51
|
Finicelli M, Squillaro T, Di Cristo F, Di Salle A, Melone MAB, Galderisi U, Peluso G. Metabolic syndrome, Mediterranean diet, and polyphenols: Evidence and perspectives. J Cell Physiol 2019; 234:5807-5826. [PMID: 30317573 DOI: 10.1002/jcp.27506] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Metabolic syndrome (MetS) is defined as the co-occurrence of metabolic risk factors that includes insulin resistance, hyperinsulinemia, impaired glucose tolerance, type 2 diabetes mellitus, dyslipidemia, and visceral obesity. The clinical significance of MetS consists of identifying a subgroup of patients sharing a common physiopathological state predisposing to chronic diseases. Clinical and scientific studies pinpoint lifestyle modification as an effective strategy aiming to reduce several features accountable for the risk of MetS onset. Among the healthy dietary patterns, the Mediterranean diet (MedDiet) emerges in terms of beneficial properties associated with longevity. Current evidence highlights the protective effect exerted by MedDiet on the different components of MetS. Interestingly, the effect exerted by polyphenols contained within the representative MedDiet components (i.e., olive oil, red wine, and nuts) seems to be accountable for the beneficial properties associated to this dietary pattern. In this review, we aim to summarize the principal evidence regarding the effectiveness of MedDiet-polyphenols in preventing or delaying the physiopathological components accountable for MetS onset. These findings may provide useful insights concerning the health properties of MedDiet-polyphenols as well as the novel targets destined to a tailored approach to MetS.
Collapse
Affiliation(s)
- Mauro Finicelli
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Tiziana Squillaro
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Anna Di Salle
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| | - Mariarosa Anna Beatrice Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences, and Aging, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia
| | - Umberto Galderisi
- Department of Experimental Medicine, Biotechnology and Molecular Biology Section, University of Campania "Luigi Vanvitelli", Naples, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia
| | - Gianfranco Peluso
- Institute of Agri-Environmental Biology and Forestry (IBAF), CNR, Naples, Italy
| |
Collapse
|
52
|
Evans BA, Merlin J, Bengtsson T, Hutchinson DS. Adrenoceptors in white, brown, and brite adipocytes. Br J Pharmacol 2019; 176:2416-2432. [PMID: 30801689 DOI: 10.1111/bph.14631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/28/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
Adrenoceptors play an important role in adipose tissue biology and physiology that includes regulating the synthesis and storage of triglycerides (lipogenesis), the breakdown of stored triglycerides (lipolysis), thermogenesis (heat production), glucose metabolism, and the secretion of adipocyte-derived hormones that can control whole-body energy homeostasis. These processes are regulated by the sympathetic nervous system through actions at different adrenoceptor subtypes expressed in adipose tissue depots. In this review, we have highlighted the role of adrenoceptor subtypes in white, brown, and brite adipocytes in both rodents and humans and have included detailed analysis of adrenoceptor expression in human adipose tissue and clonally derived adipocytes. We discuss important considerations when investigating adrenoceptor function in adipose tissue or adipocytes. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, Stockholm, Sweden
| | - Dana S Hutchinson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
53
|
Sarapio E, Souza SK, Vogt EL, Rocha DS, Fabres RB, Trapp M, Da Silva RSM. Effects of stanniocalcin hormones on rat brown adipose tissue metabolism under fed and fasted conditions. Mol Cell Endocrinol 2019; 485:81-87. [PMID: 30738951 DOI: 10.1016/j.mce.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
In this study we determined the effect of fed and fasting (48 h) states on the expression of stanniocalcin-1 (Stc1) and stanniocalcin-2 (Stc2) in rat brown adipose tissue (BAT), as well as the in vitro effects of human stanniocalcin 1 and 2 (hSTC-1 and hSTC-2) hormones on lipid and glucose metabolism. In addition, lactate, glycogen levels and hexokinase (HK) activity were determined. In fasting Stc2 expression increased markedly. The targets of action of hSTC-1 and hSTC-2 were glucose uptake and oxidation as well as glycogen storage, controlling the energetic metabolism in BAT. The reduction in glycogen concentration induced by hSTC-2 in fed state might have deleterious consequences in BAT, such as decreased thermogenic activity, FA esterification and other adipocyte functions. On the other hand, the increase of glucose uptake caused by hSTC-1 of fed rats could play a role as a plasma glucose-clearing hormone in the postprandial period.
Collapse
Affiliation(s)
- Elaine Sarapio
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Samir Khal Souza
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Everton Lopes Vogt
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Débora Santos Rocha
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael Bandeira Fabres
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcia Trapp
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roselis S M Da Silva
- Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
54
|
Castan-Laurell I, Masri B, Valet P. The apelin/APJ system as a therapeutic target in metabolic diseases. Expert Opin Ther Targets 2019; 23:215-225. [PMID: 30570369 DOI: 10.1080/14728222.2019.1561871] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Apelin, a bioactive peptide, is the endogenous ligand of APJ, a G protein-coupled receptor which is widely expressed in peripheral tissues and in the central nervous system. The apelin/APJ system is involved in the regulation of various physiological functions and is a therapeutic target in different pathologies; the development of APJ agonists and antagonists has thus increased. Area covered: This review focuses on the in vitro and in vivo metabolic effects of apelin in physiological conditions and in the context of metabolic diseases. Expert opinion: In experimental models, novel APJ agonists are efficient in vivo, to treat metabolic diseases and associated complications. However, more clinical trials are necessary to determine whether molecules that target APJ could become an alternative therapeutic strategy in the treatment of metabolic diseases and associated complications.
Collapse
Affiliation(s)
- Isabelle Castan-Laurell
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Bernard Masri
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| | - Philippe Valet
- a Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), INSERM U1048 , Université de Toulouse , Toulouse , France
| |
Collapse
|
55
|
Larson CJ. Translational Pharmacology and Physiology of Brown Adipose Tissue in Human Disease and Treatment. Handb Exp Pharmacol 2019; 251:381-424. [PMID: 30689089 DOI: 10.1007/164_2018_184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human brown adipose tissue (BAT) is experimentally modeled to better understand the biology of this important metabolic tissue, and also to enable the potential discovery and development of novel therapeutics for obesity and sequelae resulting from the persistent positive energy balance. This chapter focuses on translation into humans of findings and hypotheses generated in nonhuman models of BAT pharmacology. Given the demonstrated challenges of sustainably reducing caloric intake in modern humans, potential solutions to obesity likely lie in increasing energy expenditure. The energy-transforming activities of a single cell in any given tissue can be conceptualized as a flow of chemical energy from energy-rich substrate molecules into energy-expending, endergonic biological work processes through oxidative degradation of organic molecules ingested as nutrients. Despite the relatively tight coupling between metabolic reactions and products, some expended energy is incidentally lost as heat, and in this manner a significant fraction of the energy originally captured from the environment nonproductively transforms into heat rather than into biological work. In human and other mammalian cells, some processes are even completely uncoupled, and therefore purely energy consuming. These molecular and cellular actions sum up at the physiological level to adaptive thermogenesis, the endogenous physiology in which energy is nonproductively released as heat through uncoupling of mitochondria in brown fat and potentially skeletal muscle. Adaptive thermogenesis in mammals occurs in three forms, mostly in skeletal muscle and brown fat: shivering thermogenesis in skeletal muscle, non-shivering thermogenesis in brown fat, and diet-induced thermogenesis in brown fat. At the cellular level, the greatest energy transformations in humans and other eukaryotes occur in the mitochondria, where creating energetic inefficiency by uncoupling the conversion of energy-rich substrate molecules into ATP usable by all three major forms of biological work occurs by two primary means. Basal uncoupling occurs as a passive, general, nonspecific leak down the proton concentration gradient across the membrane in all mitochondria in the human body, a gradient driving a key step in ATP synthesis. Inducible uncoupling, which is the active conduction of protons across gradients through processes catalyzed by proteins, occurs only in select cell types including BAT. Experiments in rodents revealed UCP1 as the primary mammalian molecule accounting for the regulated, inducible uncoupling of BAT, and responsive to both cold and pharmacological stimulation. Cold stimulation of BAT has convincingly translated into humans, and older clinical observations with nonselective 2,4-DNP validate that human BAT's participation in pharmacologically mediated, though nonselective, mitochondrial membrane decoupling can provide increased energy expenditure and corresponding body weight loss. In recent times, however, neither beta-adrenergic antagonism nor unselective sympathomimetic agonism by ephedrine and sibutramine provide convincing evidence that more BAT-selective mechanisms can impact energy balance and subsequently body weight. Although BAT activity correlates with leanness, hypothesis-driven selective β3-adrenergic agonism to activate BAT in humans has only provided robust proof of pharmacologic activation of β-adrenergic receptor signaling, limited proof of the mechanism of increased adaptive thermogenesis, and no convincing evidence that body weight loss through negative energy balance upon BAT activation can be accomplished outside of rodents. None of the five demonstrably β3 selective molecules with sufficient clinical experience to merit review provided significant weight loss in clinical trials (BRL 26830A, TAK 677, L-796568, CL 316,243, and BRL 35135). Broader conclusions regarding the human BAT therapeutic hypothesis are limited by the absence of data from most studies demonstrating specific activation of BAT thermogenesis in most studies. Additionally, more limited data sets with older or less selective β3 agonists also did not provide strong evidence of body weight effects. Encouragingly, β3-adrenergic agonists, catechins, capsinoids, and nutritional extracts, even without robust negative energy balance outcomes, all demonstrated increased total energy expenditure that in some cases could be associated with concomitant activation of BAT, though the absence of body weight loss indicates that in no cases did the magnitude of negative energy balance reach sufficient levels. Glucocorticoid receptor agonists, PPARg agonists, and thyroid hormone receptor agonists all possess defined molecular and cellular pharmacology that preclinical models predicted to be efficacious for negative energy balance and body weight loss, yet their effects on human BAT thermogenesis upon translation were inconsistent with predictions and disappointing. A few new mechanisms are nearing the stage of clinical trials and may yet provide a more quantitatively robust translation from preclinical to human experience with BAT. In conclusion, translation into humans has been demonstrated with BAT molecular pharmacology and cell biology, as well as with physiological response to cold. However, despite pharmacologically mediated, statistically significant elevation in total energy expenditure, translation into biologically meaningful negative energy balance was not achieved, as indicated by the absence of measurable loss of body weight over the duration of a clinical study.
Collapse
Affiliation(s)
- Christopher J Larson
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
56
|
Fitzgerald SJ, Janorkar AV, Barnes A, Maranon RO. A new approach to study the sex differences in adipose tissue. J Biomed Sci 2018; 25:89. [PMID: 30509250 PMCID: PMC6278144 DOI: 10.1186/s12929-018-0488-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/15/2018] [Indexed: 11/10/2022] Open
Abstract
Obesity is one of the most invaliding and preventable diseases in the United States. Growing evidence suggests that there are sex differences in obesity in human and experimental animals. However, the specific mechanisms of this disease are unknown. Consequently, there is any particular treatment according to the sex/gender at this time. During the last decade, we observe a rise in the study of adipocyte and the possible mechanisms involved in the different roles of the fat. Furthermore, the effect of sex steroids on the adipocyte is one of the fields that need elucidation. Supporting evidence suggests that sex steroids play an essential role not only in the fat distribution, but also, in its metabolism, proliferation, and function. Thus, using in vitro and in vivo studies will contribute to our fight against this critical health public problem encompassing both sexes. In the present review, we discuss some of the recent advances in the adipocytes and the effect of the sex steroids on the adipose tissue. Also, we propose a new alternative to study the role of sex steroids on adipocyte biology through human adipose-derived stem cells.
Collapse
Affiliation(s)
- Sarah Jayne Fitzgerald
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, USA
| | - Amol Vijay Janorkar
- Department of Biomedical Materials Science, School of Dentistry, University of Mississippi Medical Center, Jackson, USA
| | - Allison Barnes
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA
| | - Rodrigo Oscar Maranon
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Department of Medicine/Nephrology, School of Medicine, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Mississippi Center for Excellence in Perinatal Research, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,Cardio Renal Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA. .,The Women's Health Research Center, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
57
|
Kaisanlahti A, Glumoff T. Browning of white fat: agents and implications for beige adipose tissue to type 2 diabetes. J Physiol Biochem 2018; 75:1-10. [PMID: 30506389 PMCID: PMC6513802 DOI: 10.1007/s13105-018-0658-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022]
Abstract
Mammalian adipose tissue is traditionally categorized into white and brown relating to their function and morphology: while white serves as an energy storage, brown adipose tissue acts as the heat generator maintaining the core body temperature. The most recently identified type of fat, beige adipocyte tissue, resembles brown fat by morphology and function but is developmentally more related to white. The synthesis of beige fat, so-called browning of white fat, has developed into a topical issue in diabetes and metabolism research. This is due to its favorable effect on whole-body energy metabolism and the fact that it can be recruited during adult life. Indeed, brown and beige adipose tissues have been demonstrated to play a role in glucose homeostasis, insulin sensitivity, and lipid metabolism—all factors related to pathogenesis of type 2 diabetes. Many agents capable of initiating browning have been identified so far and tested widely in humans and animal models including in vitro and in vivo experiments. Interestingly, several agents demonstrated to have browning activity are in fact secreted as adipokines from brown and beige fat tissue, suggesting a physiological relevance both in beige adipocyte recruitment processes and in maintenance of metabolic homeostasis. The newest findings on agents driving beige fat recruitment, their mechanisms, and implications on type 2 diabetes are discussed in this review.
Collapse
MESH Headings
- Adipose Tissue, Beige/drug effects
- Adipose Tissue, Beige/metabolism
- Adipose Tissue, Beige/pathology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/drug effects
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Energy Metabolism/drug effects
- Energy Metabolism/genetics
- Glucagon-Like Peptide 1/pharmacology
- Glucose/metabolism
- Humans
- Insulin Resistance
- Leptin/pharmacology
- Lipid Metabolism/drug effects
- Lipid Metabolism/genetics
- Lipotropic Agents/pharmacology
- Melatonin/pharmacology
- Natriuretic Peptides/pharmacology
- Thermogenesis/drug effects
- Thermogenesis/genetics
- Tretinoin/pharmacology
Collapse
Affiliation(s)
- A Kaisanlahti
- Biocenter Oulu/Cancer Research and Translational Medicine Research Unit, University of Oulu, Aapistie 5, P.O. Box 5281, 90014, Oulu, Finland.
| | - T Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7A, P.O Box 5400, 90014, Oulu, Finland
| |
Collapse
|
58
|
Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue. Nat Commun 2018; 9:4974. [PMID: 30478315 PMCID: PMC6255810 DOI: 10.1038/s41467-018-07453-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023] Open
Abstract
Activation of brown adipose tissue-mediated thermogenesis is a strategy for tackling obesity and promoting metabolic health. BMP8b is secreted by brown/beige adipocytes and enhances energy dissipation. Here we show that adipocyte-secreted BMP8b contributes to adrenergic-induced remodeling of the neuro-vascular network in adipose tissue (AT). Overexpression of bmp8b in AT enhances browning of the subcutaneous depot and maximal thermogenic capacity. Moreover, BMP8b-induced browning, increased sympathetic innervation and vascularization of AT were maintained at 28 °C, a condition of low adrenergic output. This reinforces the local trophic effect of BMP8b. Innervation and vascular remodeling effects required BMP8b signaling through the adipocytes to 1) secrete neuregulin-4 (NRG4), which promotes sympathetic axon growth and branching in vitro, and 2) induce a pro-angiogenic transcriptional and secretory profile that promotes vascular sprouting. Thus, BMP8b and NRG4 can be considered as interconnected regulators of neuro-vascular remodeling in AT and are potential therapeutic targets in obesity. Enhancing thermogenesis is a promising therapeutic strategy for promoting metabolic health. Here the authors show that adipocyte-secreted BMP8b contributes to optimizing the thermogenic response by remodeling of the neuro-vascular networks in brown and white adipose tissue.
Collapse
|
59
|
Trayhurn P. Brown Adipose Tissue-A Therapeutic Target in Obesity? Front Physiol 2018; 9:1672. [PMID: 30532712 PMCID: PMC6265308 DOI: 10.3389/fphys.2018.01672] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Paul Trayhurn
- Clore Laboratory, University of Buckingham, Buckingham, United Kingdom
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
60
|
Shen Y, Cohen JL, Nicoloro SM, Kelly M, Yenilmez B, Henriques F, Tsagkaraki E, Edwards YJK, Hu X, Friedline RH, Kim JK, Czech MP. CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 ( Nrip1) in adipose cells to enhance energy expenditure. J Biol Chem 2018; 293:17291-17305. [PMID: 30190322 DOI: 10.1074/jbc.ra118.004554] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
RNA-guided, engineered nucleases derived from the prokaryotic adaptive immune system CRISPR-Cas represent a powerful platform for gene deletion and editing. When used as a therapeutic approach, direct delivery of Cas9 protein and single-guide RNA (sgRNA) could circumvent the safety issues associated with plasmid delivery and therefore represents an attractive tool for precision genome engineering. Gene deletion or editing in adipose tissue to enhance its energy expenditure, fatty acid oxidation, and secretion of bioactive factors through a "browning" process presents a potential therapeutic strategy to alleviate metabolic disease. Here, we developed "CRISPR-delivery particles," denoted CriPs, composed of nano-size complexes of Cas9 protein and sgRNA that are coated with an amphipathic peptide called Endo-Porter that mediates entry into cells. Efficient CRISPR-Cas9-mediated gene deletion of ectopically expressed GFP by CriPs was achieved in multiple cell types, including a macrophage cell line, primary macrophages, and primary pre-adipocytes. Significant GFP loss was also observed in peritoneal exudate cells with minimum systemic toxicity in GFP-expressing mice following intraperitoneal injection of CriPs containing Gfp-targeting sgRNA. Furthermore, disruption of a nuclear co-repressor of catabolism, the Nrip1 gene, in white adipocytes by CriPs enhanced adipocyte browning with a marked increase of uncoupling protein 1 (UCP1) expression. Of note, the CriP-mediated Nrip1 deletion did not produce detectable off-target effects. We conclude that CriPs offer an effective Cas9 and sgRNA delivery system for ablating targeted gene products in cultured cells and in vivo, providing a potential therapeutic strategy for metabolic disease.
Collapse
Affiliation(s)
| | | | | | - Mark Kelly
- From the Program in Molecular Medicine and
| | | | | | - Emmanouela Tsagkaraki
- From the Program in Molecular Medicine and.,the Molecular Basis of Human Disease Graduate Program, School of Sciences, Faculty of Medicine, University of Crete, P.O. Box 2208, Heraklion, Crete 71003, Greece
| | | | - Xiaodi Hu
- the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Randall H Friedline
- the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | - Jason K Kim
- From the Program in Molecular Medicine and.,the Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605 and
| | | |
Collapse
|
61
|
Hao L, Kearns J, Scott S, Wu D, Kodani SD, Morisseau C, Hammock BD, Sun X, Zhao L, Wang S. Indomethacin Enhances Brown Fat Activity. J Pharmacol Exp Ther 2018; 365:467-475. [PMID: 29567865 PMCID: PMC5931432 DOI: 10.1124/jpet.117.246256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 01/08/2023] Open
Abstract
Indomethacin, a nonsteroidal anti-inflammatory drug, has been shown to induce white adipocyte differentiation; however, its roles in brown adipocyte differentiation and activation in brown adipose tissue (BAT) and obesity are unknown. To address this issue, we treated mouse brown preadipocytes with different doses of indomethacin, and delivered indomethacin to interscapular BAT (iBAT) of obese mice using implanted osmotic pumps. Indomethacin dose dependently increased brown preadipocyte differentiation and upregulated both mRNA and protein expression of uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor (PPAR) γ coactivator 1-alpha. The mechanistic study showed that indomethacin significantly activated the reporter driven by the PPAR response element, indicating that indomethacin may work as a PPARγ agonist in this cell line. Consistently, indomethacin significantly decreased iBAT mass and fasting blood glucose levels in high-fat diet-induced obesity (DIO) mice. Histologic analysis showed that brown adipocytes of indomethacin-treated mice contained smaller lipid droplets compared with control mice, suggesting that indomethacin alleviated the whitening of BAT induced by the high-fat diet. Moreover, indomethacin significantly increased UCP1 mRNA expression in iBAT. Taken together, this study indicates that indomethacin can promote mouse brown adipocyte differentiation, and might increase brown fat and glucose oxidation capacity in DIO mice.
Collapse
Affiliation(s)
- Lei Hao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Jamie Kearns
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Sheyenne Scott
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Dayong Wu
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Sean D Kodani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Christophe Morisseau
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Bruce D Hammock
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Xiaocun Sun
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Ling Zhao
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| | - Shu Wang
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas (L.H., S.S., S.W.); Department of Nutrition (J.K., L.Z.), and Research Computing Support (X.S.), University of Tennessee, Knoxville, Tennessee; Nutrition Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts (D.W.); and Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, California (S.D.K., C.M., B.D.H.)
| |
Collapse
|
62
|
Carobbio S, Guénantin AC, Samuelson I, Bahri M, Vidal-Puig A. Brown and beige fat: From molecules to physiology and pathophysiology. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:37-50. [PMID: 29852279 DOI: 10.1016/j.bbalip.2018.05.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/31/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022]
Abstract
The adipose organ portrays adipocytes of diverse tones: white, brown and beige, each type with distinct functions. Adipocytes orchestrate their adaptation and expansion to provide storage to excess nutrients, the quick mobilisation of fuel to supply peripheral functional demands, insulation, and, in their thermogenic form, heat generation to maintain core body temperature. Thermogenic adipocytes could be targets for anti-obesity and anti-diabetic therapeutic approaches aiming to restore adipose tissue functionality and increase energy dissipation. However, for thermogenic adipose tissue to become therapeutically relevant, a better understanding of its development and origins, its progenitors and their characteristics and the composition of its niche, is essential. Also crucial is the identification of stimuli and molecules promoting its specific differentiation and activation. Here we highlight the structural/cellular differences between human and rodent brown adipose tissue and discuss how obesity and metabolic complication affects brown and beige cells as well as how they could be targeted to improve their activation and improve global metabolic homeostasis. Finally, we describe the limitations of current research models and the advantages of new emerging approaches.
Collapse
Affiliation(s)
- Stefania Carobbio
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Anne-Claire Guénantin
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Isabella Samuelson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Myriam Bahri
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Antonio Vidal-Puig
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK; Metabolic Research Laboratories, Addenbrooke's Treatment Centre, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
63
|
Li J, Yang Q, Bai Z, Zhou W, Semenza GL, Ge RL. Chronic cold exposure results in subcutaneous adipose tissue browning and altered global metabolism in Qinghai-Tibetan plateau pika (Ochotona curzoniae). Biochem Biophys Res Commun 2018; 500:117-123. [PMID: 29626477 DOI: 10.1016/j.bbrc.2018.03.147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/20/2018] [Indexed: 12/15/2022]
Abstract
The plateau pika (Ochotona curzoniae), one of the indigenous animals of the Qinghai-Tibet Plateau, is adapted to life in a cold and hypoxic environment. We conducted a series of genomic, proteomic and morphological studies to investigate whether changes in energy metabolism contribute to adaptation of the plateau pika to cold stress by analyzing summer and winter cohorts. The winter group showed strong morphological and histological features of brown adipose tissue (BAT) in subcutaneous white adipose tissue (sWAT). To obtain molecular evidence of browning of sWAT, we performed reverse transcription and quantitative real-time PCR, which revealed that BAT-specific genes, including uncoupling protein 1 (UCP-1) and PPAR-γ coactivator 1α (PGC-1α), were highly expressed in sWAT from the winter group. Compared with the summer group, Western blot analysis also confirmed that UCP-1, PGC-1α and Cox4 protein levels were significantly increased in sWAT from the winter group. Increased BAT mass in the inter-scapular region of the winter group was also observed. These results suggest that the plateau pika adapts to cold by browning sWAT and increasing BAT in order to increase thermogenesis. These changes are distinct from the previously reported adaptation of highland deer mice. Understanding the regulatory mechanisms underlying this adaptation may lead to novel therapeutic strategies for treating obesity and metabolic disorders.
Collapse
Affiliation(s)
- Jia Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China
| | - Quanyu Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China
| | - Zhenzhong Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China.
| | - Wenhua Zhou
- Research Center for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China
| | - Gregg L Semenza
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Departments of Pediatrics, Medicine, Oncology, Radiation Oncology, and Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Key Laboratory for Application of High Altitude Medicine in Qinghai Province, Qinghai University Medical College, 810001 Qinghai, Xining, PR China; Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University Medical College, 810001 Qinghai, Xining, PR China.
| |
Collapse
|
64
|
Cao J, Zhu Q, Liu L, Glazier BJ, Hinkel BC, Liang C, Shi H. Global Transcriptome Analysis of Brown Adipose Tissue of Diet-Induced Obese Mice. Int J Mol Sci 2018; 19:ijms19041095. [PMID: 29642370 PMCID: PMC5979511 DOI: 10.3390/ijms19041095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/17/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022] Open
Abstract
Consumption of a high-fat diet (HFD) promotes the development of obesity, a disease resulting from an imbalance between energy intake and energy expenditure. Brown adipose tissue (BAT) has thermogenic capacity that burns calories to produce heat, and it is a potential target for the treatment and prevention of obesity. There is limited information regarding the impact of HFD on the BAT transcriptome. We hypothesized that HFD-induced obesity would lead to transcriptional regulation of BAT genes. RNA sequencing was used to generate global transcriptome profiles from BAT of lean mice fed with a low-fat diet (LFD) and obese mice fed with a HFD. Gene Ontology (GO) analysis identified increased expression of genes involved in biological processes (BP) related to immune responses, which enhanced molecular function (MF) in chemokine activity; decreased expression of genes involved in BP related to ion transport and muscle structure development, which reduced MF in channel and transporter activity and structural binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathway analysis indicated that pathways associated with innate immunity were enhanced by HFD, while pathways associated with muscle contraction and calcium signaling were suppressed by HFD. Collectively, these results suggest that diet-induced obesity changes transcriptomic signatures of BAT, leading to dysfunction involving inflammation, calcium signaling, ion transport, and cell structural development.
Collapse
Affiliation(s)
- Jingyi Cao
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Qi Zhu
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Lin Liu
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Bradley J Glazier
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Benjamin C Hinkel
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Chun Liang
- Program of Bioinformatics, Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Haifei Shi
- Program of Physiology and Neuroscience, Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
65
|
Grunewald ZI, Winn NC, Gastecki ML, Woodford ML, Ball JR, Hansen SA, Sacks HS, Vieira-Potter VJ, Padilla J. Removal of interscapular brown adipose tissue increases aortic stiffness despite normal systemic glucose metabolism in mice. Am J Physiol Regul Integr Comp Physiol 2018; 314:R584-R597. [PMID: 29351429 PMCID: PMC5966817 DOI: 10.1152/ajpregu.00332.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/06/2017] [Accepted: 12/06/2017] [Indexed: 01/06/2023]
Abstract
Brown adipose tissue (BAT) is considered protective against obesity and related cardiometabolic dysfunction. Indeed, activation of BAT improves glucose homeostasis and attenuates cardiovascular disease development. However, whether a reduction in BAT mass perturbs metabolic function and increases risk for cardiovascular disease remains largely unknown. To address this question, C57BL/6J male mice underwent a sham procedure or surgical bilateral excision of interscapular BAT (iBATx) and were fed a normal chow or a Western diet for 18 wk, creating four groups ( n = 10/group). Mice were housed at 25°C. As expected, the Western diet increased final body weight and adiposity; however, contrary to our hypothesis, iBATx did not potentiate adiposity independent of diet. Furthermore, iBATx did not affect indexes of glycemic control (HbA1c, fasting glucose and insulin, and glucose area under the curve during a glucose tolerance test) and produced minimal-to-no effects on lipid homeostasis. The absence of metabolic disturbances with iBATx was not attributed to regrowth of iBAT or a "browning" or proliferative compensatory response of other BAT depots. Notably, iBATx caused an increase in aortic stiffness in normal chow-fed mice only, which was associated with an increase in aortic uncoupling protein-1. Collectively, we demonstrated that, at 25°C (i.e., limited thermal stress conditions), a substantial reduction in BAT mass via iBATx does not disrupt systemic glucose metabolism, challenging the current dogma that preservation of BAT is obligatory for optimal metabolic function. However, iBATx caused aortic stiffening in lean mice, hence supporting the existence of an interplay between iBAT and aortic stiffness, independent of alterations in glucose homeostasis.
Collapse
Affiliation(s)
- Zachary I Grunewald
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Nathan C Winn
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Michelle L Gastecki
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Makenzie L Woodford
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - James R Ball
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Missouri , Columbia, Missouri
| | - Harold S Sacks
- Endocrine and Diabetes Division, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, California
| | | | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
- Child Health, University of Missouri , Columbia, Missouri
| |
Collapse
|
66
|
Xie Z, Wang X, Liu X, Du H, Sun C, Shao X, Tian J, Gu X, Wang H, Tian J, Yu B. Adipose-Derived Exosomes Exert Proatherogenic Effects by Regulating Macrophage Foam Cell Formation and Polarization. J Am Heart Assoc 2018; 7:JAHA.117.007442. [PMID: 29502100 PMCID: PMC5866320 DOI: 10.1161/jaha.117.007442] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Obesity is causally associated with atherosclerosis, and adipose tissue (AT)–derived exosomes may be implicated in the metabolic complications of obesity. However, the precise role of AT‐exosomes in atherogenesis remains unclear. We herein aimed to assess the effect of AT‐exosomes on macrophage foam cell formation and polarization and subsequent atherosclerosis development. Methods and Results Four types of exosomes isolated from the supernatants of ex vivo subcutaneous AT and visceral AT (VAT) explants that were derived from wild‐type mice and high‐fat diet (HFD)–induced obese mice were effectively taken up by RAW264.7 macrophages. Both treatment with wild‐type VAT exosomes and HFD‐VAT exosomes, but not subcutaneous AT exosomes, markedly facilitated macrophage foam cell generation through the downregulation of ATP‐binding cassette transporter (ABCA1 and ABCG1)–mediated cholesterol efflux. Decreased expression of liver X receptor‐α was also observed. Among the 4 types of exosomes, only HFD‐VAT exosomes significantly induced M1 phenotype transition and proinflammatory cytokine (tumor necrosis factor α and interleukin 6) secretion in RAW264.7 macrophages, which was accompanied by increased phosphorylation of NF‐κB‐p65 but not the cellular expression of NF‐κB‐p65 or IκB‐α. Furthermore, systematic intravenous injection of HFD‐VAT exosomes profoundly exacerbated atherosclerosis in hyperlipidemic apolipoprotein E–deficient mice, as indicated by the M1 marker (CD16/32 and inducible nitric oxide synthase)–positive areas and the Oil Red O/Sudan IV–stained area, without affecting the plasma lipid profile and body weight. Conclusions This study demonstrated a proatherosclerotic role for HFD‐VAT exosomes, which is exerted by regulating macrophage foam cell formation and polarization, indicating a novel link between AT and atherosclerosis in the context of obesity.
Collapse
Affiliation(s)
- Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuedong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinxin Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huaan Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changbin Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Shao
- Department of Urology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xia Gu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, China
| | - Hailong Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
67
|
Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci 2018; 1411:5-20. [PMID: 28763833 PMCID: PMC5788721 DOI: 10.1111/nyas.13398] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Obesity is an excess accumulation of adipose tissue mass, and, together with its sequelae, in particular type II diabetes and metabolic syndrome, obesity presents a major health crisis. Although obesity is simply caused by increased adipose mass, the heterogeneity of adipose tissue in humans means that the response to increased energy balance is highly complex. Individual subjects with similar phenotypes may respond very differently to the same treatments; therefore, obesity may benefit from a personalized precision medicine approach. The variability in the development of obesity is indeed driven by differences in sex, genetics, and environment, but also by the various types of adipose tissue as well as the different cell types that compose it. By describing the distinct cell populations that reside in different fat depots, we can interpret the complex effect of these various players in the maintenance of whole-body energy homeostasis. To further understand adipose tissue, adipogenic differentiation and the transcriptional program of lipid accumulation must be investigated. As the cell- and depot-specific functions are described, they can be placed in the context of energy excess to understand how the heterogeneity of adipose tissue shapes individual metabolic status and condition.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
68
|
Dong M, Lin J, Lim W, Jin W, Lee HJ. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med 2017; 12:130-138. [PMID: 29119382 DOI: 10.1007/s11684-017-0555-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 04/29/2017] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) plays a fundamental role in maintaining body temperature by producing heat. BAT that had been know to exist only in mammals and the human neonate has received great attention for the treatment of obesity and diabetes due to its important function in energy metabolism, ever since it is recently reported that human adults have functional BAT. In addition, beige adipocytes, brown adipocytes in white adipose tissue (WAT), have also been shown to take part in whole body metabolism. Multiple lines of evidence demonstrated that transplantation or activation of BAT or/and beige adipocytes reversed obesity and improved insulin sensitivity. Furthermore, many genes involved in BATactivation and/or the recruitment of beige cells have been found, thereby providing new promising strategies for future clinical application of BAT activation to treat obesity and metabolic diseases. This review focuses on recent advances of BAT function in the metabolic aspect and the relationship between BAT and cancer cachexia, a pathological process accompanied with decreased body weight and increased energy expenditure in cancer patients. The underlying possible mechanisms to reduce BAT mass and its activity in the elderly are also discussed.
Collapse
Affiliation(s)
- Meng Dong
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,The University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju, 363-764, Republic of Korea
| | - Wanzhu Jin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hyuek Jong Lee
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
69
|
Horie T, Fukasawa K, Iezaki T, Park G, Onishi Y, Ozaki K, Kanayama T, Hiraiwa M, Kitaguchi Y, Kaneda K, Hinoi E. Hypoxic Stress Upregulates the Expression of Slc38a1 in Brown Adipocytes via Hypoxia-Inducible Factor-1α. Pharmacology 2017; 101:64-71. [DOI: 10.1159/000480405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/17/2017] [Indexed: 12/31/2022]
Abstract
The availability of amino acid in the brown adipose tissue (BAT) has been shown to be altered under various conditions; however, little is known about the possible expression and pivotal role of amino acid transporters in BAT under physiological and pathological conditions. The present study comprehensively investigated whether amino acid transporters are regulated by obesogenic conditions in BAT in vivo. Moreover, we investigated the mechanism underlying the regulation of the expression of amino acid transporters by various stressors in brown adipocytes in vitro. The expression of solute carrier family 38 member 1 (Slc38a1; gene encoding sodium-coupled neutral amino acid transporter 1) was preferentially upregulated in the BAT of both genetic and acquired obesity mice in vivo. Moreover, the expression of Slc38a1 was induced by hypoxic stress through hypoxia-inducible factor-1α, which is a master transcription factor of the adaptive response to hypoxic stress, in brown adipocytes in vitro. These results indicate that Slc38a1 is an obesity-associated gene in BAT and a hypoxia-responsive gene in brown adipocytes.
Collapse
|
70
|
Motiani P, Virtanen KA, Motiani KK, Eskelinen JJ, Middelbeek RJ, Goodyear LJ, Savolainen AM, Kemppainen J, Jensen J, Din MU, Saunavaara V, Parkkola R, Löyttyniemi E, Knuuti J, Nuutila P, Kalliokoski KK, Hannukainen JC. Decreased insulin-stimulated brown adipose tissue glucose uptake after short-term exercise training in healthy middle-aged men. Diabetes Obes Metab 2017; 19:1379-1388. [PMID: 28318098 PMCID: PMC5607085 DOI: 10.1111/dom.12947] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 12/20/2022]
Abstract
AIMS To test the hypothesis that high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) improve brown adipose tissue (BAT) insulin sensitivity. PARTICIPANTS AND METHODS Healthy middle-aged men (n = 18, age 47 years [95% confidence interval {CI} 49, 43], body mass index 25.3 kg/m2 [95% CI 24.1-26.3], peak oxygen uptake (VO2peak ) 34.8 mL/kg/min [95% CI 32.1, 37.4] ) were recruited and randomized into six HIIT or MICT sessions within 2 weeks. Insulin-stimulated glucose uptake was measured using 2-[18 F]flouro-2-deoxy-D-glucose positron-emission tomography in BAT, skeletal muscle, and abdominal and femoral subcutaneous and visceral white adipose tissue (WAT) depots before and after the training interventions. RESULTS Training improved VO2peak (P = .0005), insulin-stimulated glucose uptake into the quadriceps femoris muscle (P = .0009) and femoral subcutaneous WAT (P = .02) but not into BAT, with no difference between the training modes. Using pre-intervention BAT glucose uptake, we next stratified subjects into high BAT (>2.9 µmol/100 g/min; n = 6) or low BAT (<2.9 µmol/100 g/min; n = 12) groups. Interestingly, training decreased insulin-stimulated BAT glucose uptake in the high BAT group (4.0 [2.8, 5.5] vs 2.5 [1.7, 3.6]; training*BAT, P = .02), whereas there was no effect of training in the low BAT group (1.5 [1.2, 1.9] vs 1.6 [1.2, 2.0] µmol/100 g/min). Participants in the high BAT group had lower levels of inflammatory markers compared with those in the low BAT group. CONCLUSIONS Participants with functionally active BAT have an improved metabolic profile compared with those with low BAT activity. Short-term exercise training decreased insulin-stimulated BAT glucose uptake in participants with active BAT, suggesting that training does not work as a potent stimulus for BAT activation.
Collapse
Affiliation(s)
| | | | | | | | - Roeland J. Middelbeek
- Section on Integrative Physiology and MetabolismJoslin Diabetes Center, Harvard Medical SchoolBostonMassachusetts
- Division of Endocrinology, Diabetes and MetabolismBeth Israel Deaconess Medical CenterBostonMassachusetts
| | - Laurie J. Goodyear
- Section on Integrative Physiology and MetabolismJoslin Diabetes Center, Harvard Medical SchoolBostonMassachusetts
| | | | - Jukka Kemppainen
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of Clinical Physiology and Nuclear MedicineTurku University HospitalTurkuFinland
| | - Jørgen Jensen
- Department of Physical PerformanceNorwegian School of Sport SciencesOsloNorway
| | | | - Virva Saunavaara
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of Medical PhysicsTurku University HospitalTurkuFinland
| | - Riitta Parkkola
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of RadiologyTurku University HospitalTurkuFinland
| | | | | | - Pirjo Nuutila
- Turku PET CentreUniversity of TurkuTurkuFinland
- Department of EndocrinologyTurku University HospitalTurkuFinland
| | | | | |
Collapse
|
71
|
Cold-sensing TRPM8 channel participates in circadian control of the brown adipose tissue. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2415-2427. [PMID: 28943398 DOI: 10.1016/j.bbamcr.2017.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/11/2023]
Abstract
Transient receptor potential (TRP) channels are known to regulate energy metabolism, and TRPM8 has become an interesting player in this context. Here we demonstrate the role of the cold sensor TRPM8 in the regulation of clock gene and clock controlled genes in brown adipose tissue (BAT). We investigated TrpM8 temporal profile in the eyes, suprachiasmatic nucleus and BAT; only BAT showed temporal variation of TrpM8 transcripts. Eyes from mice lacking TRPM8 lost the temporal profile of Per1 in LD cycle. This alteration in the ocular circadian physiology may explain the delay in the onset of locomotor activity in response to light pulse, as compared to wild type animals (WT). Brown adipocytes from TrpM8 KO mice exhibited a larger multilocularity in comparison to WT or TrpV1 KO mice. In addition, Ucp1 and UCP1 expression was significantly reduced in TrpM8 KO mice in comparison to WT mice. Regarding circadian components, the expression of Per1, Per2, Bmal1, Pparα, and Pparβ oscillated in WT mice kept in LD, whereas in the absence of TRPM8 the expression of clock genes was reduced in amplitude and lack temporal oscillation. Thus, our results reveal new roles for TRPM8 channel: it participates in the regulation of clock and clock-controlled genes in the eyes and BAT, and in BAT thermogenesis. Since disruption of the clock machinery has been associated with many metabolic disorders, the pharmacological modulation of TRPM8 channel may become a promising therapeutic target to counterbalance weight gain, through increased thermogenesis, energy expenditure, and clock gene activation.
Collapse
|
72
|
Kim E, Lim SM, Kim MS, Yoo SH, Kim Y. Phyllodulcin, a Natural Sweetener, Regulates Obesity-Related Metabolic Changes and Fat Browning-Related Genes of Subcutaneous White Adipose Tissue in High-Fat Diet-Induced Obese Mice. Nutrients 2017; 9:nu9101049. [PMID: 28934139 PMCID: PMC5691666 DOI: 10.3390/nu9101049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/25/2017] [Accepted: 09/18/2017] [Indexed: 11/21/2022] Open
Abstract
Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii. This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator activated receptor γ (PPARγ), and sterol regulatory element-binding protein-1C (SREBP-1c) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 (Prdm16), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Soo-Min Lim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| | - Min-Soo Kim
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Korea.
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
73
|
Akoumianakis I, Akawi N, Antoniades C. Exploring the Crosstalk between Adipose Tissue and the Cardiovascular System. Korean Circ J 2017; 47:670-685. [PMID: 28955384 PMCID: PMC5614942 DOI: 10.4070/kcj.2017.0041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022] Open
Abstract
Obesity is a clinical entity critically involved in the development and progression of cardiovascular disease (CVD), which is characterised by variable expansion of adipose tissue (AT) mass across the body as well as by phenotypic alterations in AT. AT is able to secrete a diverse spectrum of biologically active substances called adipocytokines, which reach the cardiovascular system via both endocrine and paracrine routes, potentially regulating a variety of physiological and pathophysiological responses in the vasculature and heart. Such responses include regulation of inflammation and oxidative stress as well as cell proliferation, migration and hypertrophy. Furthermore, clinical observations such as the “obesity paradox,” namely the fact that moderately obese patients with CVD have favourable clinical outcome, strongly indicate that the biological “quality” of AT may be far more crucial than its overall mass in the regulation of CVD pathogenesis. In this work, we describe the anatomical and biological diversity of AT in health and metabolic disease; we next explore its association with CVD and, importantly, novel evidence for its dynamic crosstalk with the cardiovascular system, which could regulate CVD pathogenesis.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Nadia Akawi
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
74
|
Berryman DE, List EO. Growth Hormone's Effect on Adipose Tissue: Quality versus Quantity. Int J Mol Sci 2017; 18:ijms18081621. [PMID: 28933734 PMCID: PMC5578013 DOI: 10.3390/ijms18081621] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obesity is an excessive accumulation or expansion of adipose tissue (AT) due to an increase in either the size and/or number of its characteristic cell type, the adipocyte. As one of the most significant public health problems of our time, obesity and its associated metabolic complications have demanded that attention be given to finding effective therapeutic options aimed at reducing adiposity or the metabolic dysfunction associated with its accumulation. Growth hormone (GH) has therapeutic potential due to its potent lipolytic effect and resultant ability to reduce AT mass while preserving lean body mass. However, AT and its resident adipocytes are significantly more dynamic and elaborate than once thought and require one not to use the reduction in absolute mass as a readout of efficacy alone. Paradoxically, therapies that reduce GH action may ultimately prove to be healthier, in part because GH also possesses potent anti-insulin activities along with concerns that GH may promote the growth of certain cancers. This review will briefly summarize some of the newer complexities of AT relevant to GH action and describe the current understanding of how GH influences this tissue using data from both humans and mice. We will conclude by considering the therapeutic use of GH or GH antagonists in obesity, as well as important gaps in knowledge regarding GH and AT.
Collapse
Affiliation(s)
- Darlene E Berryman
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| | - Edward O List
- The Diabetes Institute at Ohio University, 108 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
- Edison Biotechnology Institute, 218 Konneker Research Labs, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
75
|
Cozer AG, Trapp M, Martins TL, De Fraga LS, Vieira Marques C, Model JFA, Schein V, Kucharski LC, Da Silva RS. Effects of Stanniocalcin-1 on glucose flux in rat brown adipose tissue. Biochimie 2017; 138:50-55. [DOI: 10.1016/j.biochi.2017.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/18/2017] [Indexed: 11/26/2022]
|
76
|
Cereijo R, Sánchez-Infantes D. Brown adipose tissue and browning: More than just a heating device. ACTA ACUST UNITED AC 2017; 64:185-187. [PMID: 28417872 DOI: 10.1016/j.endinu.2017.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Rubén Cereijo
- Department of Biochemistry and Molecular Biology and Institute of Biomedicine, University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain.
| |
Collapse
|
77
|
Abstract
Adipose tissue (AT) not only stores energy, but also secretes hormones and releases small vesicles known as exosomes. Thomou et al. (2017) now show that exosomes secreted by brown fat carry miRNAs that regulate the liver. Thus, AT exosomes might have therapeutic and diagnostic relevance for metabolic disorders.
Collapse
Affiliation(s)
- Yong Chen
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
78
|
Jussara ( Euterpe edulis Mart.) supplementation during pregnancy and lactation modulates UCP-1 and inflammation biomarkers induced by trans-fatty acids in the brown adipose tissue of offspring. CLINICAL NUTRITION EXPERIMENTAL 2017. [DOI: 10.1016/j.yclnex.2016.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
79
|
Sulston RJ, Cawthorn WP. Bone marrow adipose tissue as an endocrine organ: close to the bone? Horm Mol Biol Clin Investig 2017; 28:21-38. [PMID: 27149203 DOI: 10.1515/hmbci-2016-0012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/25/2016] [Indexed: 02/06/2023]
Abstract
White adipose tissue (WAT) is a major endocrine organ, secreting a diverse range of hormones, lipid species, cytokines and other factors to exert diverse local and systemic effects. These secreted products, known as 'adipokines', contribute extensively to WAT's impact on physiology and disease. Adipocytes also exist in the bone marrow (BM), but unlike WAT, study of this bone marrow adipose tissue (MAT) has been relatively limited. We recently discovered that MAT contributes to circulating adiponectin, an adipokine that mediates cardiometabolic benefits. Moreover, we found that MAT expansion exerts systemic effects. Together, these observations identify MAT as an endocrine organ. Additional studies are revealing further secretory functions of MAT, including production of other adipokines, cytokines and lipids that exert local effects within bone. These observations suggest that, like WAT, MAT has secretory functions with diverse potential effects, both locally and systemically. A major limitation is that these findings are often based on in vitro approaches that may not faithfully recapitulate the characteristics and functions of BM adipocytes in vivo. This underscores the need to develop improved methods for in vivo analysis of MAT function, including more robust transgenic models for MAT targeting, and continued development of techniques for non-invasive analysis of MAT quantity and quality in humans. Although many aspects of MAT formation and function remain poorly understood, MAT is now attracting increasing research focus; hence, there is much promise for further advances in our understanding of MAT as an endocrine organ, and how MAT impacts human health and disease.
Collapse
|
80
|
Kodo K, Sugimoto S, Nakajima H, Mori J, Itoh I, Fukuhara S, Shigehara K, Nishikawa T, Kosaka K, Hosoi H. Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice. PLoS One 2017; 12:e0173661. [PMID: 28288167 PMCID: PMC5348037 DOI: 10.1371/journal.pone.0173661] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/17/2017] [Indexed: 12/14/2022] Open
Abstract
Erythropoietin (EPO), clinically used as a hematopoietic drug, has received much attention due to its nonhematopoietic effects. EPO reportedly has beneficial effects on obesity and diabetes mellitus. We investigated whether interscapular brown adipose tissue (iBAT: main part of classical BAT) could play a role in EPO’s anti-obesity and anti-diabetic effects in diet-induced obese mice. Four-week-old male C57BL/6J mice were fed a high-fat diet (HFD-Con), and half were additionally given an intraperitoneal injection of recombinant human EPO (200 IU/kg) (HFD-EPO) thrice a week for four weeks. At 8 weeks, EPO-injected mice showed significantly reduced body weight with reduced epididymal and subcutaneous white fat mass and unchanged caloric intake and locomotor activity. HOMA-IR (insulin resistance index) and glucose levels during intraperitoneal glucose tolerance test (IPGTT) were significantly lower in HFD-EPO mice than in HFD-Con mice. EPO-injected mice also showed increased oxygen consumption, indicative of metabolic rate, and skin temperature around iBAT tissue masses. EPO significantly upregulated the PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), a transcriptional factor with a crucial role in brown adipocyte differentiation. EPO significantly increased phosphorylated signal transducer and activator of transcription 3 (STAT3), which is downstream of erythropoietin receptor (EpoR) and known to stabilize PRDM16. EPO’s suppression of myocyte enhancer factor 2c (Mef2c) and microRNA-133a (miR-133a) via β3-adrenergic receptor caused PRDM16 upregulation. EPO-mediated enhancement of EpoR/STAT3 and β-adrenergic receptor/Mef2c/miR-133 pathways dramatically increases total uncoupling protein 1 (UCP1), an essential enzyme for BAT thermogenesis. Furthermore, EPO activated BAT’s endocrine functions. EPO facilitated fibroblast growth factor 21 (FGF21) production and excretion in iBAT, associated with reduction of liver gluconeogenesis-related genes. Thus, EPO’s improvement of obesity and glucose homeostasis can be attributed to increased iBAT thermogenic capacity and activation of BAT’s endocrine functions.
Collapse
Affiliation(s)
- Kazuki Kodo
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Satoru Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- Department of Pediatrics, Ayabe Municipal Hospital, Ayabe City, Japan
- * E-mail: (SS); (HN)
| | - Hisakazu Nakajima
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
- * E-mail: (SS); (HN)
| | - Jun Mori
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Ikuyo Itoh
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shota Fukuhara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Keiichi Shigehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Taichiro Nishikawa
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kitaro Kosaka
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
81
|
Invited review: Pre- and postnatal adipose tissue development in farm animals: from stem cells to adipocyte physiology. Animal 2017; 10:1839-1847. [PMID: 27751202 DOI: 10.1017/s1751731116000872] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Both white and brown adipose tissues are recognized to be differently involved in energy metabolism and are also able to secrete a variety of factors called adipokines that are involved in a wide range of physiological and metabolic functions. Brown adipose tissue is predominant around birth, except in pigs. Irrespective of species, white adipose tissue has a large capacity to expand postnatally and is able to adapt to a variety of factors. The aim of this review is to update the cellular and molecular mechanisms associated with pre- and postnatal adipose tissue development with a special focus on pigs and ruminants. In contrast to other tissues, the embryonic origin of adipose cells remains the subject of debate. Adipose cells arise from the recruitment of specific multipotent stem cells/progenitors named adipose tissue-derived stromal cells. Recent studies have highlighted the existence of a variety of those cells being able to differentiate into white, brown or brown-like/beige adipocytes. After commitment to the adipocyte lineage, progenitors undergo large changes in the expression of many genes involved in cell cycle arrest, lipid accumulation and secretory functions. Early nutrition can affect these processes during fetal and perinatal periods and can also influence or pre-determinate later growth of adipose tissue. How these changes may be related to adipose tissue functional maturity around birth and can influence newborn survival is discussed. Altogether, a better knowledge of fetal and postnatal adipose tissue development is important for various aspects of animal production, including neonatal survival, postnatal growth efficiency and health.
Collapse
|
82
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
83
|
Sánchez-Infantes D, Cereijo R, Peyrou M, Piquer-Garcia I, Stephens JM, Villarroya F. Oncostatin m impairs brown adipose tissue thermogenic function and the browning of subcutaneous white adipose tissue. Obesity (Silver Spring) 2017; 25:85-93. [PMID: 27706920 DOI: 10.1002/oby.21679] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/29/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Since oncostatin m (OSM) is elevated in adipose tissue in conditions of obesity and type 2 diabetes in mice and humans, the aim of this study was to determine whether this cytokine plays a crucial role in the impairment of brown adipose tissue (BAT) activity and browning capacity that has been observed in people with obesity. METHODS C57BL/6J mice rendered obese by high-fat diet, their lean controls, and C57BL/6J mice fed a standard diet and implanted subcutaneously with a mini pump through a surgical procedure to deliver OSM or placebo were used. Preadipocytes or fully differentiated brown adipocytes were treated with OSM or vehicle with or without norepinephrine before harvesting. RNA was extracted and processed for qPCR analysis. Media from mature adipocytes was also collected to measure glycerol levels. RESULTS Studies demonstrated that OSM gene expression was increased in BAT of mice fed a high-fat diet. In addition, exogenous OSM impaired BAT activity and the browning capacity of white adipose tissue in vitro and in vivo. CONCLUSIONS Overall, the results reveal a negative role for OSM on BAT and on the browning of white adipose tissue. Therefore, further studies are necessary to demonstrate whether OSM inhibition is a potential treatment for metabolic disorders.
Collapse
Affiliation(s)
- David Sánchez-Infantes
- Department of Endocrinology and Nutrition, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Rubén Cereijo
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| | - Marion Peyrou
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| | - Irene Piquer-Garcia
- Department of Endocrinology and Nutrition, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Barcelona, Spain
| | - Jacqueline M Stephens
- Department of Biological Science, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Francesc Villarroya
- Department of Biochemistry and Molecular Biology, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
- Institut de Recerca Pediàtrica Hospital Sant Joan de Déu (IRP-HSJD) University of Barcelona, Barcelona, Spain
| |
Collapse
|
84
|
Winn NC, Vieira-Potter VJ, Gastecki ML, Welly RJ, Scroggins RJ, Zidon TM, Gaines TL, Woodford ML, Karasseva NG, Kanaley JA, Sacks HS, Padilla J. Loss of UCP1 exacerbates Western diet-induced glycemic dysregulation independent of changes in body weight in female mice. Am J Physiol Regul Integr Comp Physiol 2016; 312:R74-R84. [PMID: 27881400 DOI: 10.1152/ajpregu.00425.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/15/2016] [Accepted: 11/17/2016] [Indexed: 01/23/2023]
Abstract
We tested the hypothesis that female mice null for uncoupling protein 1 (UCP1) would have increased susceptibility to Western diet-induced "whitening" of brown adipose tissue (AT) and glucose intolerance. Six-week-old C57BL/6J wild-type (WT) and UCP1 knockout (UCP1-/-) mice, housed at 25°C, were randomized to either a control diet (10% kcal from fat) or Western diet (45% kcal from fat and 1% cholesterol) for 28 wk. Loss of UCP1 had no effect on energy intake, energy expenditure, spontaneous physical activity, weight gain, or visceral white AT mass. Despite similar susceptibility to weight gain compared with WT, UCP1-/- exhibited whitening of brown AT evidenced by a striking ~500% increase in mass and appearance of large unilocular adipocytes, increased expression of genes related to inflammation, immune cell infiltration, and endoplasmic reticulum/oxidative stress (P < 0.05), and decreased mitochondrial subunit protein (COX I, II, III, and IV, P < 0.05), all of which were exacerbated by Western diet (P < 0.05). UCP1-/- mice also developed liver steatosis and glucose intolerance, which was worsened by Western diet. Collectively, these findings demonstrate that loss of UCP1 exacerbates Western diet-induced whitening of brown AT, glucose intolerance, and induces liver steatosis. Notably, the adverse metabolic manifestations of UCP1-/- were independent of changes in body weight, visceral adiposity, and energy expenditure. These novel findings uncover a previously unrecognized metabolic protective role of UCP1 that is independent of its already established role in energy homeostasis.
Collapse
Affiliation(s)
- Nathan C Winn
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Michelle L Gastecki
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rebecca J Welly
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Rebecca J Scroggins
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Terese M Zidon
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - T'Keaya L Gaines
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Makenzie L Woodford
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Jill A Kanaley
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Harold S Sacks
- Endocrine and Diabetes Division, Veterans Greater Los Angeles Healthcare System and Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; .,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and.,Child Health, University of Missouri, Columbia, Missouri
| |
Collapse
|
85
|
DiStefano MT, Roth Flach RJ, Senol-Cosar O, Danai LV, Virbasius JV, Nicoloro SM, Straubhaar J, Dagdeviren S, Wabitsch M, Gupta OT, Kim JK, Czech MP. Adipocyte-specific Hypoxia-inducible gene 2 promotes fat deposition and diet-induced insulin resistance. Mol Metab 2016; 5:1149-1161. [PMID: 27900258 PMCID: PMC5123203 DOI: 10.1016/j.molmet.2016.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/15/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022] Open
Abstract
Objective Adipose tissue relies on lipid droplet (LD) proteins in its role as a lipid-storing endocrine organ that controls whole body metabolism. Hypoxia-inducible Gene 2 (Hig2) is a recently identified LD-associated protein in hepatocytes that promotes hepatic lipid storage, but its role in the adipocyte had not been investigated. Here we tested the hypothesis that Hig2 localization to LDs in adipocytes promotes adipose tissue lipid deposition and systemic glucose homeostasis. Method White and brown adipocyte-deficient (Hig2fl/fl × Adiponection cre+) and selective brown/beige adipocyte-deficient (Hig2fl/fl × Ucp1 cre+) mice were generated to investigate the role of Hig2 in adipose depots. Additionally, we used multiple housing temperatures to investigate the role of active brown/beige adipocytes in this process. Results Hig2 localized to LDs in SGBS cells, a human adipocyte cell strain. Mice with adipocyte-specific Hig2 deficiency in all adipose depots demonstrated reduced visceral adipose tissue weight and increased glucose tolerance. This metabolic effect could be attributed to brown/beige adipocyte-specific Hig2 deficiency since Hig2fl/fl × Ucp1 cre+ mice displayed the same phenotype. Furthermore, when adipocyte-deficient Hig2 mice were moved to thermoneutral conditions in which non-shivering thermogenesis is deactivated, these improvements were abrogated and glucose intolerance ensued. Adipocyte-specific Hig2 deficient animals displayed no detectable changes in adipocyte lipolysis or energy expenditure, suggesting that Hig2 may not mediate these metabolic effects by restraining lipolysis in adipocytes. Conclusions We conclude that Hig2 localizes to LDs in adipocytes, promoting adipose tissue lipid deposition and that its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Reversal of this phenotype at thermoneutrality in the absence of detectable changes in energy expenditure, adipose mass, or liver triglyceride suggests that Hig2 deficiency triggers a deleterious endocrine or neuroendocrine pathway emanating from brown/beige fat cells. Hig2 localizes to lipid droplets in adipocytes and promotes adipose tissue lipid deposition. Its selective deficiency in active brown/beige adipose tissue mediates improved glucose tolerance at 23 °C. Metabolic improvements are independent of changes in lipolysis.
Collapse
Key Words
- Adipocyte
- BAT, brown adipose tissue
- FFA, free fatty acid
- GTT, glucose tolerance test
- HFD, high fat diet
- Hig2, Hypoxia-inducible gene 2
- Hypoxia-inducible gene 2 (Hig2)
- ITT, insulin tolerance test
- LD, lipid droplet
- Lipid droplet
- Lipolysis
- NEFA, non-esterified fatty acid
- Obesity
- RER, respiratory exchange ratio
- SGBS, Simpson-Golabi-Behmel syndrome
- SVF, stromal vascular fraction
- TG, triglyceride
- Ucp1, uncoupling protein 1
- WAT, white adipose tissue
- eWAT, epididymal white adipose tissue
- iWAT, inguinal white adipose tissue
Collapse
Affiliation(s)
- Marina T DiStefano
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel J Roth Flach
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ozlem Senol-Cosar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laura V Danai
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joseph V Virbasius
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sarah M Nicoloro
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Juerg Straubhaar
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sezin Dagdeviren
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Martin Wabitsch
- From the Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm 89075, Germany
| | - Olga T Gupta
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason K Kim
- From the Program in Molecular Medicine and the Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael P Czech
- From the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
86
|
Gómez-Hernández A, Beneit N, Díaz-Castroverde S, Escribano Ó. Differential Role of Adipose Tissues in Obesity and Related Metabolic and Vascular Complications. Int J Endocrinol 2016; 2016:1216783. [PMID: 27766104 PMCID: PMC5059561 DOI: 10.1155/2016/1216783] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/19/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the contribution of white, brown, and perivascular adipose tissues to the pathophysiology of obesity and its associated metabolic and vascular complications. Weight gain in obesity generates excess of fat, usually visceral fat, and activates the inflammatory response in the adipocytes and then in other tissues such as liver. Therefore, low systemic inflammation responsible for insulin resistance contributes to atherosclerotic process. Furthermore, an inverse relationship between body mass index and brown adipose tissue activity has been described. For these reasons, in recent years, in order to combat obesity and its related complications, as a complement to conventional treatments, a new insight is focusing on the role of the thermogenic function of brown and perivascular adipose tissues as a promising therapy in humans. These lines of knowledge are focused on the design of new drugs, or other approaches, in order to increase the mass and/or activity of brown adipose tissue or the browning process of beige cells from white adipose tissue. These new treatments may contribute not only to reduce obesity but also to prevent highly prevalent complications such as type 2 diabetes and other vascular alterations, such as hypertension or atherosclerosis.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology Department, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- CIBER of Diabetes and Associated Metabolic Diseases, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, IdISSC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
87
|
Kasza I, Hernando D, Roldán-Alzate A, Alexander CM, Reeder SB. Thermogenic profiling using magnetic resonance imaging of dermal and other adipose tissues. JCI Insight 2016; 1:e87146. [PMID: 27668285 DOI: 10.1172/jci.insight.87146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Dermal white adipose tissue (dWAT) was recently recognized for its potential to modify whole body metabolism. Here, we show that dWAT can be quantified using a high-resolution, fat-specific magnetic resonance imaging (MRI) technique. Noninvasive MRI has been used to describe adipocyte depots for many years; the MRI technique we describe uses an advanced fat-specific method to measure the thickness of dWAT, together with the total volume of WAT and the relative activation/fat depletion of brown adipose tissues (BAT). Since skin-embedded adipocytes may provide natural insulation, they provide an important counterpoint to the activation of thermogenic brown and beige adipose tissues, whereby these distinct depots are functionally interrelated and require simultaneous assay. This method was validated using characterized mouse cohorts of a lipodystrophic, dWAT-deficient strain (syndecan-1 KO) and 2 obese models (diet-induced obese mice and genetically obese animals, ob/ob). Using a preliminary cohort of normal human subjects, we found the thickness of skin-associated fat varied 8-fold, from 0.13-1.10 cm; on average, this depot is calculated to weigh 8.8 kg.
Collapse
Affiliation(s)
| | | | | | | | - Scott B Reeder
- Department of Radiology.,Department of Medical Physics.,Department of Biomedical Engineering.,Department of Medicine, and.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
88
|
Elsukova EI, Medvedev LN, Mizonova OV. Physiological Features of Perigonadal Adipose Tissue Containing Uncoupling Protein UCP1 in ICR Mice. Bull Exp Biol Med 2016; 161:347-50. [PMID: 27496031 DOI: 10.1007/s10517-016-3411-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 11/24/2022]
Abstract
Immunoreactive uncoupling protein UCP1 was found in the perigonadal fat of only twothirds of 14-week-old male ICR mice. The presence of UCP1 had no effect on the rate of O2 consumption by the adipose tissue. The cellularity of perigonadal fat estimated by the DNA content was significantly higher in tissue containing UCP1 than in samples without this protein. This regularity was also observed after adaptation of mice to moderate cold (10oC) over 8 weeks.
Collapse
Affiliation(s)
- E I Elsukova
- Faculty of Biology, Chemistry, Geography, V. P. Astafiev Krasnoyarsk State Pedagogical University, Krasnoyarsk, Russia
| | - L N Medvedev
- Faculty of Biology, Chemistry, Geography, V. P. Astafiev Krasnoyarsk State Pedagogical University, Krasnoyarsk, Russia.,Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - O V Mizonova
- Faculty of Biology, Chemistry, Geography, V. P. Astafiev Krasnoyarsk State Pedagogical University, Krasnoyarsk, Russia
| |
Collapse
|
89
|
Bargut TCL, Aguila MB, Mandarim-de-Lacerda CA. Brown adipose tissue: Updates in cellular and molecular biology. Tissue Cell 2016; 48:452-60. [PMID: 27561621 DOI: 10.1016/j.tice.2016.08.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/04/2016] [Accepted: 08/06/2016] [Indexed: 01/12/2023]
Abstract
Brown adipose tissue (BAT) is mainly composed of adipocytes, it is highly vascularized and innervated, and can be activated in adult humans. Brown adipocytes are responsible for performing non-shivering thermogenesis, which is exclusively mediated by uncoupling protein (UCP) -1 (a protein found in the inner mitochondrial membrane), the hallmark of BAT, responsible for the uncoupling of the proton leakage from the ATP production, therefore, generating heat (i.e. thermogenesis). Besides UCP1, other compounds are essential not only to thermogenesis, but also to the proliferation and differentiation of BAT, including peroxisome proliferator-activated receptor (PPAR) family, PPARgamma coactivator 1 (PGC1)-alpha, and PRD1-BF-1-RIZ1 homologous domain protein containing protein (PRDM) -16. The sympathetic nervous system centrally regulates thermogenesis through norepinephrine, which acts on the adrenergic receptors of BAT. This bound leads to the initialization of the many pathways that may activate thermogenesis in acute and/or chronic ways. In summary, this mini-review aims to demonstrate the latest advances in the knowledge of BAT.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Diseases, Institute of Biology, State University of Rio de Janeiro, Brazil
| | | |
Collapse
|
90
|
Giralt M, Cereijo R, Villarroya F. Adipokines and the Endocrine Role of Adipose Tissues. Handb Exp Pharmacol 2016; 233:265-82. [PMID: 25903415 DOI: 10.1007/164_2015_6] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The last two decades have witnessed a shift in the consideration of white adipose tissue as a mere repository of fat to be used when food becomes scarce to a true endocrine tissue releasing regulatory signals, the so-called adipokines, to the whole body. The control of eating behavior, the peripheral insulin sensitivity, and even the development of the female reproductive system are among the physiological events controlled by adipokines. Recently, the role of brown adipose tissue in human physiology has been recognized. The metabolic role of brown adipose tissue is opposite to white fat; instead of storing fat, brown adipose tissue is a site of energy expenditure via adaptive thermogenesis. There is growing evidence that brown adipose tissue may have its own pattern of secreted hormonal factors, the so-called brown adipokines, having distinctive biological actions on the overall physiological adaptations to enhance energy expenditure.
Collapse
Affiliation(s)
- Marta Giralt
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain.
| |
Collapse
|
91
|
Sanchez-Gurmaches J, Hung CM, Guertin DA. Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol 2016; 26:313-326. [PMID: 26874575 PMCID: PMC4844825 DOI: 10.1016/j.tcb.2016.01.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/25/2022]
Abstract
The global incidence of obesity and its comorbidities continues to rise along with a demand for novel therapeutic interventions. Brown adipose tissue (BAT) is attracting attention as a therapeutic target because of its presence in adult humans and high capacity to dissipate energy as heat, and thus burn excess calories, when stimulated. Another potential avenue for therapeutic intervention is to induce, within white adipose tissue (WAT), the formation of brown-like adipocytes called brite (brown-like-in-white) or beige adipocytes. However, understanding how to harness the potential of these thermogenic cells requires a deep understanding of their developmental origins and regulation. Recent cell-labeling and lineage-tracing experiments are beginning to shed light on this emerging area of adipocyte biology. We review here adipocyte development, giving particular attention to thermogenic adipocytes.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Chien-Min Hung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
92
|
Hanssen MJW, van der Lans AAJJ, Brans B, Hoeks J, Jardon KMC, Schaart G, Mottaghy FM, Schrauwen P, van Marken Lichtenbelt WD. Short-term Cold Acclimation Recruits Brown Adipose Tissue in Obese Humans. Diabetes 2016; 65:1179-89. [PMID: 26718499 DOI: 10.2337/db15-1372] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022]
Abstract
Recruitment of brown adipose tissue (BAT) has emerged as a potential tool to combat obesity and associated metabolic complications. Short-term cold acclimation has been shown not only to enhance the presence and activity of BAT in lean humans but also to improve the metabolic profile of skeletal muscle to benefit glucose uptake in patients with type 2 diabetes. Here we examined whether short-term cold acclimation also induced such adaptations in 10 metabolically healthy obese male subjects. A 10-day cold acclimation period resulted in increased cold-induced glucose uptake in BAT, as assessed by [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. BAT activity was negatively related to age, with a similar trend for body fat percentage. In addition, cold-induced glucose uptake in BAT was positively related to glucose uptake in visceral white adipose tissue, although glucose uptake in visceral and subcutaneous white adipose tissue depots was unchanged upon cold acclimation. Cold-induced skeletal muscle glucose uptake tended to increase upon cold acclimation, which was paralleled by increased basal GLUT4 localization in the sarcolemma, as assessed through muscle biopsies. Proximal skin temperature was increased and subjective responses to cold were slightly improved at the end of the acclimation period. These metabolic adaptations to prolonged exposure to mild cold may lead to improved glucose metabolism or prevent the development of obesity-associated insulin resistance and hyperglycemia.
Collapse
Affiliation(s)
- Mark J W Hanssen
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Anouk A J J van der Lans
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Boudewijn Brans
- Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Joris Hoeks
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Kelly M C Jardon
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Gert Schaart
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands Department of Nuclear Medicine, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Patrick Schrauwen
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Wouter D van Marken Lichtenbelt
- Departments of Human Biology and Human Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
93
|
Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity. Nat Commun 2016; 7:11420. [PMID: 27117818 PMCID: PMC4853423 DOI: 10.1038/ncomms11420] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/24/2016] [Indexed: 12/29/2022] Open
Abstract
Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by 18F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans. Exosomes are RNA-containing lipid vesicles with roles in inter-tissue crosstalk. Here the authors show that exosome release from brown adipocytes is increased upon thermogenic activation, both in vitro and in vivo, and demonstrate that serum levels of exosomal miR-92 reflect brown fat activity in humans.
Collapse
|
94
|
Thoonen R, Hindle AG, Scherrer-Crosbie M. Brown adipose tissue: The heat is on the heart. Am J Physiol Heart Circ Physiol 2016; 310:H1592-605. [PMID: 27084389 DOI: 10.1152/ajpheart.00698.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/13/2016] [Indexed: 12/17/2022]
Abstract
The study of brown adipose tissue (BAT) has gained significant scientific interest since the discovery of functional BAT in adult humans. The thermogenic properties of BAT are well recognized; however, data generated in the last decade in both rodents and humans reveal therapeutic potential for BAT against metabolic disorders and obesity. Here we review the current literature in light of a potential role for BAT in beneficially mediating cardiovascular health. We focus mainly on BAT's actions in obesity, vascular tone, and glucose and lipid metabolism. Furthermore, we discuss the recently discovered endocrine factors that have a potential beneficial role in cardiovascular health. These BAT-secreted factors may have a favorable effect against cardiovascular risk either through their metabolic role or by directly affecting the heart.
Collapse
Affiliation(s)
- Robrecht Thoonen
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Allyson G Hindle
- Department of Anesthesia and Critical Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts; and
| | - Marielle Scherrer-Crosbie
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts; Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
95
|
Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2016; 5:98-118. [PMID: 27386151 PMCID: PMC4916887 DOI: 10.1080/21623945.2015.1122857] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 11/12/2015] [Indexed: 12/21/2022] Open
Abstract
Obesity has reached epidemic proportions, leading to severe associated pathologies such as insulin resistance, cardiovascular disease, cancer and type 2 diabetes. Adipose tissue has become crucial due to its involvement in the pathogenesis of obesity-induced insulin resistance, and traditionally white adipose tissue has captured the most attention. However in the last decade the presence and activity of heat-generating brown adipose tissue (BAT) in adult humans has been rediscovered. BAT decreases with age and in obese and diabetic patients. It has thus attracted strong scientific interest, and any strategy to increase its mass or activity might lead to new therapeutic approaches to obesity and associated metabolic diseases. In this review we highlight the mechanisms of fatty acid uptake, trafficking and oxidation in brown fat thermogenesis. We focus on BAT's morphological and functional characteristics and fatty acid synthesis, storage, oxidation and use as a source of energy.
Collapse
Affiliation(s)
- María Calderon-Dominguez
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Joan F. Mir
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Fucho
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Minéia Weber
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
- CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
96
|
Di Franco A, Guasti D, Squecco R, Mazzanti B, Rossi F, Idrizaj E, Gallego-Escuredo JM, Villarroya F, Bani D, Forti G, Vannelli GB, Luconi M. Searching for Classical Brown Fat in Humans: Development of a Novel Human Fetal Brown Stem Cell Model. Stem Cells 2016; 34:1679-91. [DOI: 10.1002/stem.2336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Di Franco
- Department of Experimental and Clinical Biomedical Sciences; Endocrinology Unit, University of Florence; Italy
| | - Daniele Guasti
- Department of Experimental and Clinical Medicine; Histology and Embryology Unit, University of Florence; Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine; Section of Physiological Sciences, University of Florence; Italy
| | - Benedetta Mazzanti
- Department of Experimental and Clinical Medicine; Haematology Unit, University of Florence; Italy
| | - Francesca Rossi
- Italian National Research Council, Institute of Applied Physics; Sesto Fiorentino Italy
| | - Eglantina Idrizaj
- Department of Experimental and Clinical Medicine; Section of Physiological Sciences, University of Florence; Italy
| | - José M. Gallego-Escuredo
- Departament de Bioquimica i Biologia Molecular; Institute of Biomedicine, University of Barcelona, and Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición; Barcelona Catalonia Spain
| | - Francesc Villarroya
- Departament de Bioquimica i Biologia Molecular; Institute of Biomedicine, University of Barcelona, and Centro de Investigación Biomédica en Red Fisiopatologia de la Obesidad y Nutrición; Barcelona Catalonia Spain
| | - Daniele Bani
- Department of Experimental and Clinical Medicine; Histology and Embryology Unit, University of Florence; Italy
| | - Gianni Forti
- Department of Experimental and Clinical Biomedical Sciences; Endocrinology Unit, University of Florence; Italy
| | - Gabriella Barbara Vannelli
- Department of Experimental and Clinical Medicine; Section of Anatomy and Histology, University of Florence; Florence Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Sciences; Endocrinology Unit, University of Florence; Italy
| |
Collapse
|
97
|
Marzetti E, D’Angelo E, Savera G, Leeuwenburgh C, Calvani R. Integrated control of brown adipose tissue. HEART AND METABOLISM : MANAGEMENT OF THE CORONARY PATIENT 2016; 69:9-14. [PMID: 27524955 PMCID: PMC4980093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brown adipose tissue (BAT) has evolved as a unique thermogenic organ that allows placental mammals to withstand cold environmental temperatures through the dissipation of metabolic energy in the form of heat. Although traditionally believed to be lost shortly after birth, metabolically active BAT depots have recently been identified in a large percentage of human adults. Besides classical brown cells, a distinct type of thermogenic adipocytes named beige or brite (brown in white) cells are recruited in white adipose tissue depots under specific stimuli. Given the well-known energy-dissipating properties of thermogenic adipose tissue and its function of metabolic sink for glucose and lipids, this tissue has attracted considerable research interest as a possible target for treating obesity and metabolic disease. The complex network of interorgan connections that regulate BAT and brite tissue mass and function is a major hurdle for the development of therapeutic strategies against metabolic disorders. This review provides an overview of the current knowledge on the regulation of BAT and brite adipose tissue function. The possibility of targeting these tissues to treat obesity and other metabolic disorders is also discussed.
Collapse
Affiliation(s)
- Emanuele Marzetti
- Department of Geriatrics, Neurosciences and Orthopedics, Teaching Hospital “Agostino Gemelli”, Rome, Italy
| | - Emanuela D’Angelo
- Department of Geriatrics, Neurosciences and Orthopedics, Teaching Hospital “Agostino Gemelli”, Rome, Italy
| | - Giulia Savera
- Department of Geriatrics, Neurosciences and Orthopedics, Teaching Hospital “Agostino Gemelli”, Rome, Italy
| | | | - Riccardo Calvani
- Department of Geriatrics, Neurosciences and Orthopedics, Teaching Hospital “Agostino Gemelli”, Rome, Italy
| |
Collapse
|
98
|
Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species. Biosci Rep 2016; 36:BSR20150193. [PMID: 26795216 PMCID: PMC4776627 DOI: 10.1042/bsr20150193] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 01/04/2016] [Indexed: 12/29/2022] Open
Abstract
Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress.
Collapse
|
99
|
Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem J 2016; 473:685-92. [PMID: 26769382 DOI: 10.1042/bj20150808] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/14/2016] [Indexed: 01/22/2023]
Abstract
FGF21 (fibroblast growth factor 21), first described as a main fasting-responsive molecule in the liver, has been shown to act as a true metabolic regulator in additional tissues, including muscle and adipose tissues. In the present study, we found that the expression and secretion of FGF21 was very rapidly increased following lactate exposure in adipocytes. Using different pharmacological and knockout mice models, we demonstrated that lactate regulates Fgf21 expression through a NADH/NAD-independent pathway, but requires active p38-MAPK (mitogen activated protein kinase) signalling. We also demonstrated that this effect is not restricted to lactate as additional metabolites including pyruvate and ketone bodies also activated the FGF21 stress response. FGF21 release by adipose cells in response to an excess of intermediate metabolites may represent a physiological mechanism by which the sensing of environmental metabolic conditions results in the release of FGF21 to improve metabolic adaptations.
Collapse
|
100
|
Giralt M, Gavaldà-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol 2015; 418 Pt 1:66-73. [PMID: 26415590 DOI: 10.1016/j.mce.2015.09.018] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factor (FGF)-21 is an endocrine member of the FGF family with healthy effects on glucose and lipid metabolism. FGF21 reduces glycemia and lipidemia in rodent models of obesity and type 2 diabetes. In addition to its effects improving insulin sensitivity, FGF21 causes weight loss by increasing energy expenditure. Activation of the thermogenic activity of brown adipose tissue and promotion of the appearance of the so-called beige/brite type of brown adipocytes in white fat are considered the main mechanisms underlying the leaning effects of FGF21. Paradoxically, however, obesity in rodents and humans is characterized by high levels of FGF21 in the blood. Some degree of resistance to the actions of FGF21 has been proposed as part of the endocrine alterations in obesity. The resistance in adipose tissue from obese rodents and patients is likely attributable to abnormally low levels of the FGF co-receptor β-Klotho, required for FGF21 cellular action. However, native FGF21 and FGF21 derivatives retain their healthy metabolic and weight-loss effects when used as pharmacological agents to treat obese rodents and humans. FGF21 derivatives or molecules mimicking FGF21 action appear to be interesting candidates for the development of novel anti-obesity drugs designed to increase energy expenditure.
Collapse
Affiliation(s)
- Marta Giralt
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain.
| | - Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Catalonia, Spain
| |
Collapse
|