51
|
Liu F, Zhang YY, Song N, Lin J, Liu MK, Huang CL, Zhou C, Wang H, Wang M, Shen JF. GABA B receptor activation attenuates inflammatory orofacial pain by modulating interleukin-1β in satellite glial cells: Role of NF-κB and MAPK signaling pathways. Brain Res Bull 2019; 149:240-250. [PMID: 31034945 DOI: 10.1016/j.brainresbull.2019.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/26/2019] [Accepted: 04/22/2019] [Indexed: 02/05/2023]
Abstract
Orofacial inflammation could activate satellite glial cells (SGCs) in the trigeminal ganglion (TG) to produce interleukin 1β (IL-1β) which plays crucial roles in the development of inflammatory pain. Recent studies have shown that gamma-amino butyric acid-B (GABAB) receptor could modulate the expression of inflammatory cytokines in microglia and astrocytes in the spinal cord. The objective of this study was to investigate whether GABAB receptors in TG SGCs attenuate inflammatory facial pain via mediating IL-1β following inflammation and its mechanisms. Complete Freund's adjuvant (CFA) was injected into the whisker pad of rats to induce inflammation in vivo. Lipopolysaccharide (LPS) was added to culture medium to activate SGCs in vitro. Behavioral measures showed that microinjection of baclofen (a selective GABAB receptor agonist) into the TG ameliorated the mechanical allodynia of CFA-treated rats. Interestingly, baclofen pretreatment inhibited SGC activation and IL-1β production, however, preserved the decreased expression of GABAB receptors in SGCs activated by CFA in vivo and LPS in vitro. In addition, baclofen suppressed the increased expression of p-NF- κ B p65, p-I κ Bα, and p-p38 MAPK, while reversed the decreased production of I κ Bα, and further enhanced the increased expression of p-ERK(1/2) in LPS-treated SGCs in vitro. Finally, those effects of baclofen were abolished by saclofen (a specific GABAB receptor antagonist) co-administration. Altogether, these results demonstrated for the first time that activation of GABAB receptor might inhibit IL-1β production by suppressing NF- κ B and p38 MAPK signaling pathway activation and restore GABAB receptor expression in SGCs to attenuate inflammatory facial pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Ning Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Meng-Ke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Chao-Lan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
52
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
53
|
Kwon HK, Song MJ, Lee HJ, Park TS, Kim MI, Park HJ. Pediococcus pentosaceus-Fermented Cordyceps militaris Inhibits Inflammatory Reactions and Alleviates Contact Dermatitis. Int J Mol Sci 2018; 19:ijms19113504. [PMID: 30405049 PMCID: PMC6274829 DOI: 10.3390/ijms19113504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/03/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Cordyceps militaris is a medicinal mushroom used to treat immune-related diseases in East Asia. We investigated the anti-inflammatory effect of the extract of C. militaris grown on germinated Rhynchosia nulubilis (GRC) fermented with Pediococcus pentosaceus ON89A isolated from onion (GRC-ON89A) in vivo as well as in vitro. The anti-inflammatory effect of GRC-ON89A was investigated in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The total polyphenol content (TPC) and total flavonoid content (TFC) in the GRC-ON89A ethanol extract were significantly increased compared to that in GRC. GRC-ON89A hexane fraction (GRC-ON89A-Hex) inhibited the release of nitric oxide (NO) compared to that of the LPS-treated control without cytotoxicity in LPS-stimulated RAW 264.7 macrophages. GRC-ON89A-Hex decreased the inducible NO synthase (iNOS), cyclooxygenase 2 (COX2), and tumor necrosis factor (TNF)-α mRNA expression in LPS-stimulated RAW 264.7 macrophages. In addition, pre-treatment with GRC-ON89A-Hex significantly inhibited LPS-stimulated phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB. To induce allergic contact dermatitis (ACD), 1-fluoro-2, 4-dinitrofluorobenzene (DNFB) was applied to the surface of the right ears of C57BL/6N mice. GRC-ON89A reduced the ear swelling and thickness in DNFB-induced ACD mice. This study demonstrates the potential usefulness of GRC-ON89A as an anti-inflammatory dietary supplement or drug.
Collapse
Affiliation(s)
- Ha-Kyoung Kwon
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Min-Jung Song
- Department of, College of Food Biotechnology, Division of Bioindustry, Silla University, Busan 46958, Korea.
| | - Hye-Ji Lee
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Tae-Sik Park
- Department of Life Science, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Moon Il Kim
- Department of BioNano Technology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Gyeonggi-do 13120, Korea.
| |
Collapse
|
54
|
3D micro-environment regulates NF-κβ dependent adhesion to induce monocyte differentiation. Cell Death Dis 2018; 9:914. [PMID: 30206232 PMCID: PMC6133927 DOI: 10.1038/s41419-018-0993-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022]
Abstract
Differentiation of monocytes entails their relocation from blood to the tissue, hence accompanied by an altered physicochemical micro-environment. While the mechanism by which the biochemical make-up of the micro-environment induces differentiation is known, the fluid-like to gel-like transition in the physical micro-environment is not well understood. Monocytes maintain non-adherent state to prevent differentiation. We establish that irrespective of the chemical makeup, a 3D gel-like micro-environment induces a positive-feedback loop of adhesion-MAPK-NF-κβ activation to facilitate differentiation. In 2D fluid-like micro-environment, adhesion alone is capable of inducing differentiation via the same positive-feedback signaling. Chemical inducer treatment in fluid-like micro-environment, increases the propensity of monocyte adhesion via a brief pulse of p-MAPK. The adhesion subsequently elicit differentiation, establishing that adhesion is both necessary and sufficient to induce differentiation in 2D/3D micro-environment. MAPK, and NF-κβ being key molecules of multiple signaling pathways, we hypothesize that biochemically inert 3D gel-like micro-environment would also influence other cellular functions.
Collapse
|
55
|
Urbahn MA, Kaup SC, Reusswig F, Krüger I, Spelleken M, Jurk K, Klier M, Lang PA, Elvers M. Phospholipase D1 regulation of TNF-alpha protects against responses to LPS. Sci Rep 2018; 8:10006. [PMID: 29968773 PMCID: PMC6030188 DOI: 10.1038/s41598-018-28331-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/14/2018] [Indexed: 01/18/2023] Open
Abstract
Sepsis is a systemic inflammatory disorder with organ dysfunction and represents the leading cause of mortality in non-coronary intensive care units. A key player in septic shock is Tumor Necrosis Factor-alpha (TNF-α). Phospholipase (PL)D1 is involved in the regulation of TNF-α upon ischemia/reperfusion injury in mice. In this study we analyzed the impact of PLD1 in the regulation of TNF-α, inflammation and organ damage in experimental sepsis. PLD1 deficiency increased survival of mice and decreased vital organ damage after LPS injections. Decreased TNF-α plasma levels and reduced migration of leukocytes and platelets into lungs was associated with reduced apoptosis in lung and liver tissue of PLD1 deficient mice. PLD1 deficient platelets contribute to preserved outcome after LPS-induced sepsis because platelets exhibit an integrin activation defect suggesting reduced platelet activation in PLD1 deficient mice. Furthermore, reduced thrombin generation of PLD1 deficient platelets might be responsible for reduced fibrin formation in lungs suggesting reduced disseminated intravascular coagulation (DIC). The analysis of Pld1fl/fl-PF4-Cre mice revealed that migration of neutrophils and cell apoptosis in septic animals is not due to platelet-mediated processes. The present study has identified PLD1 as a regulator of innate immunity that may be a new target to modulate sepsis.
Collapse
Affiliation(s)
- Marc-Andre Urbahn
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Sonja Charlotte Kaup
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Friedrich Reusswig
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Irena Krüger
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Martina Spelleken
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Mainz, Germany
| | - Meike Klier
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| | - Margitta Elvers
- Department of Vascular and Endovascular Surgery, Heinrich-Heine-University University Medical Center, Moorenstraße.5, 40225, Düsseldorf, Germany.
| |
Collapse
|
56
|
Ebeling M, Lüdemann W, Frisius J, Karst M, Schedel I, Gerganov V, Samii A, Fahlbusch R. Venous thromboembolic complications with and without intermittent intraoperative and postoperative pneumatic compression in patients with glioblastoma multiforme using intraoperative magnetic resonance imaging. A retrospective study. Neurochirurgie 2018; 64:161-165. [PMID: 29859696 DOI: 10.1016/j.neuchi.2018.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 02/14/2018] [Accepted: 04/13/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of intraoperative and postoperative intermittent pneumatic compression (IPC) as a method used to decrease the incidence of deep venous thrombosis (DVT), in comparison to the standard use of graduated compression stockings, low-molecular weight heparin (LMWH) and physiotherapy during the hospital stay. All patients in this study underwent intracranial surgery for glioblastoma multiforme (GBM) using intraoperative magnetic resonance imaging (MRI) guidance. PATIENTS AND METHODS We performed a single center retrospective study of a cohort of 153 patients who underwent surgery for GBM aided by intraoperative MRI from October of 2009 to January of 2015 at the International Neuroscience Institute (INI), Hannover, Germany. Out of all patients, 75 in comparison to 78 were operated with and without the additional use of IPC, respectively. Both groups received graduated compression stockings, LMWH and physiotherapy postoperatively as a basic thromboprophylaxis. Postoperatively the patients were screened for DVT by Doppler ultrasonography of the limbs and pulmonary embolism (PE) by CT-scan of the chest. RESULTS DVTs were found in 6 patients with IPC and in 3 patients without IPC. The incidence of developing DVTs was therefore not significantly increased with the application of IPC from 3.9% to 8% (P-value: 0.33). No statistically significant differences were found in the probability of occurrence of pulmonary embolism (PE) with a reduction from 2.6% to 1.3% (P-value: 0.59). CONCLUSION Our results demonstrate, that the surgical intervention and the subsequent patient immobilization, as well as the thromboprophylactic techniques used have a relatively low influence on the occurrence of thromboembolic complications than we expected. Our findings might be attributed to the overall low number of these complications in a glioblastoma multiforme patient population expected to be at a high risk for coagulopathy. In other words, in order to produce statistically significant results, we would need to increase the patient cohort. By doing so we may better detect a positive therapeutic effect. Alternatively, because of the multitude of possible complex risk-factors leading to coagulopathy in a glioblastoma patient population it might be the case that IPC has little or no effect and that there is a different underlying mechanism responsible for the observed coagulopathy.
Collapse
Affiliation(s)
- M Ebeling
- Hanover Medical School, Hanover, Carl-Neuberg-Straße 1, 30625 Hanover, Germany.
| | - W Lüdemann
- Department of Neurosurgery, Helios Klinik, Hildesheim, Senator-Braun-Allee 33, 31135 Hildesheim, Germany.
| | - J Frisius
- Department of Anesthesiology, International Neuroscience Institute, Hanover, Rudolf-Pichlmayr-Straße 4, 30625 Hanover, Germany
| | - M Karst
- Department of Anesthesiology, Hanover Medical School, Hanover, Carl-Neuberg-Straße 1, 30625 Hanover, Germany.
| | - I Schedel
- Department of Internal Medicine, Hanover Medical School, Hanover, Germany, Carl-Neuberg-Straße 1, 30625 Hanover, Germany
| | - V Gerganov
- Department of Neurosurgery, International Neuroscience Institute, Hanover, Rudolf-Pichlmayr-Straße 4, 30625 Hanover, Germany
| | - A Samii
- Department of Neurosurgery, International Neuroscience Institute, Hanover, Rudolf-Pichlmayr-Straße 4, 30625 Hanover, Germany
| | - R Fahlbusch
- Department of Neurosurgery, International Neuroscience Institute, Hanover, Rudolf-Pichlmayr-Straße 4, 30625 Hanover, Germany
| |
Collapse
|
57
|
Kocijancic D, Leschner S, Felgner S, Komoll RM, Frahm M, Pawar V, Weiss S. Therapeutic benefit of Salmonella attributed to LPS and TNF-α is exhaustible and dictated by tumor susceptibility. Oncotarget 2018; 8:36492-36508. [PMID: 28445131 PMCID: PMC5482671 DOI: 10.18632/oncotarget.16906] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
The potential of bacteria-mediated tumor therapy (BMTT) is highlighted by more than a century of investigation. Attenuated Salmonella has prevailed as promising therapeutic agents. For BMTT - categorized as an immune therapy - the exact contribution of particular immune reactions to the therapeutic effect remains ambiguous. In addition, one could argue for or against the requirement of bacterial viability and tumor targeting. Herein we evaluate the isolated therapeutic efficacy of purified LPS and TNF-α, which together account for a dominant immunogenic pathway of gram negative bacteria like Salmonella. We show that therapeutic efficacy against CT26 tumors does not require bacterial viability. Analogous to viable Salmonella SL7207, tumor regression by a specific CD8+ T cell response can be induced by purified LPS or recombinant TNF-α (rTNF-α). Conversely, therapeutic effects against RenCa tumors were abrogated upon bacterial avitalization and limited using isolated adjuvants. This argues for an alternative mechanistic explanation for SL7207 against RenCa that depends on viability and persistence. Unable to boost bacterial therapies by co-injection of rTNF-α suggested therapeutic effects along this axis are exhausted by the intrinsic adjuvanticity of bacteria alone. However, the importance of TNF-α for BMTT was highlighted by its support of tumor invasion and colonization in concert with lower infective doses of Salmonella. In consideration, bacterial therapeutic effectiveness along the axis of LPS and TNF-α appears limited, and does not offer the necessary plasticity for different tumors. This emphasizes a need for recombinant strengthening and vehicular exploitation to accommodate potency, plasticity and distinctiveness in BMTT.
Collapse
Affiliation(s)
- Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sara Leschner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ronja-Melinda Komoll
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Vinay Pawar
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Hannover, Germany
| |
Collapse
|
58
|
Shi X, Wei S, Simms KJ, Cumpston DN, Ewing TJ, Zhang P. Sonic Hedgehog Signaling Regulates Hematopoietic Stem/Progenitor Cell Activation during the Granulopoietic Response to Systemic Bacterial Infection. Front Immunol 2018. [PMID: 29535725 PMCID: PMC5834434 DOI: 10.3389/fimmu.2018.00349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Activation and reprogramming of hematopoietic stem/progenitor cells play a critical role in the granulopoietic response to bacterial infection. Our current study determined the significance of Sonic hedgehog (SHH) signaling in the regulation of hematopoietic precursor cell activity during the host defense response to systemic bacterial infection. Bacteremia was induced in male Balb/c mice via intravenous injection (i.v.) of Escherichia coli (5 × 107 CFUs/mouse). Control mice received i.v. saline. SHH protein level in bone marrow cell (BMC) lysates was markedly increased at both 24 and 48 h of bacteremia. By contrast, the amount of soluble SHH ligand in marrow elutes was significantly reduced. These contrasting alterations suggested that SHH ligand release from BMCs was reduced and/or binding of soluble SHH ligand to BMCs was enhanced. At both 12 and 24 h of bacteremia, SHH mRNA expression by BMCs was significantly upregulated. This upregulation of SHH mRNA expression was followed by a marked increase in SHH protein expression in BMCs. Activation of the ERK1/2–SP1 pathway was involved in mediating the upregulation of SHH gene expression. The major cell type showing the enhancement of SHH expression in the bone marrow was lineage positive cells. Gli1 positioned downstream of the SHH receptor activation serves as a key component of the hedgehog (HH) pathway. Primitive hematopoietic precursor cells exhibited the highest level of baseline Gli1 expression, suggesting that they were active cells responding to SHH ligand stimulation. Along with the increased expression of SHH in the bone marrow, expression of Gli1 by marrow cells was significantly upregulated at both mRNA and protein levels following bacteremia. This enhancement of Gli1 expression was correlated with activation of hematopoietic stem/progenitor cell proliferation. Mice with Gli1 gene deletion showed attenuation in activation of marrow hematopoietic stem/progenitor cell proliferation and inhibition of increase in blood granulocytes following bacteremia. Our results indicate that SHH signaling is critically important in the regulation of hematopoietic stem/progenitor cell activation and reprogramming during the granulopoietic response to serious bacterial infection.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Shengcai Wei
- Department of Dermatology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kevin J Simms
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Devan N Cumpston
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Thomas J Ewing
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
59
|
Capelo IOJ, Batista AMA, Brito YNF, Diniz KB, Brito GADC, Freitas MRD. Study of the protective effect of dexamethasone on cisplatin-induced ototoxicity in rats. Acta Cir Bras 2018; 32:873-880. [PMID: 29160374 DOI: 10.1590/s0102-865020170100000009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE To evaluate the ability of dexamethasone to protect against cisplatin (CDDP)-induced ototoxicity. METHODS Male Wistar rats were divided into the following three groups: 1) Control (C): 6 animals received intraperitoneal (IP) saline solution, 8 ml/kg/day for four days; 2) C + CDDP: 11 animals received 8 ml/kg/day of IP saline and, 90 min after saline administration, 8 mg/kg/day of IP CDDP for four days; and 3) DEXA15 + CDDP: 11 animals received IP dexamethasone 15 mg/kg/day and, 90 min after dexamethasone administration, received 8 mg/kg/day of IP CDDP for four days. RESULTS It was found that dexamethasone did not protect against weight loss in CDDP-exposed animals. The mortality rate was comparable with that previously reported in the literature. The auditory threshold of animals in the DEXA15 + CDDP group was not significantly altered after exposure to CDDP. The stria vascularis of animals in the DEXA15 + CDDP group was partially preserved after CDDP exposure. CONCLUSIONS Dexamethasone at the dose of 15 mg/kg/day partially protected against CDDP-induced ototoxicity, based on functional evaluation by brainstem evoked response audiontry (BERA) and morphological evaluation by optical microscopy. However, dexamethasone did not protect against systemic toxicity.
Collapse
Affiliation(s)
- Isabelle Oliveira Jatai Capelo
- MSc, Department of Surgery, Universidade Federal do Ceará (UFC), Fortaleza-CE, Brazil. Acquisition and interpretation of data, technical procedures, manuscript preparation
| | | | | | - Krissia Braga Diniz
- Graduate student, UFC, Fortaleza-CE, Brazil. Acquisition of data, technical procedures
| | - Gerly Anne de Castro Brito
- PhD, Associate Professor, Morphology Department, School of Medicine, UFC, Fortaleza-CE, Brazil. Analysis and interpretation of data, technical procedures, critical revision
| | - Marcos Rabelo de Freitas
- PhD, Associate Professor, School of Medicine, UFC, Fortaleza-CE, Brazil. Conception, design, intellectual and scientific content of the study; analysis and interpretation of data; critical revision
| |
Collapse
|
60
|
Ansari AR, Li NY, Sun ZJ, Huang HB, Zhao X, Cui L, Hu YF, Zhong JM, Karrow NA, Liu HZ. Lipopolysaccharide induces acute bursal atrophy in broiler chicks by activating TLR4-MAPK-NF-κB/AP-1 signaling. Oncotarget 2017; 8:108375-108391. [PMID: 29312537 PMCID: PMC5752450 DOI: 10.18632/oncotarget.19964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 07/23/2017] [Indexed: 02/07/2023] Open
Abstract
We investigated the mechanisms that induce atrophy of the chicken bursa of Fabricius (BF) upon lipopolysaccharide (LPS) treatment in young chicks. LPS treatment resulted in ∼36% decrease in bursal weight within 36 h (P < 0.01). Histological analysis showed infiltration of eosinophilic heterophils and nucleated oval shaped RBCs in or near blood vessels of the BF from LPS-treated chicks. Scanning electron micrographs showed severe erosion and breaks in the mucosal membrane at 12 h and complete exuviation of bursal mucosal epithelial cells at 36 h. We observed decreased cell proliferation (low PCNA positivity) and increased apoptosis (high TUNEL and ssDNA positivity) in the BF 12-72 h after LPS treatment. RNA-seq analysis of the BF transcriptome showed 736 differentially expressed genes with most expression changes (637/736) 12 h after LPS treatment. KEGG pathway analysis identified TLR4-MAPK-NF-κB/AP-1 as the key signaling pathway affected in response to LPS stimulation. These findings indicate LPS activates the TLR4-MAPK-NF-κB/AP-1 signaling pathway that mediates acute atrophy of the chicken bursa of Fabricius by inducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Abdur Rahman Ansari
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Basic Sciences, Section of Anatomy and Histology, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - Ning-Ya Li
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhi-Jian Sun
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hai-Bo Huang
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xing Zhao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Cui
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ya-Fang Hu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ju-Ming Zhong
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, USA
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Hua-Zhen Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
61
|
Oh S, Kim H, Nam K, Shin I. Silencing of Glut1 induces chemoresistance via modulation of Akt/GSK-3β/β-catenin/survivin signaling pathway in breast cancer cells. Arch Biochem Biophys 2017; 636:110-122. [DOI: 10.1016/j.abb.2017.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 12/29/2022]
|
62
|
Matsuba S, Yabe-Wada T, Takeda K, Sato T, Suyama M, Takai T, Kikuchi T, Nukiwa T, Nakamura A. Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells. Front Immunol 2017; 8:1538. [PMID: 29181004 PMCID: PMC5693852 DOI: 10.3389/fimmu.2017.01538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells, basophils, and eosinophils are central effectors in allergic inflammatory disorders. These cells secrete abundant serine proteases as well as chemical mediators and cytokines; however, the expression profiles and functions of their endogenous inhibitors remain elusive. We found that murine secretory leukoprotease inhibitor (SLPI) is expressed in basophils and eosinophils but in not in mast cells. SLPI-deficient (Slpi−/−) basophils produce more cytokines than wild-type mice after IgE stimulation. Although the deletion of SLPI in basophils did not affect the release of chemical mediators upon IgE stimulation, the enzymatic activity of the serine protease tryptase was increased in Slpi−/− basophils. Mice transferred with Slpi−/− basophils were highly sensitive to IgE-mediated chronic allergic inflammation. Eosinophils lacking SLPI showed greater interleukin-6 secretion and invasive activity upon lipopolysaccharide stimulation, and the expression of matrix metalloproteinase-9 by these eosinophils was increased without stimulation. The absence of SLPI increases JNK1 phosphorylation at the steady state, and augments the serine phosphorylation of JNK1-downstream ETS transcriptional factor Elk-1 in eosinophils upon stimulation. Of note, SLPI interacts with a scaffold protein, JNK-interacting protein 3 (JIP3), that constitutively binds to the cytoplasmic domain of toll-like receptor (TLR) 4, suggesting that SLPI controls Elk-1 activation via binding to JIP3 in eosinophils. Mice transferred with Slpi−/− eosinophils showed the exacerbation of chitin-induced allergic inflammation. These findings showed that SLPI is a negative regulator in allergic effector cells and suggested a novel inhibitory role of SLPI in the TLR4 signaling pathways.
Collapse
Affiliation(s)
- Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
63
|
Shelly A, Banerjee C, Saurav GK, Ray A, Rana VS, Raman R, Mazumder S. Aeromonas hydrophila-induced alterations in cytosolic calcium activate pro-apoptotic cPKC-MEK1/2-TNFα axis in infected headkidney macrophages of Clarias gariepinus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:392-402. [PMID: 28713009 DOI: 10.1016/j.dci.2017.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/12/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Alterations in intracellular-calcium (Ca2+)i homeostasis is critical to Aeromonas hydrophila-induced headkidney macrophages (HKM) apoptosis of Clarias gariepinus, though the implications are poorly understood. Here, we describe the role of intermediate molecules of Ca2+-signaling pathway that are involved in HKM apoptosis. We observed phosphoinositide-3-kinase/phospholipase C is critical for (Ca2+)i release in infected HKM. Heightened protein kinase-C (PKC) activity and phosphorylation of MEK1/2-ERK1/2 was noted which declined in presence of 2-APB, Go6976 and PD98059, inhibitors to IP3-receptor, conventional PKC isoforms (cPKC) and MEK1/2 respectively implicating Ca2+/cPKC/MEK-ERK1/2 axis imperative in A. hydrophila-induced HKM apoptosis. Significant tumor necrosis factor-α (TNFα) production and its subsequent reduction in presence of MEK-ERK1/2 inhibitor U0126 suggested TNFα production downstream to cPKC-mediated signaling via MEK1/2-ERK1/2 pathway. RNAi and inhibitor studies established the role of TNFα in inducing caspase-8-mediated apoptosis of infected HKM. We conclude, alterations in A. hydrophila-induced (Ca2+)i alterations activate cPKC-MEK1/2-ERK1/2-TNFα signaling cascade triggering HKM apoptosis.
Collapse
Affiliation(s)
- Asha Shelly
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Chaitali Banerjee
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Gunjan Kumar Saurav
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Atish Ray
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Vipin Singh Rana
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Rajagopal Raman
- Gut Biology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
64
|
Xiong P, Shiratsuchi M, Matsushima T, Liao J, Tanaka E, Nakashima Y, Takayanagi R, Ogawa Y. Regulation of expression and trafficking of perforin-2 by LPS and TNF-α. Cell Immunol 2017; 320:1-10. [DOI: 10.1016/j.cellimm.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
65
|
Role of the DNA repair glycosylase OGG1 in the activation of murine splenocytes. DNA Repair (Amst) 2017; 58:13-20. [PMID: 28843610 DOI: 10.1016/j.dnarep.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/06/2023]
Abstract
OGG1 (8-oxoguanine-DNA glycosylase) is the major DNA repair glycosylase removing the premutagenic DNA base modification 8-oxo-7,8-dihydroguanine (8-oxoG) from the genome of mammalian cells. In addition, there is accumulating evidence that OGG1 and its substrate 8-oxoG might function in the regulation of certain genes, which could account for an attenuated immune response observed in Ogg1-/- mice in several settings. Indications for at least two different mechanisms have been obtained. Thus, OGG1 could either act as an ancillary transcription factor cooperating with the lysine-specific demethylase LSD1 or as an activator of small GTPases. Here, we analysed the activation by lipopolysaccaride (LPS) of primary splenocytes obtained from two different Ogg1-/- mouse strains. We found that the induction of TNF-α expression was reduced in splenocytes (in particular macrophages) of both Ogg1-/- strains. Notably, an inhibitor of LSD1, OG-L002, reduced the induction of TNF-α mRNA in splenocytes from wild-type mice to the level observed in splenocytes from Ogg1-/- mice and had no influence in the latter cells. In contrast, inhibitors of the MAP kinases p38 and JNK as well as the antioxidant N-acetylcysteine attenuated the LPS-stimulated TNF-α expression both in the absence and presence of OGG1. The free base 8-oxo-7,8-dihydroguanine had no influence on the TNF-α expression in the splenocytes. The data demonstrate that OGG1 plays a role in an LSD1-dependent pathway of LPS-induced macrophage activation in mice.
Collapse
|
66
|
Ubiquitin-Conjugating Enzyme 9 Phosphorylation as a Novel Mechanism for Potentiation of the Inflammatory Response. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:2326-36. [PMID: 27561301 DOI: 10.1016/j.ajpath.2016.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022]
Abstract
Lipopolysaccharide (LPS), a bacterial endotoxin, induces inflammation in macrophages via activation of NF-κB signaling. Sumoylation is a post-translational modification mediated by the small ubiquitin-like modifier, SUMO. Ubiquitin-conjugating enzyme 9 (UBC9) is the only known SUMO conjugating enzyme. LPS treatment lowers SUMO-1 and UBC9 mRNA levels in primary astrocytes. UBC9 can degrade NF-κB inhibitor α (Ikbα) via a SUMO2/3-ubiquitin pathway. However, UBC9 may also promote Ikbα stability by SUMO-1 conjugation that further regulates NF-κB signaling. The role of UBC9 in liver inflammation is unknown. We reported that CDK1-mediated phosphorylation of UBC9 enhanced its stability. Herein, we describe an anti-inflammatory role of UBC9 that is lost when it is phosphorylated during inflammation. LPS exposure caused induction in UBC9 phosphorylation and CDK1 activation specifically in Kupffer cells in vivo and in RAW264.7 macrophages in vitro. Silencing or overexpression experiments in vitro and in vivo showed that UBC9 was required to blunt the proinflammatory response elicited by LPS. LPS stimulation raised the binding of phospho-UBC9 but not the unphosphorylated counterpart, to Ikbα in RAW264.7 macrophages. Hence, phospho-UBC9 may promote NF-κB signaling by regulating Ikbα and this may be a novel mechanism that deregulates liver inflammatory signaling.
Collapse
|
67
|
Stojkovic S, Thulin Å, Hell L, Thaler B, Rauscher S, Baumgartner J, Gröger M, Ay C, Demyanets S, Neumayer C, Huk I, Spittler A, Huber K, Wojta J, Siegbahn A, Åberg M. IL-33 stimulates the release of procoagulant microvesicles from human monocytes and differentially increases tissue factor in human monocyte subsets. Thromb Haemost 2017; 117:1379-1390. [PMID: 28492698 DOI: 10.1160/th16-10-0784] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Monocytes and monocyte-derived microvesicles (MVs) are the main source of circulating tissue factor (TF). Increased monocyte TF expression and increased circulating levels of procoagulant MVs contribute to the formation of a prothrombotic state in patients with cardiovascular disease. Interleukin (IL)-33 is a pro-inflammatory cytokine involved in atherosclerosis and other inflammatory diseases, but its role in regulating thrombosis is still unclear. The aim of the present study was to investigate the effects of IL-33 on the procoagulant properties of human monocytes and monocyte-derived MVs. IL-33 induced a time- and concentration-dependent increase of monocyte TF mRNA and protein levels via binding to the ST2-receptor and activation of the NF-κB-pathway. The IL-33 treated monocytes also released CD14+TF+ MVs and IL-33 was found to increase the TF activity of both the isolated monocytes and monocyte-derived MVs. The monocytes were classified into subsets according to their CD14 and CD16 expression. Intermediate monocytes (IM) showed the highest ST2 receptor expression, followed by non-classical monocytes (NCM), and classical monocytes (CM). IL-33 induced a significant increase of TF only in the IM (p<0.01), with a tendency in NCM (p=0.06), but no increase was observed in CM. Finally, plasma levels of IL-33 were positively correlated with CD14+TF+ MVs in patients undergoing carotid endarterectomy (r=0.480; p=0.032; n=20). We hereby provide novel evidence that the proinflammatory cytokine IL-33 induces differential TF expression and activity in monocyte subsets, as well as the release of procoagulant MVs. In this manner, IL-33 may contribute to the formation of a prothrombotic state characteristic for cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Johann Wojta
- Johann Wojta, Department of Internal Medicine II and Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria, Telephone: +43 1 40400/73500, Fax: +43 1 40400/73587, E-mail: , or, Agneta Siegbahn, Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, University Hospital and Uppsala University, SE 751 85 Uppsala, Sweden, Tel.: +46 18 611 4251, Fax: +46 18 552562, E-mail:
| | | | | |
Collapse
|
68
|
Zeng T, Zhang CL, Xiao M, Yang R, Xie KQ. Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials. Front Immunol 2016; 7:538. [PMID: 27965666 PMCID: PMC5126119 DOI: 10.3389/fimmu.2016.00538] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of both chronic and acute ALD. It has become clear that alcohol exposure can result in increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a strong M1 polarization inducer of KCs. The activated KCs then produce a large amount of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the pathogenesis of ALD make it a promising target in pharmaceutical drug developments for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have been evaluated or are under evaluation for ALD treatment in randomized clinical trials. Furthermore, screening pharmacological regulators for KCs toward M2 polarization may provide additional therapeutic agents. The combination of these potentially therapeutic drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring encouraging results.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Mo Xiao
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Rui Yang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
69
|
Van Hove I, Lefevere E, De Groef L, Sergeys J, Salinas-Navarro M, Libert C, Vandenbroucke R, Moons L. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 2016; 17:ijms17111825. [PMID: 27809288 PMCID: PMC5133826 DOI: 10.3390/ijms17111825] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 01/04/2023] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) is known to mediate neuroinflammatory processes by activating microglia, disrupting blood-central nervous system barriers and supporting neutrophil influx into the brain. In addition, the posterior part of the eye, more specifically the retina, the retinal pigment epithelium (RPE) and the blood-retinal barrier, is affected upon neuroinflammation, but a role for MMP-3 during ocular inflammation remains elusive. We investigated whether MMP-3 contributes to acute inflammation in the eye using the endotoxin-induced uveitis (EIU) model. Systemic administration of lipopolysaccharide induced an increase in MMP-3 mRNA and protein expression level in the posterior part of the eye. MMP-3 deficiency or knockdown suppressed retinal leukocyte adhesion and leukocyte infiltration into the vitreous cavity in mice subjected to EIU. Moreover, retinal and RPE mRNA levels of intercellular adhesion molecule 1 (Icam1), interleukin 6 (Il6), cytokine-inducible nitrogen oxide synthase (Nos2) and tumor necrosis factor α (Tnfα), which are key molecules involved in EIU, were clearly reduced in MMP-3 deficient mice. In addition, loss of MMP-3 repressed the upregulation of the chemokines monocyte chemoattractant protein (MCP)-1 and (C-X-C motif) ligand 1 (CXCL1). These findings suggest a contribution of MMP-3 during EIU, and its potential use as a therapeutic drug target in reducing ocular inflammation.
Collapse
Affiliation(s)
- Inge Van Hove
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Evy Lefevere
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Jurgen Sergeys
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
- Laboratory of Experimental Ophthalmology, Department of Neurosciences, KU Leuven, B-3000 Leuven, Belgium.
| | - Manuel Salinas-Navarro
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| | - Claude Libert
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Roosmarijn Vandenbroucke
- Inflammation Research Center, VIB, B-9052 Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium.
| | - Lieve Moons
- Neural Circuit Development and Regeneration Research Group, Department of Biology, Katholieke Universiteit Leuven (KU Leuven), B-3000 Leuven, Belgium.
| |
Collapse
|
70
|
Genetic Phagocyte NADPH Oxidase Deficiency Enhances Nonviable Candida albicans–Induced Inflammation in Mouse Lungs. Inflammation 2016; 40:123-135. [DOI: 10.1007/s10753-016-0461-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
71
|
Eilertsen KE, Østerud B. The central role of thromboxane and platelet activating factor receptors in ex vivo regulation of endotoxin-induced monocyte tissue factor activity in human whole blood. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519020080040501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of tissue factor (TF) by activated monocytes may initiate thrombotic episodes associated with diseases, such as thrombosis and atherosclerosis. In this study, steps in the regulatory pathways of lipopolysaccharide (LPS)-induced monocyte TF activity and released TNF-α in human whole blood were probed for using an array of inhibitors, comprising specific inhibitors of cytosolic phospholipase A2 (PLA2) (AACOCF3), secretory PLA (SB-203347), protein kinase (PK) (staurosporine), PKC (GF109203; BIM), and serine protease (Pefabloc SC), antagonists of thromboxane prostanoid (TP) receptor (R) (SQ-29548), platelet activating factor (PAF) R (BN-52021), leukotriene B4 R (SC-41930), serotonin R (cyproheptadine), fibronectin/fibrinogen R (RGDS), and finally, creatine phosphate/creatine phosphokinase (CP/CPK) which removes ADP. Whereas when added alone neither of these agents significantly inhibited LPS-induced TF or TNF-α, when presented as a reference cocktail comprising all the agents, TF activity and TNF-α were reduced by 77% and 49%, respectively. By subsequently testing a series of incomplete inhibitory cocktails equal to the reference except for deleted single agents or combinations of two or three active agents, the inhibitory effect of the reference cocktail could be shown to depend on the presence of the protease inhibitor and the thromboxane A2 and PAF antagonists.
Collapse
Affiliation(s)
- Karl-Erik Eilertsen
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway,
| | - Bjarne Østerud
- Department of Biochemistry, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, Tromsø, Norway
| |
Collapse
|
72
|
Ma Y, Han CC, Li Y, Wang Y, Wei W. Insulin-like growth factor-binding protein-3 inhibits IGF-1-induced proliferation of human hepatocellular carcinoma cells by controlling bFGF and PDGF autocrine/paracrine loops. Biochem Biophys Res Commun 2016; 478:964-9. [DOI: 10.1016/j.bbrc.2016.08.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/04/2023]
|
73
|
Abstract
In recent years, the traditional view of the hemostatic system as being regulated by a coagulation factor cascade coupled with platelet activation has been increasingly challenged by new evidence that activation of the immune system strongly influences blood coagulation and pathological thrombus formation. Leukocytes can be induced to express tissue factor and release proinflammatory and procoagulant molecules such as granular enzymes, cytokines, and damage-associated molecular patterns. These mediators can influence all aspects of thrombus formation, including platelet activation and adhesion, and activation of the intrinsic and extrinsic coagulation pathways. Leukocyte-released procoagulant mediators increase systemic thrombogenicity, and leukocytes are actively recruited to the site of thrombus formation through interactions with platelets and endothelial cell adhesion molecules. Additionally, phagocytic leukocytes are involved in fibrinolysis and thrombus resolution, and can regulate clearance of platelets and coagulation factors. Dysregulated activation of leukocyte innate immune functions thus plays a role in pathological thrombus formation. Modulation of the interactions between leukocytes or leukocyte-derived procoagulant materials and the traditional hemostatic system is an attractive target for the development of novel antithrombotic strategies.
Collapse
|
74
|
Wang A, Zhang H, Liang Z, Xu K, Qiu W, Tian Y, Guo H, Jia J, Xing E, Chen R, Xiang Z, Liu J. U0126 attenuates ischemia/reperfusion-induced apoptosis and autophagy in myocardium through MEK/ERK/EGR-1 pathway. Eur J Pharmacol 2016; 788:280-285. [PMID: 27343376 DOI: 10.1016/j.ejphar.2016.06.038] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/15/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia is one of the main causes of sudden cardiac death worldwide. Depending on the cell type and stimulus, ERK activity mediates different anti-proliferative events, such as apoptosis, autophagy, and senescence. The aim of this study was to determine the protective effect of 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126), an ERK kinase inhibitor, on myocardial ischemia/reperfusion (I/R) injury and the mechanisms involved. An I/R model was established in vivo in C57BL/6 mice and in vitro using mouse cardiomyocytes, respectively. To evaluate the protective effects of U0126 on I/R injury, we measured the myocardial infarct area, apoptosis, and autophagy. Our data indicated that pretreatment with U0126 significantly reduced the infarct area caused by I/R. Moreover, U0126 reduced the caspase-3 activity and the number of TUNEL-positive cardiomyocytes, which together indicate decreased apoptosis. Additionally, U0126 remarkable reduced the level of Beclin-1 and LC3 and increased p62 expression, which indicates that U0126 suppressed H/R-induced autophagy. Furthermore, the relationship between U0126 and MEK/ERK pathway activation in H/R-induced cardiomyocytes was also investigated. U0126 ameliorated H/R injury through inhibition of the MEK/ERK pathway and by suppressing in the downstream EGR-1 expression. Together, our research suggests that U0126 may protect against H/R injury by preventing H/R-induced myocardium apoptosis and autophagy via the MEK/ERK/EGR-1 pathway, and may be a potential therapeutic approach for attenuating myocardial I/R injury.
Collapse
Affiliation(s)
- Anxing Wang
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Huijun Zhang
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China.
| | - Zeming Liang
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Kai Xu
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Weifeng Qiu
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Yongbo Tian
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Hong Guo
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Junzheng Jia
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Erke Xing
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Rufei Chen
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Zongxing Xiang
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| | - Jia Liu
- The Second Department of Cardiovascular, Baoji City Traditional Chinese Medicine Hospital, Baoji, Shaanxi 721001, PR China
| |
Collapse
|
75
|
Palmqvist N, Siller M, Klint C, Sjödin A. A human and animal model-based approach to investigating the anti-inflammatory profile and potential of the 5-HT2B receptor antagonist AM1030. JOURNAL OF INFLAMMATION-LONDON 2016; 13:20. [PMID: 27340371 PMCID: PMC4918035 DOI: 10.1186/s12950-016-0127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
Background Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by highly pruritic eczematous lesions that are commonly treated with topical corticosteroids and calcineurin inhibitors. Side-effects and safety concerns associated with these agents restrict their use, and new, safe treatment options are therefore needed. Recent reports suggest that serotonin, i.e. 5-hydroxytryptamine (5-HT) and the 5-HT2 receptor family may contribute to inflammation and pruritus in the skin. The objective of this particular study was to investigate the 5HT2B receptor antagonist AM1030 with respect to its anti-inflammatory profile and potential. Methods AM1030 was tested in a set of distinct human and rodent in vitro and in vivo models, differing with respect to e.g. T cell involvement, triggering stimulus, main read-outs and route of drug administration. The in vitro systems used were staphylococcal enterotoxin A (SEA)-stimulated human peripheral blood mononuclear cells, lipopolysaccharide (LPS)-stimulated human primary monocytes, LPS-stimulated human THP-1 monocytes and LPS-stimulated mouse primary macrophages. The in vivo systems used were LPS- and SEA-induced cytokine production in the mouse, antigen-induced arthritis in the rat, glucose-6-phosphate isomerase-induced arthritis in the mouse and delayed-type hypersensitivity reaction in the mouse. In addition, different cell populations were analyzed with respect to their expression of the 5-HT2B receptor at the mRNA level. Results AM1030 significantly reduced both T cell-dependent and T cell-independent inflammatory responses, in vivo and in vitro. Due to the low or absent expression of the 5-HT2B receptor on T cell populations, the influence of AM1030 in T cell-dependent systems is suggested to be mediated via an indirect effect involving antigen-presenting cell types, such as monocytes and macrophages. Conclusion Based on the wide range of model systems used in this study, differing e.g. with respect to species, T cell involvement, triggering stimuli, route of drug administration and read-outs, our results suggest a broad anti-inflammatory effect of AM1030 and identify the 5-HT2B receptor as a promising future target for anti-inflammatory intervention, e.g. in AD.
Collapse
Affiliation(s)
| | - Max Siller
- AnaMar AB, R&D, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Cecilia Klint
- AnaMar AB, R&D, Scheelevägen 2, SE-223 81 Lund, Sweden
| | - Anders Sjödin
- AnaMar AB, R&D, Scheelevägen 2, SE-223 81 Lund, Sweden
| |
Collapse
|
76
|
Vargas JE, Porto BN, Puga R, Stein RT, Pitrez PM. Identifying a biomarker network for corticosteroid resistance in asthma from bronchoalveolar lavage samples. Mol Biol Rep 2016; 43:697-710. [PMID: 27188427 DOI: 10.1007/s11033-016-4007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/10/2016] [Indexed: 12/12/2022]
Abstract
Corticosteroid resistance (CR) is a major barrier to the effective treatment of severe asthma. Hence, a better understanding of the molecular mechanisms involved in this condition is a priority. Network analysis is an emerging strategy to explore this complex heterogeneous disorder at system level to identify a small own network for CR in asthma. Gene expression profile of GSE7368 from bronchoalveolar lavage (BAL) of CR in subjects with asthma was downloaded from the gene expression omnibus (GEO) database and compared to BAL of corticosteroid-sensitive (CS) patients. DEGs were identified by the Limma package in R language. In addition, DEGs were mapped to STRING to acquire protein-protein interaction (PPI) pairs. Topological properties of PPI network were calculated by Centiscape, ClusterOne and BINGO. Subsequently, text-mining tools were applied to design one own cell signalling for CR in asthma. Thirty-five PPI networks were obtained; including a major network consisted of 370 nodes, connected by 777 edges. After topological analysis, a minor PPI network composed by 48 nodes was indentified, which is composed by most relevant nodes of major PPI network. In this subnetwork, several receptors (EGFR, EGR1, ESR2, PGR), transcription factors (MYC, JAK), cytokines (IL8, IL6, IL1B), one chemokine (CXCL1), one kinase (SRC) and one cyclooxygenase (PTGS2) were described to be associated with inflammatory environment and steroid resistance in asthma. We suggest a biomarker network composed by 48 nodes that could be potentially explored with diagnostic or therapeutic use.
Collapse
Affiliation(s)
- José Eduardo Vargas
- Centro Infant - Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 91501-970, Brazil.
| | - Bárbara Nery Porto
- Centro Infant - Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 91501-970, Brazil
| | - Renato Puga
- Clinical Research Center, Hospital Israelita Albert Einstein- HIAE, São Paulo, Brazil
| | - Renato Tetelbom Stein
- Centro Infant - Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 91501-970, Brazil
| | - Paulo Márcio Pitrez
- Centro Infant - Pontifical Catholic University of Rio Grande do Sul - PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, 91501-970, Brazil
| |
Collapse
|
77
|
Zhou JM, Xu ZL, Li N, Zhao YW, Wang ZZ, Xiao W. Identification of cardioprotective agents from traditional Chinese medicine against oxidative damage. Mol Med Rep 2016; 14:77-88. [PMID: 27176126 PMCID: PMC4918535 DOI: 10.3892/mmr.2016.5243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Reactive oxygen species are damaging to cardiomyocytes. H9c2 cardiomyocytes are commonly used to study the cellular mechanisms and signal transduction in cardiomyocytes, and to evaluate the cardioprotective effects of drugs following oxidative damage. The present study developed a robust, automated high throughput screening (HTS) assay to identify cardioprotective agents from a traditional Chinese medicine (TCM) library using a H2O2-induced oxidative damage model in H9c2 cells. Using this HTS format, several hits were identified as cardioprotective by detecting changes to cell viability using the cell counting kit (CCK)-8 assay. Two TCM extracts, KY-0520 and KY-0538, were further investigated. The results of the present study demonstrated that treatment of oxidatively damaged cells with KY-0520 or KY-0538 markedly increased the cell viability and superoxide dismutase activity, decreased lactate dehydrogenase activity and malondialdehyde levels, and inhibited early growth response-1 (Egr-1) protein expression. The present study also demonstrated that KY-0520 or KY-0538 treatment protected H9c2 cells from H2O2-induced apoptosis by altering the Bcl-2/Bax protein expression ratio, and decreasing the levels of cleaved caspase-3. In addition, KY-0520 and KY-0538 reduced the phosphorylation of ERK1/2 and p38-MAPK proteins, and inhibited the translocation of Egr-1 from the cytoplasm to nucleus in H2O2-treated H9c2 cells. These findings suggested that oxidatively damaged H9c2 cells can be used for the identification of cardioprotective agents that reduce oxidative stress by measuring cell viabilities using CCK-8 in an HTS format. The underlying mechanism of the cardioprotective activities of KY-0520 and KY-0538 may be attributed to their antioxidative activity, regulation of Egr-1 and apoptosis-associated proteins, and the inhibition of ERK1/2, p38-MAPK and Egr-1 signaling pathways.
Collapse
Affiliation(s)
- Jian-Ming Zhou
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhi-Liang Xu
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Na Li
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Yi-Wu Zhao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Zhen-Zhong Wang
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| | - Wei Xiao
- State Key Laboratory of New‑Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Modern Traditional Chinese Medicine Research Institute, Lianyungang, Jiangsu 222001, P.R. China
| |
Collapse
|
78
|
Hung YC, Hsu CC, Chung CH, Huang TF. The disintegrin, trimucrin, suppresses LPS-induced activation of phagocytes primarily through blockade of NF-κB and MAPK activation. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:723-37. [PMID: 27030393 DOI: 10.1007/s00210-016-1233-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/16/2016] [Indexed: 01/13/2023]
Abstract
In addition to antiplatelet activity, disintegrin, a small-mass RGD-containing polypeptide, has been shown to exert anti-inflammatory effects but the mechanism involved remains unclear. In this study, we report that trimucrin, a disintegrin from the venom of Trimeresurus mucrosquamatus, inhibits lipopolysaccharide (LPS)-induced stimulation of THP-1 and RAW 264.7 cells. We also investigate the underlying mechanism. Trimucrin decreased the release of proinflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-6 (IL-6), nitric oxide, and reactive oxygen species (ROS), and inhibited the adhesion and migration of LPS-activated phagocytes. Trimucrin significantly blocked the expression of nuclear factor kappaB (NF-κB)-related downstream inducible enzymes such as inducible nitric oxide synthase (iNOS) and COX-2. In addition, its anti-inflammatory effect was associated with the decreased mitogen-activated protein kinase (MAPK) phosphorylation. Furthermore, trimucrin concentration dependently inhibited LPS-induced phosphorylation of focal adhesion kinase (FAK), PI3K, and Akt. Trimucrin also reversed the DNA-binding activity of NF-κB by suppressing the LPS-induced nuclear translocation of p65 and the cytosolic IκB release. Flow cytometric analyses showed that trimucrin bound to cells in a concentration-dependent manner. The anti-αVβ3 mAb also specifically decreased the binding of fluorescein isothiocyanate (FITC)-conjugated trimucrin. Binding assays demonstrated that integrin αVβ3 was the binding site for trimucrin on THP-1 and RAW 264.7 cells. In conclusion, we showed that trimucrin decreases the inflammatory reaction through the attenuation of iNOS expression and nitric oxide (NO) production by blocking MAP kinase and the NF-κB activation in LPS-stimulated THP-1 and RAW 264.7 cells.
Collapse
Affiliation(s)
- Yu-Chun Hung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan
| | - Chun-Chieh Hsu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Tur-Fu Huang
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No1, Sec1, Jen-Ai Rd, Taipei, Taiwan.
| |
Collapse
|
79
|
Choi SW, Choi WJ, Kim EH, Moon SH, Park SJ, Lee JO, Kim SH. Inflammatory Bone Resorption and Antiosteosarcoma Potentials of Zinc Ion Sustained Release ZnO Chips: Friend or Foe? ACS Biomater Sci Eng 2016; 2:494-500. [DOI: 10.1021/acsbiomaterials.5b00395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sik-Won Choi
- Laboratory of Translational Therapeutics,
Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Eun Hye Kim
- Laboratory of Translational Therapeutics,
Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Seong-Hee Moon
- Laboratory of Translational Therapeutics,
Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sang-Joon Park
- Department of Histology, College of Veterinary
Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics,
Pharmacology Research Center, Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| |
Collapse
|
80
|
Lansink MO, Görlinger K, Hartmann M, de Groot H, Effenberger-Neidnicht K. Melatonin does not affect disseminated intravascular coagulation but diminishes decreases in platelet count during subacute endotoxaemia in rats. Thromb Res 2016; 139:38-43. [DOI: 10.1016/j.thromres.2015.10.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/30/2015] [Accepted: 10/13/2015] [Indexed: 12/15/2022]
|
81
|
Lakhkar A, Dhagia V, Joshi SR, Gotlinger K, Patel D, Sun D, Wolin MS, Schwartzman ML, Gupte SA. 20-HETE-induced mitochondrial superoxide production and inflammatory phenotype in vascular smooth muscle is prevented by glucose-6-phosphate dehydrogenase inhibition. Am J Physiol Heart Circ Physiol 2016; 310:H1107-17. [PMID: 26921441 DOI: 10.1152/ajpheart.00961.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
20-Hydroxyeicosatetraeonic acid (20-HETE) produced by cytochrome P-450 monooxygenases in NADPH-dependent manner is proinflammatory, and it contributes to the pathogenesis of systemic and pulmonary hypertension. In this study, we tested the hypothesis that inhibition of glucose-6-phosphate dehydrogenase (G6PD), a major source of NADPH in the cell, prevents 20-HETE synthesis and 20-HETE-induced proinflammatory signaling that promotes secretory phenotype of vascular smooth muscle cells. Lipidomic analysis indicated that G6PD inhibition and knockdown decreased 20-HETE levels in pulmonary arteries as well as 20-HETE-induced 1) mitochondrial superoxide production, 2) activation of mitogen-activated protein kinase 1 and 3, 3) phosphorylation of ETS domain-containing protein Elk-1 that activate transcription of tumor necrosis factor-α gene (Tnfa), and 4) expression of tumor necrosis factor-α (TNF-α). Moreover, inhibition of G6PD increased protein kinase G1α activity, which, at least partially, mitigated superoxide production and Elk-1 and TNF-α expression. Additionally, we report here for the first time that 20-HETE repressed miR-143, which suppresses Elk-1 expression, and miR-133a, which is known to suppress synthetic/secretory phenotype of vascular smooth muscle cells. In summary, our findings indicate that 20-HETE elicited mitochondrial superoxide production and promoted secretory phenotype of vascular smooth muscle cells by activating MAPK1-Elk-1, all of which are blocked by inhibition of G6PD.
Collapse
Affiliation(s)
- Anand Lakhkar
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Vidhi Dhagia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachindra Raj Joshi
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Katherine Gotlinger
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Dhara Patel
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Dong Sun
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and
| | - Michael S Wolin
- Department of Physiology, New York Medical College School of Medicine, Valhalla, New York; and Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York
| | - Sachin A Gupte
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York; Translational Centre for Pulmonary Hypertension, New York Medical College School of Medicine, Valhalla, New York
| |
Collapse
|
82
|
Yi L, Huang X, Guo F, Zhou Z, Dou Y, Huan J. Yes-associated protein (YAP) signaling regulates lipopolysaccharide-induced tissue factor expression in human endothelial cells. Surgery 2016; 159:1436-48. [PMID: 26791271 DOI: 10.1016/j.surg.2015.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is characterized by fibrin deposition, which indicates the local activation of coagulation. Tissue factor (TF), expressed in the pulmonary microvasculature, acts as a critical initiator of blood coagulation and ALI in sepsis. The molecular mechanism of lipopolysaccharide (LPS)-induced TF expression in endothelial cells (ECs), however, has not been determined. In this study, we implicate the Rho-associated protein kinase (ROCK)/Yes associated protein (YAP)/early growth response (Egr-1) signaling pathway in LPS-induced TF expression in vitro and in sepsis-induced ALI in vivo. METHODS Human umbilical vein ECs incubated with LPS were pretreated with or without the ROCK inhibitor Y-27632, a YAP small, interfering RNA (siRNA) and an Egr-1 siRNA. ROCK, YAP and Egr-1 signaling-induced protein expression was investigated by Western blot. The LPS-induced activation of YAP was analyzed by an immunofluorescent assay. Furthermore, we intratracheally injected YAP siRNA to assess septic ALI in mice by hematoxylin and eosin staining. RESULTS LPS rapidly induced ROCK activation and increased TF expression in ECs. LPS caused YAP shuttling into the nuclei of ECs and combined with Egr-1 via the activation of ROCK. Furthermore, the LPS-mediated TF expression increase was prevented by ROCK inactivation, YAP knockdown and Egr-1 depletion, suggesting that LPS-induced TF expression is closely associated with the ROCK/YAP/Egr-1 signaling pathway in ECs. Finally, an intratracheal injection of YAP siRNA relieved lung injury in septic mice. CONCLUSION This study not only suggests that ROCK/YAP/Egr-1 signaling regulates TF expression after stimulation with LPS in ECs, but it also indicates that LPS-induced activation of YAP signaling plays an important role in septic ALI in mice. Our findings provide a new insight into the pathogenic mechanism of TF expression, which is closely linked to septic ALI, and YAP signaling is considered to be a novel target for therapeutic intervention under septic conditions.
Collapse
Affiliation(s)
- Lei Yi
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqin Huang
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Guo
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zengding Zhou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Dou
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingning Huan
- Department of Burn and Plastic Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
83
|
Seol GH, Kim KY. Eucalyptol and Its Role in Chronic Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:389-398. [PMID: 27771935 DOI: 10.1007/978-3-319-41342-6_18] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Patients with chronic diseases such as cardiovascular diseases, chronic respiratory diseases, and neurological diseases have been shown to benefit from treatments such as aromatherapy in addition to medication. Most chronic diseases are caused by chronic inflammation and oxidative stress as well as harmful factors. Eucalyptol (1,8-cineole), a terpenoid oxide isolated from Eucalyptus species, is a promising compound for treating such conditions as it has been shown to have anti-inflammatory and antioxidant effects in various diseases, including respiratory disease, pancreatitis, colon damage, and cardiovascular and neurodegenerative diseases. Eucalyptol suppresses lipopolysaccharide (LPS)-induced proinflammatory cytokine production through the action of NF-κB, TNF-α, IL-1β, and IL-6 and the extracellular signal-regulated kinase (ERK) pathway, and reduces oxidative stress through the regulation of signaling pathways and radical scavenging. The effects of eucalyptol have been studied in several cell and animal models as well as in patients with chronic diseases. Furthermore, eucalyptol can pass the blood-brain barrier and hence can be used as a carrier to deliver drugs to the brain via a microemulsion system. In summary, the various biological activities of eucalyptol such as its anti-inflammatory and antioxidant properties, as well as its physicochemical characteristics, make this compound a potentially important drug for the treatment of chronic diseases.
Collapse
Affiliation(s)
- Geun Hee Seol
- Department of Basic Nursing Science, School of Nursing, Korea University, Seoul, 02841, Republic of Korea.
| | - Ka Young Kim
- Department of Nursing Science, School of Nursing, Gachon University, Incheon, 21936, Republic of Korea
| |
Collapse
|
84
|
Early Growth Response Protein-1 Expression by Insulin-Like Growth Factor-1 Requires ROS-Dependent Activation of ERK1/2 and PKB Pathways in Vascular Smooth Muscle Cells. J Cell Biochem 2015; 117:152-62. [DOI: 10.1002/jcb.25260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 01/03/2023]
|
85
|
Endo D, Saito T, Umeki Y, Suzuki K, Aratani Y. Myeloperoxidase negatively regulates the expression of proinflammatory cytokines and chemokines by zymosan-induced mouse neutrophils. Inflamm Res 2015; 65:151-9. [DOI: 10.1007/s00011-015-0899-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022] Open
|
86
|
Yang X, Li L, Liu J, Lv B, Chen F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. Thromb Res 2015; 137:211-218. [PMID: 26476743 DOI: 10.1016/j.thromres.2015.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lin Li
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jin Liu
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ben Lv
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fangping Chen
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Hemotology Xiangya Hospital, Central South University Changsha, Hunan 410078, PR China.
| |
Collapse
|
87
|
Hsu SY, Liou JW, Cheng TL, Peng SY, Lin CC, Chu YY, Luo WC, Huang ZK, Jiang SJ. beta-Naphthoflavone protects from peritonitis by reducing TNF-alpha-induced endothelial cell activation. Pharmacol Res 2015; 102:192-9. [PMID: 26453957 DOI: 10.1016/j.phrs.2015.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 10/01/2015] [Accepted: 10/02/2015] [Indexed: 01/06/2023]
Abstract
β-Naphthoflavone (β-NF), a ligand of the aryl hydrocarbon receptor, has been shown to possess anti-oxidative properties. We investigated the anti-oxidative and anti-inflammatory potential of β-NF in human microvascular endothelial cells treated with tumor necrosis factor-alpha (TNF-α). Pretreatment with β-NF significantly inhibited TNF-α-induced intracellular reactive oxygen species, translocation of p67(phox), and TNF-α-induced monocyte binding and transmigration. In addition, β-NF significantly inhibited TNF-α-induced ICAM-1 and VCAM-1 expression. The mRNA expression levels of the inflammatory cytokines TNF-α and IL-6 were reduced by β-NF, as was the infiltration of white blood cells, in a peritonitis model. The inhibition of adhesion molecules was associated with suppressed nuclear translocation of NF-κB p65 and Akt, and suppressed phosphorylation of ERK1/2 and p38. The translocation of Egr-1, a downstream transcription factor involved in the MEK-ERK signaling pathway, was suppressed by β-NF treatment. Our findings show that β-NF inhibits TNF-α-induced NF-kB and ERK1/2 activation and ROS generation, thereby suppressing the expression of adhesion molecules. This results in reduced adhesion and transmigration of leukocytes in vitro and prevents the infiltration of leukocytes in a peritonitis model. Our findings also suggest that β-NF might prevent TNF-α-induced inflammation.
Collapse
Affiliation(s)
- Sheng-Yao Hsu
- Department ofOphthalmology,ChinaMedicalUniversity-AnNan Hospital,Tainan,Taiwan.; School of Medicine, China Medical University, Taichung, Taiwan
| | - Je-Wen Liou
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tsung-Lin Cheng
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chi-Chen Lin
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yuan-Yuan Chu
- Postgraduate program in Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Cheng Luo
- Master program in Microbiology, Immunology and Biochemistry, School of Medicine Master Thesis, Tzu Chi University, Hualien, Taiwan
| | - Zheng-Kai Huang
- Bachelor in Department of Molecular Biology and Human Genetics, College of Life Sciences, Tzu Chi University, Hualien, Taiwan
| | - Shinn-Jong Jiang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
88
|
Barnett RE, Conklin DJ, Ryan L, Keskey RC, Ramjee V, Sepulveda EA, Srivastava S, Bhatnagar A, Cheadle WG. Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis. J Leukoc Biol 2015; 99:361-71. [PMID: 26382295 DOI: 10.1189/jlb.4a1014-489r] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/02/2015] [Indexed: 01/03/2023] Open
Abstract
We investigated the role of microRNA-21 in the macrophage response to peritonitis; microRNA-21 expression increases in peritoneal macrophages after lipopolysaccharide stimulation but is delayed until 48 hours after cecal ligation and puncture. MicroRNA-21-null mice and bone marrow-derived cell lines were exposed to cecal ligation and puncture or lipopolysaccharide, and survival, microRNA-21 levels, target messenger RNAs and proteins, and cytokines were assayed. Macrophages were also transfected with microRNA-21 mimics and antagomirs, and similar endpoints were measured. Survival in microRNA-21-null mice was significantly decreased after lipopolysaccharide-induced peritonitis but unchanged after cecal ligation and puncture compared with similarly treated wild-type mice. MicroRNA-21 expression, tumor necrosis factor-α, interleukin 6, and programmed cell death protein 4 levels were increased after lipopolysaccharide addition in peritoneal cells. Pelino1 and sprouty (SPRY) messenger RNAs were similarly increased early, whereas programmed cell death protein 4 messenger RNA was decreased after lipopolysaccharide, and all microR-21 target messenger RNAs were subsequently decreased by 24 hours after lipopolysaccharide. Transfection with mimics and antagomirs led to appropriate responses in microRNA-21 and tumor necrosis factor-α. Knockdown of microRNA-21 in bone marrow-derived cells showed increased tumor necrosis factor-α and decreased interleukin 10 in response to lipopolysaccharide. Target proteins were unaffected by knockdown as was extracellular signal-regulated kinase; however, the nuclear factor κB p65 subunit was increased after lipopolysaccharide in the microRNA-21 knockout cells. In contrast, there was little change in these parameters after cecal ligation and puncture induction between null and wild-type mice. MicroRNA-21 is beneficial to survival in mice following lipopolysaccharide peritonitis. Overexpression of microRNA-21 decreased tumor necrosis factor-α secretion, whereas suppression of microRNA-21 expression increased tumor necrosis factor-α and interleukin 6, and decreased interleukin 10 levels after lipopolysaccharide. Protein targets of microRNA-21 were not different following suppression of microRNA-21. Nuclear factor κB was increased by suppression of microRNA-21. These findings demonstrate microRNA-21 is beneficial in modulating the macrophage response to lipopolysaccharide peritonitis and an improved understanding of the anti-inflammatory effects of microRNA-21 may result in novel, targeted therapy against peritonitis and sepsis.
Collapse
Affiliation(s)
- Rebecca Elise Barnett
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Daniel J Conklin
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Lindsey Ryan
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Robert C Keskey
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Vikram Ramjee
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Ernesto A Sepulveda
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Sanjay Srivastava
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - Aruni Bhatnagar
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| | - William G Cheadle
- *Hiram C. Polk, Jr., MD, Department of Surgery, School of Medicine, and Division of Cardiovascular Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky, USA; and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
89
|
The intracerebroventricular injection of rimonabant inhibits systemic lipopolysaccharide-induced lung inflammation. J Neuroimmunol 2015; 286:16-24. [PMID: 26298320 DOI: 10.1016/j.jneuroim.2015.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 06/22/2015] [Accepted: 07/01/2015] [Indexed: 01/23/2023]
Abstract
We investigated the role of intracerebroventricular (ICV) injection of rimonabant (500ng), a CB1 antagonist, on lipopolysaccharide ((LPS) 5mg/kg)-induced pulmonary inflammation in rats in an isolated perfused lung model. There were decreases in pulmonary capillary pressure (Ppc) and increases in the ((Wet-Dry)/Dry lung weight)/(Ppc) ratio in the ICV-vehicle/LPS group at 4h. There were decreases in TLR4 pathway markers, such as interleukin receptor-associated kinase-1, IκBα, Raf1 and phospho-SFK (Tyr416) at 30min and at 4h increases in IL-6, vascular cell adhesion molecule-1 and myeloperoxidase in lung homogenate. Intracerebroventricular rimonabant attenuated these LPS-induced responses, indicating that ICV rimonabant modulates LPS-initiated pulmonary inflammation.
Collapse
|
90
|
Chang SF, Lin SS, Yang HC, Chou YY, Gao JI, Lu SC. LPS-Induced G-CSF Expression in Macrophages Is Mediated by ERK2, but Not ERK1. PLoS One 2015; 10:e0129685. [PMID: 26114754 PMCID: PMC4483241 DOI: 10.1371/journal.pone.0129685] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) selectively stimulates proliferation and differentiation of neutrophil progenitors which play important roles in host defense against infectious agents. However, persistent G-CSF production often leads to neutrophilia and excessive inflammatory reactions. There is therefore a need to understand the mechanism regulating G-CSF expression. In this study, we showed that U0126, a MEK1/2 inhibitor, decreases lipopolysaccharide (LPS)-stimulated G-CSF promoter activity, mRNA expression and protein secretion. Using short hairpin RNA knockdown, we demonstrated that ERK2, and not ERK1, involves in LPS-induced G-CSF expression, but not LPS-regulated expression of TNF-α. Reporter assays showed that ERK2 and C/EBPβ synergistically activate G-CSF promoter activity. Further chromatin immunoprecipitation (ChIP) assays revealed that U0126 inhibits LPS-induced binding of NF-κB (p50/p65) and C/EBPβ to the G-CSF promoter, but not their nuclear protein levels. Knockdown of ERK2 inhibits LPS-induced accessibility of the G-CSF promoter region to DNase I, suggesting that chromatin remodeling may occur. These findings clarify that ERK2, rather than ERK1, mediates LPS-induced G-CSF expression in macrophages by remodeling chromatin, and stimulates C/EBPβ-dependent activation of the G-CSF promoter. This study provides a potential target for regulating G-CSF expression.
Collapse
Affiliation(s)
- Shwu-Fen Chang
- Graduate Institute of Medical Sciences, School of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Shan Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Ching Yang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yuan-Yi Chou
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jhen-I Gao
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shao-Chun Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
91
|
Kim YM, Kim JH, Park SW, Kim HJ, Chang KC. Retinoic acid inhibits tissue factor and HMGB1 via modulation of AMPK activity in TNF-α activated endothelial cells and LPS-injected mice. Atherosclerosis 2015; 241:615-23. [PMID: 26116962 DOI: 10.1016/j.atherosclerosis.2015.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/15/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Retinoic acid (RA) is the active vitamin A derivative and has diverse immunomodulatory actions. We hypothesized that RA reduces prothrombotic mediators such as tissue factor (TF) in endothelial cells during inflammatory conditions via an AMPK-dependent pathway, which attenuates cardiovascular complications. RESULTS RA significantly increased AMPK and Akt phosphorylation in a time- and concentration-dependent manner in endothelial cells (EC). RA downregulated TF expression at the transcriptional and translational levels in TNF-α activated ECs, which was reversed by the silencing of AMPK and transfection of DN-AMPK. Interestingly, the PI3-kinase inhibitor LY294002 reversed the RA effect on TF expression. Increased AMPK phosphorylation by RA was inhibited by LY294002. However, increased Akt phosphorylation was not reduced by compound C, indicating that PI3K/Akt signaling modulates AMPK activity. In addition, RA reduced HMGB1 release in TNF-α activated ECs, which was reversed by both LY294001 and siAMPK. Importantly, administration of RA (1 mg/kg) significantly reduced blood TF activity, circulating HMGB1 and PAI-1 levels and expression of hepatic TF mRNA as well as fibrin deposition in LPS (5 mg/kg)-injected mice. CONCLUSIONS Taken together, the activation of PI3K/Akt by RA modulates AMPK activity in ECs and plays a crucial role in the inhibition of coagulatory factors such as TF, PAI-1, and HMGB1 in inflammatory conditions.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Jung Hwan Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea.
| |
Collapse
|
92
|
Williams JC, Klein TW, Goldberger BA, Sleasman JW, Mackman N, Goodenow MM. Δ(9)-Tetrahydrocannabinol (THC) enhances lipopolysaccharide-stimulated tissue factor in human monocytes and monocyte-derived microvesicles. JOURNAL OF INFLAMMATION-LONDON 2015; 12:39. [PMID: 26085816 PMCID: PMC4469459 DOI: 10.1186/s12950-015-0084-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022]
Abstract
Background Immunomodulatory effects in humans of Δ9−Tetrahydrocannabinol (THC), the psychoactive component of marijuana are controversial. Tissue factor (TF), the activator of the extrinsic coagulation cascade, is increased on circulating activated monocytes and is expressed on microvesicles released from activated monocytes during inflammatory conditions, which perpetuate coagulopathies in a number of diseases. In view of the increased medicinal use of marijuana, effects of THC on human monocytes and monocyte-derived microvesicles activated by lipopolysaccharide (LPS) were investigated. Findings Peak levels of TF procoagulant activity developed in monocytes or microvesicles 6 h following LPS treatment and were unaltered by THC. After 24 h of LPS stimulation, TF activity declined in control-treated or untreated cells and microvesicles, but persisted with THC treatment. Peak TF protein occurred within 6 h of LPS treatment independent of THC; by 24 h, TF protein declined to almost undetectable levels without THC, but was about 4-fold greater with THC. Steady-state TF mRNA levels were similar up to 2 h in the presence of LPS with or without THC, while 10-fold greater TF mRNA levels persisted over 3–24 h with THC treatment. Activation of MAPK or NF-κB pathways was unaltered by THC treatment and inflammatory cytokine IL-6 levels were unchanged. In contrast, TNF and IL-8 levels were enhanced by 20–50 %. Conclusions THC enhances TF expression in activated monocytes resulting in elevated procoagulant activity. Marijuana use could potentiate coagulopathies in individuals with chronic immune activation such as HIV-1 infection or inflammatory bowel disease.
Collapse
Affiliation(s)
- Julie C Williams
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3663 USA
| | - Thomas W Klein
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL USA
| | - Bruce A Goldberger
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3663 USA
| | - John W Sleasman
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Duke University, Durham, NC USA
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, McAlister Heart Institute, University of North Carolina, Chapel Hill, NC USA
| | - Maureen M Goodenow
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, 2033 Mowry Road, Gainesville, FL 32610-3663 USA
| |
Collapse
|
93
|
Urotensin II Protects Cardiomyocytes from Apoptosis Induced by Oxidative Stress through the CSE/H2S Pathway. Int J Mol Sci 2015; 16:12482-98. [PMID: 26047336 PMCID: PMC4490456 DOI: 10.3390/ijms160612482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 02/07/2023] Open
Abstract
Plasma urotensin II (UII) has been observed to be raised in patients with acute myocardial infarction; suggesting a possible cardiac protective role for this peptide. However, the molecular mechanism is unclear. Here, we treated cultured cardiomyocytes with H2O2 to induce oxidative stress; observed the effect of UII on H2O2-induced apoptosis and explored potential mechanisms. UII pretreatment significantly reduced the number of apoptotic cardiomyocytes induced by H2O2; and it partly abolished the increase of pro-apoptotic protein Bax and the decrease of anti-apoptotic protein Bcl-2 in cardiomyocytes induced by H2O2. SiRNA targeted to the urotensin II receptor (UT) greatly inhibited these effects. Further analysis revealed that UII increased the production of hydrogen sulfide (H2S) and the level of cystathionine-γ-lyase (CSE) by activating the ERK signaling in H2O2-treated-cardiomyocytes. Si-CSE or ERK inhibitor not only greatly inhibited the increase in CSE level or the phosphorylation of ERK induced by UII but also reversed anti-apoptosis of UII in H2O2-treated-cadiomyocytes. In conclusion, UII rapidly promoted the phosphorylation of ERK and upregulated CSE level and H2S production, which in turn activated ERK signaling to protect cardiomyocytes from apoptosis under oxidative stress. These results suggest that increased plasma UII level may protect cardiomyocytes at the early-phase of acute myocardial infarction in patients.
Collapse
|
94
|
Guillem-Llobat P, Íñiguez MA. Inhibition of lipopolysaccharide-induced gene expression by liver X receptor ligands in macrophages involves interference with early growth response factor 1. Prostaglandins Leukot Essent Fatty Acids 2015; 96:37-49. [PMID: 25736222 DOI: 10.1016/j.plefa.2015.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/08/2023]
Abstract
Liver X receptors (LXRs) are nuclear receptors that act as ligand-dependent transcription factors forming permissive heterodimers with retinoid X receptors (RXRs). In this study we aimed to assess the effect of LXR/RXR activation on the transcriptional induction of pro-inflammatory genes including cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in activated macrophages. Our study shows that LXR ligands such as oxysterols, GW3965 or TO901317, as well as RXR ligands like 9cis retinoic acid or SR11237, decreased LPS-induced expression of COX-2 and mPGES-1. Consequently, LPS-dependent PGE2 production was substantially reduced in macrophages treated with LXR/RXR ligands. The inhibitory effects of LXR/RXR activation on LPS-induced expression of COX-2 and mPGES-1 in macrophages, occurred by a mechanism involving interference with transcriptional activation of these genes. LXR/RXR activation interfered with the activity of transcription factors essential in the up-regulation of the expression of pro-inflammatory genes in these cells, such as NFκB, but also Egr-1, which had not been previously associated with LXR-mediated gene repression. As this transcription factor is involved in the regulation of a variety of genes involved in inflammatory processes, LXR and RXR-mediated interference with Egr-1 signaling could represent an important event mediating the anti-inflammatory effects of these receptors in macrophages.
Collapse
Affiliation(s)
- Paloma Guillem-Llobat
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain
| | - Miguel A Íñiguez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Instituto de Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Nicolás Cabrera, 1, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
95
|
Abstract
Long-term exposure to arsenic, an environmental contaminant, leads to increased risks of cancers. In the present study, we investigated the sequential regulation of Elk-1 and Egr-1 on As3+-induced GADD45α, an effector of G2/M checkpoint. We found that As3+ transcriptionally induced both Elk-1 and Egr-1, and NF-κB binding site was necessary for As3+-induced Egr-1 promoter activity. However, specific inhibition of JNK, ERK, and Elk-1 inhibited Egr-1 induction. Furthermore, silencing of Egr-1 downregulated As3+-induced expression of GADD45α and ChIP assay confirmed the direct binding of Egr-1 to GADD45α promoter. Taken together, our data indicated that the increase of GADD45α in response to As3+ was mediated sequentially by Elk-1 and Egr-1.
Collapse
Affiliation(s)
- Qiwen Shi
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | | | | | - Deepak Bhatia
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University (NEOMED), Rootstown, Ohio, USA
| |
Collapse
|
96
|
Song Y, Cheng X, Yang X, Zhao R, Wang P, Han Y, Luo Z, Cao Y, Zhu C, Xiong Y, Liu Y, Wu K, Wu J. Early growth response-1 facilitates enterovirus 71 replication by direct binding to the viral genome RNA. Int J Biochem Cell Biol 2015; 62:36-46. [PMID: 25724735 DOI: 10.1016/j.biocel.2015.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/05/2015] [Accepted: 02/17/2015] [Indexed: 01/14/2023]
Abstract
Enterovirus 71 (EV71) infections can cause hand, foot and mouth disease (HFMD), meningoencephalitis, neonatal sepsis, and even fatal encephalitis in children. Unfortunately, there is currently no effective treatment for EV71 infection due to the lack of understanding of viral replication and infection; and viral infections have emerged as an imperative global hazard. Thus, it is extremely important to understand the mechanism of EV71 replication in order to prevent and control the diseases associated with EV71 infections. Early growth response-1 (EGR1) is a multifunctional transcription factor that regulates diverse biological functions, including inflammation, apoptosis, differentiation, tumorigenesis, and even viral infection. Here, we provide new insight into the role of EV71 infection in regulating EGR1 production; and reveal a novel mechanism by which EGR1 facilitates EV71 replication. We demonstrate that EV71 activates EGR1 expression during infection by stimulating the protein kinase A/protein kinase Cɛ/phosphoinositide 3-kinase/Akt (PKA/PKCɛ/PI3K/Akt) cascade. We further reveal that EV71-activated EGR1, in turn, regulates the internal ribosomal entry site (IRES) of EV71 to enhance viral replication. In addition, EGR1 facilitates EV71 replication by binding directly to stem-loops I and IV of EV71 5'-untranslated region (5'UTR) with its first two zinc fingers. Moreover, EGR1 protein co-localizes with EV71 RNA in the cytoplasm of infected cells to facilitate viral replication. Our results reveal an important new role of EGR1 in viral infection, provide new insight into the novel mechanism underlying the regulation of EV71 replication, and suggest a potential application of EGR1 in the control of EV71 infection.
Collapse
Affiliation(s)
- Yu Song
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Cheng
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoxia Yang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Rong Zhao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peili Wang
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yang Han
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhen Luo
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yanhua Cao
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Chengliang Zhu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Xiong
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yingle Liu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kailang Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianguo Wu
- State Key Laboratory of Virology and College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
97
|
Smith JA, Stallons LJ, Collier JB, Chavin KD, Schnellmann RG. Suppression of mitochondrial biogenesis through toll-like receptor 4-dependent mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling in endotoxin-induced acute kidney injury. J Pharmacol Exp Ther 2015; 352:346-57. [PMID: 25503387 PMCID: PMC4293437 DOI: 10.1124/jpet.114.221085] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/10/2014] [Indexed: 12/26/2022] Open
Abstract
Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1β) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis.
Collapse
Affiliation(s)
- Joshua A Smith
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - L Jay Stallons
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Justin B Collier
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Kenneth D Chavin
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences (J.A.S., L.J.S., J.B.C., R.G.S.) and Division of Transplant Surgery, Department of Surgery (K.D.C.), Medical University of South Carolina, Charleston, South Carolina ; and Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina (R.G.S.)
| |
Collapse
|
98
|
Reddy SA, Shelar SB, Dang TM, Lee BNC, Yang H, Ong SM, Ng HL, Chui WK, Wong SC, Chew EH. Sulforaphane and its methylcarbonyl analogs inhibit the LPS-stimulated inflammatory response in human monocytes through modulating cytokine production, suppressing chemotactic migration and phagocytosis in a NF-κB- and MAPK-dependent manner. Int Immunopharmacol 2015; 24:440-450. [PMID: 25585231 DOI: 10.1016/j.intimp.2014.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/14/2014] [Accepted: 12/30/2014] [Indexed: 02/06/2023]
Abstract
Sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)-butane], an aliphatic isothiocyanate (ITC) naturally derived from cruciferous vegetables and largely known for its chemopreventive potential also appears to possess anti-inflammatory potential. In this study, structural analogs of SF {compound 1 [1-isothiocyanato-4-(methylcarbonyl)-butane] and 2 [1-isothiocyanato-3-(methylcarbonyl)-propane]} containing a carbonyl group in place of the sulfinyl group in SF, were evaluated for their anti-inflammatory activities. In RAW 264.7 cells, the ITCs at non-toxic concentrations caused an inhibition of NO and prostaglandin E2 (PGE2) release through suppressing expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), as well as a reduction in matrix metalloproteinase-9 (MMP-9) expression, secretion and gelatinolytic activity. Further work performed on human monocytes isolated from blood of healthy donors revealed that the ITCs not only suppressed the expression and release of pro-inflammatory mediators IL-1β, IL-6, TNF-α and MMP-9, but also suppressed their antibody-independent phagocytic and chemotactic migratory abilities. These anti-inflammatory activities were mediated through suppression of the NF-κB and MAPK signaling pathways. In addition, the ITCs were revealed to interact with the cysteines in inhibitor of nuclear factor-κB kinase β subunit (IKKβ), which could contribute at least partly to the suppression of NF-κB signaling. In conclusion, results obtained in this study provide deeper insights into the anti-inflammatory properties of SF and its methylcarbonyl analogs and the underlying mechanisms. These compounds thus serve as promising candidates for clinical applications in controlling inflammatory conditions.
Collapse
Affiliation(s)
- Shridhivya A Reddy
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Sandeep B Shelar
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Truong-Minh Dang
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Republic of Singapore
| | - Baxter Neng-Cun Lee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Hong Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Siew-Min Ong
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Republic of Singapore
| | - Hui-Li Ng
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Wai-Keung Chui
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore
| | - Siew-Cheng Wong
- SIgN (Singapore Immunology Network), A*STAR (Agency for Science, Technology and Research), Biopolis, Republic of Singapore
| | - Eng-Hui Chew
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore.
| |
Collapse
|
99
|
Yoon YJ, Kim DK, Yoon CM, Park J, Kim YK, Roh TY, Gho YS. Egr-1 activation by cancer-derived extracellular vesicles promotes endothelial cell migration via ERK1/2 and JNK signaling pathways. PLoS One 2014; 9:e115170. [PMID: 25502753 PMCID: PMC4264882 DOI: 10.1371/journal.pone.0115170] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/19/2014] [Indexed: 11/18/2022] Open
Abstract
Various mammalian cells, including cancer cells, shed extracellular vesicles (EVs), also known as exosomes and microvesicles, into surrounding tissues. These EVs play roles in tumor growth and metastasis by promoting angiogenesis. However, the detailed mechanism of how cancer-derived EVs elicit endothelial cell activation remains unknown. Here, we provide evidence that early growth response-1 (Egr-1) activation in endothelial cells is involved in the angiogenic activity of colorectal cancer cell-derived EVs. Both RNA interference–mediated downregulation of Egr-1 and ERK1/2 or JNK inhibitor significantly blocked EV-mediated Egr-1 activation and endothelial cell migration. Furthermore, lipid raft-mediated endocytosis inhibitor effectively blocked endothelial Egr-1 activation and migration induced by cancer-derived EVs. Our results suggest that Egr-1 activation in endothelial cells may be a key mechanism involved in the angiogenic activity of cancer-derived EVs. These findings will improve our understanding regarding the proangiogenic activities of EVs in diverse pathological conditions including cancer, cardiovascular diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yae Jin Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dae-Kyum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Chang Min Yoon
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Jaesung Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yoon-Keun Kim
- Ewha Institute of Convergence Medicine, Ewha Womans University Medical Center, Seoul 158-710, Republic of Korea
| | - Tae-Young Roh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- * E-mail: (YSG); (T-YR)
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
- * E-mail: (YSG); (T-YR)
| |
Collapse
|
100
|
Jiang W, Zhang L, Lang R, Li Z, Gilkeson G. Sex differences in monocyte activation in systemic lupus erythematosus (SLE). PLoS One 2014; 9:e114589. [PMID: 25485543 PMCID: PMC4259347 DOI: 10.1371/journal.pone.0114589] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION TLR7/8 and TLR9 signaling pathways have been extensively studied in systemic lupus erythematosus (SLE) as possible mediators of disease. Monocytes are a major source of pro-inflammatory cytokines and are understudied in SLE. In the current project, we investigated sex differences in monocyte activation and its implications in SLE disease pathogenesis. METHODS Human blood samples from 27 healthy male controls, 32 healthy female controls, and 25 female patients with SLE matched for age and race were studied. Monocyte activation was tested by flow cytometry and ELISA, including subset proportions, CD14, CD80 and CD86 expression, the percentage of IL-6-producing monocytes, plasma levels of sCD14 and IL-6, and urine levels of creatinine. RESULTS Monocytes were significantly more activated in women compared to men and in patients with SLE compared to controls in vivo. We observed increased proportions of non-classic monocytes, decreased proportions of classic monocytes, elevated levels of plasma sCD14 as well as reduced surface expression of CD14 on monocytes comparing women to men and lupus patients to controls. Plasma levels of IL-6 were positively related to sCD14 and serum creatinine. CONCLUSION Monocyte activation and TLR4 responsiveness are altered in women compared to men and in patients with SLE compared to controls. These sex differences may allow persistent systemic inflammation and resultant enhanced SLE susceptibility.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Lumin Zhang
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Ren Lang
- Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zihai Li
- Department of Microbiology and Immunology, Division of Infectious Diseases, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| | - Gary Gilkeson
- Division of Rheumatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, United States of America
| |
Collapse
|