51
|
Willoughby JE, Kerr JP, Rogel A, Taraban VY, Buchan SL, Johnson PWM, Al-Shamkhani A. Differential impact of CD27 and 4-1BB costimulation on effector and memory CD8 T cell generation following peptide immunization. THE JOURNAL OF IMMUNOLOGY 2014; 193:244-51. [PMID: 24860188 DOI: 10.4049/jimmunol.1301217] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The factors that determine differentiation of naive CD8 T cells into memory cells are not well understood. A greater understanding of how memory cells are generated will inform of ways to improve vaccination strategies. In this study, we analyzed the CD8 T cell response elicited by two experimental vaccines comprising a peptide/protein Ag and an agonist that delivers a costimulatory signal via CD27 or 4-1BB. Both agonists increased expansion of Ag-specific CD8 T cells compared with Ag alone. However, their capacity to stimulate differentiation into effector and memory cells differed. CD27 agonists promoted increased expression of perforin and the generation of short-lived memory cells, whereas stimulation with 4-1BB agonists favored generation of stable memory. The memory-promoting effects of 4-1BB were independent of CD4 T cells and were the result of programing within the first 2 d of priming. Consistent with this conclusion, CD27 and 4-1BB-stimulated CD8 T cells expressed disparate amounts of IL-2, IFN-γ, CD25, CD71, and Gp49b as early as 3 d after in vivo activation. In addition, memory CD8 T cells, generated through priming with CD27 agonists, proliferated more extensively than did 4-1BB-generated memory cells, but these cells failed to persist. These data demonstrate a previously unanticipated link between the rates of homeostatic proliferation and memory cell attrition. Our study highlights a role for these receptors in skewing CD8 T cell differentiation into effector and memory cells and provides an approach to optimize vaccines that elicit CD8 T cell responses.
Collapse
Affiliation(s)
- Jane E Willoughby
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Jonathan P Kerr
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Anne Rogel
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Vadim Y Taraban
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Sarah L Buchan
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Peter W M Johnson
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - Aymen Al-Shamkhani
- Cancer Sciences Unit, Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
52
|
TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin's lymphoma. Leukemia 2014; 28:1872-84. [PMID: 24569779 DOI: 10.1038/leu.2014.84] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/17/2014] [Accepted: 02/03/2014] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta (TGF-β) has an important role in mediating T-cell suppression in B-cell non-Hodgkin lymphoma (NHL). However, the underlying mechanism responsible for TGF-β-mediated inhibition of effector memory T (Tm) cells is largely unknown. As reported here, we show that exhaustion is a major mechanism by which TGF-β inhibits Tm cells, and TGF-β mediated exhaustion is associated with upregulation of CD70. We found that TGF-β upregulates CD70 expression on effector Tm cells while it preferentially induces Foxp3 expression in naive T cells. CD70 induction by TGF-β is Smad3-dependent and involves IL-2/Stat5 signaling. CD70+ T cells account for TGF-β-induced exhaustion of effector Tm cells. Both TGF-β-induced and preexisting intratumoral CD70+ effector Tm cells from B-cell NHL have an exhausted phenotype and express higher levels of PD-1 and TIM-3 compared with CD70- T cells. Signaling transduction, proliferation and cytokine production are profoundly decreased in these cells, and they are highly susceptible to apoptosis. Clinically, intratumoral CD70-expressing T cells are prevalent in follicular B-cell lymphoma (FL) biopsy specimens, and increased numbers of intratumoral CD70+ T cells correlate with an inferior patient outcome. These findings confirm TGF-β-mediated effector Tm cell exhaustion as an important mechanism of immune suppression in B-cell NHL.
Collapse
|
53
|
CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants. Cell Death Dis 2014; 5:e1035. [PMID: 24481449 PMCID: PMC4040681 DOI: 10.1038/cddis.2013.555] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 12/10/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity.
Collapse
|
54
|
Fraser CK, Brown MP, Diener KR, Hayball JD. Unravelling the complexity of cancer–immune system interplay. Expert Rev Anticancer Ther 2014; 10:917-34. [DOI: 10.1586/era.10.66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
55
|
Taraban VY, Rowley TF, Kerr JP, Willoughby JE, Johnson PMW, Al-Shamkhani A, Buchan SL. CD27 costimulation contributes substantially to the expansion of functional memory CD8(+) T cells after peptide immunization. Eur J Immunol 2013; 43:3314-23. [PMID: 24002868 DOI: 10.1002/eji.201343579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/19/2013] [Accepted: 08/29/2013] [Indexed: 12/22/2022]
Abstract
Naive T cells require signals from multiple costimulatory receptors to acquire full effector function and differentiate to long-lived memory cells. The costimulatory receptor, CD27, is essential for optimal T-cell priming and memory differentiation in a variety of settings, although whether CD27 is similarly required during memory CD8(+) T-cell reactivation remains controversial. We have used OVA and anti-CD40 to establish a memory CD8(+) T-cell population and report here that their secondary expansion, driven by peptide and anti-CD40, polyI:C, or LPS, requires CD27. Furthermore, antigenic peptide and a soluble form of the CD27 ligand, CD70 (soluble recombinant CD70 (sCD70)), is sufficient for secondary memory CD8(+) T-cell accumulation at multiple anatomical sites, dependent on CD80/86. Prior to boost, resting effector- and central-memory CD8(+) T cells both expressed CD27 with greater expression on central memory cells. Nonetheless, both populations upregulated CD27 after TCR engagement and accumulated in proportion after boosting with Ag and sCD70. Mechanistically, sCD70 increased the frequency of divided and cytolytic memory T cells, conferred resistance to apoptosis and enabled retardation of tumor growth in vivo. These data demonstrate the central role played by CD27/70 during secondary CD8(+) T-cell activation to a peptide Ag, and identify sCD70 as an immunotherapeutic adjuvant for antitumor immunity.
Collapse
Affiliation(s)
- Vadim Y Taraban
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
56
|
He LZ, Prostak N, Thomas LJ, Vitale L, Weidlick J, Crocker A, Pilsmaker CD, Round SM, Tutt A, Glennie MJ, Marsh H, Keler T. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:4174-83. [PMID: 24026078 DOI: 10.4049/jimmunol.1300409] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The CD70/CD27 pathway plays a significant role in the control of immunity and tolerance, and previous studies demonstrated that targeting murine CD27 (mCD27) with agonist mAbs can mediate antitumor efficacy. We sought to exploit the potential of this pathway for immunotherapy by developing 1F5, a fully human IgG1 mAb to human CD27 (hCD27) with agonist activity. We developed transgenic mice expressing hCD27 under control of its native promoter for in vivo testing of the Ab. The expression and regulation of hCD27 in hCD27-transgenic (hCD27-Tg) mice were consistent with the understood biology of CD27 in humans. In vitro, 1F5 effectively induced proliferation and cytokine production from hCD27-Tg-derived T cells when combined with TCR stimulation. Administration of 1F5 to hCD27-Tg mice enhanced Ag-specific CD8(+) T cell responses to protein vaccination comparably to an agonist anti-mCD27 mAb. In syngeneic mouse tumor models, 1F5 showed potent antitumor efficacy and induction of protective immunity, which was dependent on CD4(+) and CD8(+) T cells. The requirement of FcR engagement for the agonistic and antitumor activities of 1F5 was demonstrated using an aglycosylated version of the 1F5 mAb. These data with regard to the targeting of hCD27 are consistent with previous reports on targeting mCD27 and provide a rationale for the clinical development of the 1F5 mAb, for which studies in advanced cancer patients have been initiated under the name CDX-1127.
Collapse
Affiliation(s)
- Li-Zhen He
- Celldex Therapeutics, Inc., Phillipsburg, NJ 08865
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Targeting of the tumor necrosis factor receptor superfamily for cancer immunotherapy. ISRN ONCOLOGY 2013; 2013:371854. [PMID: 23840967 PMCID: PMC3693168 DOI: 10.1155/2013/371854] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
The tumor necrosis factor (TNF) ligand and cognate TNF receptor superfamilies constitute an important regulatory axis that is pivotal for immune homeostasis and correct execution of immune responses. TNF ligands and receptors are involved in diverse biological processes ranging from the selective induction of cell death in potentially dangerous and superfluous cells to providing costimulatory signals that help mount an effective immune response. This diverse and important regulatory role in immunity has sparked great interest in the development of TNFL/TNFR-targeted cancer immunotherapeutics. In this review, I will discuss the biology of the most prominent proapoptotic and co-stimulatory TNF ligands and review their current status in cancer immunotherapy.
Collapse
|
58
|
Bertrand P, Maingonnat C, Penther D, Guney S, Ruminy P, Picquenot JM, Mareschal S, Alcantara M, Bouzelfen A, Dubois S, Figeac M, Bastard C, Tilly H, Jardin F. The costimulatory molecule CD70 is regulated by distinct molecular mechanisms and is associated with overall survival in diffuse large B-cell lymphoma. Genes Chromosomes Cancer 2013; 52:764-74. [PMID: 23716461 DOI: 10.1002/gcc.22072] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 12/15/2022] Open
Abstract
In diffuse large B-cell lymphomas (DLBCL), a recurrent deletion of the 19p13 region has recently been described. CD70 and TNFSF9 genes are suspected tumor suppressor genes, but previous studies suggest an oncogenic role for CD70. Therefore, we studied the consequences of variation in CD70 copy number and epigenetic modifications on CD70 expression. Copy-number variation was investigated in 144 de novo DLBCL tissues by comparative genomic hybridization array and quantitative multiplex PCR. Gene expression was assessed by quantitative RT-PCR, and CD70 promoter methylation was determined by pyrosequencing. The 19p13.3.2 region was deleted in 21 (14.6%) cases, which allowed the minimal commonly deleted region of 57 Kb that exclusively includes the CD70 gene to be defined. Homozygous deletions were observed in four (2.7%) cases, and acquired single-nucleotide variations of CD70 were detected in nine (6.3%) cases. CD70 was highly expressed in both germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL compared to normal tissue, with distinct molecular mechanisms of mRNA expression regulation. A gene dosage effect was observed in the GCB subtype, whereas promoter methylation was the predominant mechanism of down regulation in the ABC subtype. However, high CD70 expression levels correlated to shorter overall survival in both the GCB (P = 0.0021) and the ABC (P =0.0158) subtypes. In conclusion, CD70 is targeted by recurrent deletions, somatic mutations and promoter hypermethylation, but its high level of expression is related to an unfavorable outcome, indicating that this molecule may constitute a potential therapeutic target in selected DLBCL.
Collapse
Affiliation(s)
- P Bertrand
- Department of Hematology, IRIB, and Centre Henri Becquerel, INSERM, U918 and Normandie University, Rouen, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Arens R, van Hall T, van der Burg SH, Ossendorp F, Melief CJM. Prospects of combinatorial synthetic peptide vaccine-based immunotherapy against cancer. Semin Immunol 2013; 25:182-90. [PMID: 23706598 DOI: 10.1016/j.smim.2013.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 04/10/2013] [Accepted: 04/19/2013] [Indexed: 01/15/2023]
Abstract
The insight that the immune system is involved in tumor resistance is gaining momentum and this has led to the development of immunotherapeutic strategies aiming at enhancement of immune-mediated tumor destruction. Although some of these strategies have moderate clinical benefit, most stand-alone therapies fail to significantly affect progressive disease and survival or do so only in a minority of patients. Research on the mechanisms underlying the generation of immune responses against tumors and the immune evasion by tumors has emphasized that various mechanisms simultaneously prevent effective immunity against cancer including inefficient presentation of tumor antigens by dendritic cells and induction of negative immune regulation by regulatory T-cells (Tregs) and myeloid derived suppressor cells (MDSCs). Thus the design of therapies that simultaneously improve effective tumor immunity and counteract immune evasion by tumors seems most desirable for clinical efficacy. As it is unlikely that a single immunotherapeutic strategy addresses all necessary requirements, combinatorial strategies that act synergistically need to be developed. Here we discuss the current knowledge and prospects of treatment with synthetic peptide vaccines that stimulate tumor-specific T-cell responses combined with adjuvants, immune modulating antibodies, cytokines and chemotherapy. We conclude that combinatorial approaches have the best potency to accomplish the most significant tumor destruction but further research is required to optimize such approaches.
Collapse
Affiliation(s)
- Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
60
|
Klöhn PC, Wuellner U, Zizlsperger N, Zhou Y, Tavares D, Berger S, Zettlitz KA, Proetzel G, Yong M, Begent RH, Reichert JM. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3-6, 2012, San Diego, CA. MAbs 2013; 5:178-201. [PMID: 23575266 PMCID: PMC3893229 DOI: 10.4161/mabs.23655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 01/13/2023] Open
Abstract
The 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences, and the 2012 Annual Meeting of The Antibody Society, organized by IBC Life Sciences with contributions from The Antibody Society and two Scientific Advisory Boards, were held December 3-6, 2012 in San Diego, CA. The meeting drew over 800 participants who attended sessions on a wide variety of topics relevant to antibody research and development. As a prelude to the main events, a pre-conference workshop held on December 2, 2012 focused on intellectual property issues that impact antibody engineering. The Antibody Engineering Conference was composed of six sessions held December 3-5, 2012: (1) From Receptor Biology to Therapy; (2) Antibodies in a Complex Environment; (3) Antibody Targeted CNS Therapy: Beyond the Blood Brain Barrier; (4) Deep Sequencing in B Cell Biology and Antibody Libraries; (5) Systems Medicine in the Development of Antibody Therapies/Systematic Validation of Novel Antibody Targets; and (6) Antibody Activity and Animal Models. The Antibody Therapeutics conference comprised four sessions held December 4-5, 2012: (1) Clinical and Preclinical Updates of Antibody-Drug Conjugates; (2) Multifunctional Antibodies and Antibody Combinations: Clinical Focus; (3) Development Status of Immunomodulatory Therapeutic Antibodies; and (4) Modulating the Half-Life of Antibody Therapeutics. The Antibody Society's special session on applications for recording and sharing data based on GIATE was held on December 5, 2012, and the conferences concluded with two combined sessions on December 5-6, 2012: (1) Development Status of Early Stage Therapeutic Antibodies; and (2) Immunomodulatory Antibodies for Cancer Therapy.
Collapse
Affiliation(s)
- Peter-Christian Klöhn
- MRC Prion Unit; Department of Neurodegenerative Diseases; UCL Institute of Neurology; London, UK
| | | | - Nora Zizlsperger
- Protein Engineering and Antibody Technologies; EMD Serono Research Institute, Inc.; Billerica MA USA
| | - Yu Zhou
- Department of Anesthesia; University of California, San Francisco; San Francisco, CA USA
| | | | - Sven Berger
- Institut de Recherche, Centre d'Immunologie Pierre Fabre; St Julien en Genevois, France
| | - Kirstin A. Zettlitz
- Crump Institute for Molecular Imaging; Department of Molecular and Medical Pharmacology; David Geffen School of Medicine at UCLA; California NanoSystems Institute; University of California Los Angeles; Los Angeles, CA USA
| | | | - May Yong
- UCL Cancer Institute; London, UK
| | | | | |
Collapse
|
61
|
Palomba ML. Active immunotherapy: current state of the art in vaccine approaches for NHL. Curr Oncol Rep 2013; 14:433-40. [PMID: 22843515 DOI: 10.1007/s11912-012-0255-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Immune therapy of cancer is a rapidly evolving field, with long-deserved successes now finally achieved. As new pathways triggered by the immune synapsis are elucidated, and new molecules responsible for immune checkpoints are being discovered, it is becoming clear that vaccination against a single antigen aided by non-specific immune stimulation is not sufficient for an efficient, long term, immune response. Though lymphoma is a highly curable malignancy, there is still a subset of patients that is at very high risk of disease relapse even after successfully completing chemotherapy or a stem cell transplant. Patients with minimal residual disease are particularly suitable for vaccination. Over the past 3 decades, the classic model of lymphoma-specific idiotype vaccine has evolved and recent data on vaccination with nonspecific oligodeoxynucleotides has provided very encouraging results. Furthermore, the introduction of checkpoint blockade via agonist or antagonist monoclonal antibodies holds the promise of significant improvement in the efficacy of future vaccines. What follows is a brief summary of the historical highlights in lymphoma immunotherapy as well as an update on the most recently published clinical trials and a look at future developments.
Collapse
Affiliation(s)
- M Lia Palomba
- Lymphoma Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
62
|
Ribot JC, Silva-Santos B. Differentiation and activation of γδ T Lymphocytes: Focus on CD27 and CD28 costimulatory receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 785:95-105. [PMID: 23456842 DOI: 10.1007/978-1-4614-6217-0_11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
γδ T lymphocytes are major providers of the pro-inflammatory cytokines interferon-γ (IFN-γ) and interleukin-17 (IL-17) at early stages of (auto)immune responses. We and others have recently described the phenotype and differentiation requirements of two distinct murine γδ T cell subsets producing either IFN-γ or IL-17. Here we summarize our current understanding of the molecular mechanisms that control γδ T cell differentiation, which is programmed in the thymus, and peripheral activation upon infection. We focus on the costimulatory receptors CD27 and CD28, which play independent and non-redundant roles in the physiology of γδ T cells in mice and in humans.
Collapse
Affiliation(s)
- Julie C Ribot
- Molecular Immunology Unit, Faculdade de Medicinal, Institutor de Medicinal Molecular, Universidade de Lisboa, Portugal.
| | | |
Collapse
|
63
|
Zhang M, Ju W, Yao Z, Yu P, Wei BR, Simpson RM, Waitz R, Fassò M, Allison JP, Waldmann TA. Augmented IL-15Rα expression by CD40 activation is critical in synergistic CD8 T cell-mediated antitumor activity of anti-CD40 antibody with IL-15 in TRAMP-C2 tumors in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:6156-64. [PMID: 22593619 PMCID: PMC3370156 DOI: 10.4049/jimmunol.1102604] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-15 has potential as an immunotherapeutic agent for cancer treatment because it is a critical factor for the proliferation and activation of NK and CD8(+) T cells. However, monotherapy of patients with malignancy with IL-15 that has been initiated may not be optimal, because of the limited expression of the private receptor, IL-15Rα. We demonstrated greater CD8 T cell-mediated therapeutic efficacy using a combination regimen of murine IL-15 administered with an agonistic anti-CD40 Ab (FGK4.5) that led to increased IL-15Rα expression on dendritic cells (DCs), as well as other cell types, in a syngeneic established TRAMP-C2 tumor model. Seventy to one hundred percent of TRAMP-C2 tumor-bearing wild-type C57BL/6 mice in the combination group manifested sustained remissions, whereas only 0-30% in the anti-CD40-alone group and none in the murine IL-15-alone group became tumor free (p < 0.001). However, the combination regimen showed less efficacy in TRAMP-C2 tumor-bearing IL-15Rα(-/-) mice than in wild-type mice. The combination regimen significantly increased the numbers of TRAMP-C2 tumor-specific SPAS-1/SNC9-H(8) tetramer(+)CD8(+) T cells, which were associated with the protection from tumor development on rechallenge with TRAMP-C2 tumor cells. Using an in vitro cytolytic assay that involved NK cells primed by wild-type or IL-15Rα(-/-) bone marrow-derived DCs, we demonstrated that the expression of IL-15Rα by DCs appeared to be required for optimal IL-15-induced NK priming and killing. These findings support the view that anti-CD40-mediated augmented IL-15Rα expression was critical in IL-15-associated sustained remissions observed in TRAMP-C2 tumor-bearing mice receiving combination therapy.
Collapse
Affiliation(s)
- Meili Zhang
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Claus C, Riether C, Schürch C, Matter MS, Hilmenyuk T, Ochsenbein AF. CD27 signaling increases the frequency of regulatory T cells and promotes tumor growth. Cancer Res 2012; 72:3664-76. [PMID: 22628427 DOI: 10.1158/0008-5472.can-11-2791] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Signaling of the TNF receptor superfamily member CD27 activates costimulatory pathways to elicit T- and B-cell responses. CD27 signaling is regulated by the expression of its ligand CD70 on subsets of dendritic cells and lymphocytes. Here, we analyzed the role of the CD27-CD70 interaction in the immunologic control of solid tumors in Cd27-deficient mice. In tumor-bearing wild-type mice, the CD27-CD70 interaction increased the frequency of regulatory T cells (Tregs), reduced tumor-specific T-cell responses, increased angiogenesis, and promoted tumor growth. CD27 signaling reduced apoptosis of Tregs in vivo and induced CD4(+) effector T cells (Teffs) to produce interleukin-2, a key survival factor for Tregs. Consequently, the frequency of Tregs and growth of solid tumors were reduced in Cd27-deficient mice or in wild-type mice treated with monoclonal antibody to block CD27 signaling. Our findings, therefore, provide a novel mechanism by which the adaptive immune system enhances tumor growth and may offer an attractive strategy to treat solid tumors.
Collapse
Affiliation(s)
- Christina Claus
- Tumor Immunology, Department of Clinical Research, University of Bern, Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
65
|
Vitale LA, He LZ, Thomas LJ, Widger J, Weidlick J, Crocker A, O'Neill T, Storey J, Glennie MJ, Grote DM, Ansell SM, Marsh H, Keler T. Development of a human monoclonal antibody for potential therapy of CD27-expressing lymphoma and leukemia. Clin Cancer Res 2012; 18:3812-21. [PMID: 22589397 DOI: 10.1158/1078-0432.ccr-11-3308] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The TNF receptor superfamily member CD27 is best known for its important role in T-cell immunity but is also recognized as a cell-surface marker on a number of B- and T-cell malignancies. In this article, we describe a novel human monoclonal antibody (mAb) specific for CD27 with properties that suggest a potential utility against malignancies that express CD27. EXPERIMENTAL DESIGN The fully human mAb 1F5 was generated using human Ig transgenic mice and characterized by analytical and functional assays in vitro. Severe combined immunodeficient (SCID) mice inoculated with human CD27-expressing lymphoma cells were administered 1F5 to investigate direct antitumor effects. A pilot study of 1F5 was conducted in non-human primates to assess toxicity. RESULTS 1F5 binds with high affinity and specificity to human and macaque CD27 and competes with ligand binding. 1F5 activates T cells only in combination with T-cell receptor stimulation and does not induce proliferation of primary CD27-expressing tumor cells. 1F5 significantly enhanced the survival of SCID mice bearing Raji or Daudi tumors, which may be mediated through direct effector mechanisms such as antibody-dependent cellular cytotoxicity. Importantly, administration of up to 10 mg/kg of 1F5 to cynomolgus monkeys was well tolerated without evidence of significant toxicity or depletion of circulating lymphocytes. CONCLUSIONS Collectively, the data suggest that the human mAb 1F5, which has recently entered clinical development under the name CDX-1127, may provide direct antitumor activity against CD27-expressing lymphoma or leukemia, independent of its potential to enhance immunity through its agonistic properties.
Collapse
|
66
|
|
67
|
Modulation of the humoral immune response by targeting CD40 and FcγRII/III; delivery of soluble but not particulate antigen to CD40 enhances antibody responses with a Th1 bias. Mol Immunol 2011; 49:155-62. [DOI: 10.1016/j.molimm.2011.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/25/2022]
|
68
|
Houot R, Kohrt H, Goldstein MJ, Levy R. Immunomodulating antibodies and drugs for the treatment of hematological malignancies. Cancer Metastasis Rev 2011; 30:97-109. [PMID: 21271352 DOI: 10.1007/s10555-011-9274-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of cancer immunotherapy is to induce immune cells to kill tumor and promote immunological memory that protects against tumor recurrence. Most current immunotherapies, such as monoclonal antibodies (mAb), target the tumor cells directly. Advances in our understanding of the immune system such as the role of co-stimulatory and co-inhibitory receptors, and the advent of new immunomodulatory agents provide new opportunities to target the immune system and enhance anti-tumor immune responses. These promising agents include immunomodulating mAbs, Toll-like receptor agonists, IMiDs, and cytokines. In this review, we discuss the current results of immunomodulating agents in the treatment of hematological malignancies and propose applications that include targeting of the innate and adaptive immune systems as well as combinations with tumor-specific mAbs.
Collapse
Affiliation(s)
- Roch Houot
- Service d'Hématologie Clinique & INSERM U917, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | | | | | | |
Collapse
|
69
|
White AL, Chan HTC, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ. Interaction with FcγRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. THE JOURNAL OF IMMUNOLOGY 2011; 187:1754-63. [PMID: 21742972 DOI: 10.4049/jimmunol.1101135] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10-100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.
Collapse
Affiliation(s)
- Ann L White
- Division of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gladue RP, Paradis T, Cole SH, Donovan C, Nelson R, Alpert R, Gardner J, Natoli E, Elliott E, Shepard R, Bedian V. The CD40 agonist antibody CP-870,893 enhances dendritic cell and B-cell activity and promotes anti-tumor efficacy in SCID-hu mice. Cancer Immunol Immunother 2011; 60:1009-17. [PMID: 21479995 PMCID: PMC11028430 DOI: 10.1007/s00262-011-1014-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 03/26/2011] [Indexed: 12/16/2022]
Abstract
CD40 is a member of the TNF family of receptors that has been shown to play a crucial role in enhancing dendritic cell activity and fostering anti-tumor immune responses. In this study, we demonstrate the in vitro properties and in vivo efficacious activity of the CD40 agonist antibody, CP-870,893. CP-870,893 is a fully human, IgG2 antibody that selectively interacts with CD40 at a site distinct from its ligand-binding region with a KD of 0.4 nM. It enhances the expression of MHC class II, CD54, CD86, and CD23 on human B cells in vitro. CP-870,893 also enhances dendritic cell activity as evidenced by cytokine secretion (IL-12, IL-23, IL-8), the upregulation of CD86 and CD83, and the ability to prime T cells to secrete IFNγ. In SCID-beige mice, a single parenteral injection of CP-870,893 was therapeutically effective against several CD40(pos) human tumors (B-cell lymphoma, breast, colon, and prostate) indicating direct effects on tumor cell survival and/or growth. When mice were co-implanted with human T cells and dendritic cells, the activity of CP-870,893 against CD40(pos) tumors increased, and efficacy was also observed against CD40(neg) and CD40(low) tumors demonstrating the ability of CP-870,893 to enhance anti-tumor immune function in vivo. These studies suggest that CP-870,893 has the potential to be efficacious against a wide range of tumor types through both direct and immune-mediated effects.
Collapse
Affiliation(s)
- Ronald P Gladue
- Department of Immunology, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ribot JC, deBarros A, Silva-Santos B. Searching for "signal 2": costimulation requirements of γδ T cells. Cell Mol Life Sci 2011; 68:2345-55. [PMID: 21541698 PMCID: PMC11115137 DOI: 10.1007/s00018-011-0698-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/31/2022]
Abstract
T cell activation requires the integration of signals that arise from various types of receptors. Although TCR triggering is a necessary condition, it is often not sufficient to induce full T-cell activation, as reflected in cell proliferation and cytokine secretion. This has been firmly demonstrated for conventional αβ T cells, for which a large panel of costimulatory receptors has been identified. By contrast, the area remains more obscure for unconventional, innate-like γδ T cells, as the literature has been scarce and at times contradictory. Here we review the current state of the art on the costimulatory requirements of γδ T cell activation. We highlight the roles of members of the immunoglobulin (like CD28 or JAML) or tumour necrosis factor receptor (like CD27) superfamilies of coreceptors, but also of more atypical costimulatory molecules, such as NKG2D or CD46. Finally, we identify various areas where our knowledge is still markedly insufficient, hoping to provoke future research on γδ T cell costimulation.
Collapse
Affiliation(s)
- Julie C. Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
| | - Ana deBarros
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
- Instituto Gulbenkian de Ciências, Oeiras, Portugal
| |
Collapse
|
72
|
Control of established melanoma by CD27 stimulation is associated with enhanced effector function and persistence, and reduced PD-1 expression of tumor infiltrating CD8(+) T cells. J Immunother 2011; 33:769-79. [PMID: 20842060 DOI: 10.1097/cji.0b013e3181ee238f] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The immune response to the tumor can be enhanced by targeting costimulatory molecules on T cells. As the CD70-CD27 costimulatory axis plays an important role in the activation, survival, and differentiation of lymphocytes, we have examined the efficacy of agonistic anti-CD27 antibodies as monotherapies for established melanoma in a murine model. We show that this approach leads to a substantial reduction in the outgrowth of both experimental lung metastases and subcutaneous tumors. Anti-CD27 treatment supports the maintenance of tumor-specific CD8(+) T cells within the tumor, reduces the frequency of FoxP3-expressing CD4(+) T cells within tumors, and potentiates the ability of NK1.1(+) and CD8(+) tumor infiltrating cells to secrete IFNγ upon coculture with tumor cells. The enhanced effector function correlated with lower levels of PD-1 expression on CD8(+) T cells from anti-CD27-treated mice. Despite the modulating effect of anti-CD27 on multiple cell types, only CD8(+) T cells were absolutely required for tumor control. The CD4(+) T cells were dispensable, whereas NK1.1(+) cells were needed during early stages of tumor growth but not for the effectiveness of anti-CD27. Thus, CD27-mediated costimulation provides a potent boost to multiple aspects of the endogenous responses to tumor, and may be exploited to enhance tumor immunity.
Collapse
|
73
|
Jiang Q, Weiss JM, Back T, Chan T, Ortaldo JR, Guichard S, Wiltrout RH. mTOR kinase inhibitor AZD8055 enhances the immunotherapeutic activity of an agonist CD40 antibody in cancer treatment. Cancer Res 2011; 71:4074-84. [PMID: 21540234 DOI: 10.1158/0008-5472.can-10-3968] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
mTOR is a central mediator of cancer cell growth, but it also directs immune cell differentiation and function. On this basis, we had explored the hypothesis that mTOR inhibition can enhance cancer immunotherapy. Here, we report that a combination of αCD40 agonistic antibody and the ATP-competitive mTOR kinase inhibitory drug AZD8055 elicited synergistic antitumor responses in a model of metastatic renal cell carcinoma. In contrast to the well-established mTOR inhibitor rapamycin, AZD8055 increased the infiltration, activation, and proliferation of CD8(+) T cells and natural killer cells in liver metastatic foci when combined with the CD40 agonist. AZD8055/αCD40-treated mice also display an increased incidence of matured macrophages and dendritic cells compared with that achieved in mice by αCD40 or AZD8055 treatment alone. We found that the combination treatment also increased macrophage production of TNFα, which played an indispensable role in activation of the observed antitumor immune response. Levels of Th1 cytokines, including interleukin 12, IFN-γ, TNFα, and the Th1-associated chemokines RANTES, MIG, and IP-10 were each elevated significantly in the livers of mice treated with the combinatorial therapy versus individual treatments. Notably, the AZD8055/αCD40-induced antitumor response was abolished in IFN-γ(-/-) and CD40(-/-) mice, establishing the reliance of the combination therapy on host IFN-γ and CD40 expression. Our findings offer a preclinical proof of concept that, unlike rapamycin, the ATP-competitive mTOR kinase inhibitor AZD8055 can contribute with αCD40 treatment to trigger a restructuring of the tumor immune microenvironment to trigger regressions of an established metastatic cancer.
Collapse
Affiliation(s)
- Qun Jiang
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, Center for Cancer Research, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
CD70 is selectively expressed on Th1 but not on Th2 cells and is required for Th1-type immune responses. J Invest Dermatol 2011; 131:1252-61. [PMID: 21490618 DOI: 10.1038/jid.2011.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction between CD27 and CD70 provides a costimulatory signal for T-cell survival. Although the role of CD27 signaling in CD8(+) T cells has been well defined, its role in CD4(+) T cells is relatively unknown. Here, we report that CD70 is specifically expressed on differentiated T-helper (Th)1 cells, but not on Th2 cells. Upon activation, CD70 expression increased markedly on Th1 cells, but remained undetectable on Th2 cells. We demonstrate that CD27 is involved in naive T-cell expansion in Th1-type, but not in Th2-type, immune responses as in vivo treatment with anti-CD70 monoclonal antibody at induction resulted in a significant reduction of delayed-type and contact hypersensitivity responses, but not asthmatic responses. In both Th1-type responses, during the priming phase, CD70 was detected at earlier time points on dendritic cells (DCs) and at later time points on CD4(+) T cells. Our results indicate that CD70 may be useful as a marker to distinguish Th1 from Th2 cells. More importantly, CD27 function may be controlled by the differentially regulated kinetics of CD70 expression on DCs and CD4(+) T cells, and Th1 cell-specific CD70 expression may be involved in an amplification loop for polarized Th1-type immune responses through T cell-T cell interactions.
Collapse
|
75
|
Fransen MF, Sluijter M, Morreau H, Arens R, Melief CJM. Local activation of CD8 T cells and systemic tumor eradication without toxicity via slow release and local delivery of agonistic CD40 antibody. Clin Cancer Res 2011; 17:2270-80. [PMID: 21389097 DOI: 10.1158/1078-0432.ccr-10-2888] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy against tumors with anti-CD40 agonistic antibodies has been extensively studied in preclinical animal models and recently also in clinical trials. Although promising results have been obtained, antibody (Ab)-related toxicity has been a limiting factor. We reasoned that strict local activation of tumor-specific CD8 T cells through stimulation of CD40 on the dendritic cells (DC) in the tumor area while excluding systemic stimulation might be sufficient for effective tumor eradication and can limit systemic toxicity. EXPERIMENTAL DESIGN Preclinical in vivo models for immunogenic tumors were used to investigate the potential of delivering a nontoxic dose of agonistic anti-CD40 Ab to the tumor region, including draining lymph node, in a slow-release formulation (montanide). RESULTS The delivery of anti-CD40 monoclonal Ab, formulated in slow-release Montanide ISA-51, reprograms CTLs by inducing local but not systemic DC activation, resulting in effective tumor-specific CTL responses that eradicate local and distant tumors. Adverse side effects, assayed by organ histology and liver enzymes in the blood, were much lower after local anti-CD40 Ab delivery than systemic administration. The local delivery of anti-CD40 Ab activates only CTLs against antigens presented in the tumor-draining area, because unrelated distant tumors expressing different tumor antigens were not eradicated. CONCLUSIONS These results establish a novel therapeutic principle that local delivery and slow release of agonistic anti-CD40 Ab to the tumor-draining area effectively activates local tumor-specific CD8 T cells to become systemic effectors without causing systemic toxicity or nonspecific CTL activation. These findings have important implications for the use of anti-CD40 therapies in patients.
Collapse
Affiliation(s)
- Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center; ISA Pharmaceuticals, Leiden, the Netherlands
| | | | | | | | | |
Collapse
|
76
|
DeBarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B. CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human γδ peripheral blood lymphocytes. Eur J Immunol 2010; 41:195-201. [PMID: 21182090 DOI: 10.1002/eji.201040905] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/09/2010] [Accepted: 10/11/2010] [Indexed: 01/09/2023]
Abstract
Human Vγ9Vδ2 T cells are potent anti-tumor lymphocytes that specifically respond to pyrophosphate (phospho-) antigens, which constitute the basis of current γδ T-cell-based immunotherapy strategies. Despite a clear involvement of the TCR, the costimulation requirements of Vγ9Vδ2 T cells remain ill-defined. Here, we show that the expression of the CD27 receptor by the vast majority of Vγ9Vδ2 peripheral blood lymphocytes endows them with enhanced proliferative capacity upon ligation by its unique ligand CD70, a tumor necrosis factor superfamily member expressed on lymphoma B-cells but also on TCR-activated γδ T cells. Moreover, Vγ9Vδ2 T-cell treatment with soluble recombinant CD70 induced calcium signals and increased transcription of anti-apoptotic Bcl2a1 and cell-cycle-promoting Cyclin D2 genes. We further demonstrate that the manipulation of CD70-CD27 interactions significantly impacted on Vγ9Vδ2 T-cell survival, proliferation and cytokine secretion, in both loss-of-function and gain-of-function experiments. Thus, CD27 coreceptor signals strongly promoted the expansion of Th1-biased, CD27(+) Vγ9Vδ2 peripheral blood lymphocytes in the context of TCR-mediated stimulation with phosphoantigens. These data collectively establish a novel role for the CD70-CD27 axis in human γδ T-cell activation and hence open new perspectives for its modulation in clinical settings.
Collapse
Affiliation(s)
- Ana DeBarros
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
77
|
Dubrot J, Portero A, Orive G, Hernández RM, Palazón A, Rouzaut A, Perez-Gracia JL, Hervás-Stubbs S, Pedraz JL, Melero I. Delivery of immunostimulatory monoclonal antibodies by encapsulated hybridoma cells. Cancer Immunol Immunother 2010; 59:1621-31. [PMID: 20607237 PMCID: PMC11030103 DOI: 10.1007/s00262-010-0888-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/12/2010] [Indexed: 12/15/2022]
Abstract
Immunostimulatory monoclonal antibodies are immunoglobulins directed toward surface proteins of immune system cells that augment the immune response against cancer in a novel therapeutic fashion. Exogenous administration of the recombinant humanized immunoglobulins is being tested in clinical trials with agents of this kind directed at a variety of immune-controlling molecular targets. In this study, the encapsulation of antibody-producing hybridoma cells was tested in comparison with the systemic administration of monoclonal antibodies. Hybridomas producing anti-CD137 and anti-OX40 mAb were encapsulated in alginate to generate microcapsules containing viable cells that secrete antibody. Immobilized cells in vitro were able to release the rat immunoglobulin produced by the hybridomas into the supernatant. Microcapsules were implanted by injection into the subcutaneous tissue of mice and thereby provided a platform for viable secreting cells, which lasted for more than 1 week. The pharmacokinetic profile of the rat monoclonal antibodies following microcapsule implantation was similar to that attained following an intraperitoneal administration of the purified antibodies. The rat-mouse hybridoma cells did not engraft as tumors in immunocompetent mice, while they lethally xenografted in immunodeficient mice, if not microencapsulated. The antitumor therapeutic activity of the strategy was studied on established CT26 colon carcinomas resulting in complete tumor eradication in an elevated fraction of cases and strong tumor-specific CTL responses with either anti-CD137 or anti-OX40 producing hybridomas, thus offering proof of the concept. This form of administration permitted combinations of more than one immunostimulatory monoclonal antibody to exploit the synergistic effects such as those known to be displayed by anti-CD137 and anti-OX40 mAb.
Collapse
Affiliation(s)
- Juan Dubrot
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Aitziber Portero
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Gorka Orive
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Rosa María Hernández
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Asis Palazón
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Ana Rouzaut
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | | | - Sandra Hervás-Stubbs
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
| | - Jose Luis Pedraz
- Laboratory of Pharmacy and Pharmaceutical Technology, Networking Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, SLFPB-EHU, Faculty of Pharmacy, University of the Basque Country, 01006 Vitoria-Gasteiz, Spain
| | - Ignacio Melero
- Centro de Investigación Médica Aplicada (CIMA), University of Navarra, CIMA. Av. Pio XII, 55 31008 Pamplona, Spain
- Clinica Universitaria, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
78
|
Ahlers JD, Belyakov IM. Molecular pathways regulating CD4+ T cell differentiation, anergy and memory with implications for vaccines. Trends Mol Med 2010; 16:478-91. [DOI: 10.1016/j.molmed.2010.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/18/2010] [Accepted: 07/19/2010] [Indexed: 12/23/2022]
|
79
|
Linderoth J, Ehinger M, Jerkeman M, Bendahl PO, Akerman M, Berglund M, Enblad G, Erlanson M, Roos G, Cavallin-Ståhl E. CD40 expression identifies a prognostically favourable subgroup of diffuse large B-cell lymphoma. Leuk Lymphoma 2009; 48:1774-9. [PMID: 17786713 DOI: 10.1080/10428190701494520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In order to confirm our earlier findings of the prognostic effects of CD23 and CD40 expression in diffuse large B-cell lymphoma (DLBCL), possibly due to association with the germinal center (GC) phenotype and/or an increased autologous tumour response, tumour specimens from 125 patients with de novo DLBCL were investigated for immunohistochemical expression of CD23, CD40, BCL6, CD10, MUM1, CD4 and CD8. CD40 was positive in 64% and was associated with improved overall survival (p = 0.03). A GC phenotype was present in 47%, and was also associated with a better overall survival (p = 0.006) but did not correlate with CD40-expression. There was no correlation between amount of tumour infiltrating T-cells and CD40-positivity. CD23 was positive in 10% and expression did not correlate with prognosis. In conclusion, the prognostic effect of CD40 expression was confirmed, but did not correlate with GC-phenotype or T-cell infiltration.
Collapse
Affiliation(s)
- Johan Linderoth
- Department of Oncology, Institution of Clinical Sciences, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Hashimoto-Okada M, Kitawaki T, Kadowaki N, Iwata S, Morimoto C, Hori T, Uchiyama T. The CD70–CD27 interaction during the stimulation with dendritic cells promotes naive CD4+ T cells to develop into T cells producing a broad array of immunostimulatory cytokines in humans. Int Immunol 2009; 21:891-904. [DOI: 10.1093/intimm/dxp056] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
81
|
Zhao B, Song A, Haque R, Lei F, Weiler L, Xiong X, Wu Y, Croft M, Song J. Cooperation between molecular targets of costimulation in promoting T cell persistence and tumor regression. THE JOURNAL OF IMMUNOLOGY 2009; 182:6744-52. [PMID: 19454669 DOI: 10.4049/jimmunol.0804387] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Costimulation regulates multiple cellular processes of T cells inducing proliferation, expansion, and survival. The molecular targets of costimulation might then be useful to augment T cell activities. Two defined targets of costimulatory signals in primary T cells are the anti-apoptotic bcl-2 family molecule Bcl-x(L), and survivin, an inhibitor of apoptosis family member that might regulate both cell division and survival. However, the relative importance of, and relationship between, these molecules in primary T cells is not clear. To understand whether they have overlapping or cooperative functions, we used retrovirus-mediated transduction to introduce Bcl-x(L) and survivin separately, or together linked by a 2A picornavirus self-cleaving peptide, into Ag-responding CD8(+) T cells. We found that CD8(+) effector T cells expressing both Bcl-x(L) and survivin strongly expanded at an early stage and had a long-term survival advantage over cells transduced with either molecule alone. In vivo, with response to tumor-expressed Ag following adoptive T cell transfer, Ag-reactive CD8(+) T cells expressing both Bcl-x(L) and survivin displayed greatly enhanced tumor protective activity compared with CD8(+) T cells expressing either molecule introduced separately. These results indicate that Bcl-x(L) and survivin can critically contribute in a cooperative, nonredundant manner to augment the accumulation and persistence of CD8(+) T cells following encounter with Ag. The data provide new insights into why costimulatory signals might need to be sustained over time and suggest a potential novel approach to augment cellular immunotherapy for cancer.
Collapse
Affiliation(s)
- Baohua Zhao
- Department of Microbiology and Immunology and Pennsylvania State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
van Gisbergen KPJM, van Olffen RW, van Beek J, van der Sluijs KF, Arens R, Nolte MA, van Lier RA. Protective CD8 T cell memory is impaired during chronic CD70-driven costimulation. THE JOURNAL OF IMMUNOLOGY 2009; 182:5352-62. [PMID: 19380782 DOI: 10.4049/jimmunol.0802809] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic infection results in continuous formation and exhaustion of effector CD8 T cells and in failure of memory CD8 T cell development. Expression of CD70 and other molecules that provide costimulation to T cells is maintained during chronic infection. To analyze the impact of constitutive CD70-driven costimulation, we generated transgenic mice expressing CD70 specifically on T cells. We show that CD70 promoted accumulation of CD8 T cells with characteristics strikingly similar to exhausted effector CD8 T cells found during chronic infection. CD70 on T cells provided costimulation that enhanced primary CD8 T cell responses against influenza. In contrast, memory CD8 T cell maintenance and protection against secondary challenge with influenza was impaired. Interestingly, we found no effect on the formation of either effector or memory CD4 T cells. We conclude that constitutive expression of CD70 is sufficient to deregulate the CD8 T cell differentiation pathway of acute infection reminiscent of events in chronic infection.
Collapse
|
83
|
Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci U S A 2009; 106:7513-8. [PMID: 19383782 DOI: 10.1073/pnas.0902637106] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IL-15 has potential as an immunotherapeutic agent for cancer treatment because it is a critical factor for the proliferation and activation of natural killer (NK) and CD8(+) T cells. Administration of anti-CD40 antibodies has shown anti-tumor effects in vivo through a variety of mechanisms. Furthermore, activation of CD40 led to increased expression of IL-15 receptor-alpha by dendritic cells, an action that is critical for trans-presentation of IL-15 to NK and CD8(+) T cells. In this study, we investigated the therapeutic efficacy of the combination regimen of murine IL-15 (mIL-15) with an agonistic anti-CD40 antibody (FGK4.5) in murine lung metastasis models involving CT26 and MC38, which are murine colon cancer cell lines syngeneic to BALB/c and C57BL/6 mice, respectively. Treatment with mIL-15 or the anti-CD40 antibody alone significantly prolonged survival of both CT26 and MC38 tumor-bearing mice compared with the mice in the PBS solution control group (P < 0.01). Furthermore, combination therapy with both mIL-15 and the anti-CD40 antibody provided greater therapeutic efficacy as demonstrated by prolonged survival of the mice compared with either mIL-15 or the anti-CD40 antibody-alone groups (P < 0.001). We found that NK cells isolated from the mice that received the combination regimen expressed increased levels of intracellular granzyme B and showed stronger cytotoxic activity on the target cells. The findings from this study provide the scientific basis for clinical trials using the combination regimen of IL-15 with an anti-CD40 antibody for the treatment of patients with cancer.
Collapse
|
84
|
Vinay DS, Kwon BS. TNF superfamily: costimulation and clinical applications. Cell Biol Int 2009; 33:453-65. [PMID: 19230849 PMCID: PMC2712666 DOI: 10.1016/j.cellbi.2009.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 02/04/2009] [Indexed: 12/21/2022]
Abstract
The molecules concerned with costimulation belong either to the immunoglobulin (Ig) or tumor necrosis factor (TNF) superfamily. The tumor necrosis superfamily comprises molecules capable of providing both costimulation and cell death. In this review we briefly summarize certain TNF superfamily receptor-ligand pairs that are endowed with costimulatory properties and their importance in health and disease.
Collapse
Affiliation(s)
- Dass S Vinay
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Byoung S Kwon
- Department of Ophthalmology, Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
- Cell and Immunobiology and R&D Center for Cancer Therapeutics, National Cancer Center, Ilsan, Gyeonggi-Do, Korea
| |
Collapse
|
85
|
Costimulatory ligand CD70 allows induction of CD8+ T-cell immunity by immature dendritic cells in a vaccination setting. Blood 2009; 113:5167-75. [PMID: 19279334 DOI: 10.1182/blood-2008-03-148007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The use of dendritic cells (DCs) as anticancer vaccines holds promise for therapy but requires optimization. We have explored the potential of costimulatory ligand CD70 to boost the capacity of DCs to evoke effective CD8(+) T-cell immunity. We show that immature conventional DCs, when endowed with CD70 expression by transgenesis, are converted from a tolerogenic state into an immunogenic state. Adoptively transferred CD70-expressing immature DCs could prime CD8(+) T cells, by CD27, to become tumor-eradicating cytolytic effectors and memory cells with a capacity for robust secondary expansion. The CD8(+) T-cell response, including memory programming, was independent of CD4(+) T-cell help, because the transferred immature DCs were loaded with major histocompatibility complex class I-restricted peptide only. Without CD70 expression, the DCs generated abortive clonal expansion, dysfunctional antitumor responses, and no CD8(+) T-cell memory. CD70-expressing CD8(+) DCs were the primary subset responsible for CD8(+) T-cell priming and performed comparably to fully matured DCs. These data highlight the importance of CD27/CD70 interactions at the T-cell/DC interface and indicate that CD70 should be considered in the design of DC vaccination strategies.
Collapse
|
86
|
Kim J, Park K, Kim HJ, Kim J, Kim HA, Jung D, Kim HJ, Choi HJ, Choi SY, Seo KW, Cho HR, Kwon B. Breaking of CD8+ T cell tolerance through in vivo ligation of CD40 results in inhibition of chronic graft-versus-host disease and complete donor cell engraftment. THE JOURNAL OF IMMUNOLOGY 2008; 181:7380-9. [PMID: 18981161 DOI: 10.4049/jimmunol.181.10.7380] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the DBA/2 --> unirradiated (C57BL/6 x DBA/2)F(1) model of chronic graft-vs-host disease (cGVHD), donor CD4(+) T cells play a critical role in breaking host B cell tolerance, while donor CD8(+) T cells are rapidly removed and the remaining cells fall into anergy. Previously we have demonstrated that in vivo ligation of GITR (glucocorticoid-induced TNF receptor-related gene) can activate donor CD8(+) T cells, subsequently converting the disease pattern from cGVHD to an acute form. In this study, we investigated the effect of an agonistic mAb against CD40 on cGVHD. Treatment of anti-CD40 mAb inhibited the production of anti-DNA IgG1 autoantibody and the development of glomerulonephritis. The inhibition of cGVHD occurred because anti-CD40 mAb prevented donor CD8(+) T cell anergy such that subsequently activated donor CD8(+) T cells deleted host CD4(+) T cells and host B cells involved in autoantibody production. Additionally, functionally activated donor CD8(+) T cells induced full engraftment of donor hematopoietic cells and exhibited an increased graft-vs-leukemia effect. However, induction of acute GVHD by donor CD8(+) T cells seemed to be not so apparent. Further CTL analysis indicated that there were lower levels of donor CTL activity against host cells in mice that received anti-CD40 mAb, compared with mice that received anti-GITR mAb. Taken together, our results suggest that a different intensity of donor CTL activity is required for removal of host hematopoietic cells, including leukemia vs induction of acute GVHD.
Collapse
Affiliation(s)
- Juyang Kim
- Biomedical Research Center, Ulsan University Hospital, School of Medicine, University of Ulsan, Ulsan, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Kraus ZJ, Haring JS, Bishop GA. TNF receptor-associated factor 5 is required for optimal T cell expansion and survival in response to infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7800-9. [PMID: 19017969 PMCID: PMC2636746 DOI: 10.4049/jimmunol.181.11.7800] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Receptors belonging to the TNF-receptor (TNF-R) superfamily include important costimulatory molecules, many of which specifically affect T cell activation. TNF receptor-associated factors (TRAFs) are recruited to many TNF-R superfamily members and are important modulators of the proximal signaling events that occur at the time of receptor engagement and activation. TRAF5 has been shown to be a positive regulator of a number of these receptors that are involved in T cell costimulation. However, the potential importance of TRAF5 in cellular immune responses to infection or in T cell expansion and memory have not been studied. We report in this study that TRAF5 was required for optimal CD8(+) T cell responses following infection with Listeria monocytogenes expressing OVA (LM-OVA). TRAF5 was necessary for optimal T cell expansion following primary infection with LM-OVA, and its absence resulted in fewer memory CD8(+) T cells following LM-OVA infection, together with higher bacterial loads in the liver. The effect of TRAF5 on CD8(+) T cell expansion was T cell intrinsic and not due to effects of TRAF5 deficiency on APCs. Although their proliferative ability remained intact, CD8(+) T cells from TRAF5(-/-) mice were more sensitive to apoptosis and were unresponsive to the prosurvival effects of the TNF-R superfamily costimulator CD27. Collectively, these studies identify TRAF5 as an important positive signaling element that enhances T cell expansion and pathogen containment by providing a survival advantage to responding Ag-specific CD8(+) T cells during infection.
Collapse
Affiliation(s)
- Zachary J Kraus
- Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
88
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
89
|
Chiang CLL, Ledermann JA, Aitkens E, Benjamin E, Katz DR, Chain BM. Oxidation of ovarian epithelial cancer cells by hypochlorous acid enhances immunogenicity and stimulates T cells that recognize autologous primary tumor. Clin Cancer Res 2008; 14:4898-907. [PMID: 18676764 DOI: 10.1158/1078-0432.ccr-07-4899] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Hypochlorous acid, a product of neutrophil myeloperoxidase, is a powerful enhancer of antigen processing and presentation. In this study, we examine whether ovarian epithelial cells (SK-OV-3) exposed to hypochlorous acid can stimulate T cells from patients with ovarian epithelial cancer that recognize common tumor antigens as well as autologous tumor. EXPERIMENTAL DESIGN T cells from human leukocyte antigen (HLA)-A2(+) and HLA-A2(-) patients or healthy controls were stimulated with autologous dendritic cells cocultured with the generic ovarian tumor line SK-OV-3, previously exposed to hypochlorous acid. RESULTS Hypochlorous acid-treated SK-OV-3 cells drove expansion of CD8(+) T cells from HLA-A2(+) individuals, which recognized the HLA-A2-restricted tumor antigen epitopes of HER-2/neu (E75 and GP2) and MUC1 (M1.1 and M1.2). Up to 4.1% of the T cells were positive for the HER-2/neu KIFGSLAFL epitope using pentamer staining. Dendritic cells loaded with oxidized SK-OV-3 cells and further matured with CD40 agonistic antibody or monophosphoryl lipid A additionally induced CD4(+) class II-restricted responses. Critically, T cells stimulated with mature oxidized SK-OV-3 (but not a control oxidized melanoma cell line) directly recognized autologous tumor cells isolated from patient ascites. CONCLUSIONS Immunization with mature dendritic cells loaded with a generic oxidized tumor cell line stimulates a polyclonal antitumor response that recognizes autologous tumor. These findings suggest a new immunotherapeutic strategy to extend remission in ovarian cancer.
Collapse
Affiliation(s)
- Cheryl L-L Chiang
- Division of Infection and Immunity, University College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
90
|
Enhancing the T-cell stimulatory capacity of human dendritic cells by co-electroporation with CD40L, CD70 and constitutively active TLR4 encoding mRNA. Mol Ther 2008; 16:1170-80. [PMID: 18431362 DOI: 10.1038/mt.2008.77] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effectiveness of the dendritic cell (DC) vaccination protocols that are currently in use could be improved by providing the DCs with a more potent maturation signal. We therefore investigated whether the T-cell stimulatory capacity of human monocyte-derived DCs could be increased by co-electroporation with different combinations of CD40L, CD70, and constitutively active toll-like receptor 4 (caTLR4) encoding mRNA. We show that immature DCs electroporated with CD40L and/or caTLR4 mRNA, but not those electroporated with CD70 mRNA, acquire a mature phenotype along with an enhanced secretion of several cytokines/chemokines. Moreover, these DCs are very potent in inducing naive CD4(+) T cells to differentiate into interferon-gamma (IFN-gamma)-secreting type 1 T helper (Th1) cells. Further, we assessed the capacity of the electroporated DCs to activate naive HLA-A2-restricted MelanA-specific CD8(+) T cells without the addition of any exogenous cytokines. When all three molecules were combined, a >500-fold increase in MelanA-specific CD8(+) T cells was observed when compared with immature DCs, and a >200-fold increase when compared with cytokine cocktail-matured DCs. In correlation, we found a marked increase in cytolytic and IFN-gamma/tumor necrosis factor-alpha (TNF-alpha) secreting CD8(+) T cells. Our data indicate that immature DCs genetically modified to express stimulating molecules can induce tumor antigen-specific T cells in vitro and could prove to be a significant improvement over DCs matured with the methods currently in use.
Collapse
|
91
|
Taraban VY, Martin S, Attfield KE, Glennie MJ, Elliott T, Elewaut D, Van Calenbergh S, Linclau B, Al-Shamkhani A. Invariant NKT Cells Promote CD8+Cytotoxic T Cell Responses by Inducing CD70 Expression on Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:4615-20. [DOI: 10.4049/jimmunol.180.7.4615] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
92
|
Kretz-Rommel A, Qin F, Dakappagari N, Cofiell R, Faas SJ, Bowdish KS. Blockade of CD200 in the presence or absence of antibody effector function: implications for anti-CD200 therapy. THE JOURNAL OF IMMUNOLOGY 2008; 180:699-705. [PMID: 18178807 DOI: 10.4049/jimmunol.180.2.699] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD200 is an immunosuppressive molecule overexpressed in multiple hematologic malignancies such as B cell chronic lymphocytic leukemia, multiple myeloma, and acute myeloid leukemia. We previously demonstrated that up-regulation of CD200 on tumor cells suppresses antitumor immune responses and that antagonistic anti-human CD200 mAbs enabled human PBMC-mediated tumor growth inhibition in xenograft NOD/SCID human (hu)-mouse models. Ab variants with effector function (IgG1 constant region (G1)) or without effector function (IgG2/G4 fusion constant region (G2G4)) exhibited high antitumor activity in a human tumor xenograft model in which CD200 was expressed. In this report, we seek to select the best candidate to move forward into the clinic and begin to decipher the mechanisms of tumor cell killing by comparing anti-CD200-G1 vs anti-CD200-G2G4 in two related animal models. In a CD200-expressing xenograft NOD/SCID hu-mouse model where CD200 ligand/receptor interactions are already established before initiating treatment, we find that anti-CD200-G1 is a less effective Ab compared with anti-CD200-G2G4. Separately, in a model that evaluates the effect of the Abs on the immune cell component of the xenograft NOD/SCID hu-mouse model distinctly from the effects of binding to CD200 on tumor cells, we find that the administration of anti-CD200-G1 Abs completely abolished human PBMC-mediated tumor growth inhibition. Along with supporting in vitro studies, our data indicate that anti-CD200-G1 Abs efficiently mediate Ab-dependent cellular cytotoxicity of activated T cells, critical cells involved in immune-mediated killing. These studies suggest important implications regarding the selection of the constant region in anti-CD200 immunotherapy of cancer patients.
Collapse
|
93
|
Abstract
CD40 and its ligand, CD154, are major costimulatory molecules whose interactions are important in humoral and cellular immunity. We hypothesized that single nucleotide polymorphisms (SNPs) in TNFRSF5 and TNFSF5 encoding the CD40 and CD154 proteins, respectively, influence lymphoma risk, particularly a functional TNFRSF5 SNP (-1C>T, rs1883832) associated with reduced B-cell CD40 expression. TNFRSF5 and TNFSF5 SNPs were examined in a population-based case-control study of non-Hodgkin lymphoma (376 cases/801 controls with DNA), and compelling findings were followed up in 2 independent populations. Pooled analyses of all 3 case-control studies (total N = 1776 non-Hodgkin lymphoma cases, N = 2482 controls) revealed an increased risk of follicular lymphoma (FL) associated with the TNFRSF5 -1TT genotype (odds ratio = 1.6; 95% confidence interval, 1.1-2.4). In addition, among women, an inverse association was found between the variant A allele for a TNFSF5 6809G>A SNP and FL risk (OR = .61; 95% CI, 0.36-0.98). In genotype-phenotype studies, significantly reduced circulating soluble CD40 was observed in TNFRSF5 -1TT compared with -1CC carriers. Further, dendritic cells from those with -1TT versus -1CC genotypes exhibited lower CD40 cell surface expression. These results suggest that the TNFRSF5 -1C>T polymorphism may increase FL susceptibility through mechanisms that hinder cellular immune responses. Further studies are needed to explore these findings.
Collapse
|