51
|
Role of Oxidative DNA Damage and Repair in Atrial Fibrillation and Ischemic Heart Disease. Int J Mol Sci 2021; 22:ijms22083838. [PMID: 33917194 PMCID: PMC8068079 DOI: 10.3390/ijms22083838] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 02/07/2023] Open
Abstract
Atrial fibrillation (AF) and ischemic heart disease (IHD) represent the two most common clinical cardiac diseases, characterized by angina, arrhythmia, myocardial damage, and cardiac dysfunction, significantly contributing to cardiovascular morbidity and mortality and posing a heavy socio-economic burden on society worldwide. Current treatments of these two diseases are mainly symptomatic and lack efficacy. There is thus an urgent need to develop novel therapies based on the underlying pathophysiological mechanisms. Emerging evidence indicates that oxidative DNA damage might be a major underlying mechanism that promotes a variety of cardiac diseases, including AF and IHD. Antioxidants, nicotinamide adenine dinucleotide (NAD+) boosters, and enzymes involved in oxidative DNA repair processes have been shown to attenuate oxidative damage to DNA, making them potential therapeutic targets for AF and IHD. In this review, we first summarize the main molecular mechanisms responsible for oxidative DNA damage and repair both in nuclei and mitochondria, then describe the effects of oxidative DNA damage on the development of AF and IHD, and finally discuss potential targets for oxidative DNA repair-based therapeutic approaches for these two cardiac diseases.
Collapse
|
52
|
Obrador E, Salvador R, Marchio P, López-Blanch R, Jihad-Jebbar A, Rivera P, Vallés SL, Banacloche S, Alcácer J, Colomer N, Coronado JA, Alandes S, Drehmer E, Benlloch M, Estrela JM. Nicotinamide Riboside and Pterostilbene Cooperatively Delay Motor Neuron Failure in ALS SOD1 G93A Mice. Mol Neurobiol 2021; 58:1345-1371. [PMID: 33174130 DOI: 10.1007/s12035-020-02188-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-induced damage is a major mechanism in the pathophysiology of amyotrophic lateral sclerosis (ALS). A recent human clinical trial showed that the combination of nicotinamide riboside (NR) and pterostilbene (PT), molecules with potential to interfere in that mechanism, was efficacious in ALS patients. We examined the effect of these molecules in SOD1G93A transgenic mice, a well-stablished model of ALS. Assessment of neuromotor activity and coordination was correlated with histopathology, and measurement of proinflammatory cytokines in the cerebrospinal fluid. Cell death, Nrf2- and redox-dependent enzymes and metabolites, and sirtuin activities were studied in isolated motor neurons. NR and PT increased survival and ameliorated ALS-associated loss of neuromotor functions in SOD1G93A transgenic mice. NR and PT also decreased the microgliosis and astrogliosis associated with ALS progression. Increased levels of proinflammatory cytokines were observed in the cerebrospinal fluid of mice and humans with ALS. NR and PT ameliorated TNFα-induced oxidative stress and motor neuron death in vitro. Our results support the involvement of oxidative stress, specific Nrf2-dependent antioxidant defenses, and sirtuins in the pathophysiology of ALS. NR and PT interfere with the mechanisms leading to the release of proapoptotic molecular signals by mitochondria, and also promote mitophagy.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rosario Salvador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Pilar Rivera
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Soraya L Vallés
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Salvador Banacloche
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain
| | - Javier Alcácer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Nuria Colomer
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | | | - Sandra Alandes
- Pathology Laboratory, Quirón Hospital, 46010, Valencia, Spain
| | - Eraci Drehmer
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - María Benlloch
- Department of Health and Functional Valorization, Catholic University of San Vicente Martir, 46001, Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 15 Av. Blasco Ibañez, 46010, Valencia, Spain.
| |
Collapse
|
53
|
Suchard MS, Savulescu DM. Nicotinamide pathways as the root cause of sepsis - an evolutionary perspective on macrophage energetic shifts. FEBS J 2021; 289:955-964. [PMID: 33686748 PMCID: PMC9545938 DOI: 10.1111/febs.15807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022]
Abstract
Divergent pathways of macrophage metabolism occur during infection, notably switching between oxidative phosphorylation and aerobic glycolysis (Warburg-like metabolism). Concurrently, macrophages shift between alternate and classical activation. A key enzyme upregulated in alternatively activated macrophages is indoleamine 2,3-dioxygenase, which converts tryptophan to kynurenine for de novo synthesis of nicotinamide. Nicotinamide can be used to replenish cellular NAD+ supplies. We hypothesize that an insufficient cellular NAD+ supply is the root cause of metabolic shifts in macrophages. We assert that manipulation of nicotinamide pathways may correct deleterious immune responses. We propose evaluation of nicotinamide (Vitamin B3) and analogues, including isoniazid, nicotinamide mononucleotide and nicotinamide riboside, as potential therapy for infectious causes of sepsis, including COVID-19.
Collapse
Affiliation(s)
- Melinda S Suchard
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Vaccines and Immunology, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Dana M Savulescu
- Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
54
|
Clinical Assessment of the NADome as Biomarkers for Healthy Aging. Methods Mol Biol 2021; 2138:207-216. [PMID: 32219750 DOI: 10.1007/978-1-0716-0471-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD+) and its related metabolites (NADome) are important endogenous analytes that are thought to play important roles in cellular metabolism, inflammation, oxidative stress, cancer, neurodegeneration, and aging in mammals. However, these analytes are unstable during the collection of biological fluids, which is a major limiting factor for their quantitation. Herein, we describe a highly robust and quantitative method using liquid chromatography coupled to tandem mass spectrometry to quantify the NADome in whole blood, plasma, mononuclear cells, platelets, cerebrospinal fluid (CSF), and urine. This methodology represents a "gold standard" of measure for understanding biological pathways and developing targeted pharmacological interventions to modulate NAD+ biosynthesis and NAD-dependent mediators in health and disease.
Collapse
|
55
|
Zhou B, Wang DDH, Qiu Y, Airhart S, Liu Y, Stempien-Otero A, O'Brien KD, Tian R. Boosting NAD level suppresses inflammatory activation of PBMCs in heart failure. J Clin Invest 2021; 130:6054-6063. [PMID: 32790648 PMCID: PMC7598081 DOI: 10.1172/jci138538] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUNDWhile mitochondria play an important role in innate immunity, the relationship between mitochondrial dysfunction and inflammation in heart failure (HF) is poorly understood. In this study we aimed to investigate the mechanistic link between mitochondrial dysfunction and inflammatory activation in peripheral blood mononuclear cells (PBMCs), and the potential antiinflammatory effect of boosting the NAD level.METHODSWe compared the PBMC mitochondrial respiration of 19 hospitalized patients with stage D HF with that of 19 healthy participants. We then created an in vitro model of sterile inflammation by treating healthy PBMCs with mitochondrial damage-associated molecular patterns (MitoDAMPs) isolated from human heart tissue. Last, we enrolled patients with stage D HF and sampled their blood before and after taking 5 to 9 days of oral nicotinamide riboside (NR), a NAD precursor.RESULTSWe demonstrated that HF is associated with both reduced respiratory capacity and elevated proinflammatory cytokine gene expressions. In our in vitro model, MitoDAMP-treated PBMCs secreted IL-6 that impaired mitochondrial respiration by reducing complex I activity. Last, oral NR administration enhanced PBMC respiration and reduced proinflammatory cytokine gene expression in 4 subjects with HF.CONCLUSIONThese findings suggest that systemic inflammation in patients with HF is causally linked to mitochondrial function of the PBMCs. Increasing NAD levels may have the potential to improve mitochondrial respiration and attenuate proinflammatory activation of PBMCs in HF.TRIAL REGISTRATIONClinicalTrials.gov NCT03727646.FUNDINGThis study was funded by the NIH, the University of Washington, and the American Heart Association.
Collapse
Affiliation(s)
- Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Dennis Ding-Hwa Wang
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yanhua Qiu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - Sophia Airhart
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Yaxin Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| | - April Stempien-Otero
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kevin D O'Brien
- Division of Cardiology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine and
| |
Collapse
|
56
|
Poltronieri P, Celetti A, Palazzo L. Mono(ADP-ribosyl)ation Enzymes and NAD + Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells 2021; 10:128. [PMID: 33440786 PMCID: PMC7827148 DOI: 10.3390/cells10010128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Mono(ADP-ribose) transferases and mono(ADP-ribosyl)ating sirtuins use NAD+ to perform the mono(ADP-ribosyl)ation, a simple form of post-translational modification of proteins and, in some cases, of nucleic acids. The availability of NAD+ is a limiting step and an essential requisite for NAD+ consuming enzymes. The synthesis and degradation of NAD+, as well as the transport of its key intermediates among cell compartments, play a vital role in the maintenance of optimal NAD+ levels, which are essential for the regulation of NAD+-utilizing enzymes. In this review, we provide an overview of the current knowledge of NAD+ metabolism, highlighting the functional liaison with mono(ADP-ribosyl)ating enzymes, such as the well-known ARTD10 (also named PARP10), SIRT6, and SIRT7. To this aim, we discuss the link of these enzymes with NAD+ metabolism and chronic diseases, such as cancer, degenerative disorders and aging.
Collapse
Affiliation(s)
- Palmiro Poltronieri
- Institute of Sciences of Food Productions, National Research Council of Italy, via Monteroni 7, 73100 Lecce, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, Via Tommaso de Amicis 95, 80145 Naples, Italy
| |
Collapse
|
57
|
Healthy Lifestyle Recommendations: Do the Beneficial Effects Originate from NAD + Amount at the Cellular Level? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:8819627. [PMID: 33414897 PMCID: PMC7752291 DOI: 10.1155/2020/8819627] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/17/2022]
Abstract
In this review, we describe the role of oxidized forms of nicotinamide adenine dinucleotide (NAD+) as a molecule central to health benefits as the result from observing selected healthy lifestyle recommendations. Namely, NAD+ level can be regulated by lifestyle and nutrition approaches such as fasting, caloric restriction, sports activity, low glucose availability, and heat shocks. NAD+ is reduced with age at a cellular, tissue, and organismal level due to inflammation, defect in NAMPT-mediated NAD+ biosynthesis, and the PARP-mediated NAD+ depletion. This leads to a decrease in cellular energy production and DNA repair and modifies genomic signalling leading to an increased incidence of chronic diseases and ageing. By implementing healthy lifestyle approaches, endogenous intracellular NAD+ levels can be increased, which explains the molecular mechanisms underlying health benefits at the organismal level. Namely, adherence to here presented healthy lifestyle approaches is correlated with an extended life expectancy free of major chronic diseases.
Collapse
|
58
|
Regarding letter on "Kynurenine pathway dysregulation in postpartum depression", by Achtyes et al, 2020. Brain Behav Immun 2021; 91:794-795. [PMID: 33039665 DOI: 10.1016/j.bbi.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 11/21/2022] Open
|
59
|
de Castro JM, Assumpção JAF, Stein DJ, Toledo RS, da Silva LS, Caumo W, Carraro CC, da Rosa Araujo AS, Torres ILS. Nicotinamide riboside reduces cardiometabolic risk factors and modulates cardiac oxidative stress in obese Wistar rats under caloric restriction. Life Sci 2020; 263:118596. [PMID: 33080243 DOI: 10.1016/j.lfs.2020.118596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
AIMS NAD-based therapeutic strategies are encouraged against obesity and heart disease. Our study, therefore, aimed to investigate the effects of nicotinamide riboside (NR), isolated or combined with caloric restriction (CR), both approaches well-known for stimulating NAD levels, on adiposity parameters, cardiometabolic factors and cardiac oxidative stress in rats submitted to cafeteria diet (CAF). MAIN METHODS After 42 days of CAF-induced obesity (hypercaloric and ultra-processed foods common to humans), we examined the effects of oral administration of NR (400 mg/kg for 28 days), combined or not with CR (-62% kcal, for 28 days), on anthropometric, metabolic, tissue, and cardiac oxidative stress parameters in obese male Wistar rats. KEY FINDINGS In obese rats, treatment with NR alone mitigated final body weight gain, reduced adiposity (visceral and subcutaneous), improved insulin resistance, and decreased TG/HDL ratio and heart size. In cardiac OS, treatment with NR increased the antioxidant capacity via glutathione peroxidase and catalase enzymes (in rats under CR) as well as reduced the pro-oxidant complex NADPH oxidase (in obese and lean rats). Hyperglycemia, hypertriglyceridemia and elevated levels of TBARS in the heart were state-dependent adverse effects, induced by treatment with NR. SIGNIFICANCE This is the first study to report effects of nicotinamide riboside on cardiac oxidative stress in an obesity model. Nicotinamide riboside, a natural dietary compound, presented antiobesity effects and cardiometabolic benefits, in addition to positively modulating oxidative stress in the heart, in a state-dependent manner.
Collapse
Affiliation(s)
- Josimar Macedo de Castro
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - José Antônio Fagundes Assumpção
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Dirson João Stein
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Roberta Ströher Toledo
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Lisiane Santos da Silva
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Wolnei Caumo
- Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil
| | - Cristina Campos Carraro
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas de Oxigênio, Departamento de Fisiologia - ICBS - UFRGS, Porto Alegre, RS, Brazil
| | - Alex Sander da Rosa Araujo
- Laboratório de Fisiologia Cardiovascular e Espécies Reativas de Oxigênio, Departamento de Fisiologia - ICBS - UFRGS, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas (PPG): Farmacologia e Terapêutica - Instituto de Ciências Básicas da Saúde (ICBS) - Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas - Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Medicina: Ciências Médicas - Faculdade de Medicina - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
60
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
61
|
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells 2020; 9:cells9061564. [PMID: 32604956 PMCID: PMC7349747 DOI: 10.3390/cells9061564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Over the past years, an increasing amount of evidence has emerged in support of the kynurenine pathway’s (KP) pivotal role in the pathogenesis of several neurodegenerative, psychiatric, vascular and autoimmune diseases. Different neuroactive metabolites of the KP are known to exert opposite effects on neurons, some being neuroprotective (e.g., picolinic acid, kynurenic acid, and the cofactor nicotinamide adenine dinucleotide), while others are toxic to neurons (e.g., 3-hydroxykynurenine, quinolinic acid). Not only the alterations in the levels of the metabolites but also disturbances in their ratio (quinolinic acid/kynurenic acid) have been reported in several diseases. In addition to the metabolites, the enzymes participating in the KP have been unearthed to be involved in modulation of the immune system, the energetic upkeep of neurons and have been shown to influence redox processes and inflammatory cascades, revealing a sophisticated, intertwined system. This review considers various methods through which enzymes and metabolites of the kynurenine pathway influence the immune system, the roles they play in the pathogenesis of neuroinflammatory diseases based on current evidence with a focus on their involvement in multiple sclerosis, as well as therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Biernacki
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Dániel Sandi
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - Krisztina Bencsik
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
| | - László Vécsei
- Department of Neurology, Faculty of General Medicine, Albert Szent-Györgyi Clinical Centre, University of Szeged, H-6725 Szeged, Hungary; (T.B.); (D.S.); (K.B.)
- MTA—SZTE Neuroscience Research Group, H-6725 Szeged, Hungary
- Interdisciplinary Excellence Center, University of Szeged, H-6720 Szeged, Hungary
- Correspondence: ; Tel.: +36-62-545-356; Fax: +36-62-545-597
| |
Collapse
|
62
|
Tran A, He W, Jiang N, Chen JTC, Belsham DD. NAMPT and BMAL1 Are Independently Involved in the Palmitate-Mediated Induction of Neuroinflammation in Hypothalamic Neurons. Front Endocrinol (Lausanne) 2020; 11:351. [PMID: 32595600 PMCID: PMC7303266 DOI: 10.3389/fendo.2020.00351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity is a prominent metabolic disease that predisposes individuals to multiple comorbidities, including type 2 diabetes mellitus, cardiovascular diseases, and cancer. Elevated circulating levels of fatty acids contribute to the development of obesity, in part, by targeting the hypothalamus. Palmitate, the most abundant circulating saturated fatty acid, has been demonstrated to dysregulate NAMPT and circadian clock proteins, as well as induce neuroinflammation. These effects ultimately result in hypothalamic dysregulation of feeding behavior and energy homeostasis. NAMPT is the rate-limiting enzyme of the NAD+ salvage pathway and its expression is under the control of the circadian clock. NAD+ produced from NAMPT can modulate the circadian clock, demonstrating bidirectional interactions between circadian and metabolic pathways. Using NPY/AgRP-expressing mHypoE-46 neurons as well as the novel mHypoA-BMAL1-WT/F and mHypoA-BMAL1-KO/F cell lines, we studied whether there were any interactions between NAMPT and the core circadian clock protein BMAL1 in the palmitate-mediated induction of neuroinflammation. We report that palmitate altered Nampt, Bmal1, Per2 and the inflammatory genes Nf-κb, IκBα, Il-6, and Tlr4. Contrary to studies performed with peripheral tissues, the palmitate-mediated induction in Nampt was independent of BMAL1, and basal Nampt levels did not appear to exhibit rhythmic expression. Palmitate-induced downregulation of Bmal1 and Per2 was independent of NAMPT. However, NAMPT and BMAL1 were both involved in the regulation of Nf-κb, IκBα, Il-6, and Tlr4, as NAMPT inhibition resulted in the repression of basal Nf-κb and IκBα and normalized palmitate-mediated increases in Il-6, and Tlr4. On the other hand, BMAL1 deletion repressed basal Nf-κb, but increased basal Il-6. We conclude that NAMPT and BMAL1 do not interact at the transcriptional level in hypothalamic neurons, but are independently involved in the expression of inflammatory genes.
Collapse
Affiliation(s)
- Andy Tran
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Wenyuan He
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Nan Jiang
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Jim T. C. Chen
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D. Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
63
|
Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Eur J Pharmacol 2020; 879:173158. [PMID: 32360833 DOI: 10.1016/j.ejphar.2020.173158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Nicotinamide adenine nucleotide (NAD) is a small ubiquitous hydrophilic cofactor that participates in several aspects of cellular metabolism. As a coenzyme it has an essential role in the regulation of energetic metabolism, but it is also a cosubstrate for enzymes that regulate fundamental biological processes such as transcriptional regulation, signaling and DNA repairing among others. The fluctuation and oxidative state of NAD levels regulate the activity of these enzymes, which is translated into marked effects on cellular function. While alterations in NAD homeostasis are a common feature of different conditions and age-associated diseases, in general, increased NAD levels have been associated with beneficial health effects. Due to its therapeutic potential, the interest in this molecule has been renewed, and the regulation of NAD metabolism has become an attractive target for drug discovery. In fact, different approaches to replenish or increase NAD levels have been tested, including enhancement of biosynthesis and inhibition of NAD breakdown. Despite further research is needed, this review provides an overview and update on NAD metabolism, including the therapeutic potential of its regulation, as well as pharmacokinetics, safety, precautions and formulation challenges of NAD supplementation.
Collapse
Affiliation(s)
- Marta Arenas-Jal
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain; ICN2 - Catalan Institute of Nanoscience and Nanotechnology (Autonomous University of Barcelona), Bellaterra (Barcelona), Spain.
| | - J M Suñé-Negre
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| | - Encarna García-Montoya
- Pharmacy and Pharmaceutical Technology Department (Faculty of Pharmacy and Food Sciences), University of Barcelona, Barcelona, Spain
| |
Collapse
|
64
|
Williams AC, Hill LJ. The 4 D's of Pellagra and Progress. Int J Tryptophan Res 2020; 13:1178646920910159. [PMID: 32327922 PMCID: PMC7163231 DOI: 10.1177/1178646920910159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide homeostasis is a candidate common denominator to explain smooth transitions, whether demographic, epidemiological or economic. This 'NAD world', dependent on hydrogen-based energy, is not widely recognised as it is neither measured nor viewed from a sufficiently multi-genomic or historical perspective. Reviewing the importance of meat and nicotinamide balances during our co-evolution, recent history suggests that populations only modernise and age well with low fertility on a suitably balanced diet. Imbalances on the low meat side lead to an excess of infectious disease, short lives and boom-bust demographics. On the high side, meat has led to an excess of degenerative, allergic and metabolic disease and low fertility. A 'Goldilocks' diet derived from mixed and sustainable farming (preserving the topsoil) allows for high intellectual capital, height and good health with controlled population growth resulting in economic growth and prosperity. Implementing meat equity worldwide could lead to progress for future generations on 'spaceship' earth by establishing control over population quality, thermostat and biodiversity, if it is not already too late.
Collapse
Affiliation(s)
- Adrian C Williams
- Department of Neurology, University
Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Lisa J Hill
- School of Biomedical Sciences, Institute
of Clinical Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
65
|
Kandlur A, Satyamoorthy K, Gangadharan G. Oxidative Stress in Cognitive and Epigenetic Aging: A Retrospective Glance. Front Mol Neurosci 2020; 13:41. [PMID: 32256315 PMCID: PMC7093495 DOI: 10.3389/fnmol.2020.00041] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022] Open
Abstract
Brain aging is the critical and common factor among several neurodegenerative disorders and dementia. Cellular, biochemical and molecular studies have shown intimate links between oxidative stress and cognitive dysfunction during aging and age-associated neuronal diseases. Brain aging is accompanied by oxidative damage of nuclear as well as mitochondrial DNA, and diminished repair. Recent studies have reported epigenetic alterations during aging of the brain which involves reactive oxygen species (ROS) that regulates various systems through distinct mechanisms. However, there are studies which depict differing roles of reactive oxidant species as a major factor during aging. In this review, we describe the evidence to show how oxidative stress is intricately linked to age-associated cognitive decline. The review will primarily focus on implications of age-associated oxidative damage on learning and memory, and the cellular events, with special emphasis on associated epigenetic machinery. A comprehensive understanding of these mechanisms may provide a perspective on the development of potential therapeutic targets within the oxidative system.
Collapse
Affiliation(s)
| | | | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
66
|
Moffett JR, Arun P, Puthillathu N, Vengilote R, Ives JA, Badawy AAB, Namboodiri AM. Quinolinate as a Marker for Kynurenine Metabolite Formation and the Unresolved Question of NAD + Synthesis During Inflammation and Infection. Front Immunol 2020; 11:31. [PMID: 32153556 PMCID: PMC7047773 DOI: 10.3389/fimmu.2020.00031] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/08/2020] [Indexed: 12/26/2022] Open
Abstract
Quinolinate (Quin) is a classic example of a biochemical double-edged sword, acting as both essential metabolite and potent neurotoxin. Quin is an important metabolite in the kynurenine pathway of tryptophan catabolism leading to the de novo synthesis of nicotinamide adenine dinucleotide (NAD+). As a precursor for NAD+, Quin can direct a portion of tryptophan catabolism toward replenishing cellular NAD+ levels in response to inflammation and infection. Intracellular Quin levels increase dramatically in response to immune stimulation [e.g., lipopolysaccharide (LPS) or pokeweed mitogen (PWM)] in macrophages, microglia, dendritic cells, and other cells of the immune system. NAD+ serves numerous functions including energy production, the poly ADP ribose polymerization (PARP) reaction involved in DNA repair, and the activity of various enzymes such as the NAD+-dependent deacetylases known as sirtuins. We used highly specific antibodies to protein-coupled Quin to delineate cells that accumulate Quin as a key aspect of the response to immune stimulation and infection. Here, we describe Quin staining in the brain, spleen, and liver after LPS administration to the brain or systemic PWM administration. Quin expression was strong in immune cells in the periphery after both treatments, whereas very limited Quin expression was observed in the brain even after direct LPS injection. Immunoreactive cells exhibited diverse morphology ranging from foam cells to cells with membrane extensions related to cell motility. We also examined protein expression changes in the spleen after kynurenine administration. Acute (8 h) and prolonged (48 h) kynurenine administration led to significant changes in protein expression in the spleen, including multiple changes involved with cytoskeletal rearrangements associated with cell motility. Kynurenine administration resulted in several expression level changes in proteins associated with heat shock protein 90 (HSP90), a chaperone for the aryl-hydrocarbon receptor (AHR), which is the primary kynurenine metabolite receptor. We propose that cells with high levels of Quin are those that are currently releasing kynurenine pathway metabolites as well as accumulating Quin for sustained NAD+ synthesis from tryptophan. Further, we propose that the kynurenine pathway may be linked to the regulation of cell motility in immune and cancer cells.
Collapse
Affiliation(s)
- John R. Moffett
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Peethambaran Arun
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Narayanan Puthillathu
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - Ranjini Vengilote
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| | - John A. Ives
- The Center for Brain, Mind, and Healing, Samueli Institute, Alexandria, VA, United States
| | | | - Aryan M. Namboodiri
- Departments of Anatomy, Physiology and Genetics and Neuroscience Program, Uniformed Services University Medical School, Bethesda, MD, United States
| |
Collapse
|
67
|
Chyau CC, Wang HF, Zhang WJ, Chen CC, Huang SH, Chang CC, Peng RY. Antrodan Alleviates High-Fat and High-Fructose Diet-Induced Fatty Liver Disease in C57BL/6 Mice Model via AMPK/Sirt1/SREBP-1c/PPARγ Pathway. Int J Mol Sci 2020; 21:ijms21010360. [PMID: 31935815 PMCID: PMC6981486 DOI: 10.3390/ijms21010360] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and -steatohepatitis (NASH) imply a state of excessive fat built-up in livers with/or without inflammation and have led to serious medical concerns in recent years. Antrodan (Ant), a purified β-glucan from A. cinnamomea has been shown to exhibit tremendous bioactivity, including hepatoprotective, antihyperlipidemic, antiliver cancer, and anti-inflammatory effects. Considering the already well-known alleviating bioactivity of A. cinnamomea for the alcoholic steatohepatitis (ASH), we propose that Ant can be beneficial to NAFLD, and that the AMPK/Sirt1/PPARγ/SREBP-1c pathways may be involved in such alleviations. To uncover this, we carried out this study with 60 male C57BL/6 mice fed high-fat high-fructose diet (HFD) for 60 days, in order to induce NAFLD/NASH. Mice were then grouped and treated (by oral administration) as: G1: control; G2: HFD (HFD control); G3: Ant, 40 mgkg (Ant control); G4: HFD+Orlistat (10 mg/kg) (as Orlistat control); G5: HFD+Ant L (20 mg/kg); and G6: HFD+Ant H (40 mg/kg) for 45 days. The results indicated Ant at 40 mg/kg effectively suppressed the plasma levels of malondialdehyde, total cholesterol, triglycerides, GOT, GPT, uric acid, glucose, and insulin; upregulated leptin, adiponectin, pAMPK, Sirt1, and down-regulated PPARγ and SREBP-1c. Conclusively, Ant effectively alleviates NAFLD via AMPK/Sirt1/CREBP-1c/PPARγ pathway.
Collapse
Affiliation(s)
- Charng-Cherng Chyau
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Hsueh-Fang Wang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Wen-Juan Zhang
- Institute of Biomedical Nutrition, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan; (H.-F.W.); (W.-J.Z.)
| | - Chin-Chu Chen
- Grape King Biotechnology Center, 60, Sec 3, Longgang Rd., Chung-Li City, Taoyuan County 320, Taiwan;
| | - Shiau-Huei Huang
- Research Institute of Biotechnology, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan;
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11301, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| | - Robert Y. Peng
- Research Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei 11301, Taiwan
- School of Medicine and Health, Hungkuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung City 43302, Taiwan
- Correspondence: (C.-C.C.); (C.-C.C.); (R.Y.P.); Tel.: +886-4-26318652 (C.-C.C.); Fax: +886-4-26525386 (C.-C.C.)
| |
Collapse
|
68
|
Mohiuddin M, Rahman MM, Sale JE, Pearson CE. CtIP-BRCA1 complex and MRE11 maintain replication forks in the presence of chain terminating nucleoside analogs. Nucleic Acids Res 2019; 47:2966-2980. [PMID: 30657944 PMCID: PMC6451104 DOI: 10.1093/nar/gkz009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/30/2018] [Accepted: 01/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chain-terminating nucleoside analogs (CTNAs), which cannot be extended by DNA polymerases, are widely used as antivirals or anti-cancer agents, and can induce cell death. Processing of blocked DNA ends, like camptothecin-induced trapped-topoisomerase I, can be mediated by TDP1, BRCA1, CtIP and MRE11. Here, we investigated whether the CtIP-BRCA1 complex and MRE11 also contribute to cellular tolerance to CTNAs, including 2',3'-dideoxycytidine (ddC), cytarabine (ara-C) and zidovudine (Azidothymidine, AZT). We show that BRCA1-/-, CtIPS332A/-/- and nuclease-dead MRE11D20A/- mutants display increased sensitivity to CTNAs, accumulate more DNA damage (chromosomal breaks, γ-H2AX and neutral comets) when treated with CTNAs and exhibit significant delays in replication fork progression during exposure to CTNAs. Moreover, BRCA1-/-, CtIPS332A/-/- and nuclease-dead MRE11D20A/- mutants failed to resume DNA replication in response to CTNAs, whereas control and CtIP+/-/- cells experienced extensive recovery of DNA replication. In summary, we provide clear evidence that MRE11 and the collaborative action of BRCA1 and CtIP play a critical role in the nuclease-dependent removal of incorporated ddC from replicating genomic DNA. We propose that BRCA1-CTIP and MRE11 prepare nascent DNA ends, blocked from synthesis by CTNAs, for further repair.
Collapse
Affiliation(s)
- Mohiuddin Mohiuddin
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Md Maminur Rahman
- Department of Radiation Genetics, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,The Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
69
|
Conze D, Brenner C, Kruger CL. Safety and Metabolism of Long-term Administration of NIAGEN (Nicotinamide Riboside Chloride) in a Randomized, Double-Blind, Placebo-controlled Clinical Trial of Healthy Overweight Adults. Sci Rep 2019; 9:9772. [PMID: 31278280 PMCID: PMC6611812 DOI: 10.1038/s41598-019-46120-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
Nicotinamide riboside (NR) is a newly discovered nicotinamide adenine dinucleotide (NAD+) precursor vitamin. A crystal form of NR chloride termed NIAGEN is generally recognized as safe (GRAS) for use in foods and the subject of two New Dietary Ingredient Notifications for use in dietary supplements. To evaluate the kinetics and dose-dependency of NR oral availability and safety in overweight, but otherwise healthy men and women, an 8-week randomized, double-blind, placebo-controlled clinical trial was conducted. Consumption of 100, 300 and 1000 mg NR dose-dependently and significantly increased whole blood NAD+ (i.e., 22%, 51% and 142%) and other NAD+ metabolites within 2 weeks. The increases were maintained throughout the remainder of the study. There were no reports of flushing and no significant differences in adverse events between the NR and placebo-treated groups or between groups at different NR doses. NR also did not elevate low density lipoprotein cholesterol or dysregulate 1-carbon metabolism. Together these data support the development of a tolerable upper intake limit for NR based on human data.
Collapse
Affiliation(s)
- Dietrich Conze
- Chromadex Spherix Consulting, 11821 Parklawn Drive, Suite 310, Rockville, MD, 20852, United States
| | - Charles Brenner
- Department of Biochemistry, University of Iowa, 4-403 BSB, Iowa City, IA, 52242, United States.
| | - Claire L Kruger
- Chromadex Spherix Consulting, 11821 Parklawn Drive, Suite 310, Rockville, MD, 20852, United States.
| |
Collapse
|
70
|
Lespay-Rebolledo C, Tapia-Bustos A, Bustamante D, Morales P, Herrera-Marschitz M. The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox Res 2019; 36:472-490. [PMID: 31187430 DOI: 10.1007/s12640-019-00064-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022]
Abstract
We have recently reported that global perinatal asphyxia (PA) induces a regionally sustained increase in oxidized glutathione (GSSG) levels and GSSG/GSH ratio, a decrease in tissue-reducing capacity, a decrease in catalase activity, and an increase in apoptotic caspase-3-dependent cell death in rat neonatal brain up to 14 postnatal days, indicating a long-term impairment in redox homeostasis. In the present study, we evaluated whether the increase in GSSG/GSH ratio observed in hippocampus involves changes in glutathione reductase (GR) and glutathione peroxidase (GPx) activity, the enzymes reducing glutathione disulfide (GSSG) and hydroperoxides, respectively, as well as catalase, the enzyme protecting against peroxidation. The study also evaluated whether there is a shift in the metabolism towards the penthose phosphate pathway (PPP), by measuring TIGAR, the TP53-inducible glycolysis and apoptosis regulator, associated with delayed cell death, further monitoring calpain activity, involved in bax-dependent cell death, and XRCC1, a scaffolding protein interacting with genome sentinel proteins. Global PA was induced by immersing fetus-containing uterine horns removed by a cesarean section from on term rat dams into a water bath at 37 °C for 21 min. Asphyxia-exposed and sibling cesarean-delivered fetuses were manually resuscitated and nurtured by surrogate dams. Animals were euthanized at postnatal (P) days 1 or 14, dissecting samples from hippocampus to be assayed for glutathione, GR, GPx (all by spectrophotometry), catalase (Western blots and ELISA), TIGAR (Western blots), calpain (fluorescence), and XRCC1 (Western blots). One hour after delivery, asphyxia-exposed and control neonates were injected with either 100 μl saline or 0.8 mmol/kg nicotinamide, i.p., shown to protect from the short- and long-term consequences of PA. It was found that global PA produced (i) a sustained increase of GSSG levels and GSSG/GSH ratio at P1 and P14; (ii) a decrease of GR, GPx, and catalase activity at P1 and P14; (iii) a decrease at P1, followed by an increase at P14 of TIGAR levels; (iv) an increase of calpain activity at P14; and (v) an increase of XRCC1 levels, but only at P1. (vi) Nicotinamide prevented the effect of PA on GSSG levels and GSSG/GSH ratio, and on GR, GPx, and catalase activity, also on increased TIGAR levels and calpain activity observed at P14. The present study demonstrates that the long-term impaired redox homeostasis observed in the hippocampus of rats subjected to global PA implies changes in GR, GPx, and catalase, and a shift towards PPP, as indicated by an increase of TIGAR levels at P14.
Collapse
Affiliation(s)
- C Lespay-Rebolledo
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - A Tapia-Bustos
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - D Bustamante
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile
| | - P Morales
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile. .,Department of Neuroscience, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| | - M Herrera-Marschitz
- Programme of Molecular & Clinical Pharmacology, ICBM, Medical Faculty, University of Chile, Av. Independencia, 1027, Santiago, Chile.
| |
Collapse
|
71
|
Worton SA, Greenwood SL, Wareing M, Heazell AE, Myers J. The kynurenine pathway; A new target for treating maternal features of preeclampsia? Placenta 2019; 84:44-49. [PMID: 31076094 DOI: 10.1016/j.placenta.2019.04.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/08/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
In preeclampsia, vasospasm, oxidative stress, endothelial dysfunction, and immune dysregulation are key mediators of maternal disease. A new time-of-disease treatment is needed with the potential to treat these areas of pathophysiology. A review of the literature has indicated that metabolites of the kynurenine pathway have the potential to; (i) induce vasorelaxation of resistance arteries and reduce blood pressure; (ii) exert antioxidant effects and reduce the effects of poly-ADP ribose polymerase activation (iii) prevent endothelial dysfunction and promote endothelial nitric oxide production; (iv) cause T cell differentiation into tolerogenic regulatory T cells and induce apoptosis of pro-inflammatory Th1 cells. This has led to the hypothesis that increasing Kynurenine pathway activity may offer a new treatment strategy for preeclampsia.
Collapse
Affiliation(s)
- Stephanie A Worton
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Susan L Greenwood
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark Wareing
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alexander Ep Heazell
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jenny Myers
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; St. Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
72
|
Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. Role of Nicotinamide Adenine Dinucleotide and Related Precursors as Therapeutic Targets for Age-Related Degenerative Diseases: Rationale, Biochemistry, Pharmacokinetics, and Outcomes. Antioxid Redox Signal 2019; 30:251-294. [PMID: 29634344 PMCID: PMC6277084 DOI: 10.1089/ars.2017.7269] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an essential cofactor and substrate for a number of critical cellular processes involved in oxidative phosphorylation and ATP production, DNA repair, epigenetically modulated gene expression, intracellular calcium signaling, and immunological functions. NAD+ depletion may occur in response to either excessive DNA damage due to free radical or ultraviolet attack, resulting in significant poly(ADP-ribose) polymerase (PARP) activation and a high turnover and subsequent depletion of NAD+, and/or chronic immune activation and inflammatory cytokine production resulting in accelerated CD38 activity and decline in NAD+ levels. Recent studies have shown that enhancing NAD+ levels can profoundly reduce oxidative cell damage in catabolic tissue, including the brain. Therefore, promotion of intracellular NAD+ anabolism represents a promising therapeutic strategy for age-associated degenerative diseases in general, and is essential to the effective realization of multiple benefits of healthy sirtuin activity. The kynurenine pathway represents the de novo NAD+ synthesis pathway in mammalian cells. NAD+ can also be produced by the NAD+ salvage pathway. Recent Advances: In this review, we describe and discuss recent insights regarding the efficacy and benefits of the NAD+ precursors, nicotinamide (NAM), nicotinic acid (NA), nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN), in attenuating NAD+ decline in degenerative disease states and physiological aging. Critical Issues: Results obtained in recent years have shown that NAD+ precursors can play important protective roles in several diseases. However, in some cases, these precursors may vary in their ability to enhance NAD+ synthesis via their location in the NAD+ anabolic pathway. Increased synthesis of NAD+ promotes protective cell responses, further demonstrating that NAD+ is a regulatory molecule associated with several biochemical pathways. Future Directions: In the next few years, the refinement of personalized therapy for the use of NAD+ precursors and improved detection methodologies allowing the administration of specific NAD+ precursors in the context of patients' NAD+ levels will lead to a better understanding of the therapeutic role of NAD+ precursors in human diseases.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| | | | - Fatemeh Khorshidi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Anne Poljak
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| |
Collapse
|
73
|
Kim S, Lee DG. Role of calcium in reactive oxygen species-induced apoptosis in Candida albicans: an antifungal mechanism of antimicrobial peptide, PMAP-23. Free Radic Res 2019; 53:8-17. [DOI: 10.1080/10715762.2018.1511052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Korea
| |
Collapse
|
74
|
Denihan NM, Kirwan JA, Walsh BH, Dunn WB, Broadhurst DI, Boylan GB, Murray DM. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J Cereb Blood Flow Metab 2019; 39:147-162. [PMID: 28840775 PMCID: PMC6311668 DOI: 10.1177/0271678x17726502] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elucidating metabolic effects of hypoxic-ischaemic encephalopathy (HIE) may reveal early biomarkers of injury and new treatment targets. This study uses untargeted metabolomics to examine early metabolic alterations in a carefully defined neonatal population. Infants with perinatal asphyxia who were resuscitated at birth and recovered (PA group), those who developed HIE (HIE group) and healthy controls were all recruited at birth. Metabolomic analysis of cord blood was performed using direct infusion FT-ICR mass spectrometry. For each reproducibly detected metabolic feature, mean fold differences were calculated HIE vs. controls (ΔHIE) and PA vs. controls (ΔPA). Putative metabolite annotations were assigned and pathway analysis was performed. Twenty-nine putatively annotated metabolic features were significantly different in ΔPA after false discovery correction ( q < 0.05), with eight of these also significantly altered in ΔHIE. Altered putative metabolites included; melatonin, leucine, kynurenine and 3-hydroxydodecanoic acid which differentiated between infant groups (ΔPA and ΔHIE); and D-erythrose-phosphate, acetone, 3-oxotetradecanoic acid and methylglutarylcarnitine which differentiated across severity grades of HIE. Pathway analysis revealed ΔHIE was associated with a 50% and 75% perturbation of tryptophan and pyrimidine metabolism, respectively. We have identified perturbed metabolic pathways and potential biomarkers specific to PA and HIE, which measured at birth, may help direct treatment.
Collapse
Affiliation(s)
- Niamh M Denihan
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | | | - Brian H Walsh
- 4 Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA.,5 Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Warwick B Dunn
- 3 School of Biosciences, University of Birmingham, Birmingham, UK.,6 Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - David I Broadhurst
- 7 School of Science, Edith Cowan University, Joondalup, Perth, Australia
| | - Geraldine B Boylan
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- 1 Neonatal Brain Research Group, University College Cork, Cork, Ireland.,2 Irish Centre for Fetal and Neonatal Translational Research, University College Cork, Cork, Ireland
| |
Collapse
|
75
|
Poljsak B, Kovac V, Dahmane R, Levec T, Starc A. Cancer Etiology: A Metabolic Disease Originating from Life's Major Evolutionary Transition? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7831952. [PMID: 31687086 PMCID: PMC6800902 DOI: 10.1155/2019/7831952] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/21/2019] [Accepted: 08/27/2019] [Indexed: 12/30/2022]
Abstract
A clear understanding of the origins of cancer is the basis of successful strategies for effective cancer prevention and management. The origin of cancer at the molecular and cellular levels is not well understood. Is the primary cause of the origin of cancer the genomic instability or impaired energy metabolism? An attempt was made to present cancer etiology originating from life's major evolutionary transition. The first evolutionary transition went from simple to complex cells when eukaryotic cells with glycolytic energy production merged with the oxidative mitochondrion (The Endosymbiosis Theory first proposed by Lynn Margulis in the 1960s). The second transition went from single-celled to multicellular organisms once the cells obtained mitochondria, which enabled them to obtain a higher amount of energy. Evidence will be presented that these two transitions, as well as the decline of NAD+ and ATP levels, are the root of cancer diseases. Restoring redox homeostasis and reactivation of mitochondrial oxidative metabolism are important factors in cancer prevention.
Collapse
Affiliation(s)
- B. Poljsak
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - V. Kovac
- 1Faculty of Health Sciences, University of Ljubljana, Laboratory of Oxidative Stress Research, Ljubljana, Slovenia
| | - R. Dahmane
- 2Faculty of Health Sciences, University of Ljubljana, Chair of Biomedicine in Health Care, Ljubljana, Slovenia
| | - T. Levec
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| | - A. Starc
- 3Faculty of Health Sciences, University of Ljubljana, Chair of Public Health, Ljubljana, Slovenia
| |
Collapse
|
76
|
Brunnbauer P, Leder A, Kamali C, Kamali K, Keshi E, Splith K, Wabitsch S, Haber P, Atanasov G, Feldbrügge L, Sauer IM, Pratschke J, Schmelzle M, Krenzien F. The nanomolar sensing of nicotinamide adenine dinucleotide in human plasma using a cycling assay in albumin modified simulated body fluids. Sci Rep 2018; 8:16110. [PMID: 30382125 PMCID: PMC6208386 DOI: 10.1038/s41598-018-34350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/15/2018] [Indexed: 01/05/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD), a prominent member of the pyridine nucleotide family, plays a pivotal role in cell-oxidation protection, DNA repair, cell signalling and central metabolic pathways, such as beta oxidation, glycolysis and the citric acid cycle. In particular, extracellular NAD+ has recently been demonstrated to moderate pathogenesis of multiple systemic diseases as well as aging. Herein we present an assaying method, that serves to quantify extracellular NAD+ in human heparinised plasma and exhibits a sensitivity ranging from the low micromolar into the low nanomolar domain. The assay achieves the quantification of extracellular NAD+ by means of a two-step enzymatic cycling reaction, based on alcohol dehydrogenase. An albumin modified revised simulated body fluid was employed as standard matrix in order to optimise enzymatic activity and enhance the linear behaviour and sensitivity of the method. In addition, we evaluated assay linearity, reproducibility and confirmed long-term storage stability of extracellular NAD+ in frozen human heparinised plasma. In summary, our findings pose a novel standardised method suitable for high throughput screenings of extracellular NAD+ levels in human heparinised plasma, paving the way for new clinical discovery studies.
Collapse
Affiliation(s)
- Philipp Brunnbauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Annekatrin Leder
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Can Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Kaan Kamali
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Eriselda Keshi
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Katrin Splith
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Simon Wabitsch
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Philipp Haber
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Georgi Atanasov
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Linda Feldbrügge
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany.,Berlin Institute of Health (BIH), Berlin, 10178, Germany
| | - Igor M Sauer
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Johann Pratschke
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Moritz Schmelzle
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany
| | - Felix Krenzien
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, 13353, Germany. .,Berlin Institute of Health (BIH), Berlin, 10178, Germany.
| |
Collapse
|
77
|
Clement J, Wong M, Poljak A, Sachdev P, Braidy N. The Plasma NAD + Metabolome Is Dysregulated in "Normal" Aging. Rejuvenation Res 2018; 22:121-130. [PMID: 30124109 PMCID: PMC6482912 DOI: 10.1089/rej.2018.2077] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as an electron carrier in cellular metabolism and plays a crucial role in the maintenance of balanced redox homeostasis. Quantification of NAD+:NADH and NADP+:NADPH ratios are pivotal to a wide variety of cellular processes, including intracellular secondary messenger signaling by CD38 glycohydrolases, DNA repair by poly(adenosine diphosphate ribose) polymerase (PARP), epigenetic regulation of gene expression by NAD-dependent histone deacetylase enzymes known as sirtuins, and regulation of the oxidative pentose phosphate pathway. We quantified changes in the NAD+ metabolome in plasma samples collected from consenting healthy human subjects across a wide age range (20-87 years) using liquid chromatography coupled to tandem mass spectrometry. Our data show a significant decline in the plasma levels of NAD+, NADP+, and other important metabolites such as nicotinic acid adenine dinucleotide (NAAD) with age. However, an age-related increase in the reduced form of NAD+ and NADP+-NADH and NADPH-and nicotinamide (NAM), N-methyl-nicotinamide (MeNAM), and the products of adenosine diphosphoribosylation, including adenosine diphosphate ribose (ADPR) was also reported. Whereas, plasma levels of nicotinic acid (NA), nicotinamide mononucleotide (NMN), and nicotinic acid mononucleotide (NAMN) showed no statistically significant changes across age groups. Taken together, our data cumulatively suggest that age-related impairments are associated with corresponding alterations in the extracellular plasma NAD+ metabolome. Our future research will seek to elucidate the role of modulating NAD+ metabolites in the treatment and prevention of age-related diseases.
Collapse
Affiliation(s)
| | - Matthew Wong
- 2 Centre for Healthy Brain Ageing, University of New South Wales, School of Psychiatry, Sydney, Australia
| | - Anne Poljak
- 2 Centre for Healthy Brain Ageing, University of New South Wales, School of Psychiatry, Sydney, Australia.,3 Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,4 School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- 2 Centre for Healthy Brain Ageing, University of New South Wales, School of Psychiatry, Sydney, Australia.,5 Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- 2 Centre for Healthy Brain Ageing, University of New South Wales, School of Psychiatry, Sydney, Australia
| |
Collapse
|
78
|
Fakouri NB, Hou Y, Demarest TG, Christiansen LS, Okur MN, Mohanty JG, Croteau DL, Bohr VA. Toward understanding genomic instability, mitochondrial dysfunction and aging. FEBS J 2018; 286:1058-1073. [PMID: 30238623 DOI: 10.1111/febs.14663] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/14/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
The biology of aging is an area of intense research, and many questions remain about how and why cell and organismal functions decline over time. In mammalian cells, genomic instability and mitochondrial dysfunction are thought to be among the primary drivers of cellular aging. This review focuses on the interrelationship between genomic instability and mitochondrial dysfunction in mammalian cells and its relevance to age-related functional decline at the molecular and cellular level. The importance of oxidative stress and key DNA damage response pathways in cellular aging is discussed, with a special focus on poly (ADP-ribose) polymerase 1, whose persistent activation depletes cellular energy reserves, leading to mitochondrial dysfunction, loss of energy homeostasis, and altered cellular metabolism. Elucidation of the relationship between genomic instability, mitochondrial dysfunction, and the signaling pathways that connect these pathways/processes are keys to the future of research on human aging. An important component of mitochondrial health preservation is mitophagy, and this and other areas that are particularly ripe for future investigation will be discussed.
Collapse
Affiliation(s)
- Nima B Fakouri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yujun Hou
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Tyler G Demarest
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Louise S Christiansen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
79
|
Roshanravan B, Zelnick LR, Djucovic D, Gu H, Alvarez JA, Ziegler TR, Gamboa JL, Utzschneider K, Kestenbaum B, Himmelfarb J, Kahn SE, Raftery D, de Boer IH. Chronic kidney disease attenuates the plasma metabolome response to insulin. JCI Insight 2018; 3:122219. [PMID: 30135309 DOI: 10.1172/jci.insight.122219] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic kidney disease (CKD) leads to decreased sensitivity to the metabolic effects of insulin, contributing to protein energy wasting and muscle atrophy. Targeted metabolomics profiling during hyperinsulinemic-euglycemic insulin clamp testing may help identify aberrant metabolic pathways contributing to insulin resistance in CKD. Using targeted metabolomics profiling, we examined the plasma metabolome in 95 adults without diabetes in the fasted state (58 with CKD, 37 with normal glomerular filtration rate [GFR]) who underwent hyperinsulinemic-euglycemic clamp. We assessed heterogeneity in fasting metabolites and the response to insulin to identify potential metabolic pathways linking CKD with insulin resistance. Baseline differences and effect modification by CKD status on changes with insulin clamp testing were adjusted for confounders. Mean GFR among participants with CKD was 37.3 compared with 89.3 ml/min per 1.73 m2 among controls. Fasted-state differences between CKD and controls included abnormalities in tryptophan metabolism, ubiquinone biosynthesis, and the TCA cycle. Insulin infusion markedly decreased metabolite levels, predominantly amino acids and their metabolites. CKD was associated with attenuated insulin-induced changes in nicotinamide, arachidonic acid, and glutamine/glutamate metabolic pathways. Metabolomics profiling suggests disruption in amino acid metabolism and mitochondrial function as putative manifestations or mechanisms of the impaired anabolic effects of insulin in CKD.
Collapse
Affiliation(s)
- Baback Roshanravan
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Leila R Zelnick
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Daniel Djucovic
- Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Haiwei Gu
- Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA.,Center for Metabolic and Vascular Biology, School of Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Phoenix, Arizona, USA
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism and Lipids, Emory University, Atlanta, Georgia, USA
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Emory University, Atlanta, Georgia, USA
| | - Jorge L Gamboa
- Department of Clinical Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Kristina Utzschneider
- Puget Sound Health Care System, Seattle, Washington, USA.,Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington, USA
| | - Bryan Kestenbaum
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jonathan Himmelfarb
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Steven E Kahn
- Puget Sound Health Care System, Seattle, Washington, USA.,Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, Washington, USA
| | - Daniel Raftery
- Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Ian H de Boer
- Division of Nephrology and Kidney Research Institute, University of Washington, Seattle, Washington, USA.,Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
80
|
Seyedsadjadi N, Berg J, Bilgin AA, Braidy N, Salonikas C, Grant R. High protein intake is associated with low plasma NAD+ levels in a healthy human cohort. PLoS One 2018; 13:e0201968. [PMID: 30114226 PMCID: PMC6095538 DOI: 10.1371/journal.pone.0201968] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
High protein intake and reduced levels of the essential pyridine nucleotide nicotinamide adenine dinucleotide (NAD+) have both been independently associated with promotion of the ageing phenotype. However, it has not yet been shown whether these two independent observations are biochemically linked. To investigate this possibility, we used a cross-sectional study design of 100 apparently healthy middle-aged males (n = 48) and females, in which we assessed average dietary intakes of multiple components using a validated questionnaire. We also analysed fasting blood levels of urea, NAD+ and its metabolites, and inflammation-linked biomarkers, including interleukin-6 (IL-6), Kynurenine (Kyn), and Tryptophan (Trp). One-way ANOVA and ANCOVA were then performed for statistical analysis. Our results have shown for the first time that plasma levels of NAD+ and Total NAD(H) were lower with increasing protein intake (F (2, 92) = 4.61, P = 0.012; F (2, 92) = 4.55, P = 0.013, respectively). The associated decrease in NAD+ and NAD(H) levels was even stronger with increasing plasma levels of the protein breakdown product urea (F (2, 93) = 25.11, P≤0.001; F (2, 93) = 21.10, P≤0.001). These associations were all independent of age, gender and energy intake. However, no significant association was observed between protein intake or plasma urea, and plasma levels of NAD+ metabolites. We also observed that plasma levels of the inflammatory cytokine IL-6, and both Kyn, and Trp, but not the Kyn/Trp ratio were higher with increasing plasma urea levels (F (2, 94) = 3.30, P = 0.041; F (2, 95) = 7.41, P≤0.001; F (2, 96) = 4.23, P = 0.017, respectively). These associations were dependent on eGFR and energy intake, except for the urea and Trp association that was independent of all. In conclusion, we report for the first time, a novel association between protein intake, its metabolism, and plasma NAD+ levels with a possible link to inflammation. These findings provide further insight into how protein restriction may contribute to the anti-ageing process observed in several studies.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Jade Berg
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Ayse A. Bilgin
- Department of Statistics, Macquarie University, Sydney, NSW, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Chris Salonikas
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
| | - Ross Grant
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
81
|
Hong G, Zheng D, Zhang L, Ni R, Wang G, Fan GC, Lu Z, Peng T. Administration of nicotinamide riboside prevents oxidative stress and organ injury in sepsis. Free Radic Biol Med 2018; 123:125-137. [PMID: 29803807 PMCID: PMC6236680 DOI: 10.1016/j.freeradbiomed.2018.05.073] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/01/2018] [Accepted: 05/19/2018] [Indexed: 01/11/2023]
Abstract
AIMS Sepsis-caused multiple organ failure remains the major cause of morbidity and mortality in intensive care units. Nicotinamide riboside (NR) is a precursor of nicotinamide adenine dinucleotide (NAD+), which is important in regulating oxidative stress. This study investigated whether administration of NR prevented oxidative stress and organ injury in sepsis. METHODS Mouse sepsis models were induced by injection of lipopolysaccharides (LPS) or feces-injection-in-peritoneum. NR was given before sepsis onset. Cultured macrophages and endothelial cells were incubated with various agents. RESULTS Administration of NR elevated the NAD+ levels, and elicited a reduction of oxidative stress, inflammation and caspase-3 activity in lung and heart tissues, which correlated with attenuation of pulmonary microvascular permeability and myocardial dysfunction, leading to less mortality in sepsis models. These protective effects of NR were associated with decreased levels of plasma high mobility group box-1 (HMGB1) in septic mice. Consistently, pre-treatment of macrophages with NR increased NAD+ content and reduced HMGB1 release upon LPS stimulation. NR also prevented reactive oxygen species (ROS) production and apoptosis in endothelial cells induced by a conditioned-medium collected from LPS-treated macrophages. Furthermore, inhibition of SIRT1 by EX527 offset the negative effects of NR on HMGB1 release in macrophages, and ROS and apoptosis in endothelial cells. CONCLUSIONS Administration of NR prevents lung and heart injury, and improves the survival in sepsis, likely by inhibiting HMGB1 release and oxidative stress via the NAD+/SIRT1 signaling. Given NR has been used as a health supplement, it may be a useful agent to prevent organ injury in sepsis.
Collapse
Affiliation(s)
- Guangliang Hong
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5
| | - Dong Zheng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5; Department of Medicine, Western University, London, Ontario, Canada N6A 4G5; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lulu Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Rui Ni
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5
| | - Grace Wang
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhongqiu Lu
- Department of Emergency, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Tianqing Peng
- Lawson Health Research Institute, London Health Sciences Centre, London, Ontario, Canada N6A 4G5; Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada N6A 4G5; Department of Medicine, Western University, London, Ontario, Canada N6A 4G5; Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
82
|
Liu Y, Clement J, Grant R, Sachdev P, Braidy N. Quantitation of NAD+: Why do we need to measure it? Biochim Biophys Acta Gen Subj 2018; 1862:2527-2532. [PMID: 30048742 DOI: 10.1016/j.bbagen.2018.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that is currently investigated as an important target to extend lifespan and health span. Age-related NAD+ depletion due to the accumulation of oxidative stress is associated with reduced energy production, impaired DNA repair and genomic instability. SCOPE OF REVIEW NAD+ levels can be elevated therapeutically using NAD+ precursors or through lifestyle modifications including exercise and caloric restriction. However, high amounts of NAD+ may be detrimental in cancer progression and may have deleterious immunogenic roles. MAJOR CONCLUSIONS Standardized quantitation of NAD+ and related metabolites may therefore represent an important component of NAD+ therapy. GENERAL SIGNIFICANCE Quantitation of NAD+ may serve dual roles not only as an ageing biomarker, but also as a diagnostic tool for the prevention of malignant disorders.
Collapse
Affiliation(s)
- Yue Liu
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | | | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia.
| |
Collapse
|
83
|
McMillan LJ, Hwang S, Farah RE, Koh J, Chen S, Maupin-Furlow JA. Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 2017; 20:385-401. [PMID: 29194950 DOI: 10.1111/1462-2920.14014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
Collapse
Affiliation(s)
- Lana J McMillan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rawan E Farah
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
84
|
Hu P, Hunt NH, Arfuso F, Shaw LC, Uddin MN, Zhu M, Devasahayam R, Adamson SJ, Benson VL, Chan-Ling T, Grant MB. Increased Indoleamine 2,3-Dioxygenase and Quinolinic Acid Expression in Microglia and Müller Cells of Diabetic Human and Rodent Retina. Invest Ophthalmol Vis Sci 2017; 58:5043-5055. [PMID: 28980000 PMCID: PMC5633007 DOI: 10.1167/iovs.17-21654] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose We investigated the relationship between inflammation, neuronal loss, and expression of indoleamine 2, 3-dioxygenase (IDO) and quinolinic acid (QUIN) in the retina of subjects with type 1 diabetes (T1D) and type 2 diabetes (T2D) and in the retina of rats with T1D. Methods Retinas from T1D (n = 7), T2D (n = 13), and 20 age-matched nondiabetic human donors and from T1D (n = 3) and control rats (n = 3) were examined using immunohistochemistry for IDO, QUIN, cluster of differentiation 39 (CD39), ionized calcium-binding adaptor molecule (Iba-1, for macrophages and microglia), Vimentin (VIM; for Müller cells), neuronal nuclei (NeuN; for neurons), and UEA1 lectin (for blood vessels). Results Based on morphologic criteria, CD39+/ionized calcium binding adaptor molecule 1(Iba-1+) resident microglia and CD39−/Iba-1+ bone marrow–derived macrophages were present at higher density in T1D (13% increase) and T2D (26% increase) human retinas when compared with controls. The density and brightness of IDO+ microglia were increased in both T1D and T2D human retinas. The intensity of QUIN+ expression on CD39+ microglia and VIM+ Müller cells was greatly increased in both human T1D and T2D retinas. T1D retinas showed a 63% loss of NeuN+ neurons and T2D retinas lost approximately 43% when compared with nondiabetic human retinas. Few QUIN+ microglia-like cells were seen in nondiabetic retinas, but the numbers increased 18-fold in T1D and 7-fold in T2D in the central retina. In T1D rat retinas, the density of IDO+ microglia increased 2.8-fold and brightness increased 2.1-fold when compared with controls. Conclusions Our findings suggest that IDO and QUIN expression in the retinas of diabetic rats and humans could contribute to the neuronal degeneration that is characteristic of diabetic retinopathy.
Collapse
Affiliation(s)
- Ping Hu
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Nicholas H Hunt
- Department of Pathology, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Frank Arfuso
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia.,Stem Cell & Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
| | - Lynn C Shaw
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States
| | - Mohammad Nasir Uddin
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Meidong Zhu
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia.,Save Sight Institute, Discipline of Clinical Ophthalmology and Eye Health, University of Sydney, New South Wales, Australia
| | - Raj Devasahayam
- Lions New South Wales Eye Bank, New South Wales Organ and Tissue Donation Service, South Eastern Sydney Local Health District, New South Wales, Australia
| | - Samuel J Adamson
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Vicky L Benson
- Department of Physiology, Faculty of Health and Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Tailoi Chan-Ling
- Department of Anatomy, Bosch Institute, University of Sydney, New South Wales, Australia
| | - Maria B Grant
- Department of Ophthalmology, the Eugene and Marilyn Glick Eye Institute, Indiana University, Indianapolis, Indiana, United States.,Univeristy of Alabama, Birmingham, Alabama, United States
| |
Collapse
|
85
|
Mello FD, Braidy N, Marçal H, Guillemin G, Nabavi SM, Neilan BA. Mechanisms and Effects Posed by Neurotoxic Products of Cyanobacteria/Microbial Eukaryotes/Dinoflagellates in Algae Blooms: a Review. Neurotox Res 2017; 33:153-167. [PMID: 28836116 DOI: 10.1007/s12640-017-9780-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/28/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Environmental toxins produced by cyanobacteria and dinoflagellates have increasingly become a public health concern due to their ability to damage several tissues in humans. In particular, emerging evidence has called attention to the neurodegenerative effects of the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA). Furthermore, other toxins such as anatoxin, saxitoxin, microcystin, nodularin and ciguatoxin also have a different range of effects on human tissues, including hepatotoxicity, neurotoxicity and gastrointestinal irritation. However, the vast majority of known environmental toxins have not yet been examined in the context of neurodegenerative disease. This review aims to investigate whether neurotoxic mechanisms can be demonstrated in all aforementioned toxins, and whether there exists a link to neurodegeneration. Management of toxin exposure and potential neuroprotective compounds is also discussed. Collectively, all aforementioned microbial toxins are likely to exert some form of neuronal damage, with many of their modes of action consistent with neurodegeneration. This is important in advancing our current understanding of the cytotoxic potential of environmental toxins upon human brain function, particularly in the context of age-related neurodegenerative disease.
Collapse
Affiliation(s)
- Fiona D Mello
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Helder Marçal
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Gilles Guillemin
- Neuropharmacology group, MND and Neurodegenerative diseases Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
86
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
87
|
Abstract
Oxidative stress is two sided: Whereas excessive oxidant challenge causes damage to biomolecules, maintenance of a physiological level of oxidant challenge, termed oxidative eustress, is essential for governing life processes through redox signaling. Recent interest has focused on the intricate ways by which redox signaling integrates these converse properties. Redox balance is maintained by prevention, interception, and repair, and concomitantly the regulatory potential of molecular thiol-driven master switches such as Nrf2/Keap1 or NF-κB/IκB is used for system-wide oxidative stress response. Nonradical species such as hydrogen peroxide (H2O2) or singlet molecular oxygen, rather than free-radical species, perform major second messenger functions. Chemokine-controlled NADPH oxidases and metabolically controlled mitochondrial sources of H2O2 as well as glutathione- and thioredoxin-related pathways, with powerful enzymatic back-up systems, are responsible for fine-tuning physiological redox signaling. This makes for a rich research field spanning from biochemistry and cell biology into nutritional sciences, environmental medicine, and molecular knowledge-based redox medicine.
Collapse
Affiliation(s)
- Helmut Sies
- Institute of Biochemistry and Molecular Biology I, Heinrich Heine University, Düsseldorf, University, D-40225, Düsseldorf, Germany; .,Leibniz Research Institute for Environmental Medicine, Heinrich Heine University, D-40225, Düsseldorf, Germany
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich Heine University, D-40225, Düsseldorf, Germany;
| | - Dean P Jones
- Department of Medicine, Emory University, Atlanta, Georgia 30322;
| |
Collapse
|
88
|
Knorre DA, Severin FF. Uncouplers of Oxidation and Phosphorylation as Antiaging Compounds. BIOCHEMISTRY (MOSCOW) 2017; 81:1438-1444. [PMID: 28259121 DOI: 10.1134/s0006297916120051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Food restriction causes a set of physiological changes that reduce the rate of aging. At the level of an organism, these changes are initiated by a hormonal response, which in turn activates certain intracellular signaling cascades. As a result, cells increase their antioxidant capacities and decrease the risk of cancerous transformation. A number of small molecule compounds activating these signaling cascades have been described. One could expect that direct pharmacological activation of the signaling can produce a stronger antiaging effect than that achieved by the indirect hormonal stimulation. Data from the literature point to the opposite. Possibly, a problem with pharmacological activators is that they cause generation of mitochondrial reactive oxygen species. Indeed, hyperpolarized mitochondria are known to induce oxidative stress. Such hyperpolarization could happen because of artificial activation of cellular response to caloric restriction in the absence of energy deficit. At the same time, energy deficit seems likely to be a natural consequence of the shortage of nutrients. Thus, there is a possibility that combining the pharmacological activators with compounds that decrease mitochondrial transmembrane potential, uncouplers, could be a powerful antiaging strategy.
Collapse
Affiliation(s)
- D A Knorre
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
89
|
Liu HY, Li QR, Cheng XF, Wang GJ, Hao HP. NAMPT inhibition synergizes with NQO1-targeting agents in inducing apoptotic cell death in non-small cell lung cancer cells. Chin J Nat Med 2017; 14:582-9. [PMID: 27608947 DOI: 10.1016/s1875-5364(16)30068-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Indexed: 12/19/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the first rate-limiting step in converting nicotinamide to NAD(+), essential for a number of enzymes and regulatory proteins involved in a variety of cellular processes, including deacetylation enzyme SIRT1 which modulates several tumor suppressors such as p53 and FOXO. Herein we report that NQO1 substrates Tanshione IIA (TSA) and β-lapachone (β-lap) induced a rapid depletion of NAD(+) pool but adaptively a significant upregulation of NAMPT. NAMPT inhibition by FK866 at a nontoxic dose significantly enhanced NQO1-targeting agent-induced apoptotic cell death. Compared with TSA or β-lap treatment alone, co-treatment with FK866 induced a more dramatic depletion of NAD(+), repression of SIRT1 activity, and thereby the increased accumulation of acetylated FOXO1 and the activation of apoptotic pathway. In conclusion, the results from the present study support that NAMPT inhibition can synergize with NQO1 activation to induce apoptotic cell death, thereby providing a new rationale for the development of combinative therapeutic drugs in combating non-small lung cancer.
Collapse
Affiliation(s)
- Hui-Ying Liu
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Qing-Ran Li
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Xue-Fang Cheng
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
| | - Guang-Ji Wang
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| | - Hai-Ping Hao
- State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
90
|
Hernandez-Martinez JM, Forrest CM, Darlington LG, Smith RA, Stone TW. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation. Eur J Neurosci 2017; 45:700-711. [PMID: 27973747 DOI: 10.1111/ejn.13499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/29/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022]
Abstract
Glutamate and nicotinamide adenine dinucleotide (NAD+ ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD+ . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD+ , independently of NMDA receptors.
Collapse
Affiliation(s)
- Juan-Manuel Hernandez-Martinez
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Caroline M Forrest
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | | | - Robert A Smith
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| | - Trevor W Stone
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, West Medical Building, Glasgow, G12 8QQ, UK
| |
Collapse
|
91
|
Abstract
Immune-mediated activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP) is a consistent finding in all inflammatory disorders. Several studies by our group and others have examined the neurotoxic potential of neuroreactive TRYP metabolites, including quinolinic acid (QUIN) in neuroinflammatory neurological disorders, including Alzheimer's disease (AD), multiple sclerosis, amylotropic lateral sclerosis (ALS), and AIDS related dementia complex (ADC). Our current work aims to determine whether there is any benefit to the affected individuals in enhancing the catabolism of TRYP via the KP during an immune response. Under physiological conditions, QUIN is metabolized to the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD+), which represents an important metabolic cofactor and electron transporter. NAD+ also serves as a substrate for the DNA ‘nick sensor’ and putative nuclear repair enzyme, poly(ADP-ribose) polymerase (PARP). Free radical initiated DNA damage, PARP activation and NAD+ depletion may contribute to brain dysfunction and cell death in neuroinflammatory disease.
Collapse
Affiliation(s)
- Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Faculty of Medicine, Sydney, Australia
| | - Ross Grant
- School of Medical Sciences, University of New South Wales, Faculty of Medicine, Sydney, Australia; Australasian Research Institute, Sydney Adventist Hospital, Sydney, Australia
| |
Collapse
|
92
|
Wu J, Jin Z, Zheng H, Yan LJ. Sources and implications of NADH/NAD(+) redox imbalance in diabetes and its complications. Diabetes Metab Syndr Obes 2016; 9:145-153. [PMID: 27274295 PMCID: PMC4869616 DOI: 10.2147/dmso.s106087] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
NAD(+) is a fundamental molecule in metabolism and redox signaling. In diabetes and its complications, the balance between NADH and NAD(+) can be severely perturbed. On one hand, NADH is overproduced due to influx of hyperglycemia to the glycolytic and Krebs cycle pathways and activation of the polyol pathway. On the other hand, NAD(+) can be diminished or depleted by overactivation of poly ADP ribose polymerase that uses NAD(+) as its substrate. Moreover, sirtuins, another class of enzymes that also use NAD(+) as their substrate for catalyzing protein deacetylation reactions, can also affect cellular content of NAD(+). Impairment of NAD(+) regeneration enzymes such as lactate dehydrogenase in erythrocytes and complex I in mitochondria can also contribute to NADH accumulation and NAD(+) deficiency. The consequence of NADH/NAD(+) redox imbalance is initially reductive stress that eventually leads to oxidative stress and oxidative damage to macromolecules, including DNA, lipids, and proteins. Accordingly, redox imbalance-triggered oxidative damage has been thought to be a major factor contributing to the development of diabetes and its complications. Future studies on restoring NADH/NAD(+) redox balance could provide further insights into design of novel antidiabetic strategies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Zhen Jin
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hong Zheng
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Basic Theory of Traditional Chinese Medicine, College of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
93
|
Zhang DX, Zhang JP, Hu JY, Huang YS. The potential regulatory roles of NAD(+) and its metabolism in autophagy. Metabolism 2016; 65:454-62. [PMID: 26975537 DOI: 10.1016/j.metabol.2015.11.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 10/29/2015] [Accepted: 11/25/2015] [Indexed: 02/02/2023]
Abstract
(Macro)autophagy mediates the bulk degradation of defective organelles, long-lived proteins and protein aggregates in lysosomes and plays a critical role in cellular and tissue homeostasis. Defective autophagy processes have been found to contribute to a variety of metabolic diseases. However, the regulatory mechanisms of autophagy are not fully understood. Increasing data indicate that nicotinamide adenine nucleotide (NAD(+)) homeostasis correlates intimately with autophagy. NAD(+) is a ubiquitous coenzyme that functions primarily as an electron carrier of oxidoreductase in multiple redox reactions. Both NAD(+) homeostasis and its metabolism are thought to play critical roles in regulating autophagy. In this review, we discuss how the regulation of NAD(+) and its metabolism can influence autophagy. We focus on the regulation of NAD(+)/NADH homeostasis and the effects of NAD(+) consumption by poly(ADP-ribose) (PAR) polymerase-1 (PARP-1), NAD(+)-dependent deacetylation by sirtuins and NAD(+) metabolites on autophagy processes and the underlying mechanisms. Future studies should provide more direct evidence for the regulation of autophagy processes by NAD(+). A better understanding of the critical roles of NAD(+) and its metabolites on autophagy will shed light on the complexity of autophagy regulation, which is essential for the discovery of new therapeutic tools for autophagy-related diseases.
Collapse
Affiliation(s)
- Dong-Xia Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038
| | - Jia-Ping Zhang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038
| | - Jiong-Yu Hu
- Endocrinology Department, Southwest Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, PR China, 400038
| | - Yue-Sheng Huang
- Institute of Burn Research, Southwest Hospital, Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, PR China, 400038.
| |
Collapse
|
94
|
Conley KE, Ali AS, Flores B, Jubrias SA, Shankland EG. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the (31)P Magnetic Resonance Spectrum. Front Physiol 2016; 7:45. [PMID: 27065875 PMCID: PMC4812112 DOI: 10.3389/fphys.2016.00045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/01/2016] [Indexed: 01/20/2023] Open
Abstract
Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)(+) and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)(+) and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy ((31)P MRS). These NAD(P) pools are identified by chemical standards (NAD(+), NADP(+), and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)(+) peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)(+) and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.
Collapse
Affiliation(s)
- Kevin E Conley
- Department of Radiology, University of Washington Medical CenterSeattle, WA, USA; Department of Physiology and Biophysics, University of Washington Medical CenterSeattle, WA, USA; Department of Bioengineering, University of Washington Medical CenterSeattle, WA, USA
| | - Amir S Ali
- Department of Radiology, University of Washington Medical Center Seattle, WA, USA
| | - Brandon Flores
- Department of Radiology, University of Washington Medical Center Seattle, WA, USA
| | - Sharon A Jubrias
- Department of Radiology, University of Washington Medical Center Seattle, WA, USA
| | - Eric G Shankland
- Department of Radiology, University of Washington Medical Center Seattle, WA, USA
| |
Collapse
|
95
|
Poljsak B, Milisav I. NAD+ as the Link Between Oxidative Stress, Inflammation, Caloric Restriction, Exercise, DNA Repair, Longevity, and Health Span. Rejuvenation Res 2016; 19:406-415. [PMID: 26725653 DOI: 10.1089/rej.2015.1767] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Oxidative stress and decreased DNA damage repair in vertebrates increase with age also due to lowered cellular NAD+. NAD+ depletion may play a major role in the aging process at the cellular level by limiting (1) energy production, (2) DNA repair, and (3) genomic signaling. In this study, we hypothesize that it is not NAD+ as a cofactor in redox reactions and coenzyme in metabolic processes that has the ultimate role in aging, but rather the role of NAD+ in cellular signaling when used as substrate for sirtuins (SIRT1-7 in mammals) and PARPs [Poly(ADP-ribose) polymerases]. Both sirtuins and PARPs influence many transcription factors and can affect gene expression. As a signaling molecule, NAD+ is consumed in the reaction donating ADP-ribose and releasing nicotinamide (NAM) as a by-product. It seems that aging at the cellular level is associated with a decline of NAD+ and that NAD+ restoration can reverse phenotypes of aging by inducing cellular repair and stress resistance. Adequate intracellular NAD+ concentrations may be an important longevity assurance factor, while lowered cellular NAD+ concentration may negatively influence the life span.
Collapse
Affiliation(s)
- Borut Poljsak
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana , Ljubljana, Slovenia
| | - Irina Milisav
- 1 Laboratory of Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana , Ljubljana, Slovenia .,2 Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana , Ljubljana, Slovenia
| |
Collapse
|
96
|
Caito SW, Aschner M. NAD+ Supplementation Attenuates Methylmercury Dopaminergic and Mitochondrial Toxicity in Caenorhabditis Elegans. Toxicol Sci 2016; 151:139-49. [PMID: 26865665 DOI: 10.1093/toxsci/kfw030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Methylmercury (MeHg) is a neurotoxic contaminant of our fish supply that has been linked to dopaminergic (DAergic) dysfunction that characterizes Parkinson's disease. We have previously shown that MeHg causes both morphological and behavioral changes in the Caenorhabditis elegans DAergic neurons that are associated with oxidative stress. We were therefore interested in whether the redox sensitive cofactor nicotinamide adenine dinucleotide (NAD(+)) may be affected by MeHg and whether supplementation of NAD( + )may prevent MeHg-induced toxicities. Worms treated with MeHg showed depletion in cellular NAD( + )levels, which was prevented by NAD( + )supplementation prior to MeHg treatment. NAD( + )supplementation also prevented DAergic neurodegeneration and deficits in DAergic-dependent behavior upon MeHg exposure. In a mutant worm line that cannot synthesize NAD( + )from nicotinamide, MeHg lethality and DAergic behavioral deficits were more sensitive to MeHg than wildtype worms, demonstrating the importance of NAD( + )in MeHg toxicity. In wildtype worms, NAD( + )supplementation provided protection from MeHg-induced oxidative stress and mitochondrial dysfunction. These data show the importance of NAD( + )levels in the response to MeHg exposure. NAD( + )supplementation may be beneficial for MeHg-induced toxicities and preventing cellular damage involved in Parkinson's disease.
Collapse
Affiliation(s)
- Samuel W Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
97
|
Wang T, Takikawa Y. Carnosic acid protects normal mouse hepatocytes against H2 O2 -induced cytotoxicity via sirtuin 1-mediated signaling. Hepatol Res 2016. [PMID: 26223904 DOI: 10.1111/hepr.12563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Carnosic acid (CA) is well known for its antioxidant properties. The aim of this study was to examine the effects of CA on cytotoxicity under oxidative stress. METHODS Primary hepatocytes and AML12 cells were treated with: (i) 0.1 μM, 1 μM and 10 μM CA; (ii) 3 mM H2 O2 with or without 1 μM CA; or (iii) 3 mM H2 O2 with 1 μM CA and 0.04 μM sirtuin 1 (SIRT1) inhibitor EX527 or 10 μM mitogen-activated protein kinase (MAPK) inhibitor U0126. Cell viability, intracellular reactive oxygen species (ROS) and lactate dehydrogenase (LDH) leakage were determined. In addition, total protein levels of cleaved caspase 3, SIRT1, phosphorylated Nrf2, 5'-adenosine monophosphate-activated protein kinase (AMPK) and MAPKs were evaluated by western blot analysis and suspension array system. RESULTS First, although 10 μM CA produced cytotoxicity, CA at concentrations at or below 1 μM did not inhibit cell viability. Second, H2 O2 increased total cellular ROS and LDH leakage and decreased cell viability, whereas co-treatment with H2 O2 and 1 μM CA significantly inhibited these effects of H2 O2 . Third, CA at 1 μM increased protein levels of SIRT1. Pretreatment with EX527 or transfection of siRNA-targeting SIRT1 weakened the protective effects of CA against H2 O2 -induced cell death. Fourth, H2 O2 induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in primary hepatocytes. U0126 inhibited oxidative damage induced by H2 O2 . Co-treatment with CA inhibited ERK1/2 activation induced by H2 O2 . CONCLUSION Our data indicate that CA protects against oxidative stress-induced cytotoxicity via SIRT1 by regulating subsequent downstream factors such as ERK1/2.
Collapse
Affiliation(s)
- Ting Wang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Yasuhiro Takikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan
| |
Collapse
|
98
|
Sheipouri D, Grant R, Bustamante S, Lovejoy D, Guillemin GJ, Braidy N. Characterisation of the kynurenine pathway in skin-derived fibroblasts and keratinocytes. J Cell Biochem 2015; 116:903-22. [PMID: 25639585 DOI: 10.1002/jcb.25019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Abstract
Acute UVB exposure triggers inflammation leading to the induction of indoleamine 2,3 dioxygenase (IDO1), one of the first enzymes in the kynurenine pathway (KP) for tryptophan degradation. However, limited studies have been undertaken to determine the catabolism of tryptophan within the skin. The aim of this study was two fold: (1) to establish if the administration of the proinflammatory cytokine interferon-gamma (IFN-γ) and/or UVB radiation elicits differential KP expression patterns in human fibroblast and keratinocytes; and (2) to evaluate the effect of KP metabolites on intracellular nicotinamide adenine dinucleotide (NAD(+) ) levels, and cell viability. Primary cultures of human fibroblasts and keratinocytes were used to examine expression of the KP at the mRNA level using qPCR, and at the protein level using immunocytochemistry. Cellular responses to KP metabolites were assessed by examining extracellular lactate dehydrogenase (LDH) activity and intracellular NAD(+) levels. Major downstream KP metabolites were analyzed using GC/MS and HPLC. Our data shows that the KP is fully expressed both in human fibroblasts and keratinocytes. Exposure to UVB radiation and/or IFN-γ causes significant changes in the expression pattern of downstream KP metabolites and enzymes. Exposure to various concentrations of KP metabolites showed marked differences in cell viability and intracellular NAD(+) production, providing support for involvement of the KP in the de novo synthesis of NAD(+) in the skin. This new information will have a significant impact on our understanding of the pathogenesis of UV related skin damage and the diagnosis of KP related disease states.
Collapse
Affiliation(s)
- Diba Sheipouri
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
99
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
100
|
Colín-González AL, Maya-López M, Pedraza-Chaverrí J, Ali SF, Chavarría A, Santamaría A. The Janus faces of 3-hydroxykynurenine: Dual redox modulatory activity and lack of neurotoxicity in the rat striatum. Brain Res 2014; 1589:1-14. [DOI: 10.1016/j.brainres.2014.09.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/07/2014] [Accepted: 09/14/2014] [Indexed: 12/14/2022]
|