51
|
Tillie RJHA, Theelen TL, van Kuijk K, Temmerman L, de Bruijn J, Gijbels M, Betsholtz C, Biessen EAL, Sluimer JC. A Switch from Cell-Associated to Soluble PDGF-B Protects against Atherosclerosis, despite Driving Extramedullary Hematopoiesis. Cells 2021; 10:1746. [PMID: 34359916 PMCID: PMC8308020 DOI: 10.3390/cells10071746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022] Open
Abstract
Platelet-derived growth factor B (PDGF-B) is a mitogenic, migratory and survival factor. Cell-associated PDGF-B recruits stabilizing pericytes towards blood vessels through retention in extracellular matrix. We hypothesized that the genetic ablation of cell-associated PDGF-B by retention motif deletion would reduce the local availability of PDGF-B, resulting in microvascular pericyte loss, microvascular permeability and exacerbated atherosclerosis. Therefore, Ldlr-/-Pdgfbret/ret mice were fed a high cholesterol diet. Although plaque size was increased in the aortic root of Pdgfbret/ret mice, microvessel density and intraplaque hemorrhage were unexpectedly unaffected. Plaque macrophage content was reduced, which is likely attributable to increased apoptosis, as judged by increased TUNEL+ cells in Pdgfbret/ret plaques (2.1-fold) and increased Pdgfbret/ret macrophage apoptosis upon 7-ketocholesterol or oxidized LDL incubation in vitro. Moreover, Pdgfbret/ret plaque collagen content increased independent of mesenchymal cell density. The decreased macrophage matrix metalloproteinase activity could partly explain Pdgfbret/ret collagen content. In addition to the beneficial vascular effects, we observed reduced body weight gain related to smaller fat deposition in Pdgfbret/ret liver and adipose tissue. While dampening plaque inflammation, Pdgfbret/ret paradoxically induced systemic leukocytosis. The increased incorporation of 5-ethynyl-2'-deoxyuridine indicated increased extramedullary hematopoiesis and the increased proliferation of circulating leukocytes. We concluded that Pdgfbret/ret confers vascular and metabolic effects, which appeared to be protective against diet-induced cardiovascular burden. These effects were unrelated to arterial mesenchymal cell content or adventitial microvessel density and leakage. In contrast, the deletion drives splenic hematopoiesis and subsequent leukocytosis in hypercholesterolemia.
Collapse
Affiliation(s)
- Renée J. H. A. Tillie
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Thomas L. Theelen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Kim van Kuijk
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Jenny de Bruijn
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
| | - Marion Gijbels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Christer Betsholtz
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Erik A. L. Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany
| | - Judith C. Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (R.J.H.A.T.); (T.L.T.); (K.v.K.); (L.T.); (J.d.B.); (M.G.); (E.A.L.B.)
- BHF Centre for Cardiovascular Sciences (CVS), University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
52
|
Wang Y, Sano S, Ogawa H, Horitani K, Evans MA, Yura Y, Miura-Yura E, Doviak H, Walsh K. Murine models of clonal hematopoiesis to assess mechanisms of cardiovascular disease. Cardiovasc Res 2021; 118:1413-1432. [PMID: 34164655 DOI: 10.1093/cvr/cvab215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/21/2021] [Indexed: 12/24/2022] Open
Abstract
Clonal hematopoiesis (CH) is a phenomenon whereby somatic mutations confer a fitness advantage to hematopoietic stem and progenitor cells (HSPC) and thus facilitate their aberrant clonal expansion. These mutations are carried into progeny leukocytes leading to a situation whereby a substantial fraction of an individual's blood cells originate from the HSPC mutant clone. Although this condition rarely progresses to a hematological malignancy, circulating blood cells bearing the mutation have the potential to affect other organ systems as they infiltrate into tissues under both homeostatic and disease conditions. Epidemiological and clinical studies have revealed that CH is highly prevalent in the elderly and is associated with an increased risk of cardiovascular disease and mortality. Recent experimental studies in murine models have assessed the most commonly mutated "driver" genes associated with CH, and have provided evidence for mechanistic connections between CH and cardiovascular disease. A deeper understanding of the mechanisms by which specific CH mutations promote disease pathogenesis is of importance, as it could pave the way for individualized therapeutic strategies targeting the pathogenic CH gene mutations in the future. Here, we review the epidemiology of CH and the mechanistic work from studies using murine disease models, with a particular focus on the strengths and limitations of these experimental systems. We intend for this review to help investigators select the most appropriate models to study CH in the setting of cardiovascular disease.
Collapse
Affiliation(s)
- Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Department of Cardiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Megan A Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Emiri Miura-Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
53
|
Gwon MH, Yun JM. Phenethyl Isothiocyanate Improves Lipid Metabolism and Inflammation via mTOR/PPARγ/AMPK Signaling in the Adipose Tissue of Obese Mice. J Med Food 2021; 24:666-669. [PMID: 34077672 DOI: 10.1089/jmf.2020.4881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity is defined as excess adipose mass that causes serious health problems. Phenethyl isothiocyanate (PEITC) is a major and relatively nontoxic compound of the isothiocyanates. Although many studies have demonstrated that PEITC is a potent substance with physiological activities, such as anticancer activity, the precise mechanism for the effects of PEITC on inflammation and lipid metabolism in adipose tissue is not clear. Our study aimed to clarify the effects of PEITC supplements on the adipose tissue in obesity induced with a high-fat/cholesterol diet, and the underlying mechanisms. We induced obesity by feeding the mice with high fat with 1% cholesterol diet (HFCD) for 13 weeks. Mice were divided into five groups: normal diet (CON), HFCD, HFCD with 3 mg/(kg·d) gallic acid (HFCD+G), and HFCD with 30 and 75 mg/(kg·d) PEITC (HFCD+P30 and HFCD+P75, respectively). Using western blotting and quantitative polymerase chain reaction (qPCR) analysis of the adipose tissue, we determined the expression of lipid metabolism-related genes and inflammation-related genes. In the HFCD, the expression level of nuclear factor-κB (NF-κB), lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1), and cyclooxygenase-2 (COX-2), was higher compared with that in the CON. Moreover, in the HFCD, the expression of p-mechanical targets of the rapamycin (mTOR) was increased, whereas that of p-AMP-activated protein kinase (AMPK) was decreased compared with that in the CON. Nevertheless, these decreased expression levels of p-AMPK and increased levels of LOX-1, p-mTOR, peroxisome proliferator-activated receptor gamma (PPARγ), NF-κB, and COX-2, were alleviated by PEITC supplementation. Therefore, we suggest that PEITC might be a potential preventive agent for ameliorating obesity-induced inflammation and adipogenesis by modulating the mTOR/AMPK/PPARγ pathway.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju, South Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
54
|
Hu M, Jana S, Kilic T, Wang F, Shen M, Winkelaar G, Oudit GY, Rayner K, Zhang DW, Kassiri Z. Loss of TIMP4 (Tissue Inhibitor of Metalloproteinase 4) Promotes Atherosclerotic Plaque Deposition in the Abdominal Aorta Despite Suppressed Plasma Cholesterol Levels. Arterioscler Thromb Vasc Biol 2021; 41:1874-1889. [PMID: 33792349 DOI: 10.1161/atvbaha.120.315522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1/metabolism
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Biomarkers/blood
- Cell Transdifferentiation
- Cells, Cultured
- Cholesterol/blood
- Disease Models, Animal
- Disease Progression
- Down-Regulation
- Female
- Foam Cells/metabolism
- Foam Cells/pathology
- Humans
- Male
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Proteolysis
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Tissue Inhibitor of Metalloproteinases/deficiency
- Tissue Inhibitor of Metalloproteinases/genetics
- Tissue Inhibitor of Metalloproteinase-4
- Mice
Collapse
Affiliation(s)
- Mei Hu
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Tolga Kilic
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Faqi Wang
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Mengcheng Shen
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| | - Gerrit Winkelaar
- Division of Vascular Surgery, University of Alberta and The Northern Alberta Vascular Center, Grey Nuns Hospital, Edmonton, Canada (G.W.)
| | - Gavin Y Oudit
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
- Department of Medicine/Division of Cardiology, Mazankowski Alberta Heart Institute, Cardiovascular Research Center (G.Y.O.), University of Alberta, Edmonton, Canada
| | - Katey Rayner
- University of Ottawa Heart Institute, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada (K.R.)
| | - Da-Wei Zhang
- Department of Pediatrics, Lipid Group (D.-w.Z.), University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center (M.H., S.J., T.K., F.W., M.S., G.Y.O., Z.K.), University of Alberta, Edmonton, Canada
| |
Collapse
|
55
|
Karim R, Begum MM, Alim MA, Uddin MS, Kabir MT, Khan AF, Islam T, Khan SI, Rahman MS. Effects of Alcoholic Extracts of Bangladeshi Mangrove Acanthus ilicifolius Linn. (Acanthaceae) Leaf and Stem on Atherogenic Model of Wistar Albino Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:7539037. [PMID: 34194526 PMCID: PMC8184344 DOI: 10.1155/2021/7539037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 01/11/2023]
Abstract
Acanthus ilicifolius Linn. (Acanthaceae) is a popular mangrove ethnomedicinal plant that cures several ailments, including asthma, diabetes, cancer, and many others. Our experiment was aimed at evaluating the anti-atherogenic effect of A. ilicifolius (leaf and stem) on a high-fat diet-induced atherogenic rat model. Atherosclerosis was developed in 12 weeks. Treatment with the standard drug (3 mg/kg b.w./day, p.o. of Simvastatin), separate doses of methanolic and ethanolic extracts of A. ilicifolius leaf (250 and 500 mg/kg b.w./day, p.o.), and stem (200 and 400 mg/kg b.w./day, p.o.) was subsequently conducted for additional 15 days. The anti-atherogenic effect was evaluated by estimating the change in body weight, systolic blood pressure, and lipid profile. Histopathology of aorta, liver, and kidney of atherogenic models was done for further evaluation. The antioxidant effect of different extracts was performed via DPPH (2,2-diphenyl-1-picrylhydrazyl) assay using ascorbic acid as standard. The anticoagulant effect was determined after 15 days of treatment with the same doses of the plant extracts and the standard Warfarin (2 mg/kg b.w./day, p.o.). When compared with atherogenic control, treatment with A. ilicifolius significantly reduced (p < 0.01) body weight, systolic blood pressure, and serum lipid levels while it elevated HDL (high-density lipoprotein) level in a dose-dependent manner. Moreover, bleeding and clotting time was significantly decreased (p < 0.01) under the treatment of plant extracts. The histopathological data showed considerable improvement in tissue morphology after treatment. Our study evidenced that the alcoholic extracts of A. ilicifolius leaf and stem have anti-atherogenic properties and may be recommended as a potential herbal remedy for preventing cardiovascular diseases.
Collapse
Affiliation(s)
- Rubaba Karim
- Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
| | | | - Md. Abdul Alim
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Graduate School of Innovative Life Science, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | | | - Tanjina Islam
- Department of Pharmacy, Primeasia University, Dhaka 1213, Bangladesh
| | | | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
| |
Collapse
|
56
|
Remote and Anesthetic-Induced Myocardial Preconditioning Is Preserved in Atherosclerotic LDL Receptor-/- Mice In Vivo. Cardiovasc Ther 2021; 2021:5596590. [PMID: 34113390 PMCID: PMC8166506 DOI: 10.1155/2021/5596590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction In the animal model, preconditioning is a powerful weapon against ischemic damage. The reason why the human heart cannot be protected from ischemic damage by preconditioning remains unclear. There are assumptions that the lack of preconditioning in humans is caused by concomitant diseases such as dyslipoproteinemia and arteriosclerosis. This study investigates whether dyslipoproteinemia and the resulting arteriosclerosis can be a cause of a reduced precondition effect of heart in mice. Methods LDL receptor-deficient mice were fed a long-term (14-16 weeks) high-fat atherogenic diet to induce arteriosclerosis. Arteriosclerosis was identified by histological examination and vessel contraction tests. LDLR-/- and wild-type mice were randomly assigned to anesthetic-induced, remote ischemic, or no preconditioning. All mice were subjected to 45 minutes of coronary artery occlusion and 180 minutes of reperfusion. The area at risk and infarct size were determined by Evans Blue and triphenyltetrazolium chloride staining. Results Histopathological examination showed atherosclerosis in high-fat atherogenic fed LDLR-/- mice, and the vessel relaxation capacity was significantly reduced compared to wild-type mice. In the wild type, as expected, infarct size was significantly reduced by preconditioning compared to the control. In LDLR-/- mice, infarct size was significantly reduced by preconditioning compared to the control. Surprisingly, the LDLR-/- control group also had a significantly reduced infarct size compared to the wild-type control group. Conclusion We were able to demonstrate that a high-fat diet morphologically and functionally triggered atherosclerosis in LDLR-/- mice. Interestingly, LDLR-/- mice with an atherogenic diet had smaller infarct sizes compared to wild-type mice. Moreover, preconditioning additionally reduced myocardial infarct size in LDLR-/- mice. A long-term high-fat atherogenic diet and preconditioning seem to result in additive cardioprotection in LDLR-/- mice.
Collapse
|
57
|
Karpale M, Käräjämäki AJ, Kummu O, Gylling H, Hyötyläinen T, Orešič M, Tolonen A, Hautajärvi H, Savolainen MJ, Ala-Korpela M, Hukkanen J, Hakkola J. Activation of pregnane X receptor induces atherogenic lipids and PCSK9 by a SREBP2-mediated mechanism. Br J Pharmacol 2021; 178:2461-2481. [PMID: 33687065 DOI: 10.1111/bph.15433] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Many drugs and environmental contaminants induce hypercholesterolemia and promote the risk of atherosclerotic cardiovascular disease. We tested the hypothesis that pregnane X receptor (PXR), a xenobiotic-sensing nuclear receptor, regulates the level of circulating atherogenic lipids in humans and utilized mouse experiments to identify the mechanisms involved. EXPERIMENTAL APPROACH We performed serum NMR metabolomics in healthy volunteers administered rifampicin, a prototypical human PXR ligand or placebo in a crossover setting. We used high-fat diet fed wild-type and PXR knockout mice to investigate the mechanisms mediating the PXR-induced alterations in cholesterol homeostasis. KEY RESULTS Activation of PXR induced cholesterogenesis both in pre-clinical and clinical settings. In human volunteers, rifampicin increased intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and total cholesterol and lathosterol-cholesterol ratio, a marker of cholesterol synthesis, suggesting increased cholesterol synthesis. Experiments in mice indicated that PXR activation causes widespread induction of the cholesterol synthesis genes including the rate-limiting Hmgcr and upregulates the intermediates in the Kandutsch-Russell cholesterol synthesis pathway in the liver. Additionally, PXR activation induced plasma proprotein convertase subtilisin/kexin type 9 (PCSK9), a negative regulator of hepatic LDL uptake, in both mice and humans. We propose that these effects were mediated through increased proteolytic activation of sterol regulatory element-binding protein 2 (SREBP2) in response to PXR activation. CONCLUSION AND IMPLICATIONS PXR activation induces cholesterol synthesis, elevating LDL and total cholesterol in humans. The PXR-SREBP2 pathway is a novel regulator of the cholesterol and PCSK9 synthesis and a molecular mechanism for drug- and chemical-induced hypercholesterolemia.
Collapse
Affiliation(s)
- Mikko Karpale
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Aki Juhani Käräjämäki
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Department of gastroenterology, Clinics of Internal Medicine, Vaasa Central Hospital, Vaasa, Finland.,Abdominal Center, Department of Internal Medicine, Oulu University Hospital, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Helena Gylling
- Heart and Lung Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | - Markku J Savolainen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Mika Ala-Korpela
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Research Unit of Internal Medicine, University of Oulu, Oulu, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland.,Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
58
|
Kim M, Huda MN, O'Connor A, Albright J, Durbin-Johnson B, Bennett BJ. Hepatic transcriptional profile reveals the role of diet and genetic backgrounds on metabolic traits in female progenitor strains of the Collaborative Cross. Physiol Genomics 2021; 53:173-192. [PMID: 33818129 PMCID: PMC8424536 DOI: 10.1152/physiolgenomics.00140.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/28/2022] Open
Abstract
Mice have provided critical mechanistic understandings of clinical traits underlying metabolic syndrome (MetSyn) and susceptibility to MetSyn in mice is known to vary among inbred strains. We investigated the diet- and strain-dependent effects on metabolic traits in the eight Collaborative Cross (CC) founder strains (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ). Liver transcriptomics analysis showed that both atherogenic diet and host genetics have profound effects on the liver transcriptome, which may be related to differences in metabolic traits observed between strains. We found strain differences in circulating trimethylamine N-oxide (TMAO) concentration and liver triglyceride content, both of which are traits associated with metabolic diseases. Using a network approach, we identified a module of transcripts associated with TMAO and liver triglyceride content, which was enriched in functional pathways. Interrogation of the module related to metabolic traits identified NADPH oxidase 4 (Nox4), a gene for a key enzyme in the production of reactive oxygen species, which showed a strong association with plasma TMAO and liver triglyceride. Interestingly, Nox4 was identified as the highest expressed in the C57BL/6J and NZO/HILtJ strains and the lowest expressed in the CAST/EiJ strain. Based on these results, we suggest that there may be genetic variation in the contribution of Nox4 to the regulation of plasma TMAO and liver triglyceride content. In summary, we show that liver transcriptomic analysis identified diet- or strain-specific pathways for metabolic traits in the Collaborative Cross (CC) founder strains.
Collapse
Affiliation(s)
- Myungsuk Kim
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - M Nazmul Huda
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| | - Annalouise O'Connor
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | | | - Brian J Bennett
- Department of Nutrition, University of California, Davis, California
- USDA-ARS-Western Human Nutrition Research Center, Davis, California
| |
Collapse
|
59
|
Price TR, Baskaran SA, Moncada KL, Minamoto Y, Klemashevich C, Jayuraman A, Sucholdoski JS, Tedeschi LO, Steiner JM, Pillai SD, Walzem RL. Whole and Isolated Protein Fractions Differentially Affect Gastrointestinal Integrity Markers in C57Bl/6 Mice Fed Diets with a Moderate-Fat Content. Nutrients 2021; 13:nu13041251. [PMID: 33920187 PMCID: PMC8069602 DOI: 10.3390/nu13041251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Various proteins or protein fractions reportedly positively affect gastrointestinal integrity and inflammation in diets providing >45% energy as fat. This study tested whether benefits were seen in diets providing 30% of energy as fat. Purified diets (PD) with isolated soy protein (ISP), dried whole milk powder (DWMP), milk fat globule membrane (MFGM), or milk protein concentrate (MPC) as protein sources were fed to C57BL/6J mice (n = 15/diet group) for 13 weeks. MFGM-fed mice were heaviest (p < 0.005) but remained within breeder norms. Growth rates and gut motility were similar for all PD-fed mice. FITC-dextran assessed gut permeability was lowest in DWMP and MFGM (p = 0.054); overall, plasma endotoxin and unprovoked circulating cytokines indicated a non-inflammatory state for all PD-fed mice. Despite differences in cecal butyrate and intestinal gene expression, all PDs supported gastrointestinal health. Whole milk provided more positive effects compared to its fractions. However, ISP-fed mice showed a >370%, (p < 0.006) increase in colonic myeloperoxidase activity indicative of tissue neutrophil infiltration. Surprisingly, FITC-dextran and endotoxin outcomes were many folds better in PD-fed mice than mice (strain, vendor, age and sex matched) fed a “chow-type” nutritionally adequate non-PD. Additional variables within a diet’s matrix appear to affect routine indicators or gastrointestinal health.
Collapse
Affiliation(s)
- Tara R. Price
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Sangeetha A. Baskaran
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Kristin L. Moncada
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
| | - Yasushi Minamoto
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Cory Klemashevich
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Arul Jayuraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (C.K.); (A.J.)
| | - Jan S. Sucholdoski
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Luis O. Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA;
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
| | - Jörg M. Steiner
- Gastrointestinal Laboratory, Dept. Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; (Y.M.); (J.S.S.); (J.M.S.)
| | - Suresh D. Pillai
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843, USA
| | - Rosemary L. Walzem
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA; (S.A.B.); (K.L.M.)
- Graduate Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA;
- Correspondence:
| |
Collapse
|
60
|
Busnelli M, Manzini S, Chiara M, Colombo A, Fontana F, Oleari R, Potì F, Horner D, Bellosta S, Chiesa G. Aortic Gene Expression Profiles Show How ApoA-I Levels Modulate Inflammation, Lysosomal Activity, and Sphingolipid Metabolism in Murine Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:651-667. [PMID: 33327742 PMCID: PMC7837693 DOI: 10.1161/atvbaha.120.315669] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/01/2020] [Indexed: 01/16/2023]
Abstract
OBJECTIVE HDL (high-density lipoprotein) particles are known to possess several antiatherogenic properties that include the removal of excess cholesterol from peripheral tissues, the maintenance of endothelial integrity, antioxidant, and anti-inflammatory activities. ApoA-I overexpression in apoE-deficient (EKO) mice has been shown to increase HDL levels and to strongly reduce atherosclerosis development. The aim of the study was to investigate gene expression patterns associated with atherosclerosis development in the aorta of EKO mice and how HDL plasma levels relate to gene expression patterns at different stages of atherosclerosis development and with different dietary treatments. Approach and Results: Eight-week-old EKO mice, EKO mice overexpressing human apoA-I, and wild-type mice as controls were fed either normal laboratory or Western diet for 6 or 22 weeks. Cholesterol distribution among lipoproteins was evaluated, and atherosclerosis of the aorta was quantified. High-throughput sequencing technologies were used to analyze the transcriptome of the aorta of the 3 genotypes in each experimental condition. In addition to the well-known activation of inflammation and immune response, the impairment of sphingolipid metabolism, phagosome-lysosome system, and osteoclast differentiation emerged as relevant players in atherosclerosis development. The reduced atherosclerotic burden in the aorta of EKO mice expressing high levels of apoA-I was accompanied by a reduced activation of immune system markers, as well as reduced perturbation of lysosomal activity and a better regulation of the sphingolipid synthesis pathway. CONCLUSIONS ApoA-I modulates atherosclerosis development in the aorta of EKO mice affecting the expression of pathways additional to those associated with inflammation and immune response.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Francesco Potì
- Department of Medicine and Surgery—Unit of Neurosciences, University of Parma, Italy (F.P.)
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Stefano Bellosta
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., F.F., R.O., S.B., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
61
|
Johnson C, Drummer IV C, Shan H, Shao Y, Sun Y, Lu Y, Saaoud F, Xu K, Nanayakkara G, Fang P, Bagi Z, Jiang X, Choi ET, Wang H, Yang X. A Novel Subset of CD95 + Pro-Inflammatory Macrophages Overcome miR155 Deficiency and May Serve as a Switch From Metabolically Healthy Obesity to Metabolically Unhealthy Obesity. Front Immunol 2021; 11:619951. [PMID: 33488632 PMCID: PMC7817616 DOI: 10.3389/fimmu.2020.619951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolically healthy obesity (MHO) accounts for roughly 35% of all obese patients. There is no clear consensus that has been reached on whether MHO is a stable condition or merely a transitory period between metabolically healthy lean and metabolically unhealthy obesity (MUO). Additionally, the mechanisms underlying MHO and any transition to MUO are not clear. Macrophages are the most common immune cells in adipose tissues and have a significant presence in atherosclerosis. Fas (or CD95), which is highly expressed on macrophages, is classically recognized as a pro-apoptotic cell surface receptor. However, Fas also plays a significant role as a pro-inflammatory molecule. Previously, we established a mouse model (ApoE-/-/miR155-/-; DKO mouse) of MHO, based on the criteria of not having metabolic syndrome (MetS) and insulin resistance (IR). In our current study, we hypothesized that MHO is a transition phase toward MUO, and that inflammation driven by our newly classified CD95+CD86- macrophages is a novel mechanism for this transition. We found that, with extended (24 weeks) high-fat diet feeding (HFD), MHO mice became MUO, shown by increased atherosclerosis. Mechanistically, we found the following: 1) at the MHO stage, DKO mice exhibited increased pro-inflammatory markers in adipose tissue, including CD95, and serum; 2) total adipose tissue macrophages (ATMs) increased; 3) CD95+CD86- subset of ATMs also increased; and 4) human aortic endothelial cells (HAECs) were activated (as determined by upregulated ICAM1 expression) when incubated with conditioned media from CD95+-containing DKO ATMs and human peripheral blood mononuclear cells-derived macrophages in comparison to respective controls. These results suggest that extended HFD in MHO mice promotes vascular inflammation and atherosclerosis via increasing CD95+ pro-inflammatory ATMs. In conclusion, we have identified a novel molecular mechanism underlying MHO transition to MUO with HFD. We have also found a previously unappreciated role of CD95+ macrophages as a potentially novel subset that may be utilized to assess pro-inflammatory characteristics of macrophages, specifically in adipose tissue in the absence of pro-inflammatory miR-155. These findings have provided novel insights on MHO transition to MUO and new therapeutic targets for the future treatment of MUO, MetS, other obese diseases, and type II diabetes.
Collapse
MESH Headings
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Aorta
- Aortic Diseases/etiology
- Atherosclerosis/etiology
- B7-2 Antigen/analysis
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Diet, High-Fat/adverse effects
- Disease Progression
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Humans
- Inflammation/complications
- Inflammation/immunology
- Intercellular Adhesion Molecule-1/biosynthesis
- Macrophages/chemistry
- Macrophages/classification
- Macrophages/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- MicroRNAs/physiology
- Obesity, Metabolically Benign/immunology
- Obesity, Metabolically Benign/metabolism
- Obesity, Metabolically Benign/pathology
- Vasculitis/etiology
- fas Receptor/analysis
Collapse
Affiliation(s)
- Candice Johnson
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer IV
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Huimin Shan
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani Nanayakkara
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Pu Fang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Zsolt Bagi
- Vascular Biology Center, Augusta University, Augusta, GA, United States
| | - Xiaohua Jiang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T. Choi
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
62
|
Ghaffari S, Jang E, Naderinabi F, Sanwal R, Khosraviani N, Wang C, Steinberg BE, Goldenberg NM, Ikeda J, Lee WL. Endothelial HMGB1 Is a Critical Regulator of LDL Transcytosis via an SREBP2-SR-BI Axis. Arterioscler Thromb Vasc Biol 2021; 41:200-216. [PMID: 33054399 DOI: 10.1161/atvbaha.120.314557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE LDL (low-density lipoprotein) transcytosis across the endothelium is performed by the SR-BI (scavenger receptor class B type 1) receptor and contributes to atherosclerosis. HMGB1 (high mobility group box 1) is a structural protein in the nucleus that is released by cells during inflammation; extracellular HMGB1 has been implicated in advanced disease. Whether intracellular HMGB1 regulates LDL transcytosis through its nuclear functions is unknown. Approach and Results: HMGB1 was depleted by siRNA in human coronary artery endothelial cells, and transcytosis of LDL was measured by total internal reflection fluorescence microscopy. Knockdown of HMGB1 attenuated LDL transcytosis without affecting albumin transcytosis. Loss of HMGB1 resulted in reduction in SR-BI levels and depletion of SREBP2 (sterol regulatory element-binding protein 2)-a transcription factor upstream of SR-BI. The effect of HMGB1 depletion on LDL transcytosis required SR-BI and SREBP2. Overexpression of HMGB1 caused an increase in LDL transcytosis that was unaffected by inhibition of extracellular HMGB1 or depletion of RAGE (receptor for advanced glycation endproducts)-a cell surface receptor for HMGB1. The effect of HMGB1 overexpression on LDL transcytosis was prevented by knockdown of SREBP2. Loss of HMGB1 caused a reduction in the half-life of SREBP2; incubation with LDL caused a significant increase in nuclear localization of HMGB1 that was dependent on SR-BI. Animals lacking endothelial HMGB1 exhibited less acute accumulation of LDL in the aorta 30 minutes after injection and when fed a high-fat diet developed fewer fatty streaks and less atherosclerosis. CONCLUSIONS Endothelial HMGB1 regulates LDL transcytosis by prolonging the half-life of SREBP2, enhancing SR-BI expression. Translocation of HMGB1 to the nucleus in response to LDL requires SR-BI.
Collapse
Affiliation(s)
- Siavash Ghaffari
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Erika Jang
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
| | - Farnoosh Naderinabi
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Rajiv Sanwal
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
| | - Negar Khosraviani
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | - Changsen Wang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
| | | | | | - Jiro Ikeda
- Toronto General Hospital Research Institute, University Health Network, Canada (J.I.)
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada (S.G., F.N.N., R.S., N.K., C.W., W.L.L.)
- Department of Laboratory Medicine and Pathobiology (E.J., R.S., W.L.L.), University of Toronto, Canada
- Department of Biochemistry (W.L.L.), University of Toronto, Canada
| |
Collapse
|
63
|
Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115:73. [PMID: 33258000 PMCID: PMC7704510 DOI: 10.1007/s00395-020-00829-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting.
Collapse
MESH Headings
- Animals
- Aortic Diseases/complications
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Coronary Artery Disease/complications
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Diet, High-Fat
- Disease Models, Animal
- Genetic Predisposition to Disease
- Mice, Knockout, ApoE
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Species Specificity
Collapse
Affiliation(s)
- Pelin Golforoush
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
64
|
Gwon MH, Im YS, Seo AR, Kim KY, Moon HR, Yun JM. Phenethyl Isothiocyanate Protects against High Fat/Cholesterol Diet-Induced Obesity and Atherosclerosis in C57BL/6 Mice. Nutrients 2020; 12:nu12123657. [PMID: 33261070 PMCID: PMC7761196 DOI: 10.3390/nu12123657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
This study concerns obesity-related atherosclerosis, hyperlipidemia, and chronic inflammation. We studied the anti-obesity and anti-atherosclerosis effects of phenethyl isothiocyanate (PEITC) and explored their underlying mechanisms. We established an animal model of high fat/cholesterol-induced obesity in C57BL/6 mice fed for 13 weeks. We divided the mice into five groups: control (CON), high fat/cholesterol (HFCD), HFCD with 3 mg/kg/day gallic acid (HFCD + G), and HFCD with PEITC (30 and 75 mg/kg/day; HFCD + P30 and P75). The body weight, total cholesterol, and triglyceride were significantly lower in the HFCD + P75 group than in the HFCD group. Hepatic lipid accumulation and atherosclerotic plaque formation in the aorta were significantly lower in both HFCD + PEITC groups than in the HFCD group, as revealed by hematoxylin and eosin (H&E) staining. To elucidate the mechanism, we identified the expression of genes related to inflammation, reverse cholesterol transport, and lipid accumulation pathway in the liver. The expression levels of peroxisome proliferator activated receptor gamma (PPARγ), liver-X-receptor α (LXR-α), and ATP binding cassette subfamily A member 1 (ABCA1) were increased, while those of scavenger receptor A (SR-A1), cluster of differentiation 36 (CD36), and nuclear factor-kappa B (NF-κB) were decreased in the HFCD + P75 group compared with those in the HFCD group. Moreover, PEITC modulated H3K9 and H3K27 acetylation, H3K4 dimethylation, and H3K27 di-/trimethylation in the HFCD + P75 group. We, therefore, suggest that supplementation with PEITC may be a potential candidate for the treatment and prevention of atherosclerosis and obesity.
Collapse
Affiliation(s)
- Min-Hee Gwon
- Nutrition Education Major, Graduate School of Education, Chonnam National University, Gwangju 61186, Korea;
| | - Young-Sun Im
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - A-Reum Seo
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Kyoung Yun Kim
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (Y.-S.I.); (A.-R.S.); (K.Y.K.); (H.-R.M.)
- Correspondence: ; Tel.: +82-62-530-1332
| |
Collapse
|
65
|
Silva JL, Leocádio PCL, Reis JM, Campos GP, Capettini LSA, Foureaux G, Ferreira AJ, Windmöller CC, Santos FA, Oriá RB, Crespo-López ME, Alvarez-Leite JI. Oral methylmercury intoxication aggravates cardiovascular risk factors and accelerates atherosclerosis lesion development in ApoE knockout and C57BL/6 mice. Toxicol Res 2020; 37:311-321. [PMID: 34295795 DOI: 10.1007/s43188-020-00066-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/09/2020] [Accepted: 09/23/2020] [Indexed: 01/08/2023] Open
Abstract
Methylmercury (MeHg) intoxication is associated with hypertension, hypercholesterolemia, and atherosclerosis by mechanisms that are not yet fully understood. We investigated the effects of MeHg intoxication in atherosclerosis-prone (ApoE-KO) and resistant C57BL/6 mice. Mice were submitted to carotid stenosis surgery (to induce atherosclerosis faster) and received water or MeHg solution (20 mg/L) for 15 days. Tail plethysmography was performed before and after MeHg exposure. Food and MeHg solution intakes were monitored weekly. On the 15th day, mice were submitted to intravital fluorescence microscopy of mesenteric vasculature to observe in vivo leukocyte rolling and adhesion. Results showed that despite the high hair and liver Hg concentrations in the MeHg group, food and water (or MeHg solution) consumption and liver function marker levels were similar to those in controls. MeHg exposure increased total cholesterol, the atherogenic (non-HDL) fraction and systolic and diastolic blood pressure. MeHg exposure also induced inflammation, as seen by the increased rolling and adhered leukocytes in the mesenteric vasculature. Atherosclerosis lesions were more extensive in the aorta and carotid sites of MeHg-ApoE knockout mice. Surprisingly, MeHg exposure also induced atherosclerosis lesions in C57BL/6 mice, which are resistant to atherosclerosis formation. We concluded that MeHg intoxication might represent a risk for cardiovascular diseases since it accelerates atherogenesis by exacerbating several independent risk factors.
Collapse
Affiliation(s)
- Janayne L Silva
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| | - Paola C L Leocádio
- Departamento de Nutrição e Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Jonas M Reis
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| | - Gianne P Campos
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Luciano S A Capettini
- Departamento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Giselle Foureaux
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Anderson J Ferreira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Cláudia C Windmöller
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais Brazil
| | - Flávia A Santos
- Departamento de Morfologia, Universidade Federal Do Ceará, Fortaleza, Ceará Brazil
| | - Reinaldo B Oriá
- Departamento de Morfologia, Universidade Federal Do Ceará, Fortaleza, Ceará Brazil
| | - Maria E Crespo-López
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará Brazil
| | - Jacqueline I Alvarez-Leite
- Departamento de Bioquímica e Imunologia ICB/UFMG Caixa Postal 486, Belo Horizonte, MG CEP 30161-970 Brazil
| |
Collapse
|
66
|
Zhang X, Bishawi M, Zhang G, Prasad V, Salmon E, Breithaupt JJ, Zhang Q, Truskey GA. Modeling early stage atherosclerosis in a primary human vascular microphysiological system. Nat Commun 2020; 11:5426. [PMID: 33110060 PMCID: PMC7591486 DOI: 10.1038/s41467-020-19197-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
Novel atherosclerosis models are needed to guide clinical therapy. Here, we report an in vitro model of early atherosclerosis by fabricating and perfusing multi-layer arteriole-scale human tissue-engineered blood vessels (TEBVs) by plastic compression. TEBVs maintain mechanical strength, vasoactivity, and nitric oxide (NO) production for at least 4 weeks. Perfusion of TEBVs at a physiological shear stress with enzyme-modified low-density-lipoprotein (eLDL) with or without TNFα promotes monocyte accumulation, reduces vasoactivity, alters NO production, which leads to endothelial cell activation, monocyte accumulation, foam cell formation and expression of pro-inflammatory cytokines. Removing eLDL leads to recovery of vasoactivity, but not loss of foam cells or recovery of permeability, while pretreatment with lovastatin or the P2Y11 inhibitor NF157 reduces monocyte accumulation and blocks foam cell formation. Perfusion with blood leads to increased monocyte adhesion. This atherosclerosis model can identify the role of drugs on specific vascular functions that cannot be assessed in vivo.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, NC, 27708, USA
| | - Ge Zhang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, 116044, Dalian, China
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Varun Prasad
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ellen Salmon
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jason J Breithaupt
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
- University of Miami Miller School of Medicine, Miami, FL, 33163, USA
| | - Qiao Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
67
|
Guo M, Liu Z, Xu Y, Ma P, Huang W, Gao M, Wang Y, Liu G, Xian X. Spontaneous Atherosclerosis in Aged LCAT-Deficient Hamsters With Enhanced Oxidative Stress-Brief Report. Arterioscler Thromb Vasc Biol 2020; 40:2829-2836. [PMID: 32998519 DOI: 10.1161/atvbaha.120.315265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE LCAT (lecithin cholesterol acyltransferase) deficiency results in severe low HDL (high-density lipoprotein). Although whether LCAT is pro- or antiatherosclerosis was in debate in mouse studies, our previous study clearly shows that LCAT deficiency (LCAT-/-) in hamster accelerates atherosclerotic development on high-fat diet. However, unlike in hypercholesterolemia and hypertriglyceridemia, whether LCAT deficiency could lead to spontaneous atherosclerosis has not been studied yet in animal models. We, therefore, sought to investigate the atherosclerosis in LCAT-/- hamsters on standard laboratory diet and explore the potential underlying mechanisms. Approach and Results: Young (<8 months) and aged (>16 months) male and female wild-type and LCAT-/- hamsters on standard laboratory diet were used. Compared with age- and sex-matched wild-type hamsters, LCAT-/- hamsters showed a complete loss of plasma HDL and an increase in triglyceride by 2- to 8-fold at different stages of age. In aged LCAT-/- hamsters, the lesion areas at the aortic roots were ≈40×104 μm3 in males and 18×104 μm3 in females, respectively, which were consistent with the en face plaques observed in male (1.2%) and (1.5%) female groups, respectively. The results of plasma malondialdehyde measurement showed that malondialdehyde concentrations were markedly elevated to 54.4 μmol/L in males and 30 μmol/L in females, which are significantly associated with the atherosclerotic lesions. CONCLUSIONS Our study demonstrates the development of spontaneous atherosclerotic lesions in aged male and female LCAT-/- hamsters with higher plasma oxidative lipid levels independent of plasma total cholesterol levels, further confirming the antiatherosclerotic role of LCAT.
Collapse
Affiliation(s)
- Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| | - Zongyu Liu
- The School of Health Humanities (Z.L.), Peking University, Beijing, China
| | - Yitong Xu
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China (Y.X., M.G.)
| | - Ping Ma
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| | - Wei Huang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China (Y.X., M.G.)
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education (M.G., P.M., W.H., Y.W., G.L., X.X.), Peking University, Beijing, China
| |
Collapse
|
68
|
Azemi AK, Mokhtar SS, Hou LJ, Sharif SET, Rasool AHG. Model for type 2 diabetes exhibits changes in vascular function and structure due to vascular oxidative stress and inflammation. Biotech Histochem 2020; 96:498-506. [PMID: 32957845 DOI: 10.1080/10520295.2020.1823480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used a type 2 diabetes rat model produced by a high fat diet (HFD) followed by low dose streptozotocin (STZ) to study diabetic vasculopathy. Animals were evaluated for early vascular structural changes, endothelial function, inflammation, lipid profile and oxidative stress. We used 20 male Sprague-Dawley rats divided equally into control and diabetic groups. Diabetic rats were fed an HFD for 4 weeks, injected intraperitoneally with STZ, then sacrificed at week 15. Aortic endothelial nitric oxide synthase (eNOS), aortic superoxide dismutase (SOD), endothelial-dependent and independent relaxation and contraction, intima-media thickness (IMT), malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) were measured. Histopathological characteristics also were assessed. Diabetic rats exhibited higher fasting blood glucose (FBG), low density lipoprotein, total cholesterol and triglycerides compared to the control group. Aortic endothelium-dependent relaxation due to acetylcholine (ACh) was lower, while aortic endothelium-dependent contraction due to calcium ionophore and endothelium-independent contraction due to phenylephrine (PE) were higher for the diabetic group. eNOS expression was lower in the diabetic group compared to controls. IMT and MDA levels were increased, while SOD activity was decreased in the diabetic group compared to controls. TNF-α was higher in the diabetic group than for controls. Our type 2 diabetes model exhibited endothelial dysfunction associated with early vascular structural changes, dyslipidemia, increased vascular oxidative stress, and inflammation. Therefore, the model is suitable for studying diabetic atherosclerosis.
Collapse
Affiliation(s)
- Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Low Jen Hou
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,, Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Sharifah Emilia Tuan Sharif
- , Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,, Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
69
|
Atherogenic Diet Accelerates Ectopic Mineralization in a Mouse Model of Pseudoxanthoma Elasticum. INTERNATIONAL JOURNAL OF DERMATOLOGY AND VENEROLOGY 2020; 3:91-96. [PMID: 32923017 PMCID: PMC7446280 DOI: 10.1097/jd9.0000000000000086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/22/2020] [Accepted: 03/08/2020] [Indexed: 12/03/2022]
Abstract
Objective: Pseudoxanthoma elasticum (PXE) is a multisystem heritable disorder caused by mutations in the Abcc6 gene. The disease is characterized by ectopic mineralization of the skin, eyes, and arterial blood vessels. Previous studies have suggested that cardiovascular complications in patients with PXE are caused in part by premature atherosclerosis. The aim of this study is to determine the effect of an atherogenic diet on ectopic mineralization. Methods: We used Abcc6tm1JfK mice (Abcc6−/− mice) as an established preclinical model of PXE. The offspring at age of 4 weeks were divided into two groups and fed the standard control laboratory diet (control group) and the atherogenic diet. Serum lipid profiles and bile acids were measured, and steatosis and tissue mineralization were evaluated by histopathologic analysis and chemical calcium quantification assay, respectively. Results: After 50–58 weeks of feeding an atherogenic diet, the concentrations of total cholesterol, low-density lipoprotein/very-low-density lipoprotein cholesterol, and bile acids were significantly higher in the Abcc6−/− mice on the atherogenic diet (180.9 ± 14.8 g/L, 145.9 ± 12.9 g/L, and 9.7 ± 1.4 μmol/L, respectively) than in Abcc6−/− mice on a control diet (85.2 ± 4.8 g/L, 25.1 ± 5.5 g/L, and 3.3 ± 0.5 μmol/L, respectively) (P < 0.001). Hypercholesterolemia was accompanied by extensive lipid accumulation in the liver and aorta, a characteristic feature of steatosis. The direct calcium assay demonstrated significantly increased mineralization of the muzzle skin containing the dermal sheath of vibrissae (57.2 ± 4.4 μmol Ca/gram tissue on the atherogenic diet and 43.9 ± 2.2 μmol Ca/gram tissue on control diet; P < 0.01), a reproducible biomarker of the ectopic mineralization process in these mice. An increased frequency of mineralization was also observed in the kidneys and eyes of mice on the atherogenic diet (P < 0.01). Conclusion: These observations suggest that the atherogenic diet caused hypercholesterolemia and accelerated ectopic mineralization in the Abcc6−/− mice. Our findings have clinical implications for patients with PXE, a currently intractable disorder with considerable morbidity and occasional mortality.
Collapse
|
70
|
Miteva K, Baptista D, Montecucco F, Asrih M, Burger F, Roth A, Fraga-Silva RA, Stergiopulos N, Mach F, Brandt KJ. Cardiotrophin-1 Deficiency Abrogates Atherosclerosis Progression. Sci Rep 2020; 10:5791. [PMID: 32238841 PMCID: PMC7113288 DOI: 10.1038/s41598-020-62596-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiotrophin-1 (CT-1) is associated with cardiovascular (CV) diseases. We investigated the effect of CT-1 deficiency in the development and progression of atherosclerosis in double knockout Apoe-/-ct-1-/- mice. Apoe-/- C57Bl/6 or Apoe-/-ct-1-/- C57Bl/6 mice were fed a normal chow diet (NCD) or a high-cholesterol diet (HCD). After sacrifice, serum triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), free fatty acids and systemic paracrine factors were measured. Intraplaque lipid and collagen content were quantified in the aortic sections. Immune cell populations in spleen, lymph nodes and aorta were analysis by flow cytometry. Apoe-/-ct-1-/- mice in accelerated atherosclerosis exhibited a reduction of total cholesterol, LDL-C, atherosclerotic plaques size in the aortic root and in the abdominal aorta and improved plaque stability in comparison to Apoe-/- mice. CT-1 deficiency in Apoe-/- mice on (HCD) promoted atheroprotective immune cell responses, as demonstrated by a rise in plasma anti-inflammatory immune cell populations (regulatory T cells, Tregs; regulatory B cells, Bregs and B1a cells) and atheroprotective IgM antibodies. CT-1 deficiency in advanced atherosclerosis mediated regulation of paracrine factors, such as interleukin (IL)-3, IL-6, IL-9, IL-15, IL-27, CXCL5, MCP-3, MIP-1α and MIP-1β. In a model of advanced atherosclerosis, CT-1 deficiency induced anti-inflammatory and atheroprotective effects which resulted in abrogation of atheroprogression.
Collapse
Affiliation(s)
- Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, Genoa, 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, Genoa, 16132, Italy
| | - Mohamed Asrih
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Rodrigo A Fraga-Silva
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nikolaos Stergiopulos
- Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
71
|
In Search for Genes Related to Atherosclerosis and Dyslipidemia Using Animal Models. Int J Mol Sci 2020; 21:ijms21062097. [PMID: 32197550 PMCID: PMC7139774 DOI: 10.3390/ijms21062097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a multifactorial chronic disease that affects large arteries and may lead to fatal consequences. According to current understanding, inflammation and lipid accumulation are the two key mechanisms of atherosclerosis development. Animal models based on genetically modified mice have been developed to investigate these aspects. One such model is low-density lipoprotein (LDL) receptor knockout (KO) mice (ldlr-/-), which are characterized by a moderate increase of plasma LDL cholesterol levels. Another widely used genetically modified mouse strain is apolipoprotein-E KO mice (apoE-/-) that lacks the primary lipoprotein required for the uptake of lipoproteins through the hepatic receptors, leading to even greater plasma cholesterol increase than in ldlr-/- mice. These and other animal models allowed for conducting genetic studies, such as genome-wide association studies, microarrays, and genotyping methods, which helped identifying more than 100 mutations that contribute to atherosclerosis development. However, translation of the results obtained in animal models for human situations was slow and challenging. At the same time, genetic studies conducted in humans were limited by low sample sizes and high heterogeneity in predictive subclinical phenotypes. In this review, we summarize the current knowledge on the use of KO mice for identification of genes implicated in atherosclerosis and provide a list of genes involved in atherosclerosis-associated inflammatory pathways and their brief characteristics. Moreover, we discuss the approaches for candidate gene search in animals and humans and discuss the progress made in the field of epigenetic studies that appear to be promising for identification of novel biomarkers and therapeutic targets.
Collapse
|
72
|
Andreadou I, Schulz R, Badimon L, Adameová A, Kleinbongard P, Lecour S, Nikolaou PE, Falcão-Pires I, Vilahur G, Woudberg N, Heusch G, Ferdinandy P. Hyperlipidaemia and cardioprotection: Animal models for translational studies. Br J Pharmacol 2020; 177:5287-5311. [PMID: 31769007 DOI: 10.1111/bph.14931] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Hyperlipidaemia is a well-established risk factor for cardiovascular diseases and therefore, many animal model have been developed to mimic the human abnormal elevation of blood lipid levels. In parallel, extensive research for the alleviation of ischaemia/reperfusion injury has revealed that hyperlipidaemia is a major co-morbidity that attenuates the cardioprotective effect of conditioning strategies (preconditioning, postconditioning and remote conditioning) and that of pharmacological interventions by interfering with cardioprotective signalling pathways. In the present review article, we summarize the existing data on animal models of hypercholesterolaemia (total, low density and HDL abnormalities) and hypertriglyceridaemia used in ischaemia/reperfusion injury and protection from it. We also provide recommendations on preclinical animal models to be used for translations of the cardioprotective strategies into clinical practice. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Lina Badimon
- Cardiovascular Program ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain.,Cardiovascular Research Chair Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic.,Center of Experimental Medicine, Slovak Academy of Sciences, Institute for Heart Research, Bratislava, Slovak Republic
| | - Petra Kleinbongard
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Ines Falcão-Pires
- Unidade de Investigação Cardiovascular, Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Gemma Vilahur
- Cardiovascular Program ICCC, Research Institute-Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.,CIBERCV, Instituto Salud Carlos III, Madrid, Spain
| | - Nicholas Woudberg
- Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Gerd Heusch
- Institut für Pathophysiologie, Westdeutsches Herz- und Gefäßzentrum, Universitätsklinikum Essen, Essen, Germany
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
73
|
Weiskirchen S, Weiper K, Tolba RH, Weiskirchen R. All You Can Feed: Some Comments on Production of Mouse Diets Used in Biomedical Research with Special Emphasis on Non-Alcoholic Fatty Liver Disease Research. Nutrients 2020; 12:nu12010163. [PMID: 31936026 PMCID: PMC7019265 DOI: 10.3390/nu12010163] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 02/07/2023] Open
Abstract
The laboratory mouse is the most common used mammalian research model in biomedical research. Usually these animals are maintained in germ-free, gnotobiotic, or specific-pathogen-free facilities. In these facilities, skilled staff takes care of the animals and scientists usually don’t pay much attention about the formulation and quality of diets the animals receive during normal breeding and keeping. However, mice have specific nutritional requirements that must be met to guarantee their potential to grow, reproduce and to respond to pathogens or diverse environmental stress situations evoked by handling and experimental interventions. Nowadays, mouse diets for research purposes are commercially manufactured in an industrial process, in which the safety of food products is addressed through the analysis and control of all biological and chemical materials used for the different diet formulations. Similar to human food, mouse diets must be prepared under good sanitary conditions and truthfully labeled to provide information of all ingredients. This is mandatory to guarantee reproducibility of animal studies. In this review, we summarize some information on mice research diets and general aspects of mouse nutrition including nutrient requirements of mice, leading manufacturers of diets, origin of nutrient compounds, and processing of feedstuffs for mice including dietary coloring, autoclaving and irradiation. Furthermore, we provide some critical views on the potential pitfalls that might result from faulty comparisons of grain-based diets with purified diets in the research data production resulting from confounding nutritional factors.
Collapse
Affiliation(s)
- Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
| | - Katharina Weiper
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - René H. Tolba
- Institute of Laboratory Animal Science and Experimental Surgery, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (S.W.); (K.W.)
- Correspondence: ; Tel.: +49-(0)241-80-88683
| |
Collapse
|
74
|
Lian Z, Perrard XYD, Peng X, Raya JL, Hernandez AA, Johnson CG, Lagor WR, Pownall HJ, Hoogeveen RC, Simon SI, Sacks FM, Ballantyne CM, Wu H. Replacing Saturated Fat With Unsaturated Fat in Western Diet Reduces Foamy Monocytes and Atherosclerosis in Male Ldlr-/- Mice. Arterioscler Thromb Vasc Biol 2020; 40:72-85. [PMID: 31619061 PMCID: PMC6991890 DOI: 10.1161/atvbaha.119.313078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE A Mediterranean diet supplemented with olive oil and nuts prevents cardiovascular disease in clinical studies, but the underlying mechanisms are incompletely understood. We investigated whether the preventive effect of the diet could be due to inhibition of atherosclerosis and foamy monocyte formation in Ldlr-/- mice fed with a diet in which milkfat in a Western diet (WD) was replaced with extra-virgin olive oil and nuts (EVOND). Approach and Results: Ldlr-/- mice were fed EVOND or a Western diet for 3 (or 6) months. Compared with the Western diet, EVOND decreased triglyceride and cholesterol levels but increased unsaturated fatty acid concentrations in plasma. EVOND also lowered intracellular lipid accumulation in circulating monocytes, indicating less formation of foamy monocytes, compared with the Western diet. In addition, compared with the Western diet, EVOND reduced monocyte expression of inflammatory cytokines, CD36, and CD11c, with decreased monocyte uptake of oxLDL (oxidized LDL [low-density lipoprotein]) ex vivo and reduced CD11c+ foamy monocyte firm arrest on vascular cell adhesion molecule-1 and E-selectin-coated slides in an ex vivo shear flow assay. Along with these changes, EVOND compared with the Western diet reduced the number of CD11c+ macrophages in atherosclerotic lesions and lowered atherosclerotic lesion area of the whole aorta and aortic sinus. CONCLUSIONS A diet enriched in extra-virgin olive oil and nuts, compared with a Western diet high in saturated fat, lowered plasma cholesterol and triglyceride levels, inhibited foamy monocyte formation, inflammation, and adhesion, and reduced atherosclerosis in Ldlr-/- mice.
Collapse
Affiliation(s)
- Zeqin Lian
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xiao-Yuan Dai Perrard
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Xueying Peng
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (X.P)
| | - Joe L Raya
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Alfredo A Hernandez
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Collin G Johnson
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - William R Lagor
- Department of Molecular Physiology and Biophysics (W.R.L.), Baylor College of Medicine, Houston, TX
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX (H.J.P.)
| | - Ron C Hoogeveen
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| | - Scott I Simon
- Department of Biomedical Engineering, University of California, Davis (A.A.H, S.I.S.)
| | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, and Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA (F.M.S.)
| | - Christie M Ballantyne
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Center for Cardiometabolic Disease Prevention (C.M.B.), Baylor College of Medicine, Houston, TX
| | - Huaizhu Wu
- From the Department of Medicine (Z.L., X.D.P., X.P., J.L.R., C.G.J., R.C.H., C.M.B., H.W.), Baylor College of Medicine, Houston, TX
- Department of Pediatrics (C.M.B., H.W.), Baylor College of Medicine, Houston, TX
| |
Collapse
|
75
|
Brandhorst S, Longo VD. Dietary Restrictions and Nutrition in the Prevention and Treatment of Cardiovascular Disease. Circ Res 2019; 124:952-965. [PMID: 30870119 DOI: 10.1161/circresaha.118.313352] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in many developed countries and remains one of the major diseases strongly affected by the diet. Nutrition can affect CVD directly by contributing to the accumulation of vascular plaques and also indirectly by regulating the rate of aging. This review summarizes research on nutrition and CVD incidence based on a multipillar system that includes basic research focused on aging, epidemiological studies, clinical studies, and studies of centenarians. The relevant research linking nutrition and CVD with focus on macronutrients and aging will be highlighted. We will review some of the most relevant studies on nutrition and CVD treatment, also focusing on interventions known to delay aging. We will discuss both everyday dietary compositions, as well as intermittent and periodic fasting interventions with the potential to prevent and treat CVD.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- From the Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles (S.B., V.D.L.)
| | - Valter D Longo
- From the Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles (S.B., V.D.L.).,Institute of Molecular Oncology, Italian Foundation for Cancer Research, Milan (V.D.L.)
| |
Collapse
|
76
|
Heterozygous Ldlr-Deficient Hamster as a Model to Evaluate the Efficacy of PCSK9 Antibody in Hyperlipidemia and Atherosclerosis. Int J Mol Sci 2019; 20:ijms20235936. [PMID: 31779098 PMCID: PMC6929182 DOI: 10.3390/ijms20235936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/14/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis and atherogenesis. However, there are only limited rodent models, with a functional low-density lipoprotein receptor (LDLR) pathway and cholesteryl ester transfer protein (CETP) to evaluate the drug candidates targeting the PCSK9/LDLR pathway, that are translatable to humans. Here, by using our recently generated LDLR heterozygote (Ldlr+/−) hamster model with functional LDLR pathway and CETP function, we seek to evaluate the effect of a PCSK9 antibody, evolocumab, on dyslipidemia and atherosclerosis compared with ezetimibe, an effective inhibitor of cholesterol absorption, as a positive therapeutic control. We show that the plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were significantly increased in Ldlr+/− hamsters fed a high-fat high-cholesterol (HFHC) diet; therefore, areas of atherosclerotic lesion in the aorta were obviously increased and positively correlated with plasma LDL-C and TC. Circulating free PCSK9 was downregulated by the HFHC diet and was undetectable in the evolocumab treated group, as expected. Most importantly, either evolocumab or ezetimibe treatment prevented HFHC diet-induced hyperlipidemia and subsequent atherosclerotic plaque formation. The results indicate that Ldlr+/− hamsters fed an HFHC diet represent an ideal rodent model to evaluate drug candidates that affect LDLR pathways.
Collapse
|
77
|
Johnston JM, Francis SE, Kiss-Toth E. Experimental models of murine atherosclerosis: does perception match reality? Cardiovasc Res 2019; 114:1845-1847. [PMID: 29878146 PMCID: PMC6255687 DOI: 10.1093/cvr/cvy140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica M Johnston
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Sheila E Francis
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
78
|
Liu J, Nishida M, Inui H, Chang J, Zhu Y, Kanno K, Matsuda H, Sairyo M, Okada T, Nakaoka H, Ohama T, Masuda D, Koseki M, Yamashita S, Sakata Y. Rivaroxaban Suppresses the Progression of Ischemic Cardiomyopathy in a Murine Model of Diet-Induced Myocardial Infarction. J Atheroscler Thromb 2019; 26:915-930. [PMID: 30867376 PMCID: PMC6800390 DOI: 10.5551/jat.48405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
AIM A direct oral anti-coagulant, FXa inhibitor, has been applied to the clinical treatment of myocardial infarction (MI). Experimental studies in mice indicated that FXa inhibitors reduced atherosclerosis and prevented cardiac dysfunction after coronary ligation. These studies suggested that protease-activated receptor (PAR) 2, a major receptor of activated FX, may play an important role in atherosclerosis and cardiac remodeling. METHODS The effects of a FXa inhibitor, rivaroxaban, were investigated in a new murine model of ischemic cardiomyopathy (ICM) using SR-BI KO/ApoeR61h/h mice (Hypo E mice) that developed MI by high-fat diet loading. RESULTS Hypo E mice were fed rivaroxaban-containing (n=49) or control chow diets (n=126) after the induction of MI. The survival curve of the rivaroxaban-treated group 2 weeks after the induction of MI was improved significantly as compared with the non-treatment group (survival rate: 75.5% vs. 47.4%, respectively, p=0.0012). Echocardiography and the expression of BNP showed that rivaroxaban attenuated heart failure. Histological analyses revealed that rivaroxaban reduced aortic atherosclerosis and coronary occlusion, and markedly attenuated cardiac fibrosis. Rivaroxaban treatment decreased cardiac PAR2 levels and pro-inflammatory genes. In vitro, rivaroxaban application demonstrated the increase of cell viability against hypoxia in cardiac myocytes and the reduction of hypoxia-induced inflammation and fibrosis-related molecules in cardiac fibroblasts. The effects of the PAR2 antagonist against hypoxia-induced inflammation were comparable to rivaroxaban in cardiac fibroblasts. CONCLUSIONS Rivaroxaban treatment just after MI in Hypo E mice prevented the progression of ICM by attenuating cardiac remodeling, partially through the suppression of the PAR2-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Jingyi Liu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Nishida
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan
| | - Hiroyasu Inui
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jiuyang Chang
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yinghong Zhu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kotaro Kanno
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hibiki Matsuda
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masami Sairyo
- Department of Cardiology, Kawanishi City Hospital, Kawanishi, Hyogo, Japan
| | - Takeshi Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hajime Nakaoka
- Department of Cardiology, Kakogawa Central City Hospital, Kakogawa, Hyogo, Japan
| | - Tohru Ohama
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Dental Anesthesiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | | | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shizuya Yamashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Rinku General Medical Center, Izumisano, Osaka, Japan
- Department of Community Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
79
|
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.), The University of Chicago, IL
| | - Catherine A Reardon
- Ben May Institute for Cancer Research (C.A.R.), The University of Chicago, IL
| |
Collapse
|
80
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
81
|
Liu JX, Li X, Ji WJ, Yan LF, Li T, Li YX, Xu ZW, Yang GH, Li YM, Zhao JH, Zhou X. The Dynamics of Circulating Monocyte Subsets and Intra-Plaque Proliferating Macrophages during the Development of Atherosclerosis in ApoE -/- Mice. Int Heart J 2019; 60:746-755. [PMID: 31019169 DOI: 10.1536/ihj.17-681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To detect the development of monocytes and proliferative macrophages in atherosclerosis of ApoE-/- mice, we randomly assigned 84 ApoE-/- mice fed western diet or chow diet. On weeks 2, 4, 6, 8, 10, and 12 after fed high-fat diet or normal chow diet, animals were euthanized (n = 7 for each group at each time point). Flow cytometry methods were used to analyze the proportions of circulation monocyte subsets. The macrophage and proliferative macrophage accumulation within atherosclerotic plaques was estimated by confocal florescence microscopy. Plasma levels of total cholesterol and triglyceride were measured by ELISA kit. The plaques of aortic sinus were stained with Oil Red O. The percent of Ly6Chi circulation monocyte, the density of proliferation macrophage, the total plasma cholesterol and triglyceride levels, the lesion area of ApoE-/- mice were consistently elevated in chow diet throughout the trial. The total plasma cholesterol and triglyceride levels, the lesion area were elevated in western diet group with age, and they were always higher than the chow diet group. The Ly6Chi monocytes and proliferative macrophages reached a plateau at 8 weeks and 6 weeks; despite continued high-triglyceride high-cholesterol diet the percent did not significantly change. Interestingly, the density of macrophage did not change significantly over age in western and chow diet groups. Our results provide a dynamic view of Ly6Chi monocyte subset, the density of macrophage and proliferation macrophage change during the development and progression of atherosclerosis, which is relevant for designing new treatment strategies targeting mononuclear phagocytes in this model.
Collapse
Affiliation(s)
- Jun-Xiang Liu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | | | - Wen-Jie Ji
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Li-Fang Yan
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Tan Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Yu-Xiu Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Zhong-Wei Xu
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Guo-Hong Yang
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Yu-Ming Li
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Ji-Hong Zhao
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| | - Xin Zhou
- Tianjin Key Laboratory of Cardiovascular Remodeling and Target Organ Injury, Pingjin Hospital Heart Center, Logistics University of PAPF
| |
Collapse
|
82
|
Kanter JE, Goodspeed L, Wang S, Kramer F, Wietecha T, Gomes-Kjerulf D, Subramanian S, O'Brien KD, den Hartigh LJ. 10,12 Conjugated Linoleic Acid-Driven Weight Loss Is Protective against Atherosclerosis in Mice and Is Associated with Alternative Macrophage Enrichment in Perivascular Adipose Tissue. Nutrients 2018; 10:nu10101416. [PMID: 30282904 PMCID: PMC6213611 DOI: 10.3390/nu10101416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 02/05/2023] Open
Abstract
The dietary fatty acid 10,12 conjugated linoleic acid (10,12 CLA) promotes weight loss by increasing fat oxidation, but its effects on atherosclerosis are less clear. We recently showed that weight loss induced by 10,12 CLA in an atherosclerosis-susceptible mouse model with characteristics similar to human metabolic syndrome is accompanied by accumulation of alternatively activated macrophages within subcutaneous adipose tissue. The objective of this study was to evaluate whether 10,12 CLA-mediated weight loss was associated with an atheroprotective phenotype. Male low-density lipoprotein receptor deficient (Ldlr−/−) mice were made obese with 12 weeks of a high-fat, high-sucrose diet feeding (HFHS: 36% fat, 36% sucrose, 0.15% added cholesterol), then either continued on the HFHS diet with or without caloric restriction (CR), or switched to a diet with 1% of the lard replaced by either 9,11 CLA or 10,12 CLA for 8 weeks. Atherosclerosis and lipid levels were quantified at sacrifice. Weight loss in mice following 10,12 CLA supplementation or CR as a weight-matched control group had improved cholesterol and triglyceride levels, yet only the 10,12 CLA-treated mice had improved en face and aortic sinus atherosclerosis. 10,12 CLA-supplemented mice had increased lesion macrophage content, with enrichment of surrounding perivascular adipose tissue (PVAT) alternative macrophages, which may contribute to the anti-atherosclerotic effect of 10,12 CLA.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Shari Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Farah Kramer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Tomasz Wietecha
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Diego Gomes-Kjerulf
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| | - Kevin D O'Brien
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
- Department of Medicine, Cardiology, University of Washington, Box 356422, 1959 Pacific Ave NE, Seattle, WA 98195, USA.
| | - Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington Medicine Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
83
|
Mukherjee P, Hough G, Chattopadhyay A, Grijalva V, O'Connor EI, Meriwether D, Wagner A, Ntambi JM, Navab M, Reddy ST, Fogelman AM. Role of enterocyte stearoyl-Co-A desaturase-1 in LDLR-null mice. J Lipid Res 2018; 59:1818-1840. [PMID: 30139760 DOI: 10.1194/jlr.m083527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
After crossing floxed stearoyl-CoA desaturase-1 (Scd1 fl/fl) mice with LDL receptor-null (ldlr -/-) mice, and then Villin Cre (VilCre) mice, enterocyte Scd1 expression in Scd1 fl/fl/ldlr -/-/VilCre mice was reduced 70%. On Western diet (WD), Scd1 fl/fl/ldlr -/- mice gained more weight than Scd1 fl/fl/ldlr -/-/VilCre mice (P < 0.0023). On WD, jejunum levels of lysophosphatidylcholine (LysoPC) 18:1 and lysophosphatidic acid (LPA) 18:1 were significantly less in Scd1 fl/fl/ldlr -/-/VilCre compared with Scd1 fl/fl/ldlr -/- mice (P < 0.0004 and P < 0.026, respectively). On WD, Scd1 fl/fl/ldlr -/-/VilCre mice compared with Scd1 fl/fl/ldlr -/- mice had lower protein levels of lipopolysaccharide-binding protein (LBP), cluster of differentiation 14 (CD14), toll-like receptor 4 (TLR4), and myeloid differentiation factor-88 (MyD88) in enterocytes and plasma, and less dyslipidemia and systemic inflammation. Adding a concentrate of tomatoes transgenic for the apoA-I mimetic peptide 6F (Tg6F) to WD resulted in reduced enterocyte protein levels of LBP, CD14, TLR4, and MyD88 in Scd1 fl/fl/ldlr -/- mice similar to that seen in Scd1 fl/fl/ldlr -/-/VilCre mice. Adding LysoPC 18:1 to WD did not reverse the effects of enterocyte Scd1 knockdown. Adding LysoPC 18:1 (but not LysoPC 18:0) to chow induced jejunum Scd1 expression and increased dyslipidemia and plasma serum amyloid A and interleukin 6 levels in Scd1 fl/fl/ldlr -/- mice, but not in Scd1 fl/fl/ldlr -/-/VilCre mice. We conclude that enterocyte Scd1 is partially responsible for LysoPC 18:1- and WD-induced dyslipidemia and inflammation in ldlr -/- mice.
Collapse
Affiliation(s)
- Pallavi Mukherjee
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Greg Hough
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Arnab Chattopadhyay
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Victor Grijalva
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Ellen Ines O'Connor
- Molecular Toxicology Interdepartmental Program, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - David Meriwether
- Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan Wagner
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - James M Ntambi
- Departments of Biochemistry and Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - Mohamad Navab
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| | - Srinivasa T Reddy
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095 .,Departments of Molecular and Medical Pharmacology, University of California-Los Angeles, Los Angeles, CA 90095.,Departments of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095
| | - Alan M Fogelman
- Departments of Medicine, University of California-Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
84
|
Inhibition of glycosphingolipid synthesis reverses skin inflammation and hair loss in ApoE-/- mice fed western diet. Sci Rep 2018; 8:11463. [PMID: 30061606 PMCID: PMC6065400 DOI: 10.1038/s41598-018-28663-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/18/2018] [Indexed: 01/19/2023] Open
Abstract
Sphingolipids have been accorded numerous biological functions however, the effects of feeding a western diet (diet rich in cholesterol and fat) on skin phenotypes, and color is not known. Here, we observed that chronic high-fat and high-cholesterol diet intake in a mouse model of atherosclerosis (ApoE-/-) decreases the level of ceramides and glucosylceramide. At the expense of increased levels of lactosylceramide due to an increase in the expression of lactosylceramide synthase (GalT-V). This is accompanied with neutrophil infiltration into dermis, and enrichment of tumor necrosis factor-stimulated gene-6 (TSG-6) protein. This causes skin inflammation, hair discoloration and loss, in ApoE-/- mice. Conversely, inhibition of glycosphingolipid synthesis, by D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), unbound or encapsulated in a biodegradable polymer (BPD) reversed these phenotypes. Thus, inhibition of glycosphingolipid synthesis represents a unique therapeutic approach relevant to human skin and hair Biology.
Collapse
|
85
|
Understanding the Impact of Dietary Cholesterol on Chronic Metabolic Diseases through Studies in Rodent Models. Nutrients 2018; 10:nu10070939. [PMID: 30037080 PMCID: PMC6073247 DOI: 10.3390/nu10070939] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 01/07/2023] Open
Abstract
The development of certain chronic metabolic diseases has been attributed to elevated levels of dietary cholesterol. However, decades of research in animal models and humans have demonstrated a high complexity with respect to the impact of dietary cholesterol on the progression of these diseases. Thus, recent investigations in non-alcoholic fatty liver disease (NAFLD) point to dietary cholesterol as a key factor for the activation of inflammatory pathways underlying the transition from NAFLD to non-alcoholic steatohepatitis (NASH) and to hepatic carcinoma. Dietary cholesterol was initially thought to be the key factor for cardiovascular disease development, but its impact on the disease depends partly on the capacity to modulate plasmatic circulating low-density lipoprotein (LDL) cholesterol levels. These studies evidence a complex relationship between these chronic metabolic diseases and dietary cholesterol, which, in certain conditions, might promote metabolic complications. In this review, we summarize rodent studies that evaluate the impact of dietary cholesterol on these two prevalent chronic diseases and their relevance to human pathology.
Collapse
|
86
|
Ruotsalainen AK, Lappalainen JP, Heiskanen E, Merentie M, Sihvola V, Näpänkangas J, Lottonen-Raikaslehto L, Kansanen E, Adinolfi S, Kaarniranta K, Ylä-Herttuala S, Jauhiainen M, Pirinen E, Levonen AL. Nuclear factor E2-related factor 2 deficiency impairs atherosclerotic lesion development but promotes features of plaque instability in hypercholesterolaemic mice. Cardiovasc Res 2018; 115:243-254. [DOI: 10.1093/cvr/cvy143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/13/2018] [Indexed: 12/27/2022] Open
Abstract
Abstract
Aims
Oxidative stress and inflammation play an important role in the progression of atherosclerosis. Transcription factor NF-E2-related factor 2 (Nrf2) has antioxidant and anti-inflammatory effects in the vessel wall, but paradoxically, global loss of Nrf2 in apoE deficient mice alleviates atherosclerosis. In this study, we investigated the effect of global Nrf2 deficiency on early and advanced atherogenesis in alternative models of atherosclerosis, LDL receptor deficient mice (LDLR−/−), and LDLR−/− mice expressing apoB-100 only (LDLR−/− ApoB100/100) having a humanized lipoprotein profile.
Methods and results
LDLR−/− mice were fed a high-fat diet (HFD) for 6 or 12 weeks and LDLR−/−ApoB100/100 mice a regular chow diet for 6 or 12 months. Nrf2 deficiency significantly reduced early and more advanced atherosclerosis assessed by lesion size and coverage in the aorta in both models. Nrf2 deficiency in LDLR−/− mice reduced total plasma cholesterol after 6 weeks of HFD and triglycerides in LDLR−/−ApoB100/100 mice on a chow diet. Nrf2 deficiency aggravated aortic plaque maturation in aged LDLR−/−ApoB100/100 mice as it increased plaque calcification. Moreover, ∼36% of Nrf2−/−LDLR−/−ApoB100/100 females developed spontaneous myocardial infarction (MI) or sudden death at 5 to 12 months of age. Interestingly, Nrf2 deficiency increased plaque instability index, enhanced plaque inflammation and calcification, and reduced fibrous cap thickness in brachiocephalic arteries of LDLR−/−ApoB100/100 female mice at age of 12 months.
Conclusions
Absence of Nrf2 reduced atherosclerotic lesion size in both atherosclerosis models, likely via systemic effects on lipid metabolism. However, Nrf2 deficiency in aged LDLR−/−ApoB100/100 mice led to an enhanced atherosclerotic plaque instability likely via increased plaque inflammation and oxidative stress, which possibly predisposed to MI and sudden death.
Collapse
Affiliation(s)
| | - Jari P Lappalainen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - Emmi Heiskanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Mari Merentie
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Virve Sihvola
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Juha Näpänkangas
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | | | - Emilia Kansanen
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Simone Adinolfi
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- National Institute for Health and Welfare, Genomics and Biomarkes Unit, Helsinki, Finland; and
| | - Eija Pirinen
- Research Program for Molecular Neurology, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
87
|
Hitzel J, Lee E, Zhang Y, Bibli SI, Li X, Zukunft S, Pflüger B, Hu J, Schürmann C, Vasconez AE, Oo JA, Kratzer A, Kumar S, Rezende F, Josipovic I, Thomas D, Giral H, Schreiber Y, Geisslinger G, Fork C, Yang X, Sigala F, Romanoski CE, Kroll J, Jo H, Landmesser U, Lusis AJ, Namgaladze D, Fleming I, Leisegang MS, Zhu J, Brandes RP. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells. Nat Commun 2018; 9:2292. [PMID: 29895827 PMCID: PMC5997752 DOI: 10.1038/s41467-018-04602-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/11/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a causal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipoproteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2-controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
Collapse
Affiliation(s)
- Juliane Hitzel
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Eunjee Lee
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA
- Sema4 Genomics (a Mount Sinai venture), Stamford, 06902, CT, USA
| | - Yi Zhang
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA
- Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, 050018, Hebei, China
| | - Sofia Iris Bibli
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Xiaogang Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Sven Zukunft
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Beatrice Pflüger
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Jiong Hu
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Andrea Estefania Vasconez
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Adelheid Kratzer
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
| | - Flávia Rezende
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Ivana Josipovic
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Hector Giral
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
| | - Yannick Schreiber
- Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, 60596, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Pharmazentrum Frankfurt/ZAFES, Faculty of Medicine, Goethe University, Frankfurt am Main, 60590, Germany
- Fraunhofer Institute of Molecular Biology and Applied Ecology-Project Group Translational Medicine and Pharmacology (IME-TMP), Frankfurt am Main, 60596, Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 90095, CA, USA
| | - Fragiska Sigala
- 1st Department of Propaedeutic Surgery, University of Athens Medical School, Hippocration Hospital, Athens, 11364, Greece
| | - Casey E Romanoski
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, 85724, AZ, USA
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, 68167, Germany
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, 30332, GA, USA
| | - Ulf Landmesser
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, 12203, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Berlin), Berlin, 13316, Germany
- Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Aldons J Lusis
- Departments of Medicine, Microbiology and Human Genetics, University of California, Los Angeles, 90095, CA, USA
| | - Dmitry Namgaladze
- Institute of Biochemistry I, Goethe University, Frankfurt am Main, 60590, Germany
| | - Ingrid Fleming
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, 60590, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany
| | - Jun Zhu
- Icahn Institute of Genomics and Multiscale Biology, Mount Sinai Icahn School of Medicine, New York, 10029, NY, USA.
- Sema4 Genomics (a Mount Sinai venture), Stamford, 06902, CT, USA.
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, 60590, Germany.
- German Center for Cardiovascular Research (DZHK) (Partner site Rhine-Main), Frankfurt am Main, 60590, Germany.
| |
Collapse
|
88
|
Dong Z, Shi H, Zhao M, Zhang X, Huang W, Wang Y, Zheng L, Xian X, Liu G. Loss of LCAT activity in the golden Syrian hamster elicits pro-atherogenic dyslipidemia and enhanced atherosclerosis. Metabolism 2018. [PMID: 29526535 DOI: 10.1016/j.metabol.2018.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Lecithin cholesterol acyltransferase (LCAT) plays a pivotal role in HDL metabolism but its influence on atherosclerosis remains controversial for decades both in animal and clinical studies. Because lack of cholesteryl ester transfer protein (CETP) is a major difference between murine and humans in lipoprotein metabolism, we aimed to create a novel Syrian Golden hamster model deficient in LCAT activity, which expresses endogenous CETP, to explore its metabolic features and particularly the influence of LCAT on the development of atherosclerosis. METHODS CRISPR/CAS9 gene editing system was employed to generate mutant LCAT hamsters. The characteristics of lipid metabolism and the development of atherosclerosis in the mutant hamsters were investigated using various conventional methods in comparison with wild type control animals. RESULTS Hamsters lacking LCAT activity exhibited pro-atherogenic dyslipidemia as diminished high density lipoprotein (HDL) and ApoAI, hypertriglyceridemia, Chylomicron/VLDL accumulation and significantly increased ApoB100/48. Mechanistic study for hypertriglyceridemia revealed impaired LPL-mediated lipolysis and increased very low density lipoprotein (VLDL) secretion, with upregulation of hepatic genes involved in lipid synthesis and transport. The pro-atherogenic dyslipidemia in mutant hamsters was exacerbated after high fat diet feeding, ultimately leading to near a 3- and 5-fold increase in atherosclerotic lesions by aortic en face and sinus lesion quantitation, respectively. CONCLUSIONS Our findings demonstrate that LCAT deficiency in hamsters develops pro-atherogenic dyslipidemia and promotes atherosclerotic lesion formation.
Collapse
Affiliation(s)
- Zhao Dong
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Haozhe Shi
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Mingming Zhao
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xin Zhang
- Hebei Invivo Biotech Co., Shijiazhuang, China
| | - Wei Huang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xunde Xian
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - George Liu
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China.
| |
Collapse
|
89
|
Zhao Y, Yang Y, Xing R, Cui X, Xiao Y, Xie L, You P, Wang T, Zeng L, Peng W, Li D, Chen H, Liu M. Hyperlipidemia induces typical atherosclerosis development in Ldlr and Apoe deficient rats. Atherosclerosis 2018; 271:26-35. [DOI: 10.1016/j.atherosclerosis.2018.02.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/08/2018] [Accepted: 02/08/2018] [Indexed: 01/23/2023]
|
90
|
Guo X, Gao M, Wang Y, Lin X, Yang L, Cong N, An X, Wang F, Qu K, Yu L, Wang Y, Wang J, Zhu H, Xian X, Liu G. LDL Receptor Gene-ablated Hamsters: A Rodent Model of Familial Hypercholesterolemia With Dominant Inheritance and Diet-induced Coronary Atherosclerosis. EBioMedicine 2018; 27:214-224. [PMID: 29289533 PMCID: PMC5828369 DOI: 10.1016/j.ebiom.2017.12.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 02/08/2023] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant genetic disease caused mainly by LDL receptor (Ldlr) gene mutations. Unlike FH patients, heterozygous Ldlr knockout (KO) mice do not show a dominant FH trait. Hamsters, like humans, have the cholesteryl ester transfer protein, intestine-only ApoB editing and low hepatic cholesterol synthesis. Here, we generated Ldlr-ablated hamsters using CRISPR/Cas9 technology. Homozygous Ldlr KO hamsters on a chow diet developed hypercholesterolemia with LDL as the dominant lipoprotein and spontaneous atherosclerosis. On a high-cholesterol/high-fat (HCHF) diet, these animals exhibited severe hyperlipidemia and atherosclerotic lesions in the aorta and coronary arteries. Moreover, the heterozygous Ldlr KO hamsters on a short-term HCHF diet also had overt hypercholesterolemia, which could be effectively ameliorated with several lipid-lowering drugs. Importantly, heterozygotes on 3-month HCHF diets developed accelerated lesions in the aortas and coronary arteries. Our findings demonstrate that the Ldlr KO hamster is an animal model of choice for human FH and has great potential in translational research of hyperlipidemia and coronary heart disease.
Collapse
Affiliation(s)
- Xin Guo
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Mingming Gao
- Lipid Metabolism Laboratory, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yunan Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiao Lin
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Liu Yang
- State Key Laboratory of Bioactive Substance, Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Nathan Cong
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiangbo An
- Department of Interventional Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 110611, China
| | - Feng Wang
- Department of Interventional Radiology, First Affiliated Hospital of Dalian Medical University, Dalian 110611, China
| | - Kai Qu
- State Key Laboratory of Bioactive Substance, Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liqing Yu
- Center for Molecular and Translational Medicine, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Jinjie Wang
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Haibo Zhu
- State Key Laboratory of Bioactive Substance, Function of Natural Medicines & Ministry of Health Key Laboratory of Biosynthesis of Natural Products, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xunde Xian
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China.
| | - George Liu
- Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China.
| |
Collapse
|
91
|
Korber M, Klein I, Daum G. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1534-1545. [DOI: 10.1016/j.bbalip.2017.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 02/01/2023]
|
92
|
Constantinescu A, Spaan J, Arkenbout EK, Vink H, VanTeeffelen J. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb Haemost 2017; 105:790-801. [DOI: 10.1160/th10-08-0560] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/09/2010] [Indexed: 11/05/2022]
Abstract
SummaryA thick endothelial glycocalyx contributes to the barrier function of vascular endothelium in macro- and microcirculation. We hypothesised in the current study that diet-induced hyperlipidaemia perturbs the glycocalyx, resulting in decreased dimensions of this layer and increased transendothelial lipoprotein leakage in capillaries. Glycocalyx thickness was measured in mouse cremaster muscle capillaries by intravital microscopy from the distance between flowing red blood cells and the endothelial surface. In control C57BL/6 mice on standard chow, glycocalyx thickness measured 0.58 ± 0.01 (mean ± SEM) μm, and no lipo-proteins were observed in the tissue. After three months administration of an either mild or severe high-fat / high-cholesterol diet (HFC) to C57BL/6 and ApoE3-Leiden mice, circulating large lipoproteins appeared into the subendothelial space in an increasing proportion of cre-master capillaries, and these capillaries displayed reduced glycocalyx dimensions of 0.40 ± 0.02 and 0.30 ± 0.01 μm (C57BL/6 mice), and 0.37 ± 0.01 and 0.28 ± 0.01 μm (ApoE3-Leiden mice), after the mild and severe HFC diet, respectively. The chylomicron nature of the accumulated lipoproteins was confirmed by observations of subendothelial deposition of DiI-labeled chylomicrons in capillaries after inducing acute glycocalyx degradation by heparitinase in normolipidaemic C57BL/6 mice. It is concluded that while under control conditions the endothelial glycocalyx contributes to the vascular barrier against transvascular lipoprotein leakage in the microcirculation, diet-induced hyperlipidaemia reduces the thickness of the glycocalyx, thereby facilitating leakage of chylomicrons across the capillary wall.
Collapse
|
93
|
Bentzon JF, Daemen M, Falk E, Garcia-Garcia HM, Herrmann J, Hoefer I, Jukema JW, Krams R, Kwak BR, Marx N, Naruszewicz M, Newby A, Pasterkamp G, Serruys PWJC, Waltenberger J, Weber C, Tokgözoglu L, Ylä-Herttuala S. Stabilisation of atherosclerotic plaques. Thromb Haemost 2017; 106:1-19. [DOI: 10.1160/th10-12-0784] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/29/2011] [Indexed: 01/04/2023]
Abstract
SummaryPlaque rupture and subsequent thrombotic occlusion of the coronary artery account for as many as three quarters of myocardial infarctions. The concept of plaque stabilisation emerged about 20 years ago to explain the discrepancy between the reduction of cardiovascular events in patients receiving lipid lowering therapy and the small decrease seen in angiographic evaluation of atherosclerosis. Since then, the concept of a vulnerable plaque has received a lot of attention in basic and clinical research leading to a better understanding of the pathophysiology of the vulnerable plaque and acute coronary syndromes. From pathological and clinical observations, plaques that have recently ruptured have thin fibrous caps, large lipid cores, exhibit outward remodelling and invasion by vasa vasorum. Ruptured plaques are also focally inflamed and this may be a common denominator of the other pathological features. Plaques with similar characteristics, but which have not yet ruptured, are believed to be vulnerable to rupture. Experimental studies strongly support the validity of anti-inflammatory approaches to promote plaque stability. Unfortunately, reliable non-invasive methods for imaging and detection of such plaques are not yet readily available. There is a strong biological basis and supportive clinical evidence that low-density lipoprotein lowering with statins is useful for the stabilisation of vulnerable plaques. There is also some clinical evidence for the usefulness of antiplatelet agents, beta blockers and renin-angiotensin-aldosterone system inhibitors for plaque stabilisation. Determining the causes of plaque rupture and designing diagnostics and interventions to prevent them are urgent priorities for current basic and clinical research in cardiovascular area.
Collapse
|
94
|
Chukkapalli SS, Easwaran M, Rivera-Kweh MF, Velsko IM, Ambadapadi S, Dai J, Larjava H, Lucas AR, Kesavalu L. Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice. Pathog Dis 2017; 75:ftx003. [PMID: 28104616 DOI: 10.1093/femspd/ftx003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease (PD) and atherosclerotic vascular disease (ASVD) are both chronic inflammatory diseases with a polymicrobial etiology and have been epidemiologically associated. The purpose is to examine whether periodontal bacteria that infect the periodontium can also infect vascular tissues and enhance pre-existing early aortic atherosclerotic lesions in LDLRnull mice. Mice were orally infected with intermediate bacterial colonizer Fusobacterium nucleatum for the first 12 weeks followed by late bacterial colonizers (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) for the remaining 12 weeks mimicking the human oral microbiota ecological colonization. Genomic DNA from all four bacterial was detected in gingival plaque by PCR, consistently demonstrating infection of mouse gingival surfaces. Infected mice had significant levels of IgG and IgM antibodies, alveolar bone resorption, and showed apical migration of junctional epithelium revealing the induction of PD. These results support the ability of oral bacteria to cause PD in mice. Detection of bacterial genomic DNA in systemic organs indicates hematogenous dissemination from the gingival pockets. Bacterial infection did not alter serum lipid fractions or serum amyloid A levels and did not induce aortic atherosclerotic plaque. This is the first study examining the causal role of periodontal bacteria in induction of ASVD in LDLRnull mice.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Meena Easwaran
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Mercedes F Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Sriram Ambadapadi
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Jiayin Dai
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Hannu Larjava
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Alexandra R Lucas
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|
95
|
P-407-induced Mouse Model of Dose-controlled Hyperlipidemia and Atherosclerosis: 25 Years Later. J Cardiovasc Pharmacol 2017; 70:339-352. [DOI: 10.1097/fjc.0000000000000522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
96
|
Myocardial metabolic alterations in mice with diet-induced atherosclerosis: linking sulfur amino acid and lipid metabolism. Sci Rep 2017; 7:13597. [PMID: 29051579 PMCID: PMC5648757 DOI: 10.1038/s41598-017-13991-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease (CVD), but the effect of diet on the atherosclerotic heart’s metabolism is unclear. We used an integrated metabolomics and lipidomics approach to evaluate metabolic perturbations in heart and serum from mice fed an atherogenic diet (AD) for 8, 16, and 25 weeks. Nuclear magnetic resonance (NMR)-based metabolomics revealed significant changes in sulfur amino acid (SAA) and lipid metabolism in heart from AD mice compared with heart from normal diet mice. Higher SAA levels in AD mice were quantitatively verified using liquid chromatography-mass spectrometry (LC/MS). Lipidomic profiling revealed that fatty acid and triglyceride (TG) levels in the AD group were altered depending on the degree of unsaturation. Additionally, levels of SCD1, SREBP-1, and PPARγ were reduced in AD mice after 25 weeks, while levels of reactive oxygen species were elevated. The results suggest that a long-term AD leads to SAA metabolism dysregulation and increased oxidative stress in the heart, causing SCD1 activity suppression and accumulation of toxic TGs with a low degree of unsaturation. These findings demonstrate that the SAA metabolic pathway is a promising therapeutic target for CVD treatment and that metabolomics can be used to investigate the metabolic signature of atherosclerosis.
Collapse
|
97
|
Sfyri P, Matsakas A. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease. J Biomed Sci 2017; 24:42. [PMID: 28688452 PMCID: PMC5502081 DOI: 10.1186/s12929-017-0346-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.
Collapse
Affiliation(s)
- Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombotic & Metabolic Disease, Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
98
|
Chen T, Lu L, Xu C, Lin X, Leung YK, Ho SM, Ruan XZ, Lian X. Inhibition Role of Atherogenic Diet on Ethyl Carbamate Induced Lung Tumorigenesis in C57BL/6J Mice. Sci Rep 2017; 7:4723. [PMID: 28680122 PMCID: PMC5498653 DOI: 10.1038/s41598-017-05053-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022] Open
Abstract
With emerging evidence connecting cholesterol dysregulation with disturbed pulmonary homeostasis, we are wondering if diet induced hypercholesterolemia would influence the susceptibility to chemical induced lung tumorigenesis in mice. Six to eight week-old male C57BL/6J mice were fed with either a high-cholesterol atherogenic diet (HCD) or matching normal diet (ND), respectively. Following 3 weeks diet adapting, a multi-dose intraperitoneal injections of ethyl carbamate (urethane, 1 g/kg body weight) were established and lung tumorigenesis assessments were taken after 15 weeks latency period. Compared to the urethane treated ND-fed mice, the HCD-fed mice exhibited significantly decreased lung tumor multiplicity and attenuated pulmonary inflammation, which including reduced influx of leukocytes and down regulated tumor-promoting cyto-/chemokine profile in bronchoalveolar lavage fluid, decreased TLR2/4 expression and NF-κB activation in the lung. As a sensor regulating intracellular cholesterol homeostasis, nuclear receptor LXR-α was up-regulated significantly in the urethane treated HCD-fed mice lungs compared to the ND-fed mice lungs, accompanied with decreased pulmonary free cholesterol content and suppressed tumor cell proliferation. These results suggested that intrapulmonary cholesterol homeostasis, other than systematic cholesterol level, is important in lung tumorigenesis, and LXR activation might partly contribute to the inhibitory role of atherogenic diet on lung tumorigenesis.
Collapse
Affiliation(s)
- Ting Chen
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Nutrition and Food Hygiene, School of Public Health and Management, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Lei Lu
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Nutrition and Food Hygiene, School of Public Health and Management, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Cai Xu
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Nutrition and Food Hygiene, School of Public Health and Management, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Xiaojing Lin
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Nutrition and Food Hygiene, School of Public Health and Management, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China
| | - Yuet-Kin Leung
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shuk-Mei Ho
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiong Z Ruan
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,John Moorhead Research Laboratory, Centre for Nephrology, University College London (UCL) Medical School, London, UK
| | - Xuemei Lian
- Center for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China. .,Department of Nutrition and Food Hygiene, School of Public Health and Management, Research Center for Medical and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
99
|
Tang ZH, Peng J, Ren Z, Yang J, Li TT, Li TH, Wang Z, Wei DH, Liu LS, Zheng XL, Jiang ZS. New role of PCSK9 in atherosclerotic inflammation promotion involving the TLR4/NF-κB pathway. Atherosclerosis 2017; 262:113-122. [DOI: 10.1016/j.atherosclerosis.2017.04.023] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 01/13/2023]
|
100
|
Pindjakova J, Sartini C, Lo Re O, Rappa F, Coupe B, Lelouvier B, Pazienza V, Vinciguerra M. Gut Dysbiosis and Adaptive Immune Response in Diet-induced Obesity vs. Systemic Inflammation. Front Microbiol 2017; 8:1157. [PMID: 28690599 PMCID: PMC5479914 DOI: 10.3389/fmicb.2017.01157] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022] Open
Abstract
A mutual interplay exists between adaptive immune system and gut microbiota. Altered gut microbial ecosystems are associated with the metabolic syndrome, occurring in most obese individuals. However, it is unknown why 10–25% of obese individuals are metabolically healthy, while normal weight individuals can develop inflammation and atherosclerosis. We modeled these specific metabolic conditions in mice fed with a chow diet, an obesogenic but not inflammatory diet—mimicking healthy obesity, or Paigen diet—mimicking inflammation in the lean subjects. We analyzed a range of markers and cytokines in the aorta, heart, abdominal fat, liver and spleen, and metagenomics analyses were performed on stool samples. T lymphocytes infiltration was found in the aorta and in the liver upon both diets, however a significant increase in CD4+ and CD8+ cells was found only in the heart of Paigen-fed animals, paralleled by increased expression of IL-1, IL-4, IL-6, IL-17, and IFN-γ. Bacteroidia, Deltaproteobacteria, and Verrucomicrobia dominated in mice fed Paigen diet, while Gammaproteobacteria, Delataproteobacteria, and Erysipelotrichia were more abundant in obese mice. Mice reproducing human metabolic exceptions displayed gut microbiota phylogenetically distinct from normal diet-fed mice, and correlated with specific adaptive immune responses. Diet composition thus has a pervasive role in co-regulating adaptive immunity and the diversity of microbiota.
Collapse
Affiliation(s)
- Jana Pindjakova
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University HospitalBrno, Czechia
| | - Claudio Sartini
- Department of Primary Care and Population Health, University College LondonLondon, United Kingdom
| | - Oriana Lo Re
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University HospitalBrno, Czechia
| | - Francesca Rappa
- Section of Human Anatomy, Department of Experimental Biomedicine and Clinical Neurosciences, University of PalermoPalermo, Italy
| | | | | | - Valerio Pazienza
- Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" HospitalSan Giovanni Rotondo, Italy
| | - Manlio Vinciguerra
- Center for Translational Medicine, International Clinical Research Center, St. Anne's University HospitalBrno, Czechia.,Division of Medicine, Institute for Liver and Digestive Health, University College LondonLondon, United Kingdom
| |
Collapse
|