51
|
Yuan Y, Chen Y, Wu W, Qi K, Xie Z, Yin H, Zhang S, Wu X. Regulatory network analysis reveals gene-metabolite relationships in pear fruit treated with methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109176. [PMID: 39378644 DOI: 10.1016/j.plaphy.2024.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
The economic value of pear is determined by its intrinsic qualities, which are influenced by metabolites produced during the ripening process. Methyl jasmonate (MeJA), a hormone, plays an important role in plant metabolism. To date, few studies have investigated the molecular mechanism underlying the changes in metabolic pathways related to the internal quality of pear fruit after MeJA treatment. In this study, ultrahigh-performance liquid chromatography‒Q Exactive Orbitrap mass spectrometry (UHPLC‒QE‒MS) was used to determine the changes in metabolite contents in pear after MeJA treatment. MeJA treatment primarily activated carbohydrate metabolism and amino acid metabolism pathways. Through combined analysis of UHPLC‒QE‒MS data and whole-transcriptome data, the abovementioned pathways and each metabolite were analysed separately, and competitive endogenous RNA (ceRNA) and microRNA-transcription factor-target (miRNA-TF-target) regulatory networks were constructed. The core nodes of three genes (PEA, Pbr022732.1; GAA, Pbr035655.1; and miR8033-x) and two genes (SDS, Pbr031708.1; and novel-m6796-3p) were associated with the carbohydrate metabolism and amino acid metabolism pathways, respectively. The core mRNA nodes TCONS_00048038 and Pbr019584.1, the core miRNA node miR4993-x, the core lncRNA node TCONS_0004356, the core circRNA node novel_circ_001967 and the core transcription factor node TSO1 (Pbr025407.1) were identified via separate metabolite analyses. These findings elucidate the changes in metabolites related to fruit quality in 'Nanguo' pear and the relationships between the metabolites and genes, reveal the molecular mechanism underlying the response of MeJA treatment in pear fruit, and provide a theoretical basis for improving the internal quality of 'Nanguo' pear.
Collapse
Affiliation(s)
- Yubo Yuan
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yangyang Chen
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanping Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yin
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiao Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
52
|
Li H, Long S, Yu Y, Ran S, Gong J, Zhu T, Xu Y. Transcriptome and metabolome analyses reveal the mechanisms by which H 2S improves energy and nitrogen metabolism in tall fescue under low-light stress. PHYSIOLOGIA PLANTARUM 2024; 176:e70015. [PMID: 39673341 DOI: 10.1111/ppl.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Hydrogen sulfide (H2S) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading. However, the influence of H2S on tall fescue under low light stress (LLS) remains unclear. To examine the role of H2S in acclimation of tall fescue to low light, we conducted combined analyses of physiological traits, metabolomics, and transcriptomics. These results showed that H2S mitigated LLS-induced inhibition of photosynthesis and maintained normal chloroplast ultrastructure by boosting the expression of photosynthesis-related genes, including PsbQ, PsbR, PsaD, PsaK, and PetH, thereby enhancing the synthesis of carbohydrates (sucrose, starch). H2S upregulated the expression of key genes (PFK, PK, IDH, G6PD) connected to glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway to promote carbon metabolism and ensure the supply of carbon skeletons and energy required for nitrogen metabolism. H2S application reverted the LLS-induced accumulation of nitrate nitrogen and the changes in the key nitrogen metabolism enzymes glutamate synthase (GOGAT, EC 1.4.1.13), nitrate reductase (NR, EC 1.6.6.1), glutamine synthetase (GS, EC 6.3.1.2), and glutamate dehydrogenase (GDH, EC 1.4.1.2), thus promoting amino acid decomposition to produce proteins involved in nitrogen assimilation and nitrogen use efficiency as well as specialized metabolism. Ultimately, H2S upregulated the C/N ratio of tall fescue, balanced its carbon and nitrogen metabolism, enhanced shade tolerance, and increased biomass. These results provided new insights into enhancing plant resilience under LLS.
Collapse
Affiliation(s)
- Hanyu Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Si Long
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Yize Yu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Shuqi Ran
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Jiongjiong Gong
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Tianqi Zhu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| | - Yuefei Xu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi Province, P.R. China
| |
Collapse
|
53
|
Li L, Jia L, Duan X, Lv Y, Ye C, Ding C, Zhang Y, Qi W, Motte H, Beeckman T, Luo L, Xuan W. A nitrogen-responsive cytokinin oxidase/dehydrogenase regulates root response to high ammonium in rice. THE NEW PHYTOLOGIST 2024; 244:1391-1407. [PMID: 39297368 DOI: 10.1111/nph.20128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/27/2024] [Indexed: 10/18/2024]
Abstract
Plant root system is significantly influenced by high soil levels of ammonium nitrogen, leading to reduced root elongation and enhanced lateral root branching. In Arabidopsis, these processes have been reported to be mediated by phytohormones and their downstream signaling pathways, while the controlling mechanisms remain elusive in crops. Through a transcriptome analysis of roots subjected to high/low ammonium treatments, we identified a cytokinin oxidase/dehydrogenase encoding gene, CKX3, whose expression is induced by high ammonium. Knocking out CKX3 and its homologue CKX8 results in shorter seminal roots, fewer lateral roots, and reduced sensitivity to high ammonium. Endogenous cytokinin levels are elevated by high ammonium or in ckx3 mutants. Cytokinin application results in shorter seminal roots and fewer lateral roots in wild-type, mimicking the root responses of ckx3 mutants to high ammonium. Furthermore, CKX3 is transcriptionally activated by type-B RR25 and RR26, and ckx3 mutants have reduced auxin content and signaling in roots under low ammonium. This study identified RR25/26-CKX3-cytokinin as a signal module that mediates root responses to external ammonium by modulating of auxin signaling in the root meristem and lateral root primordium. This highlights the critical role of cytokinin metabolism in regulating rice root development in response to ammonium.
Collapse
Affiliation(s)
- Lun Li
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Letian Jia
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingliang Duan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanda Lv
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Chengyu Ye
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengqiang Ding
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, 210095, China
| | - Yuwen Zhang
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weicong Qi
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
- Excellence and Innovation Center, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, Ghent, B-9052, Belgium
| | - Le Luo
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Xuan
- Sanya Institute of Nanjing Agricultural University, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
54
|
Zhang J, Zhang Y, Chen J, Xu M, Guan X, Wu C, Zhang S, Qu H, Chu J, Xu Y, Gu M, Liu Y, Xu G. Sugar transporter modulates nitrogen-determined tillering and yield formation in rice. Nat Commun 2024; 15:9233. [PMID: 39455567 PMCID: PMC11512014 DOI: 10.1038/s41467-024-53651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Nitrogen (N) fertilizer application ensures crop production and food security worldwide. N-controlled boosting of shoot branching that is also referred as tillering can improve planting density for increasing grain yield of cereals. Here, we report that Sugar Transporter Protein 28 (OsSTP28) as a key regulator of N-responsive tillering and yield formation in rice. N supply inhibits the expression of OsSTP28, resulting in glucose accumulation in the apoplast of tiller buds, which in turn suppresses the expression of a transcriptional inhibitor ORYZA SATIVA HOMEOBOX 15 (OSH15) via an epigenetic mechanism to activate gibberellin 2-oxidases (GA2oxs)-facilitated gibberellin catabolism in shoot base. Thereby, OsSTP28-OSH15-GA2oxs module reduces the level of bioactive gibberellin in shoot base upon increased N supply, and consequently promotes tillering and grain yield. Moreover, we identify an elite allele of OsSTP28 that can effectively promote N-responsive tillering and yield formation, thus representing a valuable breeding target of N use efficiency improvement for agricultural sustainability.
Collapse
Affiliation(s)
- Jinfei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuyi Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Mengfan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Guan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Cui Wu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Shunan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yifeng Xu
- College of Life Sciences, Nanjing Agriculture University, Nanjing, 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ying Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guohua Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
55
|
Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, Alagarswamy S, Swaminathan M, Manickam S, Muthurajan R. Unleashing the Potential of CRISPR/Cas9 Genome Editing for Yield-Related Traits in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2972. [PMID: 39519891 PMCID: PMC11547960 DOI: 10.3390/plants13212972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Strategies to enhance rice productivity in response to global demand have been the paramount focus of breeders worldwide. Multiple factors, including agronomical traits such as plant architecture and grain formation and physiological traits such as photosynthetic efficiency and NUE (nitrogen use efficiency), as well as factors such as phytohormone perception and homeostasis and transcriptional regulation, indirectly influence rice grain yield. Advances in genetic analysis methodologies and functional genomics, numerous genes, QTLs (Quantitative Trait Loci), and SNPs (Single-Nucleotide Polymorphisms), linked to yield traits, have been identified and analyzed in rice. Genome editing allows for the targeted modification of identified genes to create novel mutations in rice, avoiding the unintended mutations often caused by random mutagenesis. Genome editing technologies, notably the CRISPR/Cas9 system, present a promising tool to generate precise and rapid modifications in the plant genome. Advancements in CRISPR have further enabled researchers to modify a larger number of genes with higher efficiency. This paper reviews recent research on genome editing of yield-related genes in rice, discusses available gene editing tools, and highlights their potential to expedite rice breeding programs.
Collapse
Affiliation(s)
- Archana Thiruppathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shubham Rajaram Salunkhe
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Shobica Priya Ramasamy
- Department of Plant Breeding and Genetics, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Rakshana Palaniswamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Senthil Alagarswamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Manonmani Swaminathan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (A.T.); (S.R.S.); (R.P.); (V.R.R.); (S.A.R.)
| |
Collapse
|
56
|
Bijarnia A, Tetarwal J, Yadav RK, Bijrania A, Singh D, Saini Y. Effect of fertility levels and stress mitigating chemicals on nutrient content, uptake, intercropping advantage and competition effect in cowpea-baby corn intercropping. Heliyon 2024; 10:e38194. [PMID: 39381098 PMCID: PMC11456850 DOI: 10.1016/j.heliyon.2024.e38194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
The primary goal of this study was to analyze how various row ratios of intercrops, in conjunction with different fertilizer levels with spray of two stress mitigating chemical, affect nutrient content, land productivity, and economic viability during Summer season. Furthermore, we aimed to explore the competitive dynamics within legume/cereal intercropping systems. Hence, A field experiment at Agriculture University, Kota, during the summers of 2019 and 2020, investigated different cowpea + baby corn intercropping system's intercropping indices, nutrient dynamics, uptake, and post-harvest soil nutrient balance under varying recommended fertilizer levels and foliar spray of stress mitigating chemicals. Using a split-split plot design replicated four times, the experiment involved thirty treatment combinations, including five intercropping techniques viz. Sole cowpea, sole baby corn, cowpea + baby corn 2:1, cowpea + baby corn 3:1, cowpea + baby corn 4:1 in the main plot, three fertility levels viz. 100 %, 125 % and 150 % recommended dose of fertilizer (RDF) in subplots, and two stress mitigation chemicals; CaCl2 0.5 % and KNO3 1% in sub-subplots. The findings revealed notable trends, including nitrogen (N) and (P) content in cowpea seeds and straw, baby corn cobs and fodder, as well as enhanced land-equivalent ratio (LER) and monetary advantage index (MAI) within the cowpea + baby corn 2:1 row ratio. However, despite these advantages, total N and P uptake were markedly higher in sole crops. Notably, sole cowpea demonstrated the highest actual N and P balance and lowest was under sole baby corn. Among the fertility levels, the 150 % RDF level exhibited the most favorable outcomes across various parameters, including LER, MAI, NP content, and uptake in both crops. Additionally, higher fertility levels correlated with increased apparent and actual soil nutrient balances. While, among stress mitigation chemicals, CaCl2 0.5 % resulted in significantly heightened N and P uptake. Hence, to optimize intercropping dynamics and maintain soil nutrient balance, it is advisable to intensify cowpea cultivation along with baby corn in a 2:1 row ratio, utilizing 150 % RDF is beneficial. Additionally, alleviating higher temperature stress during the summer season can be achieved by applying a 0.5 % solution CaCl2 through spraying at the flowering and pod development stages of cowpea.
Collapse
Affiliation(s)
- Anju Bijarnia
- Agriculture University, Kota, 324001, Rajasthan, India
| | - J.P. Tetarwal
- Agriculture University, Kota, 324001, Rajasthan, India
| | | | - A.L. Bijrania
- Agriculture University, Jodhpur, 342304, Rajasthan, India
| | - Deepak Singh
- Division of Sample Surveys, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Yonika Saini
- Agriculture University, Kota, 324001, Rajasthan, India
| |
Collapse
|
57
|
Lin S, Zhang Y, Zhang S, Wei Y, Han M, Deng Y, Guo J, Zhu B, Yang T, Xia E, Wan X, Lucas WJ, Zhang Z. Root-specific theanine metabolism and regulation at the single-cell level in tea plants ( Camellia sinensis). eLife 2024; 13:RP95891. [PMID: 39401074 PMCID: PMC11473105 DOI: 10.7554/elife.95891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Root-synthesized secondary metabolites are critical quality-conferring compounds of foods, plant-derived medicines, and beverages. However, information at a single-cell level on root-specific secondary metabolism remains largely unexplored. L-Theanine, an important quality component of tea, is primarily synthesized in roots, from which it is then transported to new shoots of tea plant. In this study, we present a single-cell RNA sequencing (scRNA-seq)-derived map for the tea plant root, which enabled cell-type-specific analysis of glutamate and ethylamine (two precursors of theanine biosynthesis) metabolism, and theanine biosynthesis, storage, and transport. Our findings support a model in which the theanine biosynthesis pathway occurs via multicellular compartmentation and does not require high co-expression levels of transcription factors and their target genes within the same cell cluster. This study provides novel insights into theanine metabolism and regulation, at the single-cell level, and offers an example for studying root-specific secondary metabolism in other plant systems.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yiwen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yijie Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Mengxue Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Yamei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Jiayi Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Biying Zhu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, DavisDavisUnited States
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefeiChina
| |
Collapse
|
58
|
Zhang M, Zhou B, Cheng Y, Zhong C, Yu M, Pan T, Zhu Y. Involvement of plasma membrane H +-ATPase in the nitrate-nutrition uptake and utilization in indica rice. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154368. [PMID: 39393190 DOI: 10.1016/j.jplph.2024.154368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
Utilization of nitrogen by crops is essential for sustainable agriculture. The transport of nitrate (NO3-) across the plasma membrane is a critical gateway for N uptake and subsequent utilization. This process requires proton (H+) coupled cotransport, which is driven by proton motive force, provided by plasma membrane (PM) H+-ATPase. In this report, two indica rice varieties [Meixiangzhan 2 (MXZ) and Jifengyou 1002 (JFY)] in South China were selected and cultivated in hydroponic solution with 0.5 mM or 2.0 mM NO3- as the N source. The JFY exhibited stronger growth with higher biomass than MXZ under both 0.5 mM and 2.0 mM NO3-. PM H+-ATPase activity of JFY roots was significantly higher than that of MXZ. The higher PM H+-ATPase activity in JFY was consistent with a higher abundance of PM H+-ATPase protein and higher transcription levels of OSAs, such as OSA2, OSA7 and OSA8 in roots, OSA3, OSA7 and OSA8 in leaves. The expression of nitrate transporters (OsNRT1;1b, OsNRT2.1, OsNRT2.2, and OsNAR2.1) were also higher in roots or shoots of JFY than those in MXZ. Under 0.5 mM and 2.0 mM NO3-, the NO3- absorption and translocation rate, nitrate content, as well as nitrate reductase (NR) activity were all significantly higher in JFY, as compared to those in MXZ. Taken together, in JFY and MXZ, a higher level of PM H+-ATPase protein and higher activity coupled with greater efficiency in nitrate uptake, translocation and assimilation, suggesting the existence of a close correlation between PM H+-ATPase and nitrate utilization in indica rice. PM H+-ATPase may one of the elite genes that can contribute to nitrate use efficiency in rice.
Collapse
Affiliation(s)
- Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Boyang Zhou
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Yuan Cheng
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Chunyan Zhong
- Zhaoqing Academy of Agriculture and Forestry Sciences, Zhaoqing, 526040, China
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China
| | - Ting Pan
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan, 528000, China.
| | - Yiyong Zhu
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environment Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
59
|
Wu Y, Mehdi F, Cao Z, Gan Y, Jiang S, Zan L, Zhang S, Yang B. Optimizing Sugarcane Clonal Propagation In Vitro by Using Calcium Ammonium Nitrate and Ammonium Sulfate. PLANTS (BASEL, SWITZERLAND) 2024; 13:2767. [PMID: 39409637 PMCID: PMC11478678 DOI: 10.3390/plants13192767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024]
Abstract
To replace explosive nitrate-based chemicals in MS medium, this study developed a new, safer, and more cost-effective method using fertilizer-grade calcium ammonium nitrate and ammonium sulfate. This approach replaces ammonium nitrate and potassium nitrate, ensuring both safety and cost efficiency for sugarcane propagation. Six local sugarcane varieties-Zhongtang1 (ZT1), Zhongtang3 (ZT3), Zhongtang6 (ZT6), Guitang42 (GT42), Guitang44 (GT44), and Guiliu 07150 (GT07150)-were used. In the control group (Ck), nitrate ions (NO3-) were 39.28 mM, and ammonium ions (NH4+) were 20.49 mM, with a 2:1 ratio. In the treatment groups, the concentrations of nitrate ions (NO3-) and ammonium ions (NH4+) included treatment 1 (19.69 mM NO3- and 10.3 mM NH4+), treatment 2 (29.54 mM and 15.44 mM), treatment 3 (39.38 mM and 20.59 mM), treatment 4 (49.225 mM and 25.74 mM), treatment 5 (59.07 mM and 30.89 mM), and treatment 6 (68.915 mM and 36.03 mM), respectively, all with the same 2:1 ratio. Fifty bottles per treatment, with three replicates, were used for each sugarcane plantlets treatment. After five subcultures, the optimal ratio was determined by assessing morphological and physiological parameters, nitrogen levels, and SOD enzyme activity. The results indicated that treatment 3 (39.38 mM and 20.59 mM) and treatment 4 (49.225 mM and 25.74 mM) had the best morphological and physiological indicators. The optimal doses of calcium ammonium nitrate and ammonium sulfate were found in treatments 3 and 4, as well as in the control, with no significant difference among them. However, treatment 3, due to its lower dose, was more cost effective. To improve cost efficiency in practical production, it is recommended to use the lower concentration ratio of treatment 3 for plant tissue culture plantlets.
Collapse
Affiliation(s)
- Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Shuting Jiang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Limei Zan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (Y.W.); (F.M.); (Z.C.); (Y.G.); (S.J.); (L.Z.)
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
60
|
Batelli G, Ruggiero A, Esposito S, Venezia A, Lupini A, Nurcato R, Costa A, Palombieri S, Vitiello A, Mauceri A, Cammareri M, Sunseri F, Grandillo S, Granell A, Abenavoli MR, Grillo S. Combined salt and low nitrate stress conditions lead to morphophysiological changes and tissue-specific transcriptome reprogramming in tomato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108976. [PMID: 39094482 DOI: 10.1016/j.plaphy.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
Despite intense research towards the understanding of abiotic stress adaptation in tomato, the physiological adjustments and transcriptome modulation induced by combined salt and low nitrate (low N) conditions remain largely unknown. Here, three traditional tomato genotypes were grown under long-term single and combined stresses throughout a complete growth cycle. Physiological, molecular, and growth measurements showed extensive morphophysiological modifications under combined stress compared to the control, and single stress conditions, resulting in the highest penalty in yield and fruit size. The mRNA sequencing performed on both roots and leaves of genotype TRPO0040 indicated that the transcriptomic signature in leaves under combined stress conditions largely overlapped that of the low N treatment, whereas root transcriptomes were highly sensitive to salt stress. Differentially expressed genes were functionally interpreted using GO and KEGG enrichment analysis, which confirmed the stress and the tissue-specific changes. We also disclosed a set of genes underlying the specific response to combined conditions, including ribosome components and nitrate transporters, in leaves, and several genes involved in transport and response to stress in roots. Altogether, our results provide a comprehensive understanding of above- and below-ground physiological and molecular responses of tomato to salt stress and low N treatment, alone or in combination.
Collapse
Affiliation(s)
- Giorgia Batelli
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Alessandra Ruggiero
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Salvatore Esposito
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Accursio Venezia
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA-OF), 84098, Pontecagnano Faiano, Italy
| | - Antonio Lupini
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Roberta Nurcato
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonello Costa
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Samuela Palombieri
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonella Vitiello
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonio Mauceri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Maria Cammareri
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Francesco Sunseri
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Silvana Grandillo
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (IBMCP). Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, València, Spain
| | - Maria Rosa Abenavoli
- Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy.
| | - Stefania Grillo
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), Portici, 80055, Italy.
| |
Collapse
|
61
|
Jin F, Huang W, Xie P, Wu B, Zhao Q, Fang Z. Amino acid permease OsAAP12 negatively regulates rice tillers and grain yield by transporting specific amino acids to affect nitrogen and cytokinin pathways. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112202. [PMID: 39069009 DOI: 10.1016/j.plantsci.2024.112202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Amino acids are necessary nutrients for the growth of Oryza sativa (rice), which can be mediated by amino acid transporter; however, our understanding of these transporters is still limited. This study found that the expression levels of amino acid permease gene OsAAP12 differed between indica and japonica rice. Altered expression of OsAAP12 negatively regulated tillering and yield in transgenic rice lines. Subcellular localization revealed that OsAAP12 was primarily localized to the plasma membrane. Moreover, it was indicated that OsAAP12 transported polar neutral amino acids asparagine (Asn), threonine (Thr), and serine (Ser) through experiments involving yeast heterologous complementation, fluorescence amino acid uptake, and amino acid content determination. Additionally, exogenous application of amino acids Asn, Thr, and Ser suppressed axillary buds outgrowth in OsAAP12 overexpression lines compared with wild-type ZH11. Conversely, the opposite trend was observed in CRISPR mutant lines. RNA-seq analysis showed that the expression patterns of genes involved in the nitrogen and cytokinin pathways were generally altered in OsAAP12 modified lines. Hormone assays indicated that OsAAP12 mutant lines accumulated cytokinins in the basal part of rice, whereas overexpression lines had the opposite effect. In summary, CRISPR mutant of OsAAP12 boosted rice tillering and grain yield by coordinating the content of amino acids and cytokinins, which has potential application value in high-yield rice breeding.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
62
|
Wang S, Zeng J, Zhang T, Yang L, Yang Y, Lu Z, Jin X, Wang M, Guo S. Ammonium enhances rice resistance to Magnaporthe oryzae through H 2O 2 accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109058. [PMID: 39181086 DOI: 10.1016/j.plaphy.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen (N) is essential for the physiological processes of plants. However, the specific mechanisms by which different nitrogen forms influence rice blast pathogenesis remain poorly understood. This study used hydroponic assays to explore how ammonium (NH4+) and nitrate (NO3-) affect rice after inoculation with Magnaporthe oryzae (M. oryzae). The results showed that NH4+, compared to NO3-, significantly reduced disease severity, fungal growth, fungal hyphae number, the expansion capacity of infectious hyphae, and disease-related loss of photosynthesis. Additionally, NH4+ enhanced the expression of defense-related genes, including OsPBZ1, OsCHT1, OsPR1a, and OsPR10. NH4+-treated rice also exhibited higher hydrogen peroxide (H2O2) accumulation and increased antioxidant enzyme activities. Moreover, susceptibility to rice blast disease increased when H2O2 was scavenged, while a reduction in susceptibility was observed with the application of exogenous H2O2. These results suggest that ammonium enhances rice resistance to M. oryzae, potentially through H2O2 accumulation. The findings provide valuable insights into how different nitrogen forms affect plant immunity in rice, which is crucial for controlling rice blast and ensuring stable food production.
Collapse
Affiliation(s)
- Shiyu Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jixing Zeng
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianyao Zhang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lei Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yating Yang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhifeng Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| | - Xiang Jin
- Changbaishan Vocational Technical College, Baishan, 134300, China.
| | - Min Wang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shiwei Guo
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
63
|
Feng Y, Zhao Y, Ma Y, Chen X, Shi H. Integrative physiological and transcriptome analysis unravels the mechanism of low nitrogen use efficiency in burley tobacco. PLANT DIRECT 2024; 8:e70004. [PMID: 39435449 PMCID: PMC11491304 DOI: 10.1002/pld3.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/29/2024] [Accepted: 09/02/2024] [Indexed: 10/23/2024]
Abstract
Burley tobacco, a chlorophyll-deficient mutant with impaired nitrogen use efficiency (NUE), generally requires three to five times more nitrogen fertilization than flue-cured tobacco to achieve a comparable yield, which generates serious environmental pollution and negatively affects human health. Therefore, exploring the mechanisms underlying NUE is an effective measure to reduce environmental pollution and an essential direction for burley tobacco plant improvement. Physiological and genetic factors affecting tobacco NUE were identified using two tobacco genotypes with contrasting NUE in hydroponic experiments. Nitrogen use inefficient genotype (TN90) had lower nitrogen uptake and transport efficiencies, reduced leaf and root biomass, lower nitrogen assimilation and photosynthesis capacity, and lower nitrogen remobilization ability than the nitrogen use efficient genotype (K326). Transcriptomic analysis revealed that genes associated with photosynthesis, carbon fixation, and nitrogen metabolism are implicated in NUE. Three nitrate transporter genes in the leaves (NPF2.11, NPF2.13, and NPF3.1) and three nitrate transporter genes (NPF6.3, NRT2.1, and NRT2.4) in roots were down-regulated by nitrogen starvation, all of which showed lower expression in TN90 than in K326. In addition, the protein-protein interaction (PPI) network diagram identified eight key genes (TPIP1, GAPB, HEMB, PGK3, PSBO, PSBP2, PSAG, and GLN2) that may affect NUE. Less advantageous changes in nitrogen uptake, nitrogen assimilation in combination with nitrogen remobilization, and maintenance of photosynthesis in response to nitrogen deficiency led to a lower NUE in TN90. The key genes (TPIP1, GAPB, PGK3, PSBO, PSBP2, PSAG, and GLN2) were associated with improving photosynthesis and nitrogen metabolism in tobacco plants grown under N-deficient conditions.
Collapse
Affiliation(s)
- Yuqing Feng
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yuanyuan Zhao
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yanjun Ma
- Technology CenterShanghai Tobacco Group Beijing Cigarette Factory Co., Ltd.BeijingChina
| | - Xiaolong Chen
- China Tobacco Henan Industrial Co., Ltd.ZhengzhouHenanChina
| | - Hongzhi Shi
- College of TobaccoHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
64
|
Yates K, Berliner AJ, Makrygiorgos G, Kaiyom F, McNulty MJ, Khan I, Kusuma P, Kinlaw C, Miron D, Legg C, Wilson J, Bugbee B, Mesbah A, Arkin AP, Nandi S, McDonald KA. Nitrogen accountancy in space agriculture. NPJ Microgravity 2024; 10:90. [PMID: 39341860 PMCID: PMC11439006 DOI: 10.1038/s41526-024-00428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Food production and pharmaceutical synthesis are posited as essential biotechnologies for facilitating human exploration beyond Earth. These technologies not only offer critical green space and food agency to astronauts but also promise to minimize mass and volume requirements through scalable, modular agriculture within closed-loop systems, offering an advantage over traditional bring-along strategies. Despite these benefits, the prevalent model for evaluating such systems exhibits significant limitations. It lacks comprehensive inventory and mass balance analyses for crop cultivation and life support, and fails to consider the complexities introduced by cultivating multiple crop varieties, which is crucial for enhancing food diversity and nutritional value. Here we expand space agriculture modeling to account for nitrogen dependence across an array of crops and demonstrate our model with experimental fitting of parameters. By adding nitrogen limitations, an extended model can account for potential interruptions in feedstock supply. Furthermore, sensitivity analysis was used to distill key consequential parameters that may be the focus of future experimental efforts.
Collapse
Affiliation(s)
- Kevin Yates
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA.
| | - Aaron J Berliner
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA.
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA.
- Program in Aerospace Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Georgios Makrygiorgos
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Farrah Kaiyom
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Matthew J McNulty
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Imran Khan
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Paul Kusuma
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Plant Soils and Climate, Utah State University, Logan, UT, USA
| | | | | | | | | | - Bruce Bugbee
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Plant Soils and Climate, Utah State University, Logan, UT, USA
| | - Ali Mesbah
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, USA
| | - Somen Nandi
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Karen A McDonald
- Center for the Utilization of Biological Engineering in Space (CUBES), Berkeley, CA, USA
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| |
Collapse
|
65
|
Desaint H, Héreil A, Belinchon-Moreno J, Carretero Y, Pelpoir E, Pascal M, Brault M, Dumont D, Lecompte F, Laugier P, Duboscq R, Bitton F, Grumic M, Giraud C, Ferrante P, Giuliano G, Sunseri F, Causse M. Integration of QTL and transcriptome approaches for the identification of genes involved in tomato response to nitrogen deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5880-5896. [PMID: 38869971 DOI: 10.1093/jxb/erae265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Optimizing plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterized a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in a greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven QTLs were detected for three target traits (leaf N content, leaf nitrogen balance index, and petiole NO3- content), 10 and six in the low and high N condition, respectively, while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4752 and 2405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3628 (50.6%) in leaves and 1717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1677 DEGs were shared between organs or tissues. Finally, we integrated DEG and QTL analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Pascal
- INRAE, UR407, Pathologie Végétale, 84143 Montfavet, France
| | | | | | | | | | | | | | | | | | - Paola Ferrante
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | - Giovanni Giuliano
- Italian National Agency for New technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Res Ctr, Via Anguillarese 301, 00123 Rome, Italy
| | | | | |
Collapse
|
66
|
Liu C, Gu W, Li B, Feng Y, Liu C, Shi X, Zhou Y. Screening key sorghum germplasms for low-nitrogen tolerance at the seedling stage and identifying from the carbon and nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1340509. [PMID: 39328797 PMCID: PMC11424420 DOI: 10.3389/fpls.2024.1340509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 08/15/2024] [Indexed: 09/28/2024]
Abstract
Introduction Sorghum (Sorghum bicolor L.) can withstand drought and heat stress and efficiently utilize water and nutrients. However, the underlying mechanism of its tolerance to low-nitrogen (N) stress remains poorly understood. Materials and methods This study assessed low-N tolerance in 100 sorghum-inbred lines and identified those with exceptional resilience. Principal component analysis, Pearson's correlation, and Y value analysis were used to examine various seedling growth metrics, including plant and root dimensions, biomass, chlorophyll content, root N content, shoot N content, and root/shoot ratio. Results and discussion The genotypes were categorized into four distinct groups based on their respective Y values, revealing a spectrum from highly tolerant to sensitive. Low-N-tolerant sorghum lines maintained higher photosynthetic rates and exhibited increased enzymatic activities linked to carbon and N metabolism in the leaves and roots. Furthermore, low-N-tolerant genotypes had higher levels of key amino acids, including cystine, glycine, histidine, isoleucine, leucine, phenylalanine, threonine, and tyrosine, indicating a robust internal metabolic response to N deficiency. Conclusion This study provides a comprehensive and reliable approach for the evaluation of sorghum tolerance to low-N environments, sheds light on its morphological and physiological adaptations, and provides valuable insights for future breeding programs and agricultural practices.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bang Li
- College of Agronomy and Horticulture, Liaoning Agricultural Vocational and Technical College, Yingkou, Liaoning, China
| | - Yihao Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
67
|
Wu Q, Xu J, Zhao Y, Wang Y, Zhou L, Ning L, Shabala S, Zhao H. Transcription factor ZmEREB97 regulates nitrate uptake in maize (Zea mays) roots. PLANT PHYSIOLOGY 2024; 196:535-550. [PMID: 38743701 PMCID: PMC11376383 DOI: 10.1093/plphys/kiae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Maize (Zea mays L.) has very strong requirements for nitrogen. However, the molecular mechanisms underlying the regulations of nitrogen uptake and translocation in this species are not fully understood. Here, we report that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ZmEREB97 functions as an important regulator in the N signaling network in maize. Predominantly expressed and accumulated in main root and lateral root primordia, ZmEREB97 rapidly responded to nitrate treatment. By overlapping the analyses of differentially expressed genes and conducting a DAP-seq assay, we identified 1,446 potential target genes of ZmEREB97. Among these, 764 genes were coregulated in 2 lines of zmereb97 mutants. Loss of function of ZmEREB97 substantially weakened plant growth under both hydroponic and soil conditions. Physiological characterization of zmereb97 mutant plants demonstrated that reduced biomass and grain yield were both associated with reduced nitrate influx, decreased nitrate content, and less N accumulation. We further demonstrated that ZmEREB97 directly targets and regulates the expression of 6 ZmNRT genes by binding to the GCC-box-related sequences in gene promoters. Collectively, these data suggest that ZmEREB97 is a major positive regulator of the nitrate response and that it plays an important role in optimizing nitrate uptake, offering a target for improvement of nitrogen use efficiency in crops.
Collapse
Affiliation(s)
- Qi Wu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinyan Xu
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yingdi Zhao
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuancong Wang
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ling Zhou
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihua Ning
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sergey Shabala
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia
- Department of Horticulture and International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Germplasm Innovation in Downstream of Huaihe River, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
68
|
Gao C, Liu C, Chen C, Liu N, Liu F, Su X, Huang Q. Genetic Evaluation of Water Use Efficiency and Nutrient Use Efficiency in Populus deltoides Bartr. ex Marsh. Seedlings in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:2228. [PMID: 39204664 PMCID: PMC11359723 DOI: 10.3390/plants13162228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Populus deltoides Bartr. ex Marsh. represents a valuable genetic resource for fast-growing plantations in temperate regions. It holds significant cultivation and breeding potential in northern China. To establish an efficient breeding population of poplar, we studied the genetic variation of P. deltoides from different provenances. Our focus was on genotypes exhibiting high growth rates and efficient water and nutrient use efficiency (WUE and NUE). We evaluated 256 one-year-old seedlings from six provenances, measuring height, ground diameter, total biomass, and leaf carbon and nitrogen isotope abundance (δ13C and δ15N). Our analytical methods included variance analysis, multiple comparisons, mixed linear models, correlation analysis, and principal component analysis. The results showed that the coefficient of variation was highest for δ15N and lowest for δ13C among all traits. Except for δ15N, the effects of intra- and inter-provenance were highly significant (p < 0.01). The rates of variation for all traits ranged from 78.36% to 99.49% for intra-provenance and from 0.51% to 21.64% for inter-provenance. The heritability of all traits in AQ provenance was over 0.65, and all exhibited the highest level except for seedling height. All traits were significantly positively correlated with each other (p < 0.05), while ground diameter, total biomass, and WUE were highly significantly negatively correlated with latitude (p < 0.01). After a comprehensive evaluation, two provenances and eight genotypes were selected. The genetic gains for seedling height, ground diameter, total biomass, WUE, and NUE were 27.46 cm (178-2-106), 3.85 mm (178-2-141), 16.40 g (178-2-141), 0.852‱ (LA05-N15), and 3.145‱ (174-1-2), respectively. Overall, we revealed that the abundant genetic variation in P. deltoides populations mainly comes from intra-provenance differences and evaluated provenances and genotypes. The results of this study will contribute to optimizing and enhancing the breeding process of Chinese poplar and improving the productivity of fast-growing plantations.
Collapse
Affiliation(s)
- Chengcheng Gao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Chenggong Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Cun Chen
- School of Life Sciences, Qilu Normal University, Jinan 250013, China;
| | - Ning Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- UGent-Woodlab (Laboratory of Wood Technology), Department of Environment, Ghent University, 9000 Ghent, Belgium
| | - Fenfen Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (C.G.); (C.L.); (N.L.); (F.L.); (X.S.)
- Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing 100091, China
| |
Collapse
|
69
|
Zhang W, Tang S, Li X, Chen Y, Li J, Wang Y, Bian R, Jin Y, Zhu X, Zhang K. Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization. MOLECULAR PLANT 2024; 17:1289-1306. [PMID: 39003499 DOI: 10.1016/j.molp.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Shufei Tang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuying Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuanyuan Chen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuyang Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ruichao Bian
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ying Jin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
70
|
Wang J, Lu Z, Hu L, Zhong R, Xu C, Yang Y, Zeng R, Song Y, Sun Z. High nitrogen application in maize enhances insecticide tolerance of the polyphagous herbivore Spodoptera litura by induction of detoxification enzymes and intensification of cuticle. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106002. [PMID: 39084798 DOI: 10.1016/j.pestbp.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Nitrogen (N) is one of the most intensively used fertilizers in cropping system and could exert a variety of bottom-up effects on the ecological fitness of herbivores. However, the effects of increased N inputs on insect pesticide tolerance have not been comprehensively understood. Bioassays showed that high N (HN) applied to maize plants significantly increased larval tolerance of Spodoptera litura to multiple insecticides. Activities of detoxification enzymes were significantly higher in the larvae fed on maize plants supplied with HN. RNA-seq analysis showed that numerous GST and cuticle-related genes were induced in the larvae fed on HN maize. RT-qPCR analysis further confirmed four GST genes and larval-specific cuticle gene LCP167. Furthermore, when injected with dsRNA specific to GSTe1, GSTs5, and LCP167, the mortality of larvae treated with methomyl was about 3-fold higher than that of dsGFP-injected larvae. Electron microscope observation showed that cuticle of the larvae fed on HN maize was thicker than the medium level of N. These findings suggest that increased application of N fertilizer enhances insecticide tolerance of lepidopteran pests via induction of detoxification enzymes and intensification of cuticle. Thus, overuse of N fertilizer may increase pest insecticide tolerance and usage of chemical insecticides.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhihui Lu
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Hu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Beibu Gulf Environment Change and Resources Utilization of Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Runbin Zhong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuicui Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yurui Yang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou 350002, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiang Sun
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
71
|
Chen B, Hou Y, Huo Y, Zeng Z, Hu D, Mao X, Zhong C, Xu Y, Tang X, Gao X, Ma J, Chen G. QTL Mapping of Yield, Agronomic, and Nitrogen-Related Traits in Barley ( Hordeum vulgare L.) under Low Nitrogen and Normal Nitrogen Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2137. [PMID: 39124255 PMCID: PMC11314459 DOI: 10.3390/plants13152137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Improving low nitrogen (LN) tolerance in barley (Hordeum vulgare L.) increases global barley yield and quality. In this study, a recombinant inbred line (RIL) population crossed between "Baudin × CN4079" was used to conduct field experiments on twenty traits of barley yield, agronomy, and nitrogen(N)-related traits under LN and normal nitrogen (NN) treatments for two years. This study identified seventeen QTL, comprising eight QTL expressed under both LN and NN treatments, eight LN-specific QTL, and one NN-specific QTL. The localized C2 cluster contained QTL controlling yield, agronomic, and N-related traits. Of the four novel QTL, the expression of the N-related QTL Qstna.sau-5H and Qnhi.sau-5H was unaffected by N treatment. Qtgw.sau-2H for thousand-grain weight, Qph.sau-3H for plant height, Qsl.sau-7H for spike length, and Qal.sau-7H for awn length were identified to be the four stable expression QTL. Correlation studies revealed a significant negative correlation between grain N content and harvest index (p < 0.01). These results are essential for barley marker-assisted selection (MAS) breeding.
Collapse
Affiliation(s)
- Bingjie Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yao Hou
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Yuanfeng Huo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Zhaoyong Zeng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Deyi Hu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xingwu Mao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Chengyou Zhong
- College of Economics, Hunan Agricultural University, Changsha 410125, China;
| | - Yinggang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Xuesong Gao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Guangdeng Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (B.C.); (Y.H.); (Y.H.); (Z.Z.); (D.H.); (X.M.); (Y.X.); (X.T.); (X.G.)
| |
Collapse
|
72
|
Feng W, Xue W, Zhao Z, Shi Z, Wang W, Bai Y, Wang H, Qiu P, Xue J, Chen B. Nitrogen fertilizer application rate affects the dynamic metabolism of nitrogen and carbohydrates in kernels of waxy maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1416397. [PMID: 39148609 PMCID: PMC11324447 DOI: 10.3389/fpls.2024.1416397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024]
Abstract
Introduction Nitrogen (N) plays a pivotal role in the growth, development, and yield of maize. An optimal N application rate is crucial for enhancing N and carbohydrate (C) accumulation in waxy maize grains, which in turn synergistically improves grain weight. Methods A 2-year field experiment was conducted to evaluate the impact of different N application rates on two waxy maize varieties, Jinnuo20 (JN20) and Jindannuo41 (JDN41), during various grain filling stages. The applied N rates were 0 (N0), 120 (N1), 240 (N2), and 360 (N3) kg N ha-1. Results The study revealed that N application significantly influenced nitrogen accumulation, protein components (gliadin, albumin, globulin, and glutelin), carbohydrate contents (soluble sugars, amylose, and amylopectin), and activities of enzymes related to N and C metabolism in waxy maize grains. Notable varietal differences in these parameters were observed. In both varieties, the N2 treatment consistently resulted in the highest values for almost all measured traits compared to the other N treatments. Specifically, the N2 treatment yielded an average increase in grain dry matter of 21.78% for JN20 and 17.11% for JDN41 compared to N0. The application of N positively influenced the activities of enzymes involved in C and N metabolism, enhancing the biosynthesis of grain protein, amylose, and amylopectin while decreasing the accumulation of soluble sugars. This modulation of the C/N ratio in the grains directly contributed to an increase in grain dry weight. Conclusion Collectively, our findings underscore the critical role of N in regulating kernel N and C metabolism, thereby influencing dry matter accumulation in waxy maize grains during the grain filling stage.
Collapse
Affiliation(s)
- Wanjun Feng
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Weiwei Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zequn Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhaokang Shi
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Weijie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yu Bai
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Haoxue Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Peng Qiu
- Sorghum Research Institute, Shanxi Agricultural University, Yuci, Shanxi, China
| | - Jianfu Xue
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Baoguo Chen
- College of Agriculture, Shanxi Agricultural University, Taigu, Shanxi, China
| |
Collapse
|
73
|
Chen K, Xue W, Di X, Sun T, Gao W, Sun Y. Effects of nitrogen forms on Cd uptake and tolerance in wheat seedlings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 936:173451. [PMID: 38782266 DOI: 10.1016/j.scitotenv.2024.173451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Hydroponic experiment was conducted to explore the effects of two nitrogen (N) levels with five nitrate nitrogen (NO3--N) and ammonium nitrogen (NH4+-N) ratios on the growth status and Cd migration patterns of wheat seedlings under Cd5 and Cd30 level. Results showed that higher Cd were detrimental to the growth, absorption of K and Ca, expression of genes mediating NO3--N and NH4+-N transport, which also increased the content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in shoots and roots of wheat seedlings. Higher N treatment alleviated the inhibitory effects of Cd stress on the biomass, root development, photosynthesis and increased the tolerance index of wheat seedlings. The ratio of NO3--N and NH4+-N was the main factor driving Cd accumulation in wheat seedlings, the combined application of NH4+-N and NO3--N was more conducive for the growth, nitrogen assimilation and Cd tolerance to the Cd stressed wheat seedlings. Increased NO3--N application rates significantly up-regulated the expression levels of TaNPF2.12, TaNRT2.2, increased NH4+-N application rates significantly up-regulated the expression levels of TaAMT1.1. The high proportion of NO3--N promoted the absorption of K, Ca and Cd in the shoots and roots of wheat seedlings, while NH4+-N was the opposite. Under low Cd conditions, the NO3--N to NH4+-N ratio of 1:1 was more conducive to the growth of wheat seedlings, under high Cd stress, the optimal of NO3--N to NH4+-N was 1:2 for inhibiting the accumulation of Cd in wheat seedlings. The results indicated that increasing NH4+-N ratio appropriately could inhibit wheat Cd uptake by increasing NH4+, K+ and Ca2+ for K and Ca channels, and promote wheat growth by promoting N assimilation process.
Collapse
Affiliation(s)
- Kexin Chen
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| | - Xuerong Di
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Tao Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China
| | - Wei Gao
- College of Resources and Environment, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China; Henan Key Lab of Soil Pollution Control & Remediation, Henan Agricultural University, No.218 Ping'an Avenue, Zhengzhou 450046, Henan, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin 300191, China.
| |
Collapse
|
74
|
Zhang W, Cheng X, Jing Z, Cao Y, Yuan S, Zhang H, Zhang Y. Exogenous GA 3 Enhances Nitrogen Uptake and Metabolism under Low Nitrate Conditions in 'Duli' ( Pyrus betulifolia Bunge) Seedlings. Int J Mol Sci 2024; 25:7967. [PMID: 39063209 PMCID: PMC11277063 DOI: 10.3390/ijms25147967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
'Duli' (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gibberellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3-) uptake and metabolism in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N metabolism of 'Duli' seedlings under NO3- deficiency. The results showed that exogenous GA3 significantly improves 'Duli' growth under NO3- deficiency. On the one hand, GA3 altered the root architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced photosynthesis; on the other hand, it enhanced the activities of N-metabolizing enzymes and the accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chlorophyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3- uptake and metabolism and relieve the growth inhibition of 'Duli' seedlings under NO3- deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuxing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding 071001, China; (W.Z.); (X.C.); (S.Y.); (H.Z.)
| |
Collapse
|
75
|
Desaulniers Brousseau V, Goldstein BP, Sedlock C, Lefsrud M. Environmental Impact of Outdoor Cannabis Production. ACS AGRICULTURAL SCIENCE & TECHNOLOGY 2024; 4:690-699. [PMID: 39027629 PMCID: PMC11253875 DOI: 10.1021/acsagscitech.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024]
Abstract
Environmental impacts of cannabis production are of increasing concern because it is a newly legal and growing industry. Although a handful of studies have quantified the impacts of indoor production, very little is known about the impact of outdoor cannabis agriculture. Outdoor production typically uses little direct energy but can require significant fertilizer and other inputs due to dissipative losses via runoff and mineralization. Conversely, fertilizer high in nitrogen can be counterproductive, as it produces flowers with decreased cannabinoid content. This study has two aims: (1) To identify reduced-fertilizer regimes that provide optimal cannabis flower yields with reduced inputs and (2) to quantify how this shifts greenhouse gas emissions, resource depletion (fossil and metal), terrestrial acidification, and the eutrophication potential of outdoor cannabis production. Primary data from a fertilizer response trial are incorporated into a life-cycle assessment model. Results show that outdoor cannabis agriculture can be 50 times less carbon-emitting than indoor production. Dissemination of this knowledge is of utmost importance for producers, consumers, and government officials in nations that have either legalized or will legalize cannabis production.
Collapse
Affiliation(s)
- Vincent Desaulniers Brousseau
- Department
of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue H9X 3 V9, Canada
| | - Benjamin P. Goldstein
- Department
of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue H9X 3 V9, Canada
| | - Charlotte Sedlock
- School
for Environment and Sustainability, University
of Michigan, 440 Church Street, Ann Arbor, Michigan 48109, United States
| | - Mark Lefsrud
- Department
of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue H9X 3 V9, Canada
| |
Collapse
|
76
|
Leng X, Wang H, Cao L, Chang R, Zhang S, Xu C, Yu J, Xu X, Qu C, Xu Z, Liu G. Overexpressing GLUTAMINE SYNTHETASE 1;2 maintains carbon and nitrogen balance under high-ammonium conditions and results in increased tolerance to ammonium toxicity in hybrid poplar. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4052-4073. [PMID: 38497908 DOI: 10.1093/jxb/erae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
The glutamine synthetase/glutamic acid synthetase (GS/GOGAT) cycle plays important roles in N metabolism, growth, development, and stress resistance in plants. Excess ammonium (NH4+) restricts growth, but GS can help to alleviate its toxicity. In this study, the 84K model clone of hybrid poplar (Populus alba × P. tremula var. glandulosa), which has reduced biomass accumulation and leaf chlorosis under high-NH4+ stress, showed less severe symptoms in transgenic lines overexpressing GLUTAMINE SYNTHETASE 1;2 (GS1;2-OE), and more severe symptoms in RNAi lines (GS1;2-RNAi). Compared with the wild type, the GS1;2-OE lines had increased GS and GOGAT activities and higher contents of free amino acids, soluble proteins, total N, and chlorophyll under high-NH4+ stress, whilst the antioxidant and NH4+ assimilation capacities of the GS1;2-RNAi lines were decreased. The total C content and C/N ratio in roots and leaves of the overexpression lines were higher under stress, and there were increased contents of various amino acids and sugar alcohols, and reduced contents of carbohydrates in the roots. Under high-NH4+ stress, genes related to amino acid biosynthesis, sucrose and starch degradation, galactose metabolism, and the antioxidant system were significantly up-regulated in the roots of the overexpression lines. Thus, overexpression of GS1;2 affected the carbon and amino acid metabolism pathways under high-NH4+ stress to help maintain the balance between C and N metabolism and alleviate the symptoms of toxicity. Modification of the GS/GOGAT cycle by genetic engineering is therefore a potential strategy for improving the NH4+ tolerance of cultivated trees.
Collapse
Affiliation(s)
- Xue Leng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Hanzeng Wang
- College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132109, China
| | - Lina Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruhui Chang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Shuang Zhang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caifeng Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiajie Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiuyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chunpu Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Forestry, Guizhou University, Guiyang 550025, China
| | - Zhiru Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Guanjun Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
77
|
Lucas M, Diaz-Espejo A, Romero-Jimenez D, Peinado-Torrubia P, Delgado-Vaquero A, Álvarez R, Colmenero-Flores JM, Rosales MA. Chloride reduces plant nitrate requirement and alleviates low nitrogen stress symptoms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108717. [PMID: 38761542 DOI: 10.1016/j.plaphy.2024.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Chloride (Cl-) is traditionally categorized as an antagonist of nitrate (NO3-) because Cl- hinders plant NO3- transport and accumulation. However, we have recently defined Cl- as a beneficial macronutrient for higher plants, due to specific functions that lead to more efficient use of water, nitrogen (N) and CO2 under optimal N and water supply. When accumulated in leaves at macronutrient levels, Cl- promotes growth through osmotic, physiological, metabolic, anatomical and cellular changes that improve plant performance under optimal NO3- nutrition. Nitrate over-fertilization in agriculture can adversely affect crop yield and nature, while its deficiency limits plant growth. To study the relationship between Cl- nutrition and NO3- availability, we have characterized different physiological responses such as growth and yield, N-use efficiency, water status, photosynthesis, leaf anatomy, pigments and antioxidants in tomato plants treated with or without 5 mM Cl- salts and increasing NO3- treatments (3-15 mM). First, we have demonstrated that 5 mM Cl- application can reduce the use of NO3- in the nutrient solution by up to half without detriment to plant growth and yield in tomato and other horticultural plants. Second, Cl- application reduced stress symptoms and improved plant growth under low-NO3- conditions. The Cl--dependent resistance to low-N stress resulted from: more efficient use of the available NO3-; improved plant osmotic and water status regulation; improved stomatal conductance and photosynthetic rate; and better antioxidant response. We proposed that beneficial Cl- levels increase the crop ability to grow better with lower NO3- requirements and withstand N deficiency, promoting a more sustainable and resilient agriculture.
Collapse
Affiliation(s)
- Marta Lucas
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Antonio Diaz-Espejo
- Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Irrigation and Crop Ecophysiology Group, IRNAS, CSIC, 41012, Seville, Spain
| | - David Romero-Jimenez
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Procopio Peinado-Torrubia
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain
| | - Alba Delgado-Vaquero
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Rosario Álvarez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41080, Sevilla, Spain
| | - José M Colmenero-Flores
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain
| | - Miguel A Rosales
- Group of Plant Ion and Water Regulation, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Consejo Superior de Investigaciones Científicas (CSIC), 41012, Seville, Spain; Laboratory of Plant Molecular Ecophysiology, IRNAS, CSIC, 41012, Seville, Spain; Department of Stress, Development and Signaling in Plants, Estación Experimental Del Zaidín (EEZ), CSIC, 18008, Granada, Spain.
| |
Collapse
|
78
|
Wu W, Dong X, Chen G, Lin Z, Chi W, Tang W, Yu J, Wang S, Jiang X, Liu X, Wu Y, Wang C, Cheng X, Zhang W, Xuan W, Terzaghi W, Ronald PC, Wang H, Wang C, Wan J. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice. Nat Genet 2024; 56:1516-1526. [PMID: 38872029 PMCID: PMC11250373 DOI: 10.1038/s41588-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
Excessive nitrogen promotes the formation of nonproductive tillers in rice, which decreases nitrogen use efficiency (NUE). Developing high-NUE rice cultivars through balancing nitrogen uptake and the formation of productive tillers remains a long-standing challenge, yet how these two processes are coordinated in rice remains elusive. Here we identify the transcription factor OsGATA8 as a key coordinator of nitrogen uptake and tiller formation in rice. OsGATA8 negatively regulates nitrogen uptake by repressing transcription of the ammonium transporter gene OsAMT3.2. Meanwhile, it promotes tiller formation by repressing the transcription of OsTCP19, a negative modulator of tillering. We identify OsGATA8-H as a high-NUE haplotype with enhanced nitrogen uptake and a higher proportion of productive tillers. The geographical distribution of OsGATA8-H and its frequency change in historical accessions suggest its adaption to the fertile soil. Overall, this study provides molecular and evolutionary insights into the regulation of NUE and facilitates the breeding of rice cultivars with higher NUE.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Zhixi Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Wenchao Chi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Saisai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xingzhou Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xiaolan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Yujun Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Chunyuan Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
| | - Xinran Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Xuan
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| | | | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, Davis, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Southern Japonica Rice R&D Corporation Ltd, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Zhongshan Biological Breeding Laboratory, Nanjing, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
79
|
Jiang Z, Chen Q, Liu D, Tao W, Gao S, Li J, Lin C, Zhu M, Ding Y, Li W, Li G, Sakr S, Xue L. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality. BMC PLANT BIOLOGY 2024; 24:621. [PMID: 38951829 PMCID: PMC11218275 DOI: 10.1186/s12870-024-05309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Slow-controlled release fertilizers are experiencing a popularity in rice cultivation due to their effectiveness in yield and quality with low environmental costs. However, the underlying mechanism by which these fertilizers regulate grain quality remains inadequately understood. This study investigated the effects of five fertilizer management practices on rice yield and quality in a two-year field experiment: CK, conventional fertilization, and four applications of slow-controlled release fertilizer (UF, urea formaldehyde; SCU, sulfur-coated urea; PCU, polymer-coated urea; BBF, controlled-release bulk blending fertilizer). In 2020 and 2021, the yields of UF and SCU groups showed significant decreases when compared to conventional fertilization, accompanied by a decline in nutritional quality. Additionally, PCU group exhibited poorer cooking and eating qualities. However, BBF group achieved increases in both yield (10.8 t hm-2 and 11.0 t hm-2) and grain quality reaching the level of CK group. The adequate nitrogen supply in PCU group during the grain-filling stage led to a greater capacity for the accumulation of proteins and amino acids in the PCU group compared to starch accumulation. Intriguingly, BBF group showed better carbon-nitrogen metabolism than that of PCU group. The optimal nitrogen supply present in BBF group suitable boosted the synthesis of amino acids involved in the glycolysis/ tricarboxylic acid cycle, thereby effectively coordinating carbon-nitrogen metabolism. The application of the new slow-controlled release fertilizer, BBF, is advantageous in regulating the carbon flow in the carbon-nitrogen metabolism to enhance rice quality.
Collapse
Affiliation(s)
- Zhengrong Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, Angers, 49000, France
| | - Qiuli Chen
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221000, China
| | - Dun Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Weike Tao
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Shen Gao
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Jiaqi Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Chunhao Lin
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Meichen Zhu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Weiwei Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China
- China- Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing, 210095, China
| | - Soulaiman Sakr
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, Angers, 49000, France
| | - Lihong Xue
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Key Laboratory of Crop Physiology Ecology and Production Management, Sanya Institure of Nanjing Agriculture, Nanjing Agricultural University, Sanya, 572000, China.
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
80
|
Zhang J, Yu K, Yu M, Dong X, Tariq Sarwar M, Yang H. Facet-engineering strategy of phosphogypsum for production of mineral slow-release fertilizers with efficient nutrient fixation and delivery. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 182:259-270. [PMID: 38677143 DOI: 10.1016/j.wasman.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Phosphogypsum (PG) presents considerable potential for agricultural applications as a secondary primary resource. However, it currently lacks environmentally friendly, economically viable, efficient, and sustainable reuse protocols. This study firstly developed a PG-based mineral slow-release fertilizer (MSRFs) by internalization and fixation of urea within the PG lattice via facet-engineering strategy. The molecular dynamics simulations demonstrated that the binding energy of urea to the (041) facet of PG surpassed that of the (021) and (020) facets, with urea's desorption energy on the (041) facet notably higher than on the (021) and (020) facets. Guided by these calculations, we selectively exposed the (041) dominant facet of PG, and then achieving complete urea fixation within the PG lattice to form urea-PG (UPG). UPG exhibited a remarkable 48-fold extension in N release longevity in solution and a 45.77% increase in N use efficiency by plants compared to conventional urea. The facet-engineering of PG enhances the internalization and fixation efficiency of urea for slow N delivery, thereby promoting nutrient uptake for plant growth. Furthermore, we elucidated the intricate interplay between urea and PG at the molecular level, revealing the involvement of hydrogen and ionic bonding. This specific bonding structure imparts exceptional thermal stability and water resistance to the urea within UPG under environmental conditions. This study has the potential to provide insights into the high-value utilization of PG and present innovative ideas for designing efficient MSRFs.
Collapse
Affiliation(s)
- Jun Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Kun Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Menghan Yu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiongbo Dong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Muhammad Tariq Sarwar
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China; Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China; Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
81
|
Chen Y, Li Y, Fu Y, Jia L, Li L, Xu Z, Zhang N, Liu Y, Fan X, Xuan W, Xu G, Zhang R. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3388-3400. [PMID: 38497798 DOI: 10.1093/jxb/erae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
82
|
Cai X, Li J, Wu H, Yang S, You Y, Li D, Xing W, Zou C, Guo X, Li J, Qin H. Using rice straw-augmented ecological floating beds to enhance nitrogen removal in carbon-limited wastewater. BIORESOURCE TECHNOLOGY 2024; 402:130785. [PMID: 38703956 DOI: 10.1016/j.biortech.2024.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Agricultural biomass used as solid carbon substrates in ecological floating beds (EFBs) has been proven to be applicable in nitrogen removal for carbon-limited wastewater treatment. However, the subtle interactions among plants, rhizosphere microorganisms, and supplementary carbon sources have not been thoroughly studied. This study combined rice straw mats with different aquatic macrophytes in EFBs to investigate denitrification efficiency in carbon-limited eutrophic waters. Results showed that rice straw significantly enhanced the nitrogen removal efficiency of EFBs, while enriching nitrogen-fixing and denitrifying bacteria (such as Rhizobium, Rubrivivax, and Rhodobacter, etc.). Additionally, during the denitrification process in EFBs, rice straw can release humic acid-like fraction as electron donors to support the metabolic activities of microorganisms, while aquatic macrophytes provide a more diverse range of dissolved organic matters, facilitating a sustainable denitrification process. These findings help to understand the synergistic effect of denitrification processes within wetland ecosystems using agricultural biomass.
Collapse
Affiliation(s)
- Xixi Cai
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Jianying Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Siyu Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Yi You
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chunping Zou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
| | - Xiaoyu Guo
- Key Laboratory of Environmental Toxicology of Haikou, Hainan University, Haikou 570228, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hongjie Qin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Key Laboratory of Urban Agriculture in South China, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China.
| |
Collapse
|
83
|
Li G, Zhang L, Wu J, Wang Z, Wang M, Kronzucker HJ, Shi W. Plant iron status regulates ammonium-use efficiency through protein N-glycosylation. PLANT PHYSIOLOGY 2024; 195:1712-1727. [PMID: 38401163 DOI: 10.1093/plphys/kiae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
Improving nitrogen-use efficiency is an important path toward enhancing crop yield and alleviating the environmental impacts of fertilizer use. Ammonium (NH4+) is the energetically preferred inorganic N source for plants. The interaction of NH4+ with other nutrients is a chief determinant of ammonium-use efficiency (AUE) and of the tipping point toward ammonium toxicity, but these interactions have remained ill-defined. Here, we report that iron (Fe) accumulation is a critical factor determining AUE and have identified a substance that can enhance AUE by manipulating Fe availability. Fe accumulation under NH4+ nutrition induces NH4+ efflux in the root system, reducing both growth and AUE in Arabidopsis (Arabidopsis thaliana). Low external availability of Fe and a low plant Fe status substantially enhance protein N-glycosylation through a Vitamin C1-independent pathway, thereby reducing NH4+ efflux to increase AUE during the vegetative stage in Arabidopsis under elevated NH4+ supply. We confirm the validity of the iron-ammonium interaction in the important crop species lettuce (Lactuca sativa). We further show that dolomite can act as an effective substrate to subdue Fe accumulation under NH4+ nutrition by reducing the expression of Low Phosphate Root 2 and acidification of the rhizosphere. Our findings present a strategy to improve AUE and reveal the underlying molecular-physiological mechanism.
Collapse
Affiliation(s)
- Guangjie Li
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Lin Zhang
- State Key Laboratory of Nutrient Use and Management, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jinlin Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| |
Collapse
|
84
|
Jin F, Xie P, Li Z, Wu B, Huang W, Fang Z. Blocking of amino acid transporter OsAAP7 promoted tillering and yield by determining basic and neutral amino acids accumulation in rice. BMC PLANT BIOLOGY 2024; 24:447. [PMID: 38783192 PMCID: PMC11112796 DOI: 10.1186/s12870-024-05159-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Amino acids are not only the main form of N in rice, but also are vital for its growth and development. These processes are facilitated by amino acid transporters within the plant. Despite their significance, only a few AAP amino acid transporters have been reported. RESULTS In this study, we observed that there were differences in the expression of amino acid transporter OsAAP7 among 521 wild cultivated rice varieties, and it directly negatively correlated with tillering and grain yield per plant. We revealed that OsAAP7 protein was localized to the endoplasmic reticulum and had absorption and transport affinity for amino acids such as phenylalanine (Phe), lysine (Lys), leucine (Leu), and arginine (Arg) using subcellular localization, yeast substrate testing, fluorescent amino acid uptake, and amino acid content determination. Further hydroponic studies showed that exogenous application of amino acids Phe, Lys and Arg inhibited the growth of axillary buds in the overexpression lines, and promoted the elongation of axillary buds in the mutant lines. Finally, RNA-seq analysis showed that the expression patterns of genes related to nitrogen, auxin and cytokinin pathways were changed in axillary buds of OsAAP7 transgenic plants. CONCLUSIONS This study revealed the gene function of OsAAP7, and found that blocking of amino acid transporter OsAAP7 with CRISPR/Cas9 technology promoted tillering and yield by determining basic and neutral amino acids accumulation in rice.
Collapse
Affiliation(s)
- Feng Jin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Pengfei Xie
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
85
|
Kamara MM, Mansour E, Khalaf AEA, Eid MAM, Hassanin AA, Abdelghany AM, Kheir AMS, Galal AA, Behiry SI, Silvar C, El-Hendawy S. Molecular Diversity and Combining Ability in Newly Developed Maize Inbred Lines under Low-Nitrogen Conditions. Life (Basel) 2024; 14:641. [PMID: 38792661 PMCID: PMC11122723 DOI: 10.3390/life14050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Nitrogen is an essential element for maize growth, but excessive application can lead to various environmental and ecological issues, including water pollution, air pollution, greenhouse gas emissions, and biodiversity loss. Hence, developing maize hybrids resilient to low-N conditions is vital for sustainable agriculture, particularly in nitrogen-deficient soils. Combining ability and genetic relationships among parental lines is crucial for breeding superior hybrids under diverse nitrogen levels. This study aimed to assess the genetic diversity of maize inbred lines using simple sequence repeat (SSR) markers and evaluate their combining ability to identify superior hybrids under low-N and recommended conditions. Local and exotic inbred lines were genotyped using SSR markers, revealing substantial genetic variation with high gene diversity (He = 0.60), moderate polymorphism information content (PIC = 0.54), and an average of 3.64 alleles per locus. Twenty-one F1 hybrids were generated through a diallel mating design using these diverse lines. These hybrids and a high yielding commercial check (SC-131) were field-tested under low-N and recommended N conditions. Significant variations (p < 0.01) were observed among nitrogen levels, hybrids, and their interaction for all recorded traits. Additive genetic variances predominated over non-additive genetic variances for grain yield and most traits. Inbred IL3 emerged as an effective combiner for developing early maturing genotypes with lower ear placement. Additionally, inbreds IL1, IL2, and IL3 showed promise as superior combiners for enhancing grain yield and related traits under both low-N and recommended conditions. Notably, hybrids IL1×IL4, IL2×IL5, IL2×IL6, and IL5×IL7 exhibited specific combining abilities for increasing grain yield and associated traits under low-N stress conditions. Furthermore, strong positive associations were identified between grain yield and specific traits like plant height, ear length, number of rows per ear, and number of kernels per row. Due to their straightforward measurability, these relationships underscore the potential of using these traits as proxies for indirect selection in early breeding generations, particularly under low-N stress. This research contributes to breeding nitrogen-efficient maize hybrids and advances our understanding of the genetic foundations for tolerance to nitrogen limitations.
Collapse
Affiliation(s)
- Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.M.K.); (A.A.G.)
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed E. A. Khalaf
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.E.A.K.); (M.A.M.E.)
| | - Mohamed A. M. Eid
- Agronomy Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (A.E.A.K.); (M.A.M.E.)
| | - Abdallah A. Hassanin
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Ahmed M. Abdelghany
- Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | - Ahmed M. S. Kheir
- Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Ahmed A. Galal
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (M.M.K.); (A.A.G.)
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt;
| | - Cristina Silvar
- Grupo de Investigación en Bioloxía Evolutiva, CICA—Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, 15071 A Coruña, Spain;
| | - Salah El-Hendawy
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
86
|
Ramirez-Builes VH, Küsters J, Thiele E, Lopez-Ruiz JC. Physiological and Agronomical Response of Coffee to Different Nitrogen Forms with and without Water Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1387. [PMID: 38794457 PMCID: PMC11125271 DOI: 10.3390/plants13101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
Nitrogen (N) is the most important nutrient in coffee, with a direct impact on productivity, quality, and sustainability. N uptake by the roots is dominated by ammonium (NH4+) and nitrates (NO3-), along with some organic forms at a lower proportion. From the perspective of mineral fertilizer, the most common N sources are urea, ammonium (AM), ammonium nitrates (AN), and nitrates; an appropriate understanding of the right balance between N forms in coffee nutrition would contribute to more sustainable coffee production through the better N management of this important crop. The aim of this research was to evaluate the influences of different NH4-N/NO3-N ratios in coffee from a physiological and agronomical perspective, and their interaction with soil water levels. Over a period of 5 years, three trials were conducted under controlled conditions in a greenhouse with different growing media (quartz sand) and organic soil, with and without water stress, while one trial was conducted under field conditions. N forms and water levels directly influence physiological responses in coffee, including photosynthesis (Ps), chlorophyll content, dry biomass accumulation (DW), nutrient uptake, and productivity. In all of the trials, the plants group in soils with N ratios of 50% NH4-N/50% NO3-N, and 25% NH4-N/75% NO3-N showed better responses to water stress, as well as a higher Ps, a higher chlorophyll content, a higher N and cation uptake, higher DW accumulation, and higher productivity. The soil pH was significantly influenced by the N forms: the higher the NO3--N share, the lower the acidification level. The results allow us to conclude that the combination of 50% NH4-N/50% NO3-N and 25% NH4-N/75% NO3-N N forms in coffee improves the resistance capacity of the coffee to water stress, improves productivity, reduces the soil acidification level, and improves ion balance and nutrient uptake.
Collapse
Affiliation(s)
- Victor Hugo Ramirez-Builes
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Jürgen Küsters
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | - Ellen Thiele
- Center for Plant Nutrition and Environmental Research Hanninghof, Yara International, 48249 Dülmen, Germany
| | | |
Collapse
|
87
|
Wang Z, Lian J, Liang J, Wei H, Chen H, Hu W, Tang M. Arbuscular mycorrhizal symbiosis modulates nitrogen uptake and assimilation to enhance drought tolerance of Populus cathayana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108648. [PMID: 38653094 DOI: 10.1016/j.plaphy.2024.108648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
This study aims to investigate effects of arbuscular mycorrhizal fungi (AMF) inoculation on nitrogen (N) uptake and assimilation in Populus cathayana under drought stress (DS). Herein, we measured photosynthetic performance, antioxidant enzyme system, N level and N assimilation enzymes, proteins content and distribution, transcripts of genes associated with N uptake or transport in P. cathayana with AMF (AM) or without AMF (NM) under soil water limitation and adequate irrigation. Compared with NM-DS P. cathayana, the growth, gas exchange properties, antioxidant enzyme activities, total N content and the proportion of water-soluble and membrane-bound proteins in AM-DS P. cathayana were increased. Meanwhile, nitrate reductase (NR) activity, NO3- and NO2- concentrations in AM-DS P. cathayana were reduced, while NH4+ concentration, glutamine synthetase (GS) and glutamate synthetase (GOGAT) activities were elevated, indicating that AM symbiosis reduces NO3- assimilation while promoting NH4+ assimilation. Furthermore, the transcriptional levels of NH4+ transporter genes (PcAMT1-4 and PcAMT2-1) and NO3- transporter genes (PcNRT2-1 and PcNRT3-1) in AM-DS P. cathayana roots were significantly down-regulated, as well as NH4+ transporter genes (PcAMT1-6 and PcAMT4-3) in leaves. In AM P. cathayana roots, DS significantly up-regulated the transcriptional levels of RiCPSI and RiURE, the key N transport regulatory genes in AMF compared with adequate irrigation. These results indicated that AM N transport pathway play an essential role on N uptake and utilization in AM P. cathayana to cope with DS. Therefore, this research offers a novel perspective on how AM symbiosis enhances plant resilience to drought at aspect of N acquisition and assimilation.
Collapse
Affiliation(s)
- Zhihao Wang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaqian Lian
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jingwei Liang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hongjian Wei
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
88
|
Zhang TT, Lin YJ, Liu HF, Liu YQ, Zeng ZF, Lu XY, Li XW, Zhang ZL, Zhang S, You CX, Guan QM, Lang ZB, Wang XF. The AP2/ERF transcription factor MdDREB2A regulates nitrogen utilisation and sucrose transport under drought stress. PLANT, CELL & ENVIRONMENT 2024; 47:1668-1684. [PMID: 38282271 DOI: 10.1111/pce.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Drought stress is one of the main environmental factors limiting plant growth and development. Plants adapt to changing soil moisture by modifying root architecture, inducing stomatal closure, and inhibiting shoot growth. The AP2/ERF transcription factor DREB2A plays a key role in maintaining plant growth in response to drought stress, but the molecular mechanism underlying this process remains to be elucidated. Here, it was found that overexpression of MdDREB2A positively regulated nitrogen utilisation by interacting with DRE cis-elements of the MdNIR1 promoter. Meanwhile, MdDREB2A could also directly bind to the promoter of MdSWEET12, which may enhance root development and nitrogen assimilation, ultimately promoting plant growth. Overall, this regulatory mechanism provides an idea for plants in coordinating with drought tolerance and nitrogen assimilation to maintain optimal plant growth and development under drought stress.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Yu-Jing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao-Feng Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Ya-Qi Liu
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi-Feng Zeng
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan Lu
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilisation, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, China
| | - Xue-Wei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhen-Lu Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Shuai Zhang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Chun-Xiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Qing-Mei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Bo Lang
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiao-Fei Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
89
|
Li D, Wang J, Chen R, Chen J, Zong J, Li L, Hao D, Guo H. Review: Nitrogen acquisition, assimilation, and seasonal cycling in perennial grasses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112054. [PMID: 38423392 DOI: 10.1016/j.plantsci.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Perennial grasses seasonal nitrogen (N) cycle extends the residence and reuse time of N within the plant system, thereby enhancing N use efficiency. Currently, the mechanism of N metabolism has been extensively examined in model plants and annual grasses, and although perennial grasses exhibit similarities, they also possess distinct characteristics. Apart from assimilating and utilizing N throughout the growing season, perennial grasses also translocate N from aerial parts to perennial tissues, such as rhizomes, after autumn senescence. Subsequently, they remobilize the N from these perennial tissues to support new growth in the subsequent year, thereby ensuring their persistence. Previous studies indicate that the seasonal storage and remobilization of N in perennial grasses are not significantly associated with winter survival despite some amino acids and proteins associated with low temperature tolerance accumulating, but primarily with regrowth during the subsequent spring green-up stage. Further investigation can be conducted in perennial grasses to explore the correlation between stored N and dormant bud outgrowth in perennial tissues, such as rhizomes, during the spring green-up stage, building upon previous research on the relationship between N and axillary bud outgrowth in annual grasses. This exploration on seasonal N cycling in perennial grasses can offer valuable theoretical insights for new perennial grasses varieties with high N use efficiency through the application of gene editing and other advanced technologies.
Collapse
Affiliation(s)
- Dandan Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingjing Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Rongrong Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Jingbo Chen
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Junqin Zong
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Ling Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Dongli Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China
| | - Hailin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem, Sun Yat-Sen), Nanjing, Jiangsu 210014, China.
| |
Collapse
|
90
|
He P, Min J, Tang Z, Yang X, Huang K, Huang X. Slight drought during flowering period can improve Tartary buckwheat yield by regulating carbon and nitrogen metabolism. Sci Rep 2024; 14:9774. [PMID: 38684763 PMCID: PMC11059239 DOI: 10.1038/s41598-024-58180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
This study aimed to clarify the effects of drought during flowering period on the carbon and nitrogen metabolism, growth, and yield of Tartary buckwheat. Tartary buckwheat cultivar Jinqiao 2 was treated with well-watered (CK), slight soil-drought stress (LD), moderate soil-drought stress (MD), and severe soil-drought stress (SD), with the soil water potential maintained at - 0.02 to - 0.03, - 0.04 to - 0.05, - 0.05 to - 0.06, and - 0.06 to - 0.07 MPa, respectively. With prolonged growth period and an increase in drought stress, the antioxidant enzyme activities and the contents of substances and activities of enzymes related to carbon and nitrogen metabolism in Tartary buckwheat leaves initially increased and then decreased. Meanwhile, the contents of malondialdehyde and superoxide anion showed a continuous. LD treatment induced the highest antioxidant enzyme activities and the contents of substances and activities of enzymes related to carbon and nitrogen metabolism but the lowest contents of malondialdehyde and superoxide anion in Tartary buckwheat leaves. Compared with CK, LD treatment increased the grain number, 1000-grain weight (MTS), and yield per plant by 6.52%, 17.37%, and 12.35%, respectively. In summary, LD treatment can increase the antioxidant enzyme activities and the contents of substances and activities of enzymes related to carbon and nitrogen metabolism, thus enhancing the adaptability of Tartary buckwheat to drought stress and increasing the yield per plant.
Collapse
Affiliation(s)
- Peiyun He
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Jiangyan Min
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Zhuolei Tang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Xue Yang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| | - Kaifeng Huang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China.
| | - Xiaoyan Huang
- School of Life Science, Guizhou Normal University, Guiyang, 550001, People's Republic of China
| |
Collapse
|
91
|
Ju Y, Jia Y, Cheng B, Wang D, Gu D, Jing W, Zhang H, Chen X, Li G. NRT1.1B mediates rice plant growth and soil microbial diversity under different nitrogen conditions. AMB Express 2024; 14:39. [PMID: 38647736 PMCID: PMC11035536 DOI: 10.1186/s13568-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/25/2024] [Indexed: 04/25/2024] Open
Abstract
Interactions between microorganisms and plants can stimulate plant growth and promote nitrogen cycling. Nitrogen fertilizers are routinely used in agriculture to improve crop growth and yield; however, poor use efficiency impairs the optimal utilization of such fertilizers. Differences in the microbial diversity and plant growth of rice soil under different nitrogen application conditions and the expression of nitrogen-use efficiency-related genes have not been previously investigated. Therefore, this study investigates how nitrogen application and nitrogen-use efficiency-related gene NRT1.1B expression affect the soil microbial diversity and growth indices of two rice varieties, Huaidao 5 and Xinhuai 5. In total, 103,463 and 98,427 operational taxonomic units were detected in the soils of the Huaidao 5 and Xinhuai 5 rice varieties, respectively. The Shannon and Simpson indices initially increased and then decreased, whereas the Chao and abundance-based coverage estimator indices decreased after the application of nitrogen fertilizer. Nitrogen fertilization also reduced soil bacterial diversity and richness, as indicated by the reduced abundances of Azotobacter recorded in the soils of both rice varieties. Nitrogen application initially increased and then decreased the grain number per panicle, yield per plant, root, stem, and leaf nitrogen, total nitrogen content, glutamine synthetase, nitrate reductase, urease, and root activities of both varieties. Plant height showed positive linear trends in response to nitrogen application, whereas thousand-grain weights showed a negative trend. Our findings may be used to optimize nitrogen fertilizer use for rice cultivation and develop crop-variety-specific strategies for nitrogen fertilizer application.
Collapse
Affiliation(s)
- Yawen Ju
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Yanyan Jia
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Baoshan Cheng
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Di Wang
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Dalu Gu
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China
| | - Wenjiang Jing
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xinhong Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223001, China.
| | - Gang Li
- Huai'an Key Laboratory of Agricultural Biotechnology, Huaiyin Institute of Agricultural Science in Xuhuai Region of Jiangsu, Huai'an, 223001, China.
| |
Collapse
|
92
|
Wang H, Wang W, Xie Z, Yang Y, Dai H, Shi F, Ma L, Sui Z, Xia C, Kong X, Zhang L. Overexpression of rice OsNRT1.1A/OsNPF6.3 enhanced the nitrogen use efficiency of wheat under low nitrogen conditions. PLANTA 2024; 259:127. [PMID: 38637411 DOI: 10.1007/s00425-024-04408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyong Dai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Shi
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Liang Ma
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhifeng Sui
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
93
|
Temme AA, Kerr KL, Nolting KM, Dittmar EL, Masalia RR, Bucksch AK, Burke JM, Donovan LA. The genomic basis of nitrogen utilization efficiency and trait plasticity to improve nutrient stress tolerance in cultivated sunflower. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2527-2544. [PMID: 38270266 DOI: 10.1093/jxb/erae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Maintaining crop productivity is challenging as population growth, climate change, and increasing fertilizer costs necessitate expanding crop production to poorer lands whilst reducing inputs. Enhancing crops' nutrient use efficiency is thus an important goal, but requires a better understanding of related traits and their genetic basis. We investigated variation in low nutrient stress tolerance in a diverse panel of cultivated sunflower genotypes grown under high and low nutrient conditions, assessing relative growth rate (RGR) as performance. We assessed variation in traits related to nitrogen utilization efficiency (NUtE), mass allocation, and leaf elemental content. Across genotypes, nutrient limitation generally reduced RGR. Moreover, there was a negative correlation between vigor (RGR in control) and decline in RGR in response to stress. Given this trade-off, we focused on nutrient stress tolerance independent of vigor. This tolerance metric correlated with the change in NUtE, plasticity for a suite of morphological traits, and leaf element content. Genome-wide associations revealed regions associated with variation and plasticity in multiple traits, including two regions with seemingly additive effects on NUtE change. Our results demonstrate potential avenues for improving sunflower nutrient stress tolerance independent of vigor, and highlight specific traits and genomic regions that could play a role in enhancing tolerance.
Collapse
Affiliation(s)
- Andries A Temme
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- Department of Plant Breeding, Wageningen University & Research, 6700 HB Wageningen, The Netherlands
| | - Kelly L Kerr
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Emily L Dittmar
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rishi R Masalia
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | | | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
94
|
Yu B, Xue X, Nie P, Lu N, Wang L. Fulvic acid alleviates cadmium-induced root growth inhibition by regulating antioxidant enzyme activity and carbon-nitrogen metabolism in apple seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1370637. [PMID: 38711608 PMCID: PMC11072189 DOI: 10.3389/fpls.2024.1370637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Introduction Substantial previous studies have reported that fulvic acid (FA) application plays an important role in Chinese agricultural production. However, little is known about the mechanisms for using FA to increase apple trees resistance to Cd toxicity. In order to clarify the mechanism underlying FA alleviation in Cd-induced growth inhibition in apple seedlings. Methods Herein, we treated M9T337 seedlings to either 0 or 30 µM/L Cd together with 0 or 0.2 g/L FA and analyzed the root growth, antioxidant enzyme activities, carbon (C) assimilation, nitrogen (N) metabolism, and C and N transport. Results The results presented that, compared with CK (without Cd addition or FA spraying application), Cd poisoning significantly inhibited the root growth of apple seedlings. However, this Cd-induced root growth inhibition was significantly alleviated by FA spraying relative to the Cd treatment (Cd addition alone). On the one hand, the mitigation of inhibition effects was due to the reduced oxidative damage by enhancing antioxdiant enzyme (SOD, POD, and CAT) activities in leaves and roots. On the other hand, this growth advantage demonstrated compared to the Cd treatment was found to be associated with the strengthen of photosynthetic performance and the elevation of C and N metabolism enzymes activities. Meanwhile, we also found that under Cd stress condition, the distribution of C and N nutrients in apple seedlings was optimised by FA spraying application relative to the Cd treatment, according to the results of 13C and 15N tracing. Conclusion Conclusively, our results suggested that the inhibitory effect of Cd on apple seedlings root growth was alleviated by FA through regulating antioxdiant capacities and C and N metabolism.
Collapse
Affiliation(s)
- Bo Yu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaomin Xue
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Peixian Nie
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Ninglin Lu
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| | - Laiping Wang
- Shandong Institute of Pomology, Shandong Key Laboratory of Fruit Biotechnology Breeding, Taian, China
| |
Collapse
|
95
|
The SV, Santiago JP, Pappenberger C, Hammes UZ, Tegeder M. UMAMIT44 is a key player in glutamate export from Arabidopsis chloroplasts. THE PLANT CELL 2024; 36:1119-1139. [PMID: 38092462 PMCID: PMC10980354 DOI: 10.1093/plcell/koad310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 04/01/2024]
Abstract
Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.
Collapse
Affiliation(s)
- Samantha Vivia The
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - James P Santiago
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Clara Pappenberger
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
96
|
Li W, Liu M, Li M, Sun R, Zhou T, He Y, Mao J, Liu C, Ma L, Fu S. Influence of nitrogen water interaction on leaf functional traits of dominant species in warm temperate forest. FORESTRY RESEARCH 2024; 4:e009. [PMID: 39524423 PMCID: PMC11524285 DOI: 10.48130/forres-0024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 11/16/2024]
Abstract
Plant functional traits are indicative of plant responses to environmental changes, influencing ecosystem functions. Leaves, as a key focus in studying plant functional traits, present an area where the impact of nitrogen deposition and altered rainfall patterns on functional diversity remains ambiguous. To elucidate plant response mechanisms to environmental factors, we employed a canopy-based platform to add nitrogen, water, and their combination. We assessed the functional traits and community-weighted mean of the leaves of three dominant trees and three dominant shrubs. The results showed that nitrogen addition to the canopy significantly increased the leaf dry matter content of the Celtis sinensis Pers, but markedly decreased the specific leaf area of the Liquidambar formosana Hance. The nitrogen-water interaction did not notably affect the specific leaf area and equivalent water thickness of leaves. Canopy addition of nitrogen, water, and their combined interaction substantially lowered leaf nitrogen content and markedly increased leaf C/N. The structural equation model demonstrated a significant negative correlation between leaf dry matter content, equivalent water thickness, and leaf nitrogen content, as well as between equivalent water thickness and leaf phosphorus content. Our results provide evidence for the adaptation of plants to the environment and different strategies for resource and energy utilization.
Collapse
Affiliation(s)
- Wen Li
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Mingyang Liu
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Mengke Li
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Ruomin Sun
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Tenglong Zhou
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Yaqi He
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Jianing Mao
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Chang Liu
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Lei Ma
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| | - Shenglei Fu
- College of Geography and Environmental Science, Henan University, Jinming Avenue No. 1, Kaifeng 475004, PR China
- Dabieshan National Observation and Research Field Station of Forest Ecosystem at Henan, Kaifeng 475004, PR China
- Key Laboratory of Geospatial Technology for Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, PR China
- Xinyang Academy of Ecological Research, Xinyang 464000, PR China
| |
Collapse
|
97
|
Li Q, Song HL, Zhou T, Pei MN, Wang B, Yan SX, Liu YQ, Wu PJ, Hua YP. Differential Morpho-Physiological, Ionomic, and Phytohormone Profiles, and Genome-Wide Expression Profiling Involving the Tolerance of Allohexaploid Wheat ( Triticum aestivum L.) to Nitrogen Limitation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3814-3831. [PMID: 38329036 DOI: 10.1021/acs.jafc.3c08626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Common wheat (Triticum aestivum L.) is a global staple food, while nitrogen (N) limitation severely hinders plant growth, seed yield, and grain quality of wheat. Genetic variations in the responses to low N stresses among allohexaploid wheat (AABBDD, 2n = 6x = 42) genotypes emphasize the complicated regulatory mechanisms underlying low N tolerance and N use efficiency (NUE). In this study, hydroponic culture, inductively coupled plasma mass spectrometry, noninvasive microtest, high-performance liquid chromatography, RNA-seq, and bioinformatics were used to determine the differential growth performance, ionome and phytohormone profiles, and genome-wide expression profiling of wheat plants grown under high N and low N conditions. Transcriptional profiling of NPFs, NRT2s, CLCs, SLACs/SLAHs, AAPs, UPSs, NIAs, and GSs characterized the core members, such as TaNPF6.3-6D, TaNRT2.3-3D, TaNIA1-6B, TaGLN1;2-4B, TaAAP14-5A/5D, and TaUPS2-5A, involved in the efficient transport and assimilation of nitrate and organic N nutrients. The low-N-sensitivity wheat cultivar XM26 showed obvious leaf chlorosis and accumulated higher levels of ABA, JA, and SA than the low-N-tolerant ZM578 under N limitation. The TaMYB59-3D-TaNPF7.3/NRT1.5-6D module-mediated shoot-to-root translocation and leaf remobilization of nitrate was proposed as an important pathway regulating the differential responses between ZM578 and XM26 to low N. This study provides some elite candidate genes for the selection and breeding of wheat germplasms with low N tolerance and high NUE.
Collapse
Affiliation(s)
- Qiong Li
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Hai-Li Song
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Nan Pei
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bing Wang
- Department of Brewing Engineering, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Song-Xian Yan
- Department of Resources and Environment, Moutai Institute, Renhuai 564507, Guizhou, China
| | - Yun-Qi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing 10080, China
| | - Peng-Jia Wu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
98
|
Su N, Ronga X, Xie G, Chang T, Zhang Y, Peng J, Luo G. Effectiveness of a 10-year continuous reduction of controlled-release nitrogen fertilizer on production, nitrogen loss and utilization of double-cropping rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168857. [PMID: 38029997 DOI: 10.1016/j.scitotenv.2023.168857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Considerable literature has demonstrated the advantage of controlled-release nitrogen (CRN) fertilizer in improving crop productivity. However, few researches have explored the long-term impacts of using CRN fertilizers as alternative to common urea on production and N utilization in double-cropping paddy. To address this gap, our study utilized a database derived from a 10-year field experiment from 2013 to 2022. During early and late rice seasons, compared to common urea (early rice, 150 kg hm-2; late rice, 180 kg hm-2), CRN fertilizer (150 kg hm-2; 180 kg hm-2) input significantly increased yield by 7.4 %, and 11.7 %, as well as N use efficiency (NUE) from 23.0 % and 24.6 % to 33.0 % and 37.5 %, respectively. CRN application significantly reduced N losses, evidenced by decrease in runoff (23.1 % and 19.4 %), leaching (12.7 % and 12.1 %), ammonia volatilization (28.9 % and 30.2 %), and N2O emissions (10.4 % and 16.1 %). A reduction of 10 % in CRN fertilizer input maintained yield. Compared with normal amount, reducing 10, 20, and 30 % CRN input increased NUE by 7.0-7.6 %, 7.3-7.4 %, and 11.6-12.6 %; reduced runoff loss by 16.1-17.9 %, 27.9-30.7 %, and 35.0-37.2 %; decreased leaching loss by 7.6-12.8 %, 18.1-22.6 %, and 26.5-31.4 %; decreased ammonia volatilization by 9.9-12.3 %, 16.3-22.7 %, and 23.2-29.3 %, and decreased N2O loss by 7.8-13.3 %, 12.8-32.8 %, and 20.3-36.9 %, respectively. Soils with CRN input showed higher total and inorganic N contents than the soils with common urea, and the content increased in parallel with CRN fertilizer input. Soil N content and N runoff loss were significantly related to yield and N uptake, and N runoff and leaching losses were significantly related to NUE. These results support the sustainable use of CRN fertilizers as a viable alternative to common urea, indicating that application rate of 135 and 162 kg N hm-2 of early and late rice, respectively, maintain yield and enhance N utilization in double-season paddy of southern China.
Collapse
Affiliation(s)
- Ning Su
- College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Xiangmin Ronga
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| | - Guixian Xie
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Tian Chang
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Yuping Zhang
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Jianwei Peng
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China
| | - Gongwen Luo
- College of Resources, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Changsha 410128, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Changsha 410128, China.
| |
Collapse
|
99
|
Yan K, Zhu M, Su H, Liu X, Li S, Zhi Y, Li Y, Zhang J. Trichoderma asperellum boosts nitrogen accumulation and photosynthetic capacity of wolfberry (Lycium chinense) under saline soil stress. TREE PHYSIOLOGY 2024; 44:tpad148. [PMID: 38079510 DOI: 10.1093/treephys/tpad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 02/09/2024]
Abstract
Trichoderma can promote plant growth under saline stress, but the mechanisms remain to be revealed. In this study, we investigate photosynthetic gas exchange, photosystem II (PSII) performance, nitrogen absorption and accumulation in a medicinal plant wolfberry (Lycium chinense) in saline soil supplemented with Trichoderma biofertilizer (TF). Larger nitrogen and biomass accumulation were found in plants supplemented with TF than with organic fertilizer (OF), suggesting that Trichoderma asperellum promoted plant growth and nitrogen accumulation under saline stress. T. asperellum strengthened root nitrogen (N) absorption according to greater increased root NH4+ and NO3- influxes under supplement with TF than OF, while nitrogen assimilative enzymes such as nitrate reductase, nitrite reductase and glutamine synthetase activities in roots and leaves were also stimulated. Thus, the elevated N accumulation derived from the induction of T. asperellum on nitrogen absorption and assimilation. Greater increased photosynthetic rate (Pn) and photosynthetic N-use efficiency under supplement with TF than OF illustrated that T. asperellum enhanced photosynthetic capacity and N utilization under saline stress. Although increased leaf stomatal conductance contributed to carbon (C) isotope fractionation under TF supplement, leaf 13C abundance was significantly increased by supplement with TF rather than OF, indicating that T. asperellum raised CO2 assimilation to a greater extent, reducing C isotope preference. Trichoderma asperellum optimized electron transport at PSII donor and acceptor sides under saline stress because of lower K and J steps in chlorophyll fluorescence transients under supplement with TF than OF. The amount of PSII active reaction centers was also increased by T. asperellum. Thus, PSII performance was upgraded, consistent with greater heightened delayed chlorophyll fluorescence transients and I1 peak under supplement with TF than OF. In summary, TF acted to increase N nutrient acquisition and photosynthetic C fixation resulting in enhanced wolfberry growth under saline soil stress.
Collapse
Affiliation(s)
- Kun Yan
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Mingye Zhu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Hongyan Su
- College of Agriculture and Forestry, Linyi University, Linyi 276000, China
| | - Xiao Liu
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Shuxin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yibo Zhi
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Yuxin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Jingdan Zhang
- School of Agriculture, Ludong University, Yantai 264025, China
| |
Collapse
|
100
|
Yang Z, Guo Z, Gong C, Xia J, Hu Y, Zhong J, Yang X, Xie W, Wang S, Wu Q, Ye W, Liu B, Zhou X, Turlings TCJ, Zhang Y. Two horizontally acquired bacterial genes steer the exceptionally efficient and flexible nitrogenous waste cycling in whiteflies. SCIENCE ADVANCES 2024; 10:eadi3105. [PMID: 38306427 PMCID: PMC10836729 DOI: 10.1126/sciadv.adi3105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Nitrogen is an essential element for all life on earth. Nitrogen metabolism, including excretion, is essential for growth, development, and survival of plants and animals alike. Several nitrogen metabolic processes have been described, but the underlying molecular mechanisms are unclear. Here, we reveal a unique process of nitrogen metabolism in the whitefly Bemisia tabaci, a global pest. We show that it has acquired two bacterial uricolytic enzyme genes, B. tabaci urea carboxylase (BtUCA) and B. tabaci allophanate hydrolase (BtAtzF), through horizontal gene transfer. These genes operate in conjunction to not only coordinate an efficient way of metabolizing nitrogenous waste but also control B. tabaci's exceptionally flexible nitrogen recycling capacity. Its efficient nitrogen processing explains how this important pest can feed on a vast spectrum of plants. This finding provides insight into how the hijacking of microbial genes has allowed whiteflies to develop a highly economic and stable nitrogen metabolism network and offers clues for pest management strategies.
Collapse
Affiliation(s)
- Zezhong Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhaojiang Guo
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cheng Gong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixing Xia
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuan Hu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Zhong
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Yang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen Xie
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoli Wang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingjun Wu
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY 40546-0091, USA
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Youjun Zhang
- State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|