51
|
Wakao H, Sugimoto C, Kimura S, Wakao R. Mucosal-Associated Invariant T Cells in Regenerative Medicine. Front Immunol 2017; 8:1711. [PMID: 29250077 PMCID: PMC5717033 DOI: 10.3389/fimmu.2017.01711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although antibiotics to inhibit bacterial growth and small compounds to interfere with the productive life cycle of human immunodeficiency virus (HIV) have successfully been used to control HIV infection, the recent emergence of the drug-resistant bacteria and viruses poses a serious concern for worldwide public health. Despite intensive scrutiny in developing novel antibiotics and drugs to overcome these problems, there is a dilemma such that once novel antibiotics are launched in markets, sooner or later antibiotic-resistant strains emerge. Thus, it is imperative to develop novel methods to avoid this vicious circle. Here, we discuss the possibility of using induced pluripotent stem cell (iPSC)-derived, innate-like T cells to control infection and potential application of these cells for cancer treatment. Mucosal-associated invariant T (MAIT) cells belong to an emerging family of innate-like T cells that link innate immunity to adaptive immunity. MAIT cells exert effector functions without priming and clonal expansion like innate immune cells and relay the immune response to adaptive immune cells through production of relevant cytokines. With these characteristics, MAIT cells are implicated in a wide range of human diseases such as autoimmune, infectious, and metabolic diseases, and cancer. Circulating MAIT cells are often depleted by these diseases and often remain depleted even after appropriate remedy because MAIT cells are susceptible to activation-induced cell death and poor at proliferation in vivo, which threatens the integrity of the immune system. Because MAIT cells have a pivotal role in human immunity, supplementation of MAIT cells into immunocompromised patients suffering from severe depletion of these cells may help recapitulate or recover immunocompetence. The generation of MAIT cells from human iPSCs has made it possible to procure MAIT cells lost from disease. Such technology creates new avenues for cell therapy and regenerative medicine for difficult-to-cure infectious diseases and cancer and contributes to improvement of our welfare.
Collapse
Affiliation(s)
- Hiroshi Wakao
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Chie Sugimoto
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Shinzo Kimura
- International Epidemiology, Dokkyo Medical University, Mibu, Japan
| | - Rika Wakao
- Office of Regulatory Science, Pharmaceutical and Medical Device Agency (PMDA), Tokyo, Japan
| |
Collapse
|
52
|
Bolte FJ, O’Keefe AC, Webb LM, Serti E, Rivera E, Liang TJ, Ghany M, Rehermann B. Intra-Hepatic Depletion of Mucosal-Associated Invariant T Cells in Hepatitis C Virus-Induced Liver Inflammation. Gastroenterology 2017; 153:1392-1403.e2. [PMID: 28780074 PMCID: PMC5669813 DOI: 10.1053/j.gastro.2017.07.043] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Chronic hepatitis affects phenotypes of innate and adaptive immune cells. Mucosal-associated invariant T (MAIT) cells are enriched in the liver as compared with the blood, respond to intra-hepatic cytokines, and (via the semi-invariant T-cell receptor) to bacteria translocated from the gut. Little is known about the role of MAIT cells in livers of patients with chronic hepatitis C virus (HCV) infection and their fate after antiviral therapy. METHODS We collected blood samples from 42 patients with chronic HCV infection who achieved a sustained virologic response after 12 weeks of treatment with sofosbuvir and velpatasvir. Mononuclear cells were isolated from blood before treatment, at weeks 4 and 12 during treatment, and 24 weeks after the end of treatment. Liver biopsies were collected from 37 of the patients prior to and at week 4 of treatment. Mononuclear cells from 56 blood donors and 10 livers that were not suitable for transplantation were used as controls. Liver samples were assessed histologically for inflammation and fibrosis. Mononuclear cells from liver and blood were studied by flow cytometry and analyzed for responses to cytokine and bacterial stimulation. RESULTS The frequency of MAIT cells among T cells was significantly lower in blood and liver samples of patients with HCV infection than of controls (median, 1.31% vs 2.32% for blood samples, P = .0048; and median, 4.34% vs 13.40% for liver samples, P = .001). There was an inverse correlation between the frequency of MAIT cells in the liver and histologically determined levels of liver inflammation (r = -.5437, P = .0006) and fibrosis (r = -.5829, P = .0002). MAIT cells from the liver had higher levels of activation and cytotoxicity than MAIT cells from blood (P < .0001). Production of interferon gamma by MAIT cells was dependent on monocyte-derived interleukin 18, and was reduced in patients with HCV infection in response to T-cell receptor-mediated but not cytokine-mediated stimulation, as compared with controls. Anti-viral therapy rapidly decreased liver inflammation and MAIT cell activation and cytotoxicity, and increased the MAIT cell frequency among intra-hepatic but not blood T cells. The MAIT cell response to T-cell receptor-mediated stimulation did not change during the 12 weeks of antiviral therapy. CONCLUSIONS In analyses of paired blood and liver samples from patients with chronic HCV infection before, during, and after antiviral therapy with sofosbuvir and velpatasvir, we found that intrahepatic MAIT cells are activated by monocyte-derived cytokines and depleted in HCV-induced liver inflammation.
Collapse
Affiliation(s)
- Fabian J. Bolte
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Ashley C. O’Keefe
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Lauren M. Webb
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Elisavet Serti
- Immunology Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Elenita Rivera
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Marc Ghany
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD; Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, DHHS, Bethesda, MD.
| |
Collapse
|
53
|
Graft-Derived Reconstitution of Mucosal-Associated Invariant T Cells after Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2017; 24:242-251. [PMID: 29024803 DOI: 10.1016/j.bbmt.2017.10.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2017] [Indexed: 02/05/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells express a semi-invariant Vα7.2+ T cell receptor (TCR) that recognizes ligands from distinct bacterial and fungal species. In neonates, MAIT cells proliferate coincident with gastrointestinal (GI) bacterial colonization. In contrast, under noninflammatory conditions adult MAIT cells remain quiescent because of acquired regulation of TCR signaling. Effects of inflammation and the altered GI microbiota after allogeneic hematopoietic cell transplantation (HCT) on MAIT cell reconstitution have not been described. We conducted an observational study of MAIT cell reconstitution in myeloablative (n = 41) and nonmyeloablative (n = 66) allogeneic HCT recipients and found that despite a rapid and early increase to a plateau at day 30 after HCT, MAIT cell numbers failed to normalize for at least 1 year. Cord blood transplant recipients and those who received post-HCT cyclophosphamide for graft versus host disease (GVHD) prophylaxis had profoundly impaired MAIT cell reconstitution. Sharing of TCRβ gene sequences between MAIT cells isolated from HCT grafts and blood of recipients after HCT showed early MAIT cell reconstitution was due at least in part to proliferation of MAIT cells transferred in the HCT graft. Inflammatory cytokines were required for TCR-dependent MAIT cell proliferation, suggesting that bacterial Vα7.2+ TCR ligands might promote MAIT cell reconstitution after HCT. Robust MAIT cell reconstitution was associated with an increased GI abundance of Blautia spp. MAIT cells suppressed proliferation of conventional T cells consistent with a possible regulatory role. Our data identify modifiable factors impacting MAIT cell reconstitution that could influence the risk of GVHD after HCT.
Collapse
|
54
|
Legoux F, Salou M, Lantz O. Unconventional or Preset αβ T Cells: Evolutionarily Conserved Tissue-Resident T Cells Recognizing Nonpeptidic Ligands. Annu Rev Cell Dev Biol 2017; 33:511-535. [PMID: 28661722 DOI: 10.1146/annurev-cellbio-100616-060725] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A majority of T cells bearing the αβ T cell receptor (TCR) are specific for peptides bound to polymorphic classical major histocompatibility complex (MHC) molecules. Smaller subsets of T cells are reactive toward various nonpeptidic ligands associated with nonpolymorphic MHC class-Ib (MHC-Ib) molecules. These cells have been termed unconventional for decades, even though only the composite antigen is different from the one seen by classical T cells. Herein, we discuss the identity of these particular T cells in light of the coevolution of their TCR and MHC-Ib restricting elements. We examine their original thymic development: selection on hematopoietic cells leading to the acquisition of an original differentiation program. Most of these cells acquire memory cell features during thymic maturation and exhibit unique patterns of migration into peripheral nonlymphoid tissues to become tissue resident. Thus, these cells are termed preset T cells, as they also display a variety of effector functions. They may act as microbial or danger sentinels, fight microbes, or regulate tissue homeostasis.
Collapse
Affiliation(s)
- Francois Legoux
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Marion Salou
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , ,
| | - Olivier Lantz
- Institut Curie, PSL Research University, INSERM, U 932, 75005 Paris, France; , , .,Center of Clinical Investigations, CIC-1428 IGR/Curie, 75005 Paris, France.,Laboratoire d'immunologie clinique, Institut Curie, 75005 Paris, France
| |
Collapse
|
55
|
Schäfer C, Ascui G, Ribeiro CH, López M, Prados-Rosales R, González PA, Bueno SM, Riedel CA, Baena A, Kalergis AM, Carreño LJ. Innate immune cells for immunotherapy of autoimmune and cancer disorders. Int Rev Immunol 2017; 36:315-337. [PMID: 28933579 DOI: 10.1080/08830185.2017.1365145] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Modulation of the immune system has been widely targeted for the treatment of several immune-related diseases, such as autoimmune disorders and cancer, due to its crucial role in these pathologies. Current available therapies focus mainly on symptomatic treatment and are often associated with undesirable secondary effects. For several years, remission of disease and subsequently recovery of immune homeostasis has been a major goal for immunotherapy. Most current immunotherapeutic strategies are aimed to inhibit or potentiate directly the adaptive immune response by modulating antibody production and B cell memory, as well as the effector potential and memory of T cells. Although these immunomodulatory approaches have shown some success in the clinic with promising therapeutic potential, they have some limitations related to their effectiveness in disease models and clinical trials, as well as elevated costs. In the recent years, a renewed interest has emerged on targeting innate immune cells for immunotherapy, due to their high plasticity and ability to exert a potent and extremely rapid response, which can influence the outcome of the adaptive immune response. In this review, we discuss the immunomodulatory potential of several innate immune cells, as well as they use for immunotherapy, especially in autoimmunity and cancer.
Collapse
Affiliation(s)
- Carolina Schäfer
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Gabriel Ascui
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Carolina H Ribeiro
- b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Mercedes López
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| | - Rafael Prados-Rosales
- c Centro de Investigaciones Cooperativas en Biociencias (CIC bioGUNE) , Bilbao , Spain
| | - Pablo A González
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Susan M Bueno
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Claudia A Riedel
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,e Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina , Universidad Andrés Bello , Santiago , Chile
| | - Andrés Baena
- f Departamento de Microbiología y Parasitología, Facultad de Medicina , Universidad de Antioquia , Medellín , Colombia
| | - Alexis M Kalergis
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,d Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas , Pontificia Universidad Católica de Chile , Santiago , Chile.,g Departamento de Endocrinología, Facultad de Medicina , Pontificia Universidad Católica de Chile , Santiago , Chile
| | - Leandro J Carreño
- a Millennium Institute on Immunology and Immunotherapy Santiago , Chile.,b Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina , Universidad de Chile , Santiago , Chile
| |
Collapse
|
56
|
Hinks TSC, Wallington JC, Williams AP, Djukanović R, Staples KJ, Wilkinson TMA. Steroid-induced Deficiency of Mucosal-associated Invariant T Cells in the Chronic Obstructive Pulmonary Disease Lung. Implications for Nontypeable Haemophilus influenzae Infection. Am J Respir Crit Care Med 2017; 194:1208-1218. [PMID: 27115408 DOI: 10.1164/rccm.201601-0002oc] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Mucosal-associated invariant T (MAIT) cells are a recently described abundant, proinflammatory T-cell subset with unknown roles in pulmonary immunity. Nontypeable Haemophilus influenzae (NTHi) is the leading bacterial pathogen during chronic obstructive pulmonary disease (COPD) exacerbations and is a plausible target for MAIT cells. OBJECTIVES To investigate whether MAIT cells respond to NTHi and the effects of inhaled corticosteroids (ICS) on their frequency and function in COPD. METHODS Eleven subjects with COPD receiving ICS, 8 steroid-naive subjects with COPD, and 21 healthy control subjects underwent phlebotomy, sputum induction, bronchoalveolar lavage, and endobronchial biopsy. Pulmonary and monocyte-derived macrophages were cultured in vitro with NTHi. MEASUREMENTS AND MAIN RESULTS Frequencies of Vα7.2+CD161+ MAIT cells, surface expression of the major histocompatibility complex-related protein 1 (MR1), and intracellular IFN-γ expression were measured by flow cytometry. MAIT-cell frequencies were reduced in peripheral blood of ICS-treated subjects with COPD (median 0.38%; interquartile range [IQR], 0.25-0.96) compared with healthy control subjects (1.8%; IQR, 1.4-2.5; P = 0.001) or steroid-naive patients with COPD (1.8%; IQR, 1.2-2.3; P = 0.04). MAIT cells were reduced in bronchial biopsies from subjects with COPD treated with steroids (0.73%; IQR, 0.46-1.3) compared with healthy control subjects (4.0%; IQR, 1.6-5.0; P = 0.02). Coculture of live NTHi increased macrophage surface expression of MR1 and induced IFN-γ from CD4 cells and CD8 cells, but most potently from MAIT cells (median IFN-γ-positive frequencies, 2.9, 8.6, and 27.6%, respectively). In vitro fluticasone and budesonide reduced MR1 surface expression twofold and decreased NTHi-induced IFN-γ secretion eightfold. CONCLUSIONS MAIT cells are deficient in blood and bronchial tissue in steroid-treated, but not steroid-naive, COPD. NTHi constitutes a target for pulmonary MAIT-cell immune responses, which are significantly impaired by corticosteroids.
Collapse
Affiliation(s)
- Timothy S C Hinks
- 1 Clinical & Experimental Sciences and.,2 Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom.,3 Department for Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia; and
| | | | - Anthony P Williams
- 4 Cancer Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, Southampton, United Kingdom.,5 Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Ratko Djukanović
- 1 Clinical & Experimental Sciences and.,2 Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Karl J Staples
- 1 Clinical & Experimental Sciences and.,5 Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| | - Tom M A Wilkinson
- 1 Clinical & Experimental Sciences and.,2 Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom.,5 Wessex Investigational Sciences Hub, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
57
|
Franciszkiewicz K, Salou M, Legoux F, Zhou Q, Cui Y, Bessoles S, Lantz O. MHC class I-related molecule, MR1, and mucosal-associated invariant T cells. Immunol Rev 2017; 272:120-38. [PMID: 27319347 DOI: 10.1111/imr.12423] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The MHC-related 1, MR1, molecule presents a new class of microbial antigens (derivatives of the riboflavin [Vitamin B2] biosynthesis pathway) to mucosal-associated invariant T (MAIT) cells. This raises many questions regarding antigens loading and intracellular trafficking of the MR1/ligand complexes. The MR1/MAIT field is also important because MAIT cells are very abundant in humans and their frequency is modified in many infectious and non-infectious diseases. Both MR1 and the invariant TCRα chain expressed by MAIT cells are strikingly conserved among species, indicating important functions. Riboflavin is synthesized by plants and most bacteria and yeasts but not animals, and its precursor derivatives activating MAIT cells are short-lived unless bound to MR1. The recognition of MR1 loaded with these compounds is therefore an exquisite manner to detect invasive bacteria. Herein, we provide an historical perspective of the field before describing the main characteristics of MR1, its ligands, and the few available data regarding its cellular biology. We then summarize the current knowledge of MAIT cell differentiation and discuss the definition of MAIT cells in comparison to related subsets. Finally, we describe the phenotype and effector activities of MAIT cells.
Collapse
Affiliation(s)
| | | | | | - Qian Zhou
- Institut curie, Inserm U932, Paris, France
| | - Yue Cui
- Institut curie, Inserm U932, Paris, France
| | | | - Olivier Lantz
- Institut curie, Inserm U932, Paris, France.,Center of Clinical Investigations, CICBT1428 IGR/Curie, Paris, France.,Laboratoire d'Immunologie Clinique, Institut Curie, Paris, France
| |
Collapse
|
58
|
Liu J, Brutkiewicz RR. The Toll-like receptor 9 signalling pathway regulates MR1-mediated bacterial antigen presentation in B cells. Immunology 2017; 152:232-242. [PMID: 28518215 DOI: 10.1111/imm.12759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 12/29/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are conserved T cells that express a semi-invariant T-cell receptor (Vα7.2 in humans and Vα19 in mice). The development of MAIT cells requires the antigen-presenting MHC-related protein 1 (MR1), as well as commensal bacteria. The mechanisms that regulate the functional expression of MR1 molecules and their loading with bacterial antigen in antigen-presenting cells are largely unknown. We have found that treating B cells with the Toll-like receptor 9 (TLR9) agonist CpG increases MR1 surface expression. Interestingly, activation of TLR9 by CpG-A (but not CpG-B) enhances MR1 surface expression. This is limited to B cells and not other types of cells such as monocytes, T or natural killer cells. Knocking-down TLR9 expression by short hairpin RNA reduces MR1 surface expression and MR1-mediated bacterial antigen presentation. CpG-A triggers early endosomal TLR9 activation, whereas CpG-B is responsible for late endosomal/lysosomal activation of TLR9. Consistently, blocking endoplasmic reticulum to Golgi protein transport, rather than lysosomal acidification, suppressed MR1 antigen presentation. Overall, our results indicate that early endosomal TLR9 activation is important for MR1-mediated bacterial antigen presentation.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
59
|
Jo YG, Choi HJ, Kim JC, Cho YN, Kang JH, Jin HM, Kee SJ, Park YW. Deficiencies of Circulating Mucosal-associated Invariant T Cells and Natural Killer T Cells in Patients with Multiple Trauma. J Korean Med Sci 2017; 32:750-756. [PMID: 28378547 PMCID: PMC5383606 DOI: 10.3346/jkms.2017.32.5.750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/05/2017] [Indexed: 12/18/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells and natural killer T (NKT) cells are known to play important roles in autoimmunity, infectious diseases and cancers. However, little is known about the roles of these invariant T cells in multiple trauma. The purposes of this study were to examine MAIT and NKT cell levels in patients with multiple trauma and to investigate potential relationships between these cell levels and clinical parameters. The study cohort was composed of 14 patients with multiple trauma and 22 non-injured healthy controls (HCs). Circulating MAIT and NKT cell levels in the peripheral blood were measured by flow cytometry. The severity of injury was categorised according to the scoring systems, such as Acute Physiology and Chronic Health Evaluation (APACHE) II score, Simplified Acute Physiology Score (SAPS) II, and Injury Severity Score (ISS). Circulating MAIT and NKT cell numbers were significantly lower in multiple trauma patients than in HCs. Linear regression analysis showed that circulating MAIT cell numbers were significantly correlated with age, APACHE II, SAPS II, ISS category, hemoglobin, and platelet count. NKT cell numbers in the peripheral blood were found to be significantly correlated with APACHE II, SAPS II, and ISS category. This study shows numerical deficiencies of circulating MAIT cells and NKT cells in multiple trauma. In addition, these invariant T cell deficiencies were found to be associated with disease severity. These findings provide important information for predicting the prognosis of multiple trauma.
Collapse
Affiliation(s)
- Young Goun Jo
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hyun Jung Choi
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jung Chul Kim
- Department of Surgery, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Young Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Jeong Hwa Kang
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Hye Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Seung Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Yong Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea.
| |
Collapse
|
60
|
Paquin-Proulx D, Greenspun BC, Costa EAS, Segurado AC, Kallas EG, Nixon DF, Leal FE. MAIT cells are reduced in frequency and functionally impaired in human T lymphotropic virus type 1 infection: Potential clinical implications. PLoS One 2017; 12:e0175345. [PMID: 28384290 PMCID: PMC5383303 DOI: 10.1371/journal.pone.0175345] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
HTLV-1 infection is associated with several inflammatory disorders, including the neurodegenerative condition HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). It is unclear why a minority of infected subjects develop HAM/TSP. The cellular immune response has been implicated in the development of inflammatory alterations in these patients; however the pathogenic mechanisms for disease progression remain unclear. Furthermore, HTLV-1-infected individuals have an increase incidence of Mycobacterium tuberculosis (Mtb) infection, suggesting that immunological defect are associated with HTLV-1 infection. Evidence suggests an important role for Mucosal-associated invariant T (MAIT) cells in the early control of Mtb infection. Chronic viral infections like HIV and HCV have been associated with decreased frequency and functionality of MAIT cells. We hypothesized that HTLV-1 infection is associated with similar perturbations in MAIT cells. We investigated MAIT cell frequency, phenotype, and function by flow cytometry in a cohort of 10 asymptomatic and 10 HAM/TSP HTLV-1 infected patients. We found that MAIT cells from HTLV-1-infected subjects were reduced and showed high co-expression of the activation markers CD38 and HLA-DR but normal levels of CCR6 and CD127. MAIT cells had a lower expression of the transcription factor PLZF in HAM/TSP patients. Unlike Tax-specific CD8+T cells, which are hyperfunctional, MAIT cells from HTLV-1-infected subjects had a poor IFNγ response following antigen stimulation. MAIT cell perturbations in HTLV-1 infection were not associated with HTLV-1 proviral load and MAIT cells were not infected by HTLV-1 in vivo. Rather, MAIT cells loss was associated with immune activation. Overall, our results do not support a role for MAIT cells in HAM/TSP pathogenesis but reduced numbers of MAIT cells, together with their poor functionality, could contribute to the increased susceptibility of HTLV-1-infected individuals to other infectious agents.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States of America
- * E-mail:
| | - Benjamin C. Greenspun
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Emanuela A. S. Costa
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Aluisio C. Segurado
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Esper G. Kallas
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Douglas F. Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States of America
| | - Fabio E. Leal
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
61
|
Salerno-Goncalves R, Luo D, Fresnay S, Magder L, Darton TC, Jones C, Waddington CS, Blohmke CJ, Angus B, Levine MM, Pollard AJ, Sztein MB. Challenge of Humans with Wild-type Salmonella enterica Serovar Typhi Elicits Changes in the Activation and Homing Characteristics of Mucosal-Associated Invariant T Cells. Front Immunol 2017; 8:398. [PMID: 28428786 PMCID: PMC5382150 DOI: 10.3389/fimmu.2017.00398] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Gastrointestinal infections by Salmonella enterica serovar Typhi (S. Typhi) are rare in industrialized countries. However, they remain a major public health problem in the developing world with an estimated 26.9 million new cases annually and significant mortality when untreated. Recently, we provided the first direct evidence that CD8+ MAIT cells are activated and have the potential to kill cells exposed to S. Typhi, and that these responses are dependent on bacterial load. However, MAIT cell kinetics and function during bacterial infections in humans remain largely unknown. In this study, we characterize the human CD8+ MAIT cell immune response to S. Typhi infection in subjects participating in a challenge clinical trial who received a low- or high dose of wild-type S. Typhi. We define the kinetics of CD8+ MAIT cells as well as their levels of activation, proliferation, exhaustion/apoptosis, and homing potential. Regardless of the dose, in volunteers resistant to infection (NoTD), the levels of CD8+ MAIT cells after S. Typhi challenge fluctuated around their baseline values (day 0). In contrast, volunteers susceptible to the development of typhoid disease (TD) exhibited a sharp decline in circulating MAIT cells during the development of typhoid fever. Interestingly, MAIT cells from low-dose TD volunteers had higher levels of CD38 coexpressing CCR9, CCR6, and Ki67 during the development of typhoid fever than high-dose TD volunteers. No substantial perturbations on the levels of these markers were observed in NoTD volunteers irrespective of the dose. In sum, we describe, for the first time, that exposure to an enteric bacterium, in this case S. Typhi, results in changes in MAIT cell activation, proliferation, and homing characteristics, suggesting that MAIT cells are an important component of the human host response to bacterial infection.
Collapse
Affiliation(s)
| | - David Luo
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Stephanie Fresnay
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laurence Magder
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas C Darton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Claire S Waddington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Brian Angus
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Myron M Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Marcelo B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
62
|
Adaptive NK cells can persist in patients with GATA2 mutation depleted of stem and progenitor cells. Blood 2017; 129:1927-1939. [PMID: 28209719 DOI: 10.1182/blood-2016-08-734236] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/02/2017] [Indexed: 11/20/2022] Open
Abstract
Heterozygous GATA2 mutation is associated with immunodeficiency, lymphedema, and myelodysplastic syndrome. Disease presentation is variable, often coinciding with loss of circulating dendritic cells, monocytes, B cells, and natural killer (NK) cells. Nonetheless, in a proportion of patients carrying GATA2 mutation, NK cells persist. We found that peripheral blood NK cells in symptomatic patients uniformly lacked expression of the transcription factor promyelocytic leukemia zinc finger (PLZF), as well as expression of intracellular signaling proteins FcεRγ, spleen tyrosine kinase (SYK), and EWS/FLI1-Activated Transcript 2 (EAT-2) in a variegated manner. Moreover, consistent with an adaptive identity, NK cells from patients with GATA2 mutation displayed altered expression of cytotoxic granule constituents and produced interferon-γ upon Fc-receptor engagement but not following combined interleukin-12 (IL-12) and IL-18 stimulation. Canonical, PLZF-expressing NK cells were retained in asymptomatic carriers of GATA2 mutation. Developmentally, GATA-binding protein-2 (GATA-2) was expressed in hematopoietic stem cells, but not in NK-cell progenitors, CD3-CD56bright, canonical, or adaptive CD3-CD56dim NK cells. Peripheral blood NK cells from individuals with GATA2 mutation proliferated normally in vitro, whereas lineage-negative progenitors displayed impaired NK-cell differentiation. In summary, adaptive NK cells can persist in patients with GATA2 mutation, even after NK-cell progenitors expire. Moreover, our data suggest that adaptive NK cells are more long-lived than canonical, immunoregulatory NK cells.
Collapse
|
63
|
Vasilikos L, Spilgies LM, Knop J, Wong WWL. Regulating the balance between necroptosis, apoptosis and inflammation by inhibitors of apoptosis proteins. Immunol Cell Biol 2017; 95:160-165. [PMID: 27904150 DOI: 10.1038/icb.2016.118] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 11/28/2016] [Accepted: 11/28/2016] [Indexed: 02/06/2023]
Abstract
Understanding how inhibitor of apoptosis proteins (IAPs) regulate apoptosis and necroptosis has been fast-forwarded by the use of Smac mimetics (SMs) to deplete or inhibit the IAPs, specifically cIAP1, cIAP2 and XIAP. The loss or inhibition of cIAP1, cIAP2 and XIAP causes the majority of cells to be sensitized to death receptor induced cell death, such as with tumour necrosis factor (TNF). Mouse genetics shows that there is some functional redundancy and the use of SMs has allowed us to understand how changing the composition of proteins recruited to TNF receptor 1 on TNF ligation can alter protein complex formation and activation of apoptosis or necroptosis, particularly when caspases are inhibited. Determining when or how caspase inhibition occurs physiologically combined with the loss of IAPs will be the next challenge in understanding the ability of IAPs to prevent cell death and/or limit inflammation.
Collapse
Affiliation(s)
- Lazaros Vasilikos
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lisanne M Spilgies
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Janin Knop
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Wendy Wei-Lynn Wong
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
64
|
He M, Liu Y, Shen J, Duan C, Lu X. Upregulation of PLZF is Associated with Neuronal Injury in Lipopolysaccharide-Induced Neuroinflammation. Neurochem Res 2016; 41:3063-3073. [DOI: 10.1007/s11064-016-2027-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/25/2016] [Accepted: 08/02/2016] [Indexed: 12/22/2022]
|
65
|
Kurioka A, Walker LJ, Klenerman P, Willberg CB. MAIT cells: new guardians of the liver. Clin Transl Immunology 2016; 5:e98. [PMID: 27588203 PMCID: PMC5007630 DOI: 10.1038/cti.2016.51] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
The liver is an important immunological organ that remains sterile and tolerogenic in homeostasis, despite continual exposure to non-self food and microbial-derived products from the gut. However, where intestinal mucosal defenses are breached or in the presence of a systemic infection, the liver acts as a second 'firewall', because of its enrichment with innate effector cells able to rapidly respond to infections or tissue dysregulation. One of the largest populations of T cells within the human liver are mucosal-associated invariant T (MAIT) cells, a novel innate-like T-cell population that can recognize a highly conserved antigen derived from the microbial riboflavin synthesis pathway. MAIT cells are emerging as significant players in the human immune system, associated with an increasing number of clinical diseases of bacterial, viral, autoimmune and cancerous origin. As reviewed here, we are only beginning to investigate the potential role of this dominant T-cell subset in the liver, but the reactivity of MAIT cells to both inflammatory cytokines and riboflavin derivatives suggests that MAIT cells may have an important role in first line of defense as part of the liver firewall. As such, MAIT cells are promising targets for modulating the host defense and inflammation in both acute and chronic liver diseases.
Collapse
Affiliation(s)
- Ayako Kurioka
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Lucy J Walker
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Christian B Willberg
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- National Institute for Health Research Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
66
|
Intact Regulatory T-Cell Function but Defective Generation of IL-17A-Producing CD4+ T Cells in XIAP Deficiency. J Pediatr Gastroenterol Nutr 2016; 63:218-25. [PMID: 26825770 DOI: 10.1097/mpg.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE X-linked inhibitor of apoptosis (xIAP) deficiency is a primary immune deficiency disorder associated with hemophagocytic lymphohistiocytosis. About 17% of xIAP-deficient patients present with very early onset severe colitis with high mortality. We hypothesized that xIAP deficiency leads to defective generation and/or survival of T regulatory cells (Treg) through its involvement in transforming growth factor-β signaling. METHODS AND RESULTS We used a T-cell transfer model of chronic colitis and observed a mild increase in colitis severity induced by naïve CD4 T cells from xIAP mice compared with colitis induced by naïve CD4 T cells from WT mice. We did not observe any significant difference in the induction of Treg cells in these studies. We next tested whether xIAP is required for Treg cell function by co-transferring xIAP or WT Treg cells with naïve WT CD4 cells in this model. We demonstrate that XIAP-deficient Treg cells were able to prevent disease similarly to WT Treg cells. In these experiments we, however, found a significantly decreased percentage of IL-17A-producing CD4 T cells in mice receiving Tregs from xIAP mice. CONCLUSIONS xIAP appears dispensable for the generation of induced Treg cells as well as function of natural Treg cells. There appeared to be a role of xIAP in generation of IL-17-producing cells from either naïve CD4 T cells or Treg cells. Further research is needed to explore the role of xIAP in generation of IL-17-producing cells.
Collapse
|
67
|
MAIT cells are activated during human viral infections. Nat Commun 2016; 7:11653. [PMID: 27337592 PMCID: PMC4931007 DOI: 10.1038/ncomms11653] [Citation(s) in RCA: 390] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/07/2016] [Indexed: 02/08/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are abundant in humans and recognize bacterial ligands. Here, we demonstrate that MAIT cells are also activated during human viral infections in vivo. MAIT cells activation was observed during infection with dengue virus, hepatitis C virus and influenza virus. This activation—driving cytokine release and Granzyme B upregulation—is TCR-independent but dependent on IL-18 in synergy with IL-12, IL-15 and/or interferon-α/β. IL-18 levels and MAIT cell activation correlate with disease severity in acute dengue infection. Furthermore, HCV treatment with interferon-α leads to specific MAIT cell activation in vivo in parallel with an enhanced therapeutic response. Moreover, TCR-independent activation of MAIT cells leads to a reduction of HCV replication in vitro mediated by IFN-γ. Together these data demonstrate MAIT cells are activated following viral infections, and suggest a potential role in both host defence and immunopathology. Mucosal Associated Invariant T cells have been implicated in response to bacterial pathogens. Here the authors show that in human viral infections, these cells are activated by IL-18 in cooperation with other pro-inflammatory cytokines, producing interferon gamma and granzyme B.
Collapse
|
68
|
Saeidi A, Ellegård R, Yong YK, Tan HY, Velu V, Ussher JE, Larsson M, Shankar EM. Functional role of mucosal-associated invariant T cells in HIV infection. J Leukoc Biol 2016; 100:305-14. [PMID: 27256572 DOI: 10.1189/jlb.4ru0216-084r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/11/2016] [Indexed: 12/31/2022] Open
Abstract
MAIT cells represent an evolutionarily conserved, MR1-restricted, innate-like cell subset that express high levels of CD161; have a canonical semi-invariant TCR iVα7.2; and may have an important role in mucosal immunity against various bacterial and fungal pathogens. Mature MAIT cells are CD161(hi)PLZF(hi)IL-18Rα(+)iVα7.2(+)γδ-CD3(+)CD8(+) T cells and occur in the peripheral blood, liver, and mucosa of humans. MAIT cells are activated by a metabolic precursor of riboflavin synthesis presented by MR1 and, therefore, respond to many bacteria and some fungi. Despite their broad antibacterial properties, their functional role in persistent viral infections is poorly understood. Although there is an increasing line of evidence portraying the depletion of MAIT cells in HIV disease, the magnitude and the potential mechanisms underlying such depletion remain unclear. Recent studies suggest that MAIT cells are vulnerable to immune exhaustion as a consequence of HIV and hepatitis C virus infections and HIV/tuberculosis coinfections. HIV infection also appears to cause functional depletion of MAIT cells resulting from abnormal expression of T-bet and EOMES, and effective ART is unable to completely salvage functional MAIT cell loss. Depletion and exhaustion of peripheral MAIT cells may affect mucosal immunity and could increase susceptibility to opportunistic infections during HIV infection. Here, we review some of the important mechanisms associated with depletion and functional loss of MAIT cells and also suggest potential immunotherapeutic strategies to restore MAIT cell functions, including the use of IL-7 to restore effector functions in HIV disease.
Collapse
Affiliation(s)
- Alireza Saeidi
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia; Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Rada Ellegård
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Yean K Yong
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Hong Y Tan
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Georgia, Atlanta, USA; and
| | - James E Ussher
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Marie Larsson
- Division of Molecular Virology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Esaki M Shankar
- Center of Excellence for Research in AIDS (CERiA), University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia; Tropical Infectious Diseases Research and Education Center (TIDREC), Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Lembah Pantai, Kuala Lumpur, Malaysia;
| |
Collapse
|
69
|
Sugimoto C, Fujita H, Wakao H. Mucosal-associated invariant T cells from induced pluripotent stem cells: A novel approach for modeling human diseases. World J Stem Cells 2016; 8:158-169. [PMID: 27114747 PMCID: PMC4835674 DOI: 10.4252/wjsc.v8.i4.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/17/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Mice have frequently been used to model human diseases involving immune dysregulation such as autoimmune and inflammatory diseases. These models help elucidate the mechanisms underlying the disease and in the development of novel therapies. However, if mice are deficient in certain cells and/or effectors associated with human diseases, how can their functions be investigated in this species? Mucosal-associated invariant T (MAIT) cells, a novel innate-like T cell family member, are a good example. MAIT cells are abundant in humans but scarce in laboratory mice. MAIT cells harbor an invariant T cell receptor and recognize nonpeptidic antigens vitamin B2 metabolites from bacteria and yeasts. Recent studies have shown that MAIT cells play a pivotal role in human diseases such as bacterial infections and autoimmune and inflammatory diseases. MAIT cells possess granulysin, a human-specific effector molecule, but granulysin and its homologue are absent in mice. Furthermore, MAIT cells show poor proliferation in vitro. To overcome these problems and further our knowledge of MAIT cells, we have established a method to expand MAIT cells via induced pluripotent stem cells (iPSCs). In this review, we describe recent advances in the field of MAIT cell research and our approach for human disease modeling with iPSC-derived MAIT cells.
Collapse
|
70
|
Braudeau C, Amouriaux K, Néel A, Herbreteau G, Salabert N, Rimbert M, Martin JC, Hémont C, Hamidou M, Josien R. Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun 2016; 70:73-9. [PMID: 27102145 DOI: 10.1016/j.jaut.2016.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Mucosal associated invariant T cells (MAIT) and innate lymphoid cells (ILCs) have immunoregulatory functions at mucosal sites and have been involved in various inflammatory and autoimmune diseases. The aim of this study was to assess their frequencies in blood in ANCA-associated vasculitis (AAV). METHODS The frequencies and function of MAIT cells, ILCs, γδT, iNKT, NK cells were analyzed by flow cytometry on PBMC of patients with granulomatosis with polyangiitis (GPA), microscopic polyangiitis (MPA) without any treatment, in acute (AP) and remission phase (RP) and compared with healthy controls (HC). RESULTS The frequencies of MAIT cells were strongly decreased in GPA and MPA in AP compared to HC, both in never treated and in relapsing patients and independently of patient age. This was associated with an activated phenotype of patient MAIT cells, as shown by increased expression of CD69 and IFNγ. MAIT cells remained decreased during RP in AAV patients. The frequencies of iNKT and γδT cells were unaffected compared to HC, whereas those of NK cells were slightly reduced during AP in MPA. We also observed a significant decrease in frequencies of total ILCs with decreased ILC2 and ILC3 and increased ILC1 during AP in both GPA and MPA compared to HC. These frequencies normalized during RP. Interestingly, we observed a significant correlation between the frequency of total ILCs and BVAS. CONCLUSION We show for the first time that AAV are associated with a major decrease and an activated phenotype of blood MAIT cell. These features persisted during remission suggesting a role for MAIT cells in the pathogenesis of AAV.
Collapse
Affiliation(s)
- Cécile Braudeau
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France
| | - Karine Amouriaux
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France; LabEx Immunotherapy Graft Oncology (IGO), Nantes, F-44000, France
| | - Antoine Néel
- INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France; CHU Nantes, Service de Médecine Interne, Nantes, F-44000, France
| | - Guillaume Herbreteau
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France
| | - Nina Salabert
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France; LabEx Immunotherapy Graft Oncology (IGO), Nantes, F-44000, France
| | - Marie Rimbert
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France
| | - Jérôme C Martin
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France; Université de Nantes, Faculté de Médecine, Nantes, F-44000, France
| | - Caroline Hémont
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France
| | - Mohamed Hamidou
- INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, Faculté de Médecine, Nantes, F-44000, France; CHU Nantes, Service de Médecine Interne, Nantes, F-44000, France
| | - Régis Josien
- CHU Nantes, Laboratoire d'Immunologie, Center for Immunomonitoring Nantes Atlantic (CIMNA), Nantes, F-44000, France; INSERM, U1064, Center for Research in Transplantation and Immunology, ITUN, Nantes, F-44000, France; Université de Nantes, UMR_S 1064, Nantes, F-44000, France; LabEx Immunotherapy Graft Oncology (IGO), Nantes, F-44000, France; Université de Nantes, Faculté de Médecine, Nantes, F-44000, France.
| |
Collapse
|
71
|
Hinks TSC. Mucosal-associated invariant T cells in autoimmunity, immune-mediated diseases and airways disease. Immunology 2016; 148:1-12. [PMID: 26778581 PMCID: PMC4819138 DOI: 10.1111/imm.12582] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/11/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a novel class of innate-like T cells, expressing a semi-invariant T-cell receptor (TCR) and able to recognize small molecules presented on the non-polymorphic MHC-related protein 1. Their intrinsic effector-memory phenotype, enabling secretion of pro-inflammatory cytokines, and their relative abundance in humans imply a significant potential to contribute to autoimmune processes. However, as MAIT cells were unknown until recently and specific immunological tools were unavailable, little is known of their roles in disease. Here I review observations from clinical studies and animal models of autoimmune and immune-mediated diseases including the roles of MAIT cells in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and airways diseases. MAIT cell deficiencies are frequently observed in peripheral blood, and at sites of disease such as the airways in asthma. However, MAIT cells have a specific sensitivity to suppression by therapeutic corticosteroids that may confound many of these observations, as may the tendency of the surface marker CD161 to activation-induced down-regulation. Nonetheless, the dependence on bacteria for the development of MAIT cells suggests a potentially important protective role linking the influences of early life microbial exposures and subsequent development of autoimmunity. Conversely, MAIT cells could contribute to chronic inflammation either through TCR-independent activation, or potentially by TCR recognition of as yet undiscovered ligands. Future research will be greatly facilitated by the immunological tools that are now available, including murine genetic models and human and murine specific tetramers.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Department for Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.,Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton University Hospital, Southampton, UK.,NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, UK
| |
Collapse
|
72
|
Liu TM, Lee EH, Lim B, Shyh-Chang N. Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 2016; 34:277-287. [PMID: 26676652 DOI: 10.1002/stem.2270] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/21/2015] [Accepted: 11/29/2015] [Indexed: 12/22/2022]
Abstract
In recent years, the highly conserved promyelocytic leukemia zinc finger (PLZF, also known as ZBTB16, ZNF145) has attracted attention as a multifunctional transcription factor involved in major biological processes during development. As a transcription factor, PLZF shows tight regulation in its cell-type-specific and stage-specific expression patterns. Emerging evidence shows that PLZF regulates the balance of self-renewal and differentiation in stem cells. However, the gene regulatory network of PLZF is only beginning to be understood. In this review, we discuss the diverse functions of PLZF, in particular its role in self-renewal versus differentiation of stem cells. We also discuss the current state of knowledge on the gene regulatory network of PLZF, in conjunction with its upstream factors, post-translational modifications and binding cofactors for multiprotein complexes. This review aims to provide the reader with an in-depth understanding of the molecular mechanisms underlying PLZF and the potential applications in tissue regeneration.
Collapse
Affiliation(s)
- Tong Ming Liu
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore
| | - Eng Hin Lee
- Department of Orthopaedic Surgery, National University of Singapore, Singapore
- NUS Tissue Engineering Program (NUSTEP), National University of Singapore, Singapore
| | - Bing Lim
- Cancer Stem Cell Biology, Genome Institute of Singapore, Singapore
| | - Ng Shyh-Chang
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| |
Collapse
|
73
|
Palendira U, Rickinson AB. Primary immunodeficiencies and the control of Epstein-Barr virus infection. Ann N Y Acad Sci 2015; 1356:22-44. [PMID: 26415106 DOI: 10.1111/nyas.12937] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/23/2022]
Abstract
Human primary immunodeficiency (PID) states, where mutations in single immune system genes predispose individuals to certain infectious agents and not others, are experiments of nature that hold important lessons for the immunologist. The number of genetically defined PIDs is rising rapidly, as is the opportunity to learn from them. Epstein-Barr virus (EBV), a human herpesvirus, has long been of interest because of its complex interaction with the immune system. Thus, it causes both infectious mononucleosis (IM), an immunopathologic disease associated with exaggerated host responses, and at least one malignancy, EBV-positive lymphoproliferative disease, when those responses are impaired. Here, we describe the full range of PIDs currently linked with an increased risk of EBV-associated disease. These provide examples where IM-like immunopathology is fatally exaggerated, and others where responses impaired at the stage of induction, expansion, or effector function predispose to malignancy. Current evidence from this rapidly moving field supports the view that lesions in both natural killer cell and T cell function can lead to EBV pathology.
Collapse
Affiliation(s)
- Umaimainthan Palendira
- Centenary Institute, Newtown, New South Wales, Australia
- Discipline of Medicine, Sydney Medical School, University of Sydney, NSW, Australia
| | - Alan B Rickinson
- Cancer Sciences and Centre for Human Virology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
74
|
Lu Y, Cao X, Zhang X, Kovalovsky D. PLZF Controls the Development of Fetal-Derived IL-17+Vγ6+ γδ T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:4273-81. [PMID: 26408661 DOI: 10.4049/jimmunol.1500939] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
Abstract
Expression of promyelocytic leukemia zinc finger (PLZF) protein directs the effector differentiation of invariant NKT (iNKT) cells and IL-4(+) γδ NKT cells. In this study, we show that PLZF is also required for the development and function of IL-17(+) γδ T cells. We observed that PLZF is expressed in fetal-derived invariant Vγ5(+) and Vγ6(+) γδ T cells, which secrete IFN-γ and IL-17, respectively. PLZF deficiency specifically affected the effector differentiation of Vγ6(+) cells, leading to reduced numbers of mature CD27(-)CD44(+) phenotype capable of secreting IL-17. Although PLZF was not required for Vγ5(+) γδ T cells to develop, when these cells were reprogrammed into IL-17-secreting cells in Skint-1 mutant mice, they required PLZF for their effector maturation, similarly to Vγ6(+) γδ T cells. The impaired effector differentiation of PLZF-deficient Vγ6(+) γδ T cells was not due to increased apoptosis and it was related to reduced proliferation of immature CD27(+)CD44(-) Vγ6(+) γδ T cells, which was required for their differentiation into mature CD27(-)CD44(+) IL-17-secreting cells. Thus, the present study identifies that PLZF function is not restricted to NKT or IL-4(+) T cells, but it also controls the development of IL-17(+) γδ T cells.
Collapse
Affiliation(s)
- Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xin Cao
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xianyu Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Damian Kovalovsky
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
75
|
Reduced Numbers and Proapoptotic Features of Mucosal-associated Invariant T Cells as a Characteristic Finding in Patients with Inflammatory Bowel Disease. Inflamm Bowel Dis 2015; 21:1529-40. [PMID: 25946569 DOI: 10.1097/mib.0000000000000397] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in the homeostasis of mucosal immunity; however, their role in inflammatory bowel disease (IBD) is unclear. METHODS Flow cytometry was used to enumerate peripheral blood MAIT cells in 88 patients with ulcerative colitis (UC), 68 with Crohn's disease (CD), and in 57 healthy controls. Immunohistochemistry identified MAIT cells in intestinal tissue samples from patients with UC (n = 5) and CD (n = 10), and in control colon (n = 5) and small intestine (n = 9) samples. In addition, expression of activated caspases by MAIT cells in the peripheral blood of 14 patients with UC and 15 patients with CD, and 16 healthy controls was examined. RESULTS Peripheral blood analysis revealed that patients with IBD had significantly fewer MAIT cells than healthy controls (P < 0.0001). The number of MAIT cells in the inflamed intestinal mucosae of patients with UC and CD was also lower than that in control mucosae (P = 0.0079 and 0.041, respectively). The number of activated caspase-expressing MAIT cells in the peripheral blood of patients with UC and CD was higher than that in healthy controls (P = 0.0061 and 0.0075, respectively), suggesting that the reduced MAIT cell numbers in IBD are associated with an increased level of apoptosis among these cells. CONCLUSIONS The number of MAIT cells in the peripheral blood and inflamed mucosae of patients with UC and CD was lower than that in non-IBD controls. Also, MAIT cells from patients with IBD exhibited proapoptotic features. These data suggest the pathological involvement and the potential for therapeutic manipulation of these cells in patients with IBD.
Collapse
|
76
|
Aguilar C, Latour S. X-linked inhibitor of apoptosis protein deficiency: more than an X-linked lymphoproliferative syndrome. J Clin Immunol 2015; 35:331-8. [PMID: 25737324 DOI: 10.1007/s10875-015-0141-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/09/2015] [Indexed: 01/01/2023]
Abstract
X-linked inhibitor of apoptosis (XIAP) deficiency (also known as X-linked lymphoproliferative syndrome type 2, XLP-2) is a rare primary immunodeficiency. Since the disease was first described in 2006, more than 70 patients suffering from XIAP-deficiency have been reported, thus extending the clinical presentations of the disease. The main clinical features of XLP-2 are (i) elevated susceptibility to hemophagocytic lymphohistiocytosis (HLH, frequently in response to infection with Epstein-Barr virus (EBV)), (ii) recurrent splenomegaly and (iii) inflammatory bowel disease (IBD) with the characteristics of Crohn's disease. XIAP deficiency is now considered to be one of the genetic causes of IBD in infancy. Although XIAP is an anti-apoptotic molecule, it is also involved in many other pathways, including the regulation of innate immunity and inflammation. XIAP is required for signaling through the Nod-like receptors NOD1 and 2, which are intracellular sensors of bacterial infection. XIAP-deficient T cells (including innate natural killer T cells and mucosal-associated invariant T cells) are overly sensitive to apoptosis. NOD2 function is impaired in XIAP-deficient monocytes. However, the physiopathological mechanisms underlying the clinical phenotypes in XIAP deficiency, notably the HLH and the EBV susceptibility, are not well understood. Here, we review the clinical aspects, molecular etiology and physiopathology of XIAP deficiency.
Collapse
Affiliation(s)
- Claire Aguilar
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR 1163, Descartes-Sorbonne Paris Cité University of Paris and Institut Imagine, Paris, France
| | | |
Collapse
|
77
|
Kurioka A, Ussher JE, Cosgrove C, Clough C, Fergusson JR, Smith K, Kang YH, Walker LJ, Hansen TH, Willberg CB, Klenerman P. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol 2015; 8:429-40. [PMID: 25269706 PMCID: PMC4288950 DOI: 10.1038/mi.2014.81] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/26/2014] [Indexed: 02/06/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell population restricted by the non-polymorphic, major histocompatibility complex class I-related protein 1, MR1. MAIT cells are activated by a broad range of bacteria through detection of riboflavin metabolites bound by MR1, but their direct cytolytic capacity upon recognition of cognate target cells remains unclear. We show that resting human MAIT cells are uniquely characterized by a lack of granzyme (Gr) B and low perforin expression, key granule proteins required for efficient cytotoxic activity, but high levels of expression of GrA and GrK. Bacterial activation of MAIT cells rapidly induced GrB and perforin, licensing these cells to kill their cognate target cells. Using a novel flow cytometry-based killing assay, we show that licensed MAIT cells, but not ex vivo MAIT cells from the same donors, can efficiently kill Escherichia coli-exposed B-cell lines in an MR1- and degranulation-dependent manner. Finally, we show that MAIT cells are highly proliferative in response to antigenic and cytokine stimulation, maintaining high expression of GrB, perforin, and GrA, but reduced expression of GrK following antigenic proliferation. The tightly regulated cytolytic capacity of MAIT cells may have an important role in the control of intracellular bacterial infections, such as Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- A Kurioka
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,
| | - J E Ussher
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Cosgrove
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - C Clough
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - J R Fergusson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - K Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Y-H Kang
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - L J Walker
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - T H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri, USA
| | - C B Willberg
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - P Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK,National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| |
Collapse
|
78
|
XIAP deficiency syndrome in humans. Semin Cell Dev Biol 2015; 39:115-23. [DOI: 10.1016/j.semcdb.2015.01.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 01/30/2015] [Indexed: 01/15/2023]
|
79
|
Eberhard JM, Hartjen P, Kummer S, Schmidt RE, Bockhorn M, Lehmann C, Balagopal A, Hauber J, van Lunzen J, zur Wiesch JS. CD161+ MAIT cells are severely reduced in peripheral blood and lymph nodes of HIV-infected individuals independently of disease progression. PLoS One 2014; 9:e111323. [PMID: 25369333 PMCID: PMC4219715 DOI: 10.1371/journal.pone.0111323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/21/2014] [Indexed: 01/10/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are characterized by the combined expression of the semi-invariant T cell receptor (TCR) Vα7.2, the lectin receptor CD161, as well as IL-18R, and play an important role in antibacterial host defense of the gut. The current study characterized CD161+ MAIT and CD161–TCRVα7.2+ T cell subsets within a large cohort of HIV patients with emphasis on patients with slow disease progression and elite controllers. Mononuclear cells from blood and lymph node samples as well as plasma from 63 patients and 26 healthy donors were analyzed by multicolor flow cytometry and ELISA for IL-18, sCD14 and sCD163. Additionally, MAIT cells were analyzed after in vitro stimulation with different cytokines and/or fixed E.coli. Reduced numbers of CD161+ MAIT cells during HIV infection were detectable in the blood and lymph nodes of all patient groups, including elite controllers. CD161+ MAIT cell numbers did not recover even after successful antiretroviral treatment. The loss of CD161+ MAIT cells was correlated with higher levels of MAIT cell activation; an increased frequency of the CD161–TCRVα7.2+T cell subset in HIV infection was observed. In vitro stimulation of MAIT cells with IL-18 and IL-12, IL-7 and fixed E.coli also resulted in a rapid and additive reduction of the MAIT cell frequency defined by CD161, IL-18R and CCR6. In summary, the irreversible reduction of the CD161+ MAIT cell subset seems to be an early event in HIV infection that is independent of later stages of the disease. This loss appears to be at least partially due to the distinctive vulnerability of MAIT cells to the pronounced stimulation by microbial products and cytokines during HIV-infection.
Collapse
MESH Headings
- Adult
- Aged
- Anti-HIV Agents/therapeutic use
- Antigens, CD/blood
- Antigens, Differentiation, Myelomonocytic/blood
- Disease Progression
- Escherichia coli/physiology
- Female
- HIV Infections/drug therapy
- HIV Infections/pathology
- Humans
- Immunity, Mucosal/immunology
- Interleukin-12/metabolism
- Interleukin-12/pharmacology
- Interleukin-18/blood
- Interleukin-18/metabolism
- Interleukin-18/pharmacology
- Interleukin-7/metabolism
- Interleukin-7/pharmacology
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lipopolysaccharide Receptors/blood
- Lymph Nodes/cytology
- Lymph Nodes/metabolism
- Male
- Middle Aged
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Cell Surface/blood
- Receptors, Interleukin-18/metabolism
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
Affiliation(s)
- Johanna Maria Eberhard
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Philip Hartjen
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Silke Kummer
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Reinhold E. Schmidt
- Department of Immunology and Rheumatology, Hannover Medical School, Hanover, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| | - Maximilian Bockhorn
- Department of General Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clara Lehmann
- Department of Internal Medicine I, University Hospital of Cologne, Cologne, Germany
| | - Ashwin Balagopal
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Joachim Hauber
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| | - Jan van Lunzen
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
- * E-mail:
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Heinrich Pette Institute - Leibniz Institute for Experimental Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg and Hannover, Hamburg and Hannover, Germany
| |
Collapse
|
80
|
Pedersen J, LaCasse EC, Seidelin JB, Coskun M, Nielsen OH. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med 2014; 20:652-65. [PMID: 25282548 DOI: 10.1016/j.molmed.2014.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.
Collapse
Affiliation(s)
- Jannie Pedersen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada.
| | - Jakob B Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Ole H Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
81
|
Cho YN, Kee SJ, Kim TJ, Jin HM, Kim MJ, Jung HJ, Park KJ, Lee SJ, Lee SS, Kwon YS, Kee HJ, Kim N, Park YW. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. THE JOURNAL OF IMMUNOLOGY 2014; 193:3891-901. [PMID: 25225673 DOI: 10.4049/jimmunol.1302701] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells contribute to protection against certain microorganism infections and play an important role in mucosal immunity. However, the role of MAIT cells remains enigmatic in autoimmune diseases. In this study, we examined the level and function of MAIT cells in patients with rheumatic diseases. MAIT cell, cytokine, and programmed death-1 (PD-1) levels were measured by flow cytometry. Circulating MAIT cell levels were significantly reduced in systemic lupus erythematosus (SLE) and rheumatoid arthritis patients. In particular, this MAIT cell deficiency was more prominent in CD8(+) and double-negative T cell subsets, and significantly correlated with disease activity, such as SLE disease activity index and 28-joint disease activity score. Interestingly, MAIT cell frequency was significantly correlated with NKT cell frequency in SLE patients. IFN-γ production in MAIT cells was impaired in SLE patients, which was due to an intrinsic defect in the Ca(2+)/calcineurin/NFAT1 signaling pathway. In SLE patients, MAIT cells were poorly activated by α-galactosylceramide-stimulated NKT cells, thereby showing the dysfunction between MAIT cells and NKT cells. Notably, an elevated expression of PD-1 in MAIT cells and NKT cells was associated with SLE. In rheumatoid arthritis patients, MAIT cell levels were significantly higher in synovial fluid than in peripheral blood. Our study primarily demonstrates that MAIT cells are numerically and functionally deficient in SLE. In addition, we report a novel finding that this MAIT cell deficiency is associated with NKT cell deficiency and elevated PD-1 expression. These abnormalities possibly contribute to dysregulated mucosal immunity in SLE.
Collapse
Affiliation(s)
- Young-Nan Cho
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Seung-Jung Kee
- Department of Laboratory Medicine, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hye Mi Jin
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Moon-Ju Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hyun-Ju Jung
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Ki-Jeong Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Sung-Ji Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Shin-Seok Lee
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Yong-Soo Kwon
- Department of Pulmonary and Critical Care Medicine, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea
| | - Hae Jin Kee
- Heart Research Center, Chonnam National University Hospital, Gwangju 501-757, Republic of Korea; and
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju 501-757, Republic of Korea
| | - Yong-Wook Park
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju 501-757, Republic of Korea;
| |
Collapse
|
82
|
Jiang J, Wang X, An H, Yang B, Cao Z, Liu Y, Su J, Zhai F, Wang R, Zhang G, Cheng X. Mucosal-associated invariant T-cell function is modulated by programmed death-1 signaling in patients with active tuberculosis. Am J Respir Crit Care Med 2014; 190:329-339. [PMID: 24977786 DOI: 10.1164/rccm.201401-0106oc] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Mucosal-associated invariant T (MAIT) cells have been proven to play an important role in host defense against mycobacterial infection in animal infection models; however, the functional role of MAIT cells in patients with active tuberculosis (TB) is still largely unknown. OBJECTIVES To understand the clinical features and functions of MAIT cells in patients with active TB. METHODS MAIT cells were analyzed in patients with pulmonary TB, tuberculous pleurisy, and tuberculous peritonitis by flow cytometry. The functions of MAIT cells were compared between patients with active TB and healthy control subjects. MEASUREMENTS AND MAIN RESULTS The frequency of MAIT cells was significantly reduced both in peripheral blood from patients with active pulmonary TB (P < 0.0001) and in tuberculous pleural effusions compared with healthy control subjects but not in ascitic fluids from patients with tuberculous peritonitis. A comparison of bacillus Calmette-Guérin (BCG)-stimulated cytokine production showed that patients with active TB had significantly higher production of IFN-γ (P = 0.0034) and tumor necrosis factor (TNF)-α (P = 0.0399) compared with healthy control subjects. In contrast, when MAIT cells were stimulated with Escherichia coli, patients with active TB had significantly lower production of IFN-γ (P = 0.0007) and TNF-α (P = 0.0032). MAIT cells in patients with active TB exhibited elevated expression of programmed death-1 (PD-1) (P = 0.0015), and blockade of PD-1 signaling resulted in a significantly higher frequency of BCG-stimulated IFN-γ production in MAIT cells (P = 0.0178). CONCLUSIONS MAIT-cell immune response to antigen stimulation in patients with active TB is regulated by PD-1, which could be a potential target for TB immunotherapy.
Collapse
Affiliation(s)
- Jing Jiang
- Key Laboratory of Tuberculosis Prevention and Treatment, Division of Research, Institute of Tuberculosis, 309th Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Aguilar C, Lenoir C, Lambert N, Bègue B, Brousse N, Canioni D, Berrebi D, Roy M, Gérart S, Chapel H, Schwerd T, Siproudhis L, Schäppi M, Al-Ahmari A, Mori M, Yamaide A, Galicier L, Neven B, Routes J, Uhlig HH, Koletzko S, Patel S, Kanegane H, Picard C, Fischer A, Bensussan NC, Ruemmele F, Hugot JP, Latour S. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol 2014; 134:1131-41.e9. [PMID: 24942515 DOI: 10.1016/j.jaci.2014.04.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/08/2014] [Accepted: 04/17/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Crohn disease is an inflammatory bowel disease (IBD) with a complex mode of inheritance. Although nucleotide binding and oligomerization domain containing 2 (NOD2) is the strongest risk factor, the cause of Crohn disease remains unknown in the majority of the cases. X-linked inhibitor of apoptosis (XIAP) deficiency causes X-linked lymphoproliferative syndrome type 2. IBD has been reported in some XIAP-deficient patients. OBJECTIVE We characterize the IBD affecting a large cohort of patients with mutations in XIAP and examine the possible pathophysiologic mechanisms. METHODS We performed a phenotypical and histologic analysis of the IBD affecting 17 patients with hemizygous mutations in XIAP, including 3 patients identified by screening 83 patients with pediatric-onset IBD. The X chromosome inactivation was analyzed in female carriers of heterozygous XIAP mutations, including 2 adults with IBD. The functional consequences of XIAP deficiency were analyzed. RESULTS Clinical presentation and histology of IBD in patients with XIAP deficiency overlapped with those of patients with Crohn disease. The age at onset was variable (from 3 months to 41 years), and IBD was severe and difficult to treat. In 2 patients hematopoietic stem cell transplantation fully restored intestinal homeostasis. Monocytes of patients had impaired NOD2-mediated IL-8 and monocyte chemoattractant protein 1 (MCP-1) production, as well as IL-10, in response to NOD2 and Toll-like receptor 2/4 costimulation. Nucleotide binding and oligomerization domain containing 1 (NOD1)-mediated IL-6 and IL-8 production was defective in fibroblasts from XIAP-deficient patients. The 2 heterozygous female carriers of XIAP mutations with IBD displayed abnormal expression of the XIAP mutated allele, resulting in impaired activation of the NOD2 pathway. CONCLUSION IBD in patients with XIAP deficiency is similar to Crohn disease and is associated with defective NOD2 function in monocytes. Importantly, we report that it is not restricted to male patients because we identified 2 symptomatic female heterozygous carriers of XIAP mutations.
Collapse
Affiliation(s)
- Claire Aguilar
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies (CEDI), Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Bernadette Bègue
- University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Laboratory of Interactions of the Intestinal Epithelium and the Immune System, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France
| | - Nicole Brousse
- Pathology Department, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Danielle Canioni
- Pathology Department, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Dominique Berrebi
- Pathology Department, Hospital Robert Debré, APHP, Paris, France; INSERM UMR 843, Hospital Bichat, Paris, France; University Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Maryline Roy
- INSERM UMR 843, Hospital Bichat, Paris, France; University Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Stéphane Gérart
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France
| | - Helen Chapel
- Primary Immunodeficiency Unit, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Tobias Schwerd
- University of Munich Medical Center, Dr von Hauner Children's Hospital, Munich, Germany
| | - Laurent Siproudhis
- Department of Hepato-Gastroenterology, University Hospital of Rennes, Rennes, France
| | - Michela Schäppi
- Pediatrics Center, Clinique des Grangettes and Medical University Center, Geneva, Switzerland
| | - Ali Al-Ahmari
- Department of Pediatric Hematology/Oncology, King Faisal Specialist Hospital & Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Masaaki Mori
- Department of Pediatrics, City University Medical Center, Yokohama, Japan
| | - Akiko Yamaide
- Division of Allergy and Rheumatology, Chiba Children's Hospital, Chiba, Japan
| | - Lionel Galicier
- Department of Clinical Immunology, Hospital Saint-Louis, APHP, Paris, France
| | - Bénédicte Neven
- Department of Immunology and Haematology, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - John Routes
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wis
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Children's Hospital, University of Oxford, Oxford, United Kingdom
| | - Sibylle Koletzko
- University of Munich Medical Center, Dr von Hauner Children's Hospital, Munich, Germany
| | - Smita Patel
- Primary Immunodeficiency Unit, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hirokazu Kanegane
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Study Center for Primary Immunodeficiencies (CEDI), Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France; Laboratory of Human Genetics of Infectious Diseases, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France
| | - Alain Fischer
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Immunology and Haematology, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Nadine Cerf Bensussan
- University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Laboratory of Interactions of the Intestinal Epithelium and the Immune System, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France
| | - Frank Ruemmele
- University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France; Laboratory of Interactions of the Intestinal Epithelium and the Immune System, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; Pediatric Gastroenterology Unit, Hospital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Jean-Pierre Hugot
- INSERM UMR 843, Hospital Bichat, Paris, France; University Paris-Diderot, Sorbonne Paris Cité, Paris, France; Pediatric Gastroenterology Unit, Hospital Robert Debré, APHP, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Hospital Necker-Enfants Malades, Paris, France; University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, France.
| |
Collapse
|
84
|
X-linked lymphoproliferative syndromes and related autosomal recessive disorders. Curr Opin Allergy Clin Immunol 2014; 13:614-22. [PMID: 24113228 DOI: 10.1097/aci.0000000000000008] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW X-linked lymphoproliferative (XLP) syndromes and related autosomal disorders are severe primary immune deficiencies triggered by infection with Epstein-Barr virus (EBV), the causative agent of infectious mononucleosis. Recent findings reviewed herein provided key new insights into the genetic and immunological basis of these diseases. They also improved our comprehension of the immunological mechanisms controlling EBV infection. RECENT FINDINGS Mutations of an X-linked gene, SH2D1A, which encodes the signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), are responsible for most cases of XLP disorders. More recently, other genetic causes for XLP syndromes and autosomal recessive variants of this disease were elucidated. Mutations in genes such as XIAP, ITK, and CD27 were identified. The clinical manifestations and immunological defects seen in these patients were characterized. SUMMARY The similarities and differences in immunological defects and clinical manifestations between XLP syndromes and related autosomal recessive disorders enabled important new insights into the pathogenesis of these diseases. They also helped our comprehension of the mechanisms implicated in the control of EBV infection. They suggested that CD8+ T cells, natural killer (NK) cells, and NKT cells are critically involved.
Collapse
|
85
|
Massot B, Michel ML, Diem S, Ohnmacht C, Latour S, Dy M, Eberl G, Leite-de-Moraes MC. TLR-Induced Cytokines Promote Effective Proinflammatory Natural Th17 Cell Responses. THE JOURNAL OF IMMUNOLOGY 2014; 192:5635-42. [DOI: 10.4049/jimmunol.1302089] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
86
|
MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc Natl Acad Sci U S A 2013; 110:E3119-28. [PMID: 23898209 DOI: 10.1073/pnas.1302799110] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are "innate" T cells that express an invariant T-cell receptor α-chain restricted by the nonclassical MHC class I molecule MHC-related protein 1 (MR1). A recent discovery that MR1 presents vitamin B metabolites, presumably from pathogenic and/or commensal bacteria, distinguishes MAIT cells from peptide- or lipid-recognizing αβ T cells in the immune system. MAIT cells are activated by a wide variety of bacterial strains in vitro, but their role in defense against infectious assaults in vivo remains largely unknown. To investigate how MAIT cells contribute to mucosal immunity in vivo, we used a murine model of pulmonary infection by using the live vaccine strain (LVS) of Francisella tularensis. In the early acute phase of infection, MAIT cells expanded robustly in the lungs, where they preferentially accumulated after reaching their peak expansion in the late phase of infection. Throughout the course of infection, MAIT cells produced the critical cytokines IFN-γ, TNF-α, and IL-17A. Mechanistic studies showed that MAIT cells required both MR1 and IL-12 40 kDa subunit (IL-12p40) signals from infected antigen presenting cells to control F. tularensis LVS intracellular growth. Importantly, pulmonary F. tularensis LVS infection of MR1-deficient (MR1(-/-)) mice, which lack MAIT cells, revealed defects in early mucosal cytokine production, timely recruitment of IFN-γ-producing CD4(+) and CD8(+) T cells to the infected lungs, and control of pulmonary F. tularensis LVS growth. This study provides in vivo evidence demonstrating that MAIT cells are an important T-cell subset with activities that influence the innate and adaptive phases of mucosal immunity.
Collapse
|