJ, Denadai-Souza A, Wouters MM, Boeckxstaens GE. Local immune response to food antigens drives meal-induced abdominal pain. Nature 2021; 590:151-156. [PMID: 33442055 DOI: 10.1038/s41586-020-03118-2] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022]
Abstract
Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.
Collapse
Affiliation(s)
- Javier Aguilera-Lizarraga
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Morgane V Florens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Francesca Viola
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Piyush Jain
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Iris Appeltans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Maria Cuende-Estevez
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Naomi Fabre
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Kim Van Beek
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Eluisa Perna
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Dafne Balemans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Nathalie Stakenborg
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stavroula Theofanous
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Goele Bosmans
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Stéphanie U Mondelaers
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Sales Ibiza Martínez
- Laboratory for Mucosal Immunology, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.,Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Cintya Lopez-Lopez
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | - Karel Talavera
- Laboratory for Ion Channel Research, VIB Center for Brain and Disease Research, KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Yeranddy A Alpizar
- Neuroscience Research group, BIOMED, Hasselt University, Hasselt, Belgium
| | | | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Ricard Farre
- Mucosal Permeability Lab, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - Jiyeon Si
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Jeroen Raes
- KU Leuven Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, Leuven, Belgium.,VIB KU Leuven Center for Microbiology, Leuven, Belgium
| | - Christine Breynaert
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, KU Leuven Department of Microbiology, Immunology and Transplantation, Leuven, Belgium
| | - Cédric Bosteels
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Scott D Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramona A Hoh
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Deirdre Cabooter
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Maxim Nelis
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Patrick Augustijns
- KU Leuven Department of Pharmaceutical and Pharmacological Sciences, Leuven, Belgium
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Medical School Hamburg, Hamburg, Germany
| | - Jessica Strid
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Raf Bisschops
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - David E Reed
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Mira M Wouters
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium
| | - Guy E Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, KU Leuven Department of Chronic Diseases, Metabolism and Ageing, Leuven, Belgium.
| |
Collapse
|
55
|
Choo J, Heo G, Pothoulakis C, Im E. Posttranslational modifications as therapeutic targets for intestinal disorders. Pharmacol Res 2021; 165:105412. [PMID: 33412276 DOI: 10.1016/j.phrs.2020.105412] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
A variety of biological processes are regulated by posttranslational modifications. Posttranslational modifications including phosphorylation, ubiquitination, glycosylation, and proteolytic cleavage, control diverse physiological functions in the gastrointestinal tract. Therefore, a better understanding of their implications in intestinal diseases, including inflammatory bowel disease, irritable bowel syndrome, celiac disease, and colorectal cancer would provide a basis for the identification of novel biomarkers as well as attractive therapeutic targets. Posttranslational modifications can be common denominators, as well as distinct biomarkers, characterizing pathological differences of various intestinal diseases. This review provides experimental evidence that identifies changes in posttranslational modifications from patient samples, primary cells, or cell lines in intestinal disorders, and a summary of carefully selected information on the use of pharmacological modulators of protein modifications as therapeutic options.
Collapse
Affiliation(s)
- Jieun Choo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Gwangbeom Heo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Charalabos Pothoulakis
- Section of Inflammatory Bowel Disease & Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Eunok Im
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
56
|
Motta JP, Rolland C, Edir A, Florence AC, Sagnat D, Bonnart C, Rousset P, Guiraud L, Quaranta-Nicaise M, Mas E, Bonnet D, Verdu EF, McKay DM, Buscail E, Alric L, Vergnolle N, Deraison C. Epithelial production of elastase is increased in inflammatory bowel disease and causes mucosal inflammation. Mucosal Immunol 2021; 14:667-678. [PMID: 33674762 PMCID: PMC8075934 DOI: 10.1038/s41385-021-00375-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
Imbalance between proteases and their inhibitors plays a crucial role in the development of Inflammatory Bowel Diseases (IBD). Increased elastolytic activity is observed in the colon of patients suffering from IBD. Here, we aimed at identifying the players involved in elastolytic hyperactivity associated with IBD and their contribution to the disease. We revealed that epithelial cells are a major source of elastolytic activity in healthy human colonic tissues and this activity is greatly increased in IBD patients, both in diseased and distant sites of inflammation. This study identified a previously unrevealed production of elastase 2A (ELA2A) by colonic epithelial cells, which was enhanced in IBD patients. We demonstrated that ELA2A hyperactivity is sufficient to lead to a leaky epithelial barrier. Epithelial ELA2A hyperactivity also modified the cytokine gene expression profile with an increase of pro-inflammatory cytokine transcripts, while reducing the expression of pro-resolving and repair factor genes. ELA2A thus appears as a novel actor produced by intestinal epithelial cells, which can drive inflammation and loss of barrier function, two essentials pathophysiological hallmarks of IBD. Targeting ELA2A hyperactivity should thus be considered as a potential target for IBD treatment.
Collapse
Affiliation(s)
- Jean-Paul Motta
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Corinne Rolland
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Anissa Edir
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Ana-Carolina Florence
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - David Sagnat
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Chrystelle Bonnart
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Perrine Rousset
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Laura Guiraud
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | | | - Emmanuel Mas
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France ,grid.414018.80000 0004 0638 325XUnité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, Toulouse, France
| | - Delphine Bonnet
- grid.411175.70000 0001 1457 2980Pole Digestif, CHU Toulouse, Toulouse, France
| | - Elena F. Verdu
- grid.25073.330000 0004 1936 8227Division of Gastroenterology, Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Derek M. McKay
- grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, University of Calgary, Calgary, AB Canada
| | - Etienne Buscail
- grid.411175.70000 0001 1457 2980Pole Digestif, CHU Toulouse, Toulouse, France
| | - Laurent Alric
- grid.411175.70000 0001 1457 2980Pole Digestif, CHU Toulouse, Toulouse, France
| | - Nathalie Vergnolle
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, University of Calgary, Calgary, AB Canada
| | - Céline Deraison
- grid.503230.7IRSD, Université de Toulouse, INSERM, INRAe, ENVT, UPS, Toulouse, France
| |
Collapse
|
57
|
Motta JP, Palese S, Giorgio C, Chapman K, Denadai-Souza A, Rousset P, Sagnat D, Guiraud L, Edir A, Seguy C, Alric L, Bonnet D, Bournet B, Buscail L, Gilletta C, Buret AG, Wallace JL, Hollenberg MD, Oswald E, Barocelli E, Le Grand S, Le Grand B, Deraison C, Vergnolle N. Increased Mucosal Thrombin is Associated with Crohn's Disease and Causes Inflammatory Damage through Protease-activated Receptors Activation. J Crohns Colitis 2020; 15:787-799. [PMID: 33201214 PMCID: PMC8095389 DOI: 10.1093/ecco-jcc/jjaa229] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Thrombin levels in the colon of Crohn's disease patients have recently been found to be elevated 100-fold compared with healthy controls. Our aim was to determine whether and how dysregulated thrombin activity could contribute to local tissue malfunctions associated with Crohn's disease. METHODS Thrombin activity was studied in tissues from Crohn's disease patients and healthy controls. Intracolonic administration of thrombin to wild-type or protease-activated receptor-deficient mice was used to assess the effects and mechanisms of local thrombin upregulation. Colitis was induced in rats and mice by the intracolonic administration of trinitrobenzene sulphonic acid. RESULTS Active forms of thrombin were increased in Crohn's disease patient tissues. Elevated thrombin expression and activity were associated with intestinal epithelial cells. Increased thrombin activity and expression were also a feature of experimental colitis in rats. Colonic exposure to doses of active thrombin comparable to what is found in inflammatory bowel disease tissues caused mucosal damage and tissue dysfunctions in mice, through a mechanism involving both protease-activated receptors -1 and -4. Intracolonic administration of the thrombin inhibitor dabigatran, as well as inhibition of protease-activated receptor-1, prevented trinitrobenzene sulphonic acid-induced colitis in rodent models. CONCLUSIONS Our data demonstrated that increased local thrombin activity, as it occurs in the colon of patients with inflammatory bowel disease, causes mucosal damage and inflammation. Colonic thrombin and protease-activated receptor-1 appear as possible mechanisms involved in mucosal damage and loss of function and therefore represent potential therapeutic targets for treating inflammatory bowel disease.
Collapse
Affiliation(s)
- Jean-Paul Motta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Simone Palese
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Carmine Giorgio
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | - Kevin Chapman
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | | | - Perrine Rousset
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laura Guiraud
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Carine Seguy
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, CHU Toulouse, Toulouse, France,Pole Digestif, CHU Toulouse, Toulouse, France
| | - Barbara Bournet
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | - Louis Buscail
- Pole Digestif, CHU Toulouse, Toulouse, France,Faculty of Medicine, Paul Sabatier University, Toulouse, France
| | | | - Andre G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - John L Wallace
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Elisabetta Barocelli
- Università di Parma, Dipartimento di Scienze degli Alimenti e del Farmaco, Parma, Italia
| | | | | | - Celine Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, Toulouse, France,Department of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada,Corresponding author: Dr Nathalie Vergnolle, PhD, Institut de Recherche en Santé Digestive [IRSD], INSERM UMR-1220, Purpan Hospital, CS60039, 31024 Toulouse cedex 03, France. Tel.: 33-5-62-74-45-00; fax: 33-5-62-74-45-58;
| |
Collapse
|
58
|
Zhou W, Chen Z, Zhang G, Liu Z. A system-level investigation into the pharmacological mechanisms of flavor compounds in liquor. J Food Biochem 2020; 44:e13417. [PMID: 32789942 DOI: 10.1111/jfbc.13417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Maotai-flavor liquor, one of the world's most famous natural fermentation food products plays a significant role in traditional Chinese culture and people's daily lives for a long time due to its good taste. However, the pharmacological activities of flavor compounds in Maotai liquor have not been fully elucidated. In answering this question, a system-level analysis was developed by combining in silico ADME evaluation, multi-target prediction, GO enrichment analysis, network pharmacology technology, pathway analysis, as well as experimental verification to elucidate the pharmacological effects of flavor compounds in Maotai liquor. Finally, 55 active compounds and 80 targets were identified to interpret the pharmacological effect of the flavor compounds. Moreover, the key active compounds were verified by in vitro experiments to validate the reliability of our approaches. Our study provides a novel integrated strategy to comprehensively understand the pharmacological activities of complex components in Maotai liquor. PRACTICAL APPLICATIONS: We proposed an integrative strategy by systems pharmacology to investigate the potential active compounds and their related targets, as well as to understand the potential pharmacological mechanism of flavor compounds in Maotai liquor. The present work will not only shed light on the mechanism of active compounds in Maotai liquor at the system level, but also provide a novel approach for discovery of the active compounds that may benefit human health.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Ziyi Chen
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Guohao Zhang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhigang Liu
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- State Key Laboratory of Respiratory Disease for Allergy, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Allergy & Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| |
Collapse
|
59
|
Solà-Tapias N, Vergnolle N, Denadai-Souza A, Barreau F. The Interplay Between Genetic Risk Factors and Proteolytic Dysregulation in the Pathophysiology of Inflammatory Bowel Disease. J Crohns Colitis 2020; 14:1149-1161. [PMID: 32090263 DOI: 10.1093/ecco-jcc/jjaa033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Crohn's disease [CD] and ulcerative colitis [UC] are the two main forms of inflammatory bowel disease [IBD]. Previous studies reported increased levels of proteolytic activity in stool and tissue samples from IBD patients, whereas the re-establishment of the proteolytic balance abrogates the development of experimental colitis. Furthermore, recent data suggest that IBD occurs in genetically predisposed individuals who develop an abnormal immune response to intestinal microbes once exposed to environmental triggers. In this review, we highlight the role of proteases in IBD pathophysiology, and we showcase how the main cellular pathways associated with IBD influence proteolytic unbalance and how functional proteomics are allowing the unambiguous identification of dysregulated proteases in IBD, paving the way to the development of new protease inhibitors as a new potential treatment.
Collapse
Affiliation(s)
- Núria Solà-Tapias
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Alexandre Denadai-Souza
- Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Leuven, Belgium
| | - Frédérick Barreau
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
60
|
Bimodal Release Ondansetron Improves Stool Consistency and Symptomatology in Diarrhea-Predominant Irritable Bowel Syndrome: A Randomized, Double-Blind, Trial. Am J Gastroenterol 2020; 115:1466-1473. [PMID: 32639235 DOI: 10.14309/ajg.0000000000000727] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Previous, small studies have suggested that ondansetron has beneficial effects in diarrhea-predominant irritable bowel syndrome (IBS-D). This randomized, double-blind study evaluated the efficacy and safety of daily 12 mg RHB-102, an investigational bimodal release ondansetron tablet, in IBS-D. METHODS Men and women with IBS-D by the Rome III criteria, Bristol Stool Scale ≥6 on 2 or more days weekly, and average daily worst pain intensity ≥3/10 were randomized 60:40 to RHB-102 or placebo once daily for 8 weeks. The primary end point was overall stool consistency response for at least 4 of 8 weeks. Secondary end points included overall worst abdominal pain and overall composite response, defined as response on both abdominal pain and stool consistency end points. RESULTS Overall stool consistency response rates were 56.0% and 35.3% (RHB-102 vs placebo, P = 0.036) and similar among male and female patients. Overall pain response (50.7% vs 39.2%) and composite response rates (40.0% vs 25.5%) favored RHB-102, although these differences were not statistically significant. Stool consistency response rates were enhanced in patients with baseline C-reactive protein above the median (2.09 mg/L), 59.5%, vs 23.1% (P = 0.009). Overall rates of adverse events were similar, with a higher rate of constipation in RHB-102 patients (13.3% vs 3.9%) that resolved rapidly on withholding treatment. DISCUSSION RHB-102 was effective and safe in the treatment of men and women with IBS-D. Baseline C-reactive protein seemed to be predictive of response.
Collapse
|
61
|
Li JJ, Ren WJ, Yin HY, Zhao YF, Tang Y. Underlying mechanisms for intestinal diseases arising from stress. Shijie Huaren Xiaohua Zazhi 2020; 28:617-627. [DOI: 10.11569/wcjd.v28.i14.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stress is an instinctive defense mechanism of the body in the competition for survival, but long-term or chronic stress will lead to systemic pathological manifestations. Intestinal diseases are closely related to pathological stress. This paper reviews the pathogenesis of intestinal diseases arising from stress.
Collapse
Affiliation(s)
- Jia-Jia Li
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu 610075, Sichuan Province, China
| | - Wen-Jing Ren
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu 610075, Sichuan Province, China
| | - Hai-Yan Yin
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu 610075, Sichuan Province, China
| | - Ya-Fei Zhao
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu 610075, Sichuan Province, China
| | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China,Key Laboratory of Sichuan Province for Acupuncture and Chronobiology, Chengdu 610075, Sichuan Province, China
| |
Collapse
|
62
|
d'Aldebert E, Quaranta M, Sébert M, Bonnet D, Kirzin S, Portier G, Duffas JP, Chabot S, Lluel P, Allart S, Ferrand A, Alric L, Racaud-Sultan C, Mas E, Deraison C, Vergnolle N. Characterization of Human Colon Organoids From Inflammatory Bowel Disease Patients. Front Cell Dev Biol 2020; 8:363. [PMID: 32582690 PMCID: PMC7287042 DOI: 10.3389/fcell.2020.00363] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammatory Bowel Diseases (IBD) are chronic inflammatory disorders, where epithelial defects drive, at least in part, some of the pathology. We reconstituted human intestinal epithelial organ, by using three-dimension culture of human colon organoids. Our aim was to characterize morphological and functional phenotypes of control (non-IBD) organoids, compared to inflamed organoids from IBD patients. The results generated describe the epithelial defects associated with IBD in primary organoid cultures, and evaluate the use of this model for pharmacological testing of anti-inflammatory approaches. Human colonic tissues were obtained from either surgical resections or biopsies, all harvested in non-inflammatory zones. Crypts were isolated from controls (non-IBD) and IBD patients and were cultured up to 12-days. Morphological (size, budding formation, polarization, luminal content), cell composition (proliferation, differentiation, immaturity markers expression), and functional (chemokine and tight junction protein expression) parameters were measured by immunohistochemistry, RT-qPCR or western-blot. The effects of inflammatory cocktail or anti-inflammatory treatments were studied in controls and IBD organoid cultures respectively. Organoid cultures from controls or IBD patients had the same cell composition after 10 to 12-days of culture, but IBD organoid cultures showed an inflammatory phenotype with decreased size and budding capacity, increased cell death, luminal debris, and inverted polarization. Tight junction proteins were also significantly decreased in IBD organoid cultures. Inflammatory cytokine cocktail reproduced this inflammatory phenotype in non-IBD organoids. Clinically used treatments (5-ASA, glucocorticoids, anti-TNF) reduced some, but not all parameters. Inflammatory phenotype is associated with IBD epithelium, and can be studied in organoid cultures. This model constitutes a reliable human pre-clinical model to investigate new strategies targeting epithelial repair.
Collapse
Affiliation(s)
- Emilie d'Aldebert
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Muriel Quaranta
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Morgane Sébert
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Delphine Bonnet
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | | | - Guillaume Portier
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France.,Pole Digestif, CHU de Toulouse, Toulouse, France
| | | | | | | | - Sophie Allart
- Plateforme d'Imagerie, CPTP, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Audrey Ferrand
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | | | - Emmanuel Mas
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France.,Unité de Gastroentérologie, Hépatologie, Nutrition, Diabétologie et Maladies Héréditaires du Métabolisme, Hôpital des Enfants, CHU de Toulouse, Toulouse, France
| | - Céline Deraison
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, INSERM, INRA, ENVT, UPS, Université de Toulouse, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
63
|
Kriaa A, Jablaoui A, Mkaouar H, Akermi N, Maguin E, Rhimi M. Serine proteases at the cutting edge of IBD: Focus on gastrointestinal inflammation. FASEB J 2020; 34:7270-7282. [PMID: 32307770 DOI: 10.1096/fj.202000031rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Serine proteases have been long recognized to coordinate many physiological processes and play key roles in regulating the inflammatory response. Accordingly, their dysregulation has been regularly associated with several inflammatory disorders and suggested as a central mechanism in the pathophysiology of digestive inflammation. So far, studies addressing the proteolytic homeostasis in the gut have mainly focused on host serine proteases as candidates of interest, while largely ignoring the potential contribution of their bacterial counterparts. The human gut microbiota comprises a complex ecosystem that contributes to host health and disease. Yet, our understanding of microbially produced serine proteases and investigation of whether they are causally linked to IBD is still in its infancy. In this review, we highlight recent advances in the emerging roles of host and bacterial serine proteases in digestive inflammation. We also discuss the application of available tools in the gut to monitor disease-related serine proteases. An exhaustive representation and understanding of such functional potential would help in closing existing gaps in mechanistic knowledge.
Collapse
Affiliation(s)
- Aicha Kriaa
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Amin Jablaoui
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Héla Mkaouar
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Nizar Akermi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| | - Moez Rhimi
- Microbiota Interaction with Human and Animal Team (MIHA), Micalis Institute, AgroParisTech, Université Paris-Saclay, INRAE, Jouy-en-Josas, France
| |
Collapse
|
64
|
Jablaoui A, Kriaa A, Mkaouar H, Akermi N, Soussou S, Wysocka M, Wołoszyn D, Amouri A, Gargouri A, Maguin E, Lesner A, Rhimi M. Fecal Serine Protease Profiling in Inflammatory Bowel Diseases. Front Cell Infect Microbiol 2020; 10:21. [PMID: 32117798 PMCID: PMC7011180 DOI: 10.3389/fcimb.2020.00021] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Serine proteases are extensively known to play key roles in many physiological processes. However, their dysregulation is often associated to several diseases including inflammatory bowel diseases (IBD). Here, we used specific substrates to monitor fecal protease activities in a large cohort of healthy and IBD patients. Of interest, serine protease activity was 10-fold higher in IBD fecal samples compared to healthy controls. Moreover, functional analysis of these fecal proteolytic activities revealed that the most increased activities are trypsin-like, elastase-like and cathepsin G-like. We also show for the first time, an increase of proteinase 3-like activity in these samples compared to controls. Results presented here will guide further investigations to better understand the relevance of these peptidases in IBD.
Collapse
Affiliation(s)
- Amin Jablaoui
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | - Aicha Kriaa
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | - Héla Mkaouar
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | - Nizar Akermi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | - Souha Soussou
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | | | | | - Ali Amouri
- Department of Gastroenterology, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Ali Gargouri
- Laboratory of Molecular Biology of Eukaryotes, Center of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| | - Adam Lesner
- Faculty of Chemistry, University of Gdansk, Gdansk, Poland
| | - Moez Rhimi
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Microbiota Interaction with Human and Animal Team (MIHA), Jouy-en-Josas, France
| |
Collapse
|
65
|
Chey WD, Shah ED, DuPont HL. Mechanism of action and therapeutic benefit of rifaximin in patients with irritable bowel syndrome: a narrative review. Therap Adv Gastroenterol 2020; 13:1756284819897531. [PMID: 32047534 PMCID: PMC6984424 DOI: 10.1177/1756284819897531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder with a multifactorial pathophysiology. The gut microbiota differs between patients with IBS and healthy individuals. After a bout of acute gastroenteritis, postinfection IBS may result in up to approximately 10% of those affected. Small intestinal bacterial overgrowth (SIBO) is more common in patients with IBS than in healthy individuals, and eradication of SIBO with systemic antibiotics has decreased symptoms of IBS in some patients with IBS and SIBO. The nonsystemic (i.e. low oral bioavailability) antibiotic rifaximin is indicated in the United States and Canada for the treatment of adults with IBS with diarrhea (IBS-D). The efficacy and safety of 2-week single and repeat courses of rifaximin have been demonstrated in randomized, placebo-controlled studies of adults with IBS. Rifaximin is widely thought to exert its beneficial clinical effects in IBS-D through manipulation of the gut microbiota. However, current studies indicate that rifaximin induces only modest effects on the gut microbiota of patients with IBS-D, suggesting that the efficacy of rifaximin may involve other mechanisms. Indeed, preclinical data reveal a potential role for rifaximin in the modulation of inflammatory cytokines and intestinal permeability, but these two findings have not yet been examined in the context of clinical studies. The mechanism of action of rifaximin in IBS is likely multifactorial, and further study is needed.
Collapse
Affiliation(s)
- William D. Chey
- Department of Nutrition Sciences, Division of Gastroenterology, Michigan Medicine, 3912 Taubman Center, SPC 5362, Ann Arbor, MI 48109-5362, USA
| | - Eric D. Shah
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Herbert L. DuPont
- Division of Epidemiology, Human Genetics and Environmental Sciences and Center for Infectious Diseases, University of Texas School of Public Health, Houston, TX, USA
- Mary W. Kelsey Chair in Medical Sciences, Division of Internal Medicine, University of Texas McGovern Medical School Houston, TX, USA
- Kelsey Research Foundation, Houston, TX, USA
| |
Collapse
|
66
|
Najjar SA, Davis BM, Albers KM. Epithelial-Neuronal Communication in the Colon: Implications for Visceral Pain. Trends Neurosci 2020; 43:170-181. [PMID: 31983457 DOI: 10.1016/j.tins.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Visceral hypersensitivity and pain result, at least in part, from increased excitability of primary afferents that innervate the colon. In addition to intrinsic changes in these neurons, emerging evidence indicates that changes in lining epithelial cells may also contribute to increased excitability. Here we review recent studies on how colon epithelial cells communicate directly with colon afferents. Specifically, anatomical studies revealed specialized synaptic connections between epithelial cells and nerve fibers and studies using optogenetic activation of the epithelium showed initiation of pain-like responses. We review the possible mechanisms of epithelial-neuronal communication and provide an overview of the possible neurotransmitters and receptors involved. Understanding the biology of this interface and how it changes in pathological conditions may provide new treatments for visceral pain conditions.
Collapse
Affiliation(s)
- Sarah A Najjar
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Brian M Davis
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn M Albers
- Center for Neuroscience at the University of Pittsburgh, Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
67
|
|
68
|
Edogawa S, Edwinson AL, Peters SA, Chikkamenahalli LL, Sundt WJ, Graves S, Gurunathan SV, Breen-Lyles MK, Johnson S, Dyer RB, Graham RP, Chen J, Kashyap P, Farrugia G, Grover M. Serine proteases as luminal mediators of intestinal barrier dysfunction and symptom severity in IBS. Gut 2020; 69:62-73. [PMID: 30923071 PMCID: PMC6765451 DOI: 10.1136/gutjnl-2018-317416] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The intestinal lumen contains several proteases. Our aim was to determine the role of faecal proteases in mediating barrier dysfunction and symptoms in IBS. DESIGN 39 patients with IBS and 25 healthy volunteers completed questionnaires, assessments of in vivo permeability, ex vivo colonic barrier function in Ussing chambers, tight junction (TJ) proteins, ultrastructural morphology and 16 s sequencing of faecal microbiota rRNA. A casein-based assay was used to measure proteolytic activity (PA) in faecal supernatants (FSNs). Colonic barrier function was determined in mice (ex-germ free) humanised with microbial communities associated with different human PA states. RESULTS Patients with IBS had higher faecal PA than healthy volunteers. 8/20 postinfection IBS (PI-IBS) and 3/19 constipation- predominant IBS had high PA (>95th percentile). High-PA patients had more and looser bowel movements, greater symptom severity and higher in vivo and ex vivo colonic permeability. High-PA FSNs increased paracellular permeability, decreased occludin and increased phosphorylated myosin light chain (pMLC) expression. Serine but not cysteine protease inhibitor significantly blocked high-PA FSN effects on barrier. The effects on barrier were diminished by pharmacological or siRNA inhibition of protease activated receptor-2 (PAR-2). Patients with high-PA IBS had lower occludin expression, wider TJs on biopsies and reduced microbial diversity than patients with low PA. Mice humanised with high-PA IBS microbiota had greater in vivo permeability than those with low-PA microbiota. CONCLUSION A subset of patients with IBS, especially in PI-IBS, has substantially high faecal PA, greater symptoms, impaired barrier and reduced microbial diversity. Commensal microbiota affects luminal PA that can influence host barrier function.
Collapse
Affiliation(s)
- Shoko Edogawa
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Adam L Edwinson
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Stephanie A Peters
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Wendy J Sundt
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Sara Graves
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Stephen Johnson
- Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Roy B Dyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Rondell P. Graham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics and Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Purna Kashyap
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Madhusudan Grover
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA,Correspondence: Madhusudan Grover, MD, Assistant Professor of Medicine and Physiology, Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA, Tel: 507-284-2478, Fax: 507-266-0350,
| |
Collapse
|
69
|
Noguerol J, Roustan PJ, N'Taye M, Delcombel L, Rolland C, Guiraud L, Sagnat D, Edir A, Bonnart C, Denadai-Souza A, Deraison C, Vergnolle N, Racaud-Sultan C. Sexual dimorphism in PAR 2-dependent regulation of primitive colonic cells. Biol Sex Differ 2019; 10:47. [PMID: 31492202 PMCID: PMC6731565 DOI: 10.1186/s13293-019-0262-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/26/2019] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Sexual dimorphism in biological responses is a critical knowledge for therapeutic proposals. However, gender differences in intestinal stem cell physiology have been poorly studied. Given the important role of the protease-activated receptor PAR2 in the control of colon epithelial primitive cells and cell cycle genes, we have performed a sex-based comparison of its expression and of the effects of PAR2 activation or knockout on cell proliferation and survival functions. METHODS Epithelial primitive cells isolated from colons from male and female mice were cultured as colonoids, and their number and size were measured. PAR2 activation was triggered by the addition of SLIGRL agonist peptide in the culture medium. PAR2-deficient mice were used to study the impact of PAR2 expression on colon epithelial cell culture and gene expression. RESULTS Colonoids from female mice were more abundant and larger compared to males, and these differences were further increased after PAR2 activation by specific PAR2 agonist peptide. The proliferation of male epithelial cells was lower compared to females but was specifically increased in PAR2 knockout male cells. PAR2 expression was higher in male colon cells compared to females and controlled the gene expression and activation of key negative signals of the primitive cell proliferation. This PAR2-dependent brake on the proliferation of male colon primitive cells was correlated with stress resistance. CONCLUSIONS Altogether, these data demonstrate that there is a sexual dimorphism in the PAR2-dependent regulation of primitive cells of the colon crypt.
Collapse
Affiliation(s)
- Julie Noguerol
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Pierre-Jean Roustan
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Mikael N'Taye
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Léo Delcombel
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Laura Guiraud
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - David Sagnat
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Anissa Edir
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Chrystelle Bonnart
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Alexandre Denadai-Souza
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Céline Deraison
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France
| | - Claire Racaud-Sultan
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, CHU Purpan, place du Dr Baylac, 31024 Toulouse Cedex 3, Toulouse, France.
| |
Collapse
|
70
|
Lomax AE, Pradhananga S, Sessenwein JL, O'Malley D. Bacterial modulation of visceral sensation: mediators and mechanisms. Am J Physiol Gastrointest Liver Physiol 2019; 317:G363-G372. [PMID: 31290688 DOI: 10.1152/ajpgi.00052.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential role of the intestinal microbiota in modulating visceral pain has received increasing attention during recent years. This has led to the identification of signaling pathways that have been implicated in communication between gut bacteria and peripheral pain pathways. In addition to the well-characterized impact of the microbiota on the immune system, which in turn affects nociceptor excitability, bacteria can modulate visceral afferent pathways by effects on enterocytes, enteroendocrine cells, and the neurons themselves. Proteases produced by bacteria, or by host cells in response to bacteria, can increase or decrease the excitability of nociceptive dorsal root ganglion (DRG) neurons depending on the receptor activated. Short-chain fatty acids generated by colonic bacteria are involved in gut-brain communication, and intracolonic short-chain fatty acids have pronociceptive effects in rodents but may be antinociceptive in humans. Gut bacteria modulate the synthesis and release of enteroendocrine cell mediators, including serotonin and glucagon-like peptide-1, which activate extrinsic afferent neurons. Deciphering the complex interactions between visceral afferent neurons and the gut microbiota may lead to the development of improved probiotic therapies for visceral pain.
Collapse
Affiliation(s)
- Alan E Lomax
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Sabindra Pradhananga
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Jessica L Sessenwein
- Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | - Dervla O'Malley
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
71
|
Van Remoortel S, Ceuleers H, Arora R, Van Nassauw L, De Man JG, Buckinx R, De Winter BY, Timmermans JP. Mas-related G protein-coupled receptor C11 (Mrgprc11) induces visceral hypersensitivity in the mouse colon: A novel target in gut nociception? Neurogastroenterol Motil 2019; 31:e13623. [PMID: 31119828 DOI: 10.1111/nmo.13623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Visceral hypersensitivity, an important cause of abdominal pain in disorders such as IBD and IBS, presents with a poorly understood pathophysiology and limited treatment options. Several members of the Mas-related G protein-coupled receptor family (Mrgprs) have become promising targets in pain research. The potential link between the murine Mrgpr C11 (Mrgprc11) and gut nociception is currently uninvestigated. Therefore, we explored the expression and functional role of Mrgprc11 in the gut nociceptive innervation. METHODS Mrgprc11 expression was evaluated in DRG neurons innervating the mouse colon using in situ hybridization and immunohistochemistry. Visceromotor responses to colorectal distension (CRD) assessed the effect of the Mrgprc11 agonist, BAM(8-22), on colonic pain sensitivity in healthy mice. Moreover, we determined pERK1/2-immunoreactivity in the thoracolumbar spinal cord after noxious CRD. Finally, from a translational point of view, we looked for expression of the human counterpart of Mrgprc11, MRGPRX1, in human thoracolumbar DRGs. KEY RESULTS In situ hybridization and immunohistochemistry revealed Mrgprc11 expression in colonic DRG neurons. Intracolonic administration of BAM(8-22) significantly increased colonic pain sensitivity in an Mrgprc11-dependent manner, and led to a significantly increased degree of neuronal activation in the splanchnic spinal cord upon noxious stimulation. Furthermore, MRGPRX1 expression was also detected in human thoracolumbar DRG neurons. CONCLUSIONS & INFERENCES: Our findings established a novel function for Mrgprc11 in the gut nociceptive innervation and propose the receptor as a new player in visceral hypersensitivity. Given the presence of MRGPRX1 in human DRG neurons, our study warrants future research on its therapeutic potential in abdominal pain disorders.
Collapse
Affiliation(s)
- Samuel Van Remoortel
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Rohit Arora
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Luc Van Nassauw
- Laboratory of Human Anatomy and Embryology, Division ASTARC, University of Antwerp, Antwerp, Belgium
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Roeland Buckinx
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
72
|
Active thrombin produced by the intestinal epithelium controls mucosal biofilms. Nat Commun 2019; 10:3224. [PMID: 31324782 PMCID: PMC6642099 DOI: 10.1038/s41467-019-11140-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/25/2019] [Indexed: 01/07/2023] Open
Abstract
Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin. The roles played by thrombin in the human intestinal mucosa are unclear. Here, the authors show that the commensal microbiota modulates epithelial production of active thrombin, which controls biofilm growth and contributes to protection of the mucosa from bacterial invasion.
Collapse
|
73
|
Canals M, Poole DP, Veldhuis NA, Schmidt BL, Bunnett NW. G-Protein-Coupled Receptors Are Dynamic Regulators of Digestion and Targets for Digestive Diseases. Gastroenterology 2019; 156:1600-1616. [PMID: 30771352 PMCID: PMC6508858 DOI: 10.1053/j.gastro.2019.01.266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/15/2018] [Accepted: 01/08/2019] [Indexed: 01/11/2023]
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of transmembrane signaling proteins. In the gastrointestinal tract, GPCRs expressed by epithelial cells sense contents of the lumen, and GPCRs expressed by epithelial cells, myocytes, neurons, and immune cells participate in communication among cells. GPCRs control digestion, mediate digestive diseases, and coordinate repair and growth. GPCRs are the target of more than one third of therapeutic drugs, including many drugs used to treat digestive diseases. Recent advances in structural, chemical, and cell biology research have shown that GPCRs are not static binary switches that operate from the plasma membrane to control a defined set of intracellular signals. Rather, GPCRs are dynamic signaling proteins that adopt distinct conformations and subcellular distributions when associated with different ligands and intracellular effectors. An understanding of the dynamic nature of GPCRs has provided insights into the mechanism of activation and signaling of GPCRs and has shown opportunities for drug discovery. We review the allosteric modulation, biased agonism, oligomerization, and compartmentalized signaling of GPCRs that control digestion and digestive diseases. We highlight the implications of these concepts for the development of selective and effective drugs to treat diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Meritxell Canals
- Centre for Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Daniel P. Poole
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas A. Veldhuis
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia
| | - Brian L. Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria, Australia,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia,Columbia University College of Physicians and Surgeons, Columbia University, New York, New York
| |
Collapse
|
74
|
Close association between abnormal expressed enzymes of energy metabolism and diarrhea-predominant irritable bowel syndrome. Chin Med J (Engl) 2019; 132:135-144. [PMID: 30614852 PMCID: PMC6365280 DOI: 10.1097/cm9.0000000000000003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is one of the most common functional intestinal diseases, but its pathogenesis is still unknown. The present study aimed to screen the differentially expressed proteins in the mucosa of colon between IBS with diarrhea (IBS-D) patients and the healthy controls. Methods: Forty-two IBS-D patients meeting the Rome III diagnostic criteria and 40 control subjects from July 2007 to June 2009 in Chinese PLA General Hospital were enrolled in the present study. We examined the protein expression profiles in mucosa of colon corresponding to IBS-D patients (n = 5) and controls (n = 5) using 2-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS). Secondly, Western blot and immunohistochemical analysis were carried out to validate the screened proteins in 27 IBS-D patients and 27 controls. Thirdly, high-performance liquid chromatography (HPLC) was further carried out to determine ATP concentration in the mucosa of colon between 10 IBS-D patients and 8 controls. Comparisons between 2 groups were performed by Student's t-test or Mann-Whitney U-test. Results: Twelve differentially expressed proteins were screened out. The α-enolase (ENOA) in the sigmoid colon (0.917 ± 0.007 vs. 1.310 ± 0.100, t = 2.643, P = 0.017) and caecum (0.765 ± 0.060 vs. 1.212 ± 0.122, t = 2.225, P = 0.023), Isobutyryl-CoA dehydrogenase (ACAD8) in the sigmoid colon (1.127 ± 0.201 vs. 1.497 ± 0.392, t = 7.093, P = 0.008) of the IBS-D group were significantly lower while acetyl-CoA acetyltransferase (CT) in the caecum (2.453 ± 0.422 vs. 0.931 ± 0.652, t = 8.363, P = 0.015) and ATP synthase subunit d (ATP5H) in the sigmoid (0.843 ± 0.042 vs. 0.631 ± 0.042, t = 8.613,P = 0.007) of the IBS-D group was significantly higher, compared with the controls. The ATP concentration in the mucosa of the sigmoid colon in IBS-D group was significantly lower than that of control group (0.470 [0.180, 1.360] vs. 5.350 [2.230, 7.900], U = 55, P < 0.001). Conclusions: Many proteins related to energy metabolism presented differential expression patterns in the mucosa of colon of the IBS-D patients. The abnormalities in energy metabolism may be involved in the pathogenesis of IBS which deserves more studies to elucidate.
Collapse
|
75
|
Li B, Rui J, Ding X, Yang X. Exploring the multicomponent synergy mechanism of Banxia Xiexin Decoction on irritable bowel syndrome by a systems pharmacology strategy. JOURNAL OF ETHNOPHARMACOLOGY 2019; 233:158-168. [PMID: 30590198 DOI: 10.1016/j.jep.2018.12.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/29/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banxia Xiexin Decoction (BXD) is a representative prescription to regulate spleen and stomach in "Treatise on Febrile Diseases", which has been proven effective for the clinical treatment of irritable bowel syndrome (IBS) in the past decades. However, the active principles and molecular mechanisms involved in BXD against IBS are vague yet. AIM OF THE STUDY To unfold multicomponent synergy mechanism of BXD on irritable bowel syndrome, this work explored active principles, drug targets and crucial pathways using a systems pharmacology strategy. MATERIALS AND METHODS In this study, a systems pharmacology based strategy was applied by the procedures integrating compound database construction, ADME evaluation, target identification, functional annotation, pathway enrichment analysis, network analysis, and molecular docking verification. The 158 compounds from BXD were selected for the screening. The Compound-Target network (C-T) and the Target-Pathway network (T-P) were constructed. The bioinformatics and network topology were employed to systematically reveal multicomponent-target interactions of BXD. The affinity between important ingredients and the kernel targets was validated using molecular mechanics simulation. RESULTS The 35 potential important ingredients and the 16 associated kernel targets were identified. 27 crucial pathways, in which the kernel targets participated, could regulate the biological processes, such as synthesis of inflammatory mediators, smooth muscle relaxation and synaptic plasticity, closely related to pathological mechanism of IBS. The cross-talk interactions were revealed between TNF signaling pathway, Dopaminergic synapse and cGMP-PKG signaling pathway, which would exert the synergistic influences on the occurrence and treatment of the IBS. PTGS2, CALM, NOS2, SCN5A, and PRSS1 might become novel drug targets for IBS. CONCLUSIONS The study demonstrated that the synergy molecular mechanisms of BXD mainly involved three therapeutic modules including inhibiting inflammatory reaction, maintaining intestinal function and improving psychological regulation via the multicomponent-target interaction networks. It may also provide the promising drug targets and therapeutic agents for the development of new medicines.
Collapse
Affiliation(s)
- Bangjie Li
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Junqian Rui
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xuejian Ding
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xinghao Yang
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
76
|
Heuberger DM, Schuepbach RA. Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 2019; 17:4. [PMID: 30976204 PMCID: PMC6440139 DOI: 10.1186/s12959-019-0194-8] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/29/2022] Open
Abstract
Inflammatory diseases have become increasingly prevalent with industrialization. To address this, numerous anti-inflammatory agents and molecular targets have been considered in clinical trials. Among molecular targets, protease-activated receptors (PARs) are abundantly recognized for their roles in the development of chronic inflammatory diseases. In particular, several inflammatory effects are directly mediated by the sensing of proteolytic activity by PARs. PARs belong to the seven transmembrane domain G protein-coupled receptor family, but are unique in their lack of physiologically soluble ligands. In contrast with classical receptors, PARs are activated by N-terminal proteolytic cleavage. Upon removal of specific N-terminal peptides, the resulting N-termini serve as tethered activation ligands that interact with the extracellular loop 2 domain and initiate receptor signaling. In the classical pathway, activated receptors mediate signaling by recruiting G proteins. However, activation of PARs alternatively lead to the transactivation of and signaling through receptors such as co-localized PARs, ion channels, and toll-like receptors. In this review we consider PARs and their modulators as potential therapeutic agents, and summarize the current understanding of PAR functions from clinical and in vitro studies of PAR-related inflammation.
Collapse
Affiliation(s)
- Dorothea M Heuberger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Surgical Research Division, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
77
|
Du L, Long Y, Kim JJ, Chen B, Zhu Y, Dai N. Protease Activated Receptor-2 Induces Immune Activation and Visceral Hypersensitivity in Post-infectious Irritable Bowel Syndrome Mice. Dig Dis Sci 2019; 64:729-739. [PMID: 30446929 DOI: 10.1007/s10620-018-5367-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The role of protease activated receptor-2 (PAR-2) in the pathogenesis of abdominal pain in irritable bowel syndrome (IBS) is not well defined. AIMS To investigate the role of PAR-2-mediated visceral hypersensitivity in a post-infectious IBS (PI-IBS) mouse model. METHODS T. spiralis-infected PI-IBS mouse model was used. Fecal serine protease activity and intestinal mast cells were evaluated. Intestinal permeability was assessed by urine lactulose/mannitol ratio, and colonic expressions of PAR-2 and tight junction (TJ) proteins were examined by Western blot. Intestinal immune profile was assessed by measuring Th (T helper) 1/Th2 cytokine expression. Visceral sensitivity was evaluated by abdominal withdrawal reflex in response to colorectal distention. RESULTS Colonic PAR-2 expression as well as fecal serine protease activity and intestinal mast cell counts were elevated in PI-IBS compared to the control mice. Decreased colonic TJ proteins expression, increased lactulose/mannitol ratio, elevated colonic Th1/Th2 cytokine ratio, and visceral hypersensitivity were observed in PI-IBS compared to the control mice. Administration of PAR-2 agonist in control mice demonstrated similar changes observed in PI-IBS mice, while PAR-2 antagonist normalized the increased intestinal permeability and reduced visceral hypersensitivity observed in PI-IBS mice. CONCLUSIONS PAR-2 activation increases intestinal permeability leading to immune activation and visceral hypersensitivity in PI-IBS mouse model.
Collapse
Affiliation(s)
- Lijun Du
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yanqin Long
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| | - John J Kim
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
- Division of Gastroenterology & Hepatology, Loma Linda University Health, Loma Linda, CA, 92354, USA
| | - Binrui Chen
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Yubin Zhu
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Ning Dai
- Department of Gastroenterology, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
78
|
Desormeaux C, Bautzova T, Garcia-Caraballo S, Rolland C, Barbaro MR, Brierley SM, Barbara G, Vergnolle N, Cenac N. Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators-induced signaling to thoracic human sensory neurons. Pain 2019; 159:1257-1267. [PMID: 29554016 DOI: 10.1097/j.pain.0000000000001208] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Proteases and protease-activated receptors (PARs) are major mediators involved in irritable bowel syndrome (IBS). Our objectives were to decipher the expression and functionality (calcium signaling) of PARs in human dorsal root ganglia (DRG) neurons and to define mechanisms involved in human sensory neuron signaling by IBS patient mediators. Human thoracic DRG were obtained from the national disease resource interchange. Expression of PAR1, PAR2, and PAR4 was assessed by immunohistochemistry and quantitative reverse transcription PCR (RT-qPCR) in whole DRG or in primary cultures of isolated neurons. Calcium signaling in response to PAR agonist peptides (PAR-AP), their inactive peptides (PAR-IP), thrombin (10 U/mL), supernatants from colonic biopsies of patients with IBS, or healthy controls, with or without PAR1 or PAR4 antagonist were studied in cultured human DRG neurons. PAR1, PAR2, and PAR4 were all expressed in human DRG, respectively, in 20%, 40%, and 40% of the sensory neurons. PAR1-AP increased intracellular calcium concentration in a dose-dependent manner. This increase was inhibited by PAR1 antagonism. By contrast, PAR2-AP, PAR4-AP, and PAR-IP did not cause calcium mobilization. PAR1-AP-induced calcium flux was significantly reduced by preincubation with PAR4-AP, but not with PAR2-AP. Thrombin increased calcium flux, which was inhibited by a PAR1 antagonist and increased by a PAR4 antagonist. Supernatants from colonic biopsies of patients with IBS induced calcium flux in human sensory neurons compared with healthy controls, and this induction was reversed by a PAR1 antagonist. Taken together, our results highlight that PAR1 antagonism should be investigated as a new therapeutic target for IBS symptoms.
Collapse
Affiliation(s)
- Cleo Desormeaux
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Tereza Bautzova
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, Human Physiology, Flinders University, Bedford Park, South Australia, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Corinne Rolland
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Stuart M Brierley
- Visceral Pain Group, Human Physiology, Flinders University, Bedford Park, South Australia, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Giovanni Barbara
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | - Nicolas Cenac
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
79
|
Abstract
Most of us live blissfully unaware of the orchestrated function that our internal organs conduct. When this peace is interrupted, it is often by routine sensations of hunger and urge. However, for >20% of the global population, chronic visceral pain is an unpleasant and often excruciating reminder of the existence of our internal organs. In many cases, there is no obvious underlying pathological cause of the pain. Accordingly, chronic visceral pain is debilitating, reduces the quality of life of sufferers, and has large concomitant socioeconomic costs. In this review, we highlight key mechanisms underlying chronic abdominal and pelvic pain associated with functional and inflammatory disorders of the gastrointestinal and urinary tracts. This includes how the colon and bladder are innervated by specialized subclasses of spinal afferents, how these afferents become sensitized in highly dynamic signaling environments, and the subsequent development of neuroplasticity within visceral pain pathways. We also highlight key contributing factors, including alterations in commensal bacteria, altered mucosal permeability, epithelial interactions with afferent nerves, alterations in immune or stress responses, and cross talk between these two adjacent organs.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Centre for Neuroscience, Flinders University, Bedford Park, South Australia 5042, Australia; .,Centre for Nutrition and Gastrointestinal Diseases, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia 5000, Australia
| |
Collapse
|
80
|
Abstract
Proteases drive the life cycle of all proteins, ensuring the transportation and activation of newly minted, would-be proteins into their functional form while recycling spent or unneeded proteins. Far from their image as engines of protein digestion, proteases play fundamental roles in basic physiology and regulation at multiple levels of systems biology. Proteases are intimately associated with disease and modulation of proteolytic activity is the presumed target for successful therapeutics. "Proteases: Pivot Points in Functional Proteomics" examines the crucial roles of proteolysis across a wide range of physiological processes and diseases. The existing and potential impacts of proteolysis-related activity on drug and biomarker development are presented in detail. All told the decisive roles of proteases in four major categories comprising 23 separate subcategories are addressed. Within this construct, 15 sets of subject-specific, tabulated data are presented that include identification of proteases, protease inhibitors, substrates, and their actions. Said data are derived from and confirmed by over 300 references. Cross comparison of datasets indicates that proteases, their inhibitors/promoters and substrates intersect over a range of physiological processes and diseases, both chronic and pathogenic. Indeed, "Proteases: Pivot Points …" closes by dramatizing this very point through association of (pro)Thrombin and Fibrin(ogen) with: hemostasis, innate immunity, cardiovascular and metabolic disease, cancer, neurodegeneration, and bacterial self-defense.
Collapse
Affiliation(s)
- Ingrid M Verhamme
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Sarah E Leonard
- Chemical and Biomolecular Engineering, University of Illinois Champaign-Urbana School of Chemical Sciences, Champaign, IL, USA
| | - Ray C Perkins
- New Liberty Proteomics Corporation, New Liberty, KY, USA.
| |
Collapse
|
81
|
Sébert M, Sola-Tapias N, Mas E, Barreau F, Ferrand A. Protease-Activated Receptors in the Intestine: Focus on Inflammation and Cancer. Front Endocrinol (Lausanne) 2019; 10:717. [PMID: 31708870 PMCID: PMC6821688 DOI: 10.3389/fendo.2019.00717] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
Protease-activated receptors (PARs) belong to the G protein-coupled receptor (GPCR) family. Compared to other GPCRs, the specificity of the four PARs is the lack of physiologically soluble ligands able to induce their activation. Indeed, PARs are physiologically activated after proteolytic cleavage of their N-terminal domain by proteases. The resulting N-terminal end becomes a tethered activation ligand that interact with the extracellular loop 2 domain and thus induce PAR signal. PARs expression is ubiquitous and these receptors have been largely described in chronic inflammatory diseases and cancer. In this review, after describing their discovery, structure, mechanisms of activation, we then focus on the roles of PARs in the intestine and the two main diseases affecting the organ, namely inflammatory bowel diseases and cancer.
Collapse
|
82
|
Goichon A, Bahlouli W, Ghouzali I, Chan P, Vaudry D, Déchelotte P, Ducrotté P, Coëffier M. Colonic Proteome Signature in Immunoproteasome-Deficient Stressed Mice and Its Relevance for Irritable Bowel Syndrome. J Proteome Res 2018; 18:478-492. [DOI: 10.1021/acs.jproteome.8b00793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alexis Goichon
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Wafa Bahlouli
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Ibtissem Ghouzali
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
| | - Philippe Chan
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - David Vaudry
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Platform in proteomics PISSARO, Normandie University, UNIROUEN, Rouen, F-76821, France
- INSERM unit 1239, Normandie University, UNIROUEN, Rouen, F-76821, France
| | - Pierre Déchelotte
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| | - Philippe Ducrotté
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Gastroenterology Department, Rouen University Hospital, Rouen, F-76031, France
| | - Moïse Coëffier
- INSERM unit 1073, Normandie University, UNIROUEN, 22 boulevard Gambetta, Rouen, F-76183, France
- Institute for Research and Innovation in Biomedicine (IRIB), Normandie University, UNIROUEN, Rouen, F-76183, France
- Nutrition Department, Rouen University Hospital, Rouen, F-76031, France
| |
Collapse
|
83
|
Ceuleers H, Hanning N, Heirbaut J, Van Remoortel S, Joossens J, Van Der Veken P, Francque SM, De bruyn M, Lambeir A, De Man JG, Timmermans J, Augustyns K, De Meester I, De Winter BY. Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome. Br J Pharmacol 2018; 175:3516-3533. [PMID: 29911328 PMCID: PMC6086981 DOI: 10.1111/bph.14396] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Serine proteases have been re suggested as important mediators of visceral pain. We investigated their effect by using newly developed serine protease inhibitors with a well-characterized inhibitory profile in a rat model of post-inflammatory irritable bowel syndrome (IBS). EXPERIMENTAL APPROACH Colitis was induced in rats receiving intrarectal trinitrobenzenesulphonic acid; controls received 0.9% NaCl. Colonoscopies were performed on day 3, to confirm colitis, and later until mucosal healing. Visceral hypersensitivity was quantified by visceromotor responses (VMRs) to colorectal distension, 30 min after i.p. injection of the serine protease inhibitors nafamostat, UAMC-00050 or UAMC-01162. Serine proteases, protease-activated receptors (PARs) and TRP channels were quantified by qPCR and immunohistochemistry. Proteolytic activity was characterized using fluorogenic substrates. KEY RESULTS VMR was significantly elevated in post-colitis rats. Nafamostat normalized VMRs at the lowest dose tested. UAMC-00050 and UAMC-01162 significantly decreased VMR dose-dependently. Expression of mRNA for tryptase-αβ-1and PAR4, and tryptase immunoreactivity was significantly increased in the colon of post-colitis animals. Trypsin-like activity was also significantly increased in the colon but not in the faeces. PAR2 and TRPA1 immunoreactivity co-localized with CGRP-positive nerve fibres in control and post-colitis animals. CONCLUSIONS AND IMPLICATIONS Increased expression of serine proteases and activity together with increased expression of downstream molecules at the colonic and DRG level and in CGRP-positive sensory nerve fibres imply a role for serine proteases in post-inflammatory visceral hypersensitivity. Our results support further investigation of serine protease inhibitors as an interesting treatment strategy for IBS-related visceral pain.
Collapse
Affiliation(s)
- Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Nikita Hanning
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | - Jelena Heirbaut
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Jurgen Joossens
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | | | | | - Michelle De bruyn
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | | | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| | | | - Koen Augustyns
- Laboratory of Medicinal ChemistryUniversity of AntwerpAntwerpBelgium
| | - Ingrid De Meester
- Laboratory of Medical BiochemistryUniversity of AntwerpAntwerpBelgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of GastroenterologyUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
84
|
Sébert M, Denadai-Souza A, Quaranta M, Racaud-Sultan C, Chabot S, Lluel P, Monjotin N, Alric L, Portier G, Kirzin S, Bonnet D, Ferrand A, Vergnolle N. Thrombin modifies growth, proliferation and apoptosis of human colon organoids: a protease-activated receptor 1- and protease-activated receptor 4-dependent mechanism. Br J Pharmacol 2018; 175:3656-3668. [PMID: 29959891 PMCID: PMC6109216 DOI: 10.1111/bph.14430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/24/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Thrombin is massively released upon tissue damage associated with bleeding or chronic inflammation. The effects of this thrombin on tissue regrowth and repair has been scarcely addressed and only in cancer cell lines. Hence, the purpose of the present study was to determine thrombin's pharmacological effects on human intestinal epithelium growth, proliferation and apoptosis, using three-dimensional cultures of human colon organoids. EXPERIMENTAL APPROACH Crypts were isolated from human colonic resections and cultured for 6 days, forming human colon organoids. Cultured organoids were exposed to 10 and 50 mU·mL-1 of thrombin, in the presence or not of protease-activated receptor (PAR) antagonists. Organoid morphology, metabolism, proliferation and apoptosis were followed. KEY RESULTS Thrombin favoured organoid maturation leading to a decreased number of immature cystic structures and a concomitant increased number of larger structures releasing cell debris and apoptotic cells. The size of budding structures, metabolic activity and proliferation were significantly reduced in organoid cultures exposed to thrombin, while apoptosis was dramatically increased. Both PAR1 and PAR4 antagonists inhibited apoptosis regardless of thrombin doses. Thrombin-induced inhibition of proliferation and metabolic activity were reversed by PAR4 antagonist for thrombin's lowest dose and by PAR1 antagonist for thrombin's highest dose. CONCLUSIONS AND IMPLICATIONS Overall, our data suggest that the presence of thrombin in the vicinity of human colon epithelial cells favours their maturation at the expense of their regenerative capacities. Our data point to thrombin and its two receptors PAR1 and PAR4 as potential molecular targets for epithelial repair therapies.
Collapse
Affiliation(s)
- Morgane Sébert
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | - Muriel Quaranta
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | | | | | | | | | - Laurent Alric
- Department of Internal Medicine and Digestive Diseases, CHU Purpan, Toulouse, France
| | - Guillaume Portier
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Sylvain Kirzin
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Delphine Bonnet
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Audrey Ferrand
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Nathalie Vergnolle
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.,Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
85
|
Jimenez-Vargas NN, Pattison LA, Zhao P, Lieu T, Latorre R, Jensen DD, Castro J, Aurelio L, Le GT, Flynn B, Herenbrink CK, Yeatman HR, Edgington-Mitchell L, Porter CJH, Halls ML, Canals M, Veldhuis NA, Poole DP, McLean P, Hicks GA, Scheff N, Chen E, Bhattacharya A, Schmidt BL, Brierley SM, Vanner SJ, Bunnett NW. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc Natl Acad Sci U S A 2018; 115:E7438-E7447. [PMID: 30012612 PMCID: PMC6077730 DOI: 10.1073/pnas.1721891115] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2 A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases.
Collapse
Affiliation(s)
- Nestor N Jimenez-Vargas
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Luke A Pattison
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Peishen Zhao
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Rocco Latorre
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Dane D Jensen
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, SA 5000, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Giang T Le
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Bernard Flynn
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Holly R Yeatman
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Laura Edgington-Mitchell
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter McLean
- Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Gareth A Hicks
- Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Inc., Cambridge, MA 02139
| | - Nicole Scheff
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Elyssa Chen
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Aditi Bhattacharya
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Brian L Schmidt
- Bluestone Center for Clinical Research, New York University College of Dentistry, New York, NY 10010
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, SA 5000, Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Division of Gastroenterology, Queen's University, Kingston, ON K7L 2V7, Canada
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences and Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, VIC 3052, Australia;
- Department of Surgery, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
86
|
Videlock EJ, Mahurkar-Joshi S, Hoffman JM, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. Sigmoid colon mucosal gene expression supports alterations of neuronal signaling in irritable bowel syndrome with constipation. Am J Physiol Gastrointest Liver Physiol 2018; 315:G140-G157. [PMID: 29565640 PMCID: PMC6109711 DOI: 10.1152/ajpgi.00288.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/31/2023]
Abstract
Peripheral factors likely play a role in at least a subset of irritable bowel syndrome (IBS) patients. Few studies have investigated mucosal gene expression using an unbiased approach. Here, we performed mucosal gene profiling in a sex-balanced sample to identify relevant signaling pathways and gene networks and compare with publicly available profiling data from additional cohorts. Twenty Rome III+ IBS patients [10 IBS with constipation (IBS-C), 10 IBS with diarrhea (IBS-D), 5 men/women each), and 10 age-/sex-matched healthy controls (HCs)] underwent sigmoidoscopy with biopsy for gene microarray analysis, including differential expression, weighted gene coexpression network analysis (WGCNA), gene set enrichment analysis, and comparison with publicly available data. Expression levels of 67 genes were validated in an expanded cohort, including the above samples and 18 additional participants (6 each of IBS-C, IBS-D, HCs) using NanoString nCounter technology. There were 1,270 differentially expressed genes (FDR < 0.05) in IBS-C vs. HCs but none in IBS or IBS-D vs. HCs. WGNCA analysis identified activation of the cAMP/protein kinase A signaling pathway. Nine of 67 genes were validated by the NanoString nCounter technology (FDR < 0.05) in the expanded sample. Comparison with publicly available microarray data from the Mayo Clinic and University of Nottingham supports the reproducibility of 17 genes from the microarray analysis and three of nine genes validated by nCounter in IBS-C vs. HCs. This study supports the involvement of peripheral mechanisms in IBS-C, particularly pathways mediating neuronal signaling. NEW & NOTEWORTHY Peripheral factors play a role in the pathophysiology of irritable bowel syndrome (IBS), which, to date, has been mostly evident in IBS with diarrhea. Here, we show that sigmoid colon mucosal gene expression profiles differentiate IBS with constipation from healthy controls. These profiling data and analysis of additional cohorts also support the concept that peripheral neuronal pathways contribute to IBS pathophysiology.
Collapse
Affiliation(s)
- Elizabeth J Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Jill M Hoffman
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Dimitrios Iliopoulos
- Center for Systems Biomedicine, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Charalabos Pothoulakis
- Inflammatory Bowel Disease Research Center, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California , Los Angeles, California
| |
Collapse
|
87
|
Functional Proteomic Profiling of Secreted Serine Proteases in Health and Inflammatory Bowel Disease. Sci Rep 2018; 8:7834. [PMID: 29777136 PMCID: PMC5959920 DOI: 10.1038/s41598-018-26282-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
While proteases are essential in gastrointestinal physiology, accumulating evidence indicates that dysregulated proteolysis plays a pivotal role in the pathophysiology of inflammatory bowel disease (IBD). Nonetheless, the identity of overactive proteases released by human colonic mucosa remains largely unknown. Studies of protease abundance have primarily investigated expression profiles, not taking into account their enzymatic activity. Herein we have used serine protease-targeted activity-based probes (ABPs) coupled with mass spectral analysis to identify active forms of proteases secreted by the colonic mucosa of healthy controls and IBD patients. Profiling of (Pro-Lys)-ABP bound proteases revealed that most of hyperactive proteases from IBD secretome are clustered at 28-kDa. We identified seven active proteases: the serine proteases cathepsin G, plasma kallikrein, plasmin, tryptase, chymotrypsin-like elastase 3 A, and thrombin and the aminopeptidase B. Only cathepsin G and thrombin were overactive in supernatants from IBD patient tissues compared to healthy controls. Gene expression analysis highlighted the transcription of genes encoding these proteases into intestinal mucosae. The functional ABP-targeted proteomic approach that we have used to identify active proteases in human colonic samples bears directly on the understanding of the role these enzymes may play in the pathophysiology of IBD.
Collapse
|
88
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
89
|
Buhner S, Hahne H, Hartwig K, Li Q, Vignali S, Ostertag D, Meng C, Hörmannsperger G, Braak B, Pehl C, Frieling T, Barbara G, De Giorgio R, Demir IE, Ceyhan GO, Zeller F, Boeckxstaens G, Haller D, Kuster B, Schemann M. Protease signaling through protease activated receptor 1 mediate nerve activation by mucosal supernatants from irritable bowel syndrome but not from ulcerative colitis patients. PLoS One 2018. [PMID: 29529042 PMCID: PMC5846775 DOI: 10.1371/journal.pone.0193943] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background & aims The causes of gastrointestinal complaints in irritable bowel syndrome (IBS) remain poorly understood. Altered nerve function has emerged as an important pathogenic factor as IBS mucosal biopsy supernatants consistently activate enteric and sensory neurons. We investigated the neurally active molecular components of such supernatants from patients with IBS and quiescent ulcerative colitis (UC). Method Effects of supernatants from 7 healthy controls (HC), 20 IBS and 12 UC patients on human and guinea pig submucous neurons were studied with neuroimaging techniques. We identify differentially expressed proteins with proteome analysis. Results Nerve activation by IBS supernatants was prevented by the protease activated receptor 1 (PAR1) antagonist SCHE79797. UC supernatants also activated enteric neurons through protease dependent mechanisms but without PAR1 involvement. Proteome analysis of the supernatants identified 204 proteins, among them 17 proteases as differentially expressed between IBS, UC and HC. Of those the four proteases elastase 3a, chymotrypsin C, proteasome subunit type beta-2 and an unspecified isoform of complement C3 were significantly more abundant in IBS compared to HC and UC supernatants. Of eight proteases, which were upregulated in IBS, the combination of elastase 3a, cathepsin L and proteasome alpha subunit-4 showed the highest prediction accuracy of 98% to discriminate between IBS and HC groups. Elastase synergistically potentiated the effects of histamine and serotonin–the two other main neuroactive substances in the IBS supernatants. A serine protease inhibitor isolated from the probiotic Bifidobacterium longum NCC2705 (SERPINBL), known to inhibit elastase-like proteases, prevented nerve activation by IBS supernatants. Conclusion Proteases in IBS and UC supernatants were responsible for nerve activation. Our data demonstrate that proteases, particularly those signalling through neuronal PAR1, are biomarker candidates for IBS, and protease profiling may be used to characterise IBS.
Collapse
Affiliation(s)
- Sabine Buhner
- Human Biology, Technische Universität München, Freising, Germany
| | - Hannes Hahne
- Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Kerstin Hartwig
- Human Biology, Technische Universität München, Freising, Germany
| | - Qin Li
- Human Biology, Technische Universität München, Freising, Germany
- Department of Physiology, Shangdong University, Shangdong, China
| | - Sheila Vignali
- Human Biology, Technische Universität München, Freising, Germany
| | - Daniela Ostertag
- Human Biology, Technische Universität München, Freising, Germany
| | - Chen Meng
- Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | | | - Breg Braak
- Department of Gastroenterology and Hepatology, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Giovanni Barbara
- Department of Medical and Surgical Sciences, St. Orsola Hospital, Bologna, Italy
| | - Roberto De Giorgio
- Department of Clinical Sciences, Nuovo Arcispedale S. Anna, University of Ferrara, Ferrara, Italy
| | - Ihsan Ekin Demir
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Germany
| | - Güralp Onur Ceyhan
- Department of General Surgery, University Hospital Rechts der Isar, Technische Universität München, Germany
| | | | - Guy Boeckxstaens
- Translational Research Centre for Gastrointestinal Disorders, University Hospital Gasthuisberg, Catholic University of Leuven, Leuven, Belgium
| | - Dirk Haller
- Nutrition and Immunology, Technische Universität München, Freising, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Technische Universität München, Freising, Germany
| | - Michael Schemann
- Human Biology, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
90
|
Rodiño-Janeiro BK, Martínez C, Fortea M, Lobo B, Pigrau M, Nieto A, González-Castro AM, Salvo-Romero E, Guagnozzi D, Pardo-Camacho C, Iribarren C, Azpiroz F, Alonso-Cotoner C, Santos J, Vicario M. Decreased TESK1-mediated cofilin 1 phosphorylation in the jejunum of IBS-D patients may explain increased female predisposition to epithelial dysfunction. Sci Rep 2018; 8:2255. [PMID: 29396473 PMCID: PMC5797119 DOI: 10.1038/s41598-018-20540-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023] Open
Abstract
Disturbed intestinal epithelial barrier and mucosal micro-inflammation characterize irritable bowel syndrome (IBS). Despite intensive research demonstrating ovarian hormones modulation of IBS severity, there is still limited knowledge on the mechanisms underlying female predominance in this disorder. Our aim was to identify molecular pathways involved in epithelial barrier dysfunction and female predominance in diarrhea-predominant IBS (IBS-D) patients. Total RNA and protein were obtained from jejunal mucosal biopsies from healthy controls and IBS-D patients meeting the Rome III criteria. IBS severity was recorded based on validated questionnaires. Gene and protein expression profiles were obtained and data integrated to explore biological and molecular functions. Results were validated by western blot. Tight junction signaling, mitochondrial dysfunction, regulation of actin-based motility by Rho, and cytoskeleton signaling were differentially expressed in IBS-D. Decreased TESK1-dependent cofilin 1 phosphorylation (pCFL1) was confirmed in IBS-D, which negatively correlated with bowel movements only in female participants. In conclusion, deregulation of cytoskeleton dynamics through TESK1/CFL1 pathway underlies epithelial intestinal dysfunction in the small bowel mucosa of IBS-D, particularly in female patients. Further understanding of the mechanisms involving sex-mediated regulation of mucosal epithelial integrity may have significant preventive, diagnostic, and therapeutic implications for IBS.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.
| | - Cristina Martínez
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marina Fortea
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Marc Pigrau
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Adoración Nieto
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Ana María González-Castro
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Eloísa Salvo-Romero
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Danila Guagnozzi
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Pardo-Camacho
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Cristina Iribarren
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain
| | - Fernando Azpiroz
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca, Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain.
| | - Maria Vicario
- Translational Mucosal Immunology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca; Department of Gastroenterology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona (Facultat de Medicina), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Subdirección General de Investigación Sanitaria, Ministerio de Economía, Industria y Competitividad, Madrid, Spain
| |
Collapse
|
91
|
Mitchell AC, Kannan D, Hunter SA, Parra Sperberg RA, Chang CH, Cochran JR. Engineering a potent inhibitor of matriptase from the natural hepatocyte growth factor activator inhibitor type-1 (HAI-1) protein. J Biol Chem 2018; 293:4969-4980. [PMID: 29386351 DOI: 10.1074/jbc.m117.815142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/17/2018] [Indexed: 01/17/2023] Open
Abstract
Dysregulated matriptase activity has been established as a key contributor to cancer progression through its activation of growth factors, including the hepatocyte growth factor (HGF). Despite its critical role and prevalence in many human cancers, limitations to developing an effective matriptase inhibitor include weak binding affinity, poor selectivity, and short circulating half-life. We applied rational and combinatorial approaches to engineer a potent inhibitor based on the hepatocyte growth factor activator inhibitor type-1 (HAI-1), a natural matriptase inhibitor. The first Kunitz domain (KD1) of HAI-1 has been well established as a minimal matriptase-binding and inhibition domain, whereas the second Kunitz domain (KD2) is inactive and involved in negative regulation. Here, we replaced the inactive KD2 domain of HAI-1 with an engineered chimeric variant of KD2/KD1 domains and fused the resulting construct to an antibody Fc domain to increase valency and circulating serum half-life. The final protein variant contains four stoichiometric binding sites that we showed were needed to effectively inhibit matriptase with a Ki of 70 ± 5 pm, an increase of 120-fold compared with the natural HAI-1 inhibitor, to our knowledge making it one of the most potent matriptase inhibitors identified to date. Furthermore, the engineered inhibitor demonstrates a protease selectivity profile similar to that of wildtype KD1 but distinct from that of HAI-1. It also inhibits activation of the natural pro-HGF substrate and matriptase expressed on cancer cells with at least an order of magnitude greater efficacy than KD1.
Collapse
Affiliation(s)
| | | | - Sean A Hunter
- Cancer Biology Program, Stanford University, Stanford, California 94305
| | | | | | - Jennifer R Cochran
- From the Departments of Bioengineering and .,Cancer Biology Program, Stanford University, Stanford, California 94305.,Chemical Engineering and
| |
Collapse
|
92
|
Mitchell AC, Alford SC, Hunter SA, Kannan D, Sperberg RAP, Chang CH, Cochran JR. Development of a Protease Biosensor Based on a Dimerization-Dependent Red Fluorescent Protein. ACS Chem Biol 2018; 13:66-72. [PMID: 29125730 PMCID: PMC6453536 DOI: 10.1021/acschembio.7b00715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dysregulated activity of the protease matriptase is a key contributor to aggressive tumor growth, cancer metastasis, and osteoarthritis. Methods for the detection and quantification of matriptase activity and inhibition would be useful tools. To address this need, we developed a matriptase-sensitive protein biosensor based on a dimerization-dependent red fluorescent protein (ddRFP) reporter system. In this platform, two adjoining protein domains, connected by a protease-labile linker, produce fluorescence when assembled and are nonfluorescent when the linker is cleaved by matriptase. A panel of ddRFP-based matriptase biosensor designs was created that contained different linker lengths between the protein domains. These constructs were characterized for linker-specific cleavage, matriptase activity, and matriptase selectivity; a biosensor containing a RSKLRVGGH linker (termed B4) was expressed at high yields and displayed both high catalytic efficiency and matriptase specificity. This biosensor detects matriptase inhibition by soluble and yeast cell surface expressed inhibitor domains with up to a 5-fold dynamic range and also detects matriptase activity expressed by human cancer cell lines. In addition to matriptase, we highlight a strategy that can be used to create effective biosensors for quantifying activity and inhibition of other proteases of interest.
Collapse
Affiliation(s)
- Aaron C. Mitchell
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Spencer C. Alford
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Sean A. Hunter
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
| | - Deepti Kannan
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
| | | | - Cheryl H. Chang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Jennifer R. Cochran
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Cancer Biology Program, Stanford University, Stanford, California 94305, United States
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
93
|
Probiotics reduce repeated water avoidance stress-induced colonic microinflammation in Wistar rats in a sex-specific manner. PLoS One 2017; 12:e0188992. [PMID: 29244820 PMCID: PMC5731730 DOI: 10.1371/journal.pone.0188992] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
The colonic response to stress is greater in female rats than in male rats. The aim of this study was to evaluate the effect of probiotics in the repeated water avoidance stress (rWAS)-induced colonic microinflammation model of Wistar rats in a sex-specific manner. The three groups (no-stress, WAS, and WAS with probiotics) were exposed to r-WAS for 1 h daily for 10 days, and Lactobacillus farciminis was administered by oral gavage for 10 days to animals in the probiotics group. The visceromotor response (VMR) to colorectal distension (CRD) was assessed using a barostat and noninvasive manometry before and after WAS exposure. Immunohistochemistry for mast cells and real-time polymerase chain reaction (RT-PCR) for detection of mucosal cytokines were performed using distal colon tissue after the animals were sacrificed. Significant reduction of VMR to CRD (visceral analgesia) was observed at 60 mmHg in the female WAS group (P = 0.045), but not in males. In addition, the female WAS with probiotics group showed a significantly lower colonic mucosal mast cell count in comparison to the female WAS group (P = 0.013), but this phenomenon was not observed in the male group. The colonic mucosal mRNA levels of interferon-γ (IFNR), tumor necrosis factor-α (TNFA), interleukin (IL) 6, and IL17 were higher in the female WAS group than in the male WAS group. The mRNA levels of IFNR, TNFA, and IL6 were significantly decreased in WAS females who received probiotics (all P < 0.050). In conclusion, rWAS is induced in a sex-specific manner. A 10-day-long treatment with L. farciminis is an effective therapy for rWAS-induced colonic microinflammation in female rates, but not in male rats.
Collapse
|
94
|
Bharucha AE, Wouters MM, Tack J. Existing and emerging therapies for managing constipation and diarrhea. Curr Opin Pharmacol 2017; 37:158-166. [PMID: 29172123 PMCID: PMC5725238 DOI: 10.1016/j.coph.2017.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/23/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Functional bowel disorders (i.e., constipation and diarrhea) are characterized by abdominal pain, bloating, distention, and/or bowel habit abnormalities in the absence of obvious anatomic or physiologic abnormalities on routine diagnostic tests. These symptoms are attributable to gastrointestinal sensorimotor dysfunctions resulting from peripheral and/or central mechanisms. Available drugs target the underlying bowel disturbance (i.e., constipation, diarrhea, or both), supplemented when necessary by management of pain. Osmotic and stimulant laxatives, secretagogues, and serotonin 5-HT4 receptor agonists are approved for treating constipation. Loperamide, anticholinergic agents, rifaximin, bile-acid binding agents, eluxadoline, and clonidine are used to treat diarrhea. Several exciting new compounds, some of which have been evaluated in humans, are currently under development.
Collapse
Affiliation(s)
- Adil E Bharucha
- Clinical Enteric Neuroscience Translational and Epidemiological Research Program (C.E.N.T.E.R.), Division of Gastroenterology and Hepatology, Mayo Clinic and Mayo Foundation, Rochester, MN, USA.
| | - Mira M Wouters
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
95
|
IBS: The power of protease activity in IBS. Nat Rev Gastroenterol Hepatol 2017; 14:139. [PMID: 28144027 DOI: 10.1038/nrgastro.2017.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|