51
|
Wang G, Li M, Yu S, Guan M, Ma S, Zhong Z, Guo Y, Leng X, Huang H. Tandem mass tag-based proteomics analysis of type 2 diabetes mellitus with non-alcoholic fatty liver disease in mice treated with acupuncture. Biosci Rep 2022; 42:BSR20212248. [PMID: 34981123 PMCID: PMC8762347 DOI: 10.1042/bsr20212248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore the proteomics profiles of hepatocytes of mice treated with acupuncture for type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD). METHODS We used a Tandem mass tag (TMT)-based quantitative proteomics approach to identify proteins with potential molecular mechanisms associated with acupuncture interventions for T2DM with NAFLD. RESULTS Acupuncture effectively improved body weight, blood glucose, and insulin levels in T2DM with NAFLD mouse models and reversed steatosis within hepatocytes. Quantitative TMT-based proteomics analysis identified a total of 4710 quantifiable proteins and 1226 differentially expressed proteins (DEPs) in the model control group (MCG) compared with the normal control group (NCG). The Acupuncture Treatment Group (ATG) presented in 122 DEPs was compared with the MCG group. We performed a bioinformatics analysis, which revealed that DEPs enriched in the KEGG pathway after acupuncture treatment were mainly involved in the PPAR signaling pathway, fatty acid biosynthesis, fatty acid metabolism, fatty acid elongation, fat digestion and absorption. We used parallel reaction monitoring (PRM) technology to explore the association of aldehyde oxidase 1 (Aox1), acyl-coenzyme A thioesterase 2 (Acot2), perilipin-2 (Plin2), acetyl-CoA carboxylase 1 (Acc), NADP-dependent malic enzyme (Me1), fatty acid synthase (Fasn), ATP-citrate synthase (Acly), fatty acid-binding protein, intestinal (Fabp2) with lipid synthesis, fatty acid oxidation, and hepatocyte steatosis. CONCLUSIONS Our results show that acupuncture can regulate the protein expression of T2DM in the NAFLD mice model, and can effectively improve hepatocyte steatosis, and has potential benefits for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Guan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yihui Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
52
|
Sprenger S, Woldemariam T, Kotchoni S, Elshabrawy HA, Chaturvedi LS. Lemongrass essential oil and its major constituent citral isomers modulate adipogenic gene expression in 3T3-L1 cells. J Food Biochem 2022; 46:e14037. [PMID: 34981531 DOI: 10.1111/jfbc.14037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Obesity is a predisposing factor to diseases such as diabetes mellitus, hypertension, and coronary artery disease. Lemongrass essential oil (LEO), from Cymbopogon flexuosus, possesses numerous therapeutic properties including modulation of obesity in vivo. This experiment investigated the effect of LEO and its major components citral (3,7-dimethyl-2,6-octadienal), citral dimethyl acetal (1,1-dimethoxy-3,7-dimethylocta-2,6-diene), and citral diethyl acetal (1,1-diethoxy-3,7-dimethylocta-2,6-diene) in modulation of adipogenesis and genetic expression in adipocytes. Adipogenesis was induced from murine 3T3-L1 preadipocytes procured from ATCC and maintained in Dulbecco's modified Eagle's medium (DMEM) enriched with calf serum. Differentiation was conducted using DMEM enriched with 10% fetal bovine serum, Dexamethasone 0.25 µM, 3-isobutyl-methylxanthine 0.5 mM, and insulin 10 mg/ml for 2 days, followed by 5 days of insulin 10 mg/ml alone. Samples were subjected to experimental treatments at a concentration of 2.5 × 10-3 . Intracellular triglycerides were quantified and photomicrographs were obtained following Oil red O (ORO) staining procedure. Total ribonucleic acid was extracted and expression of genes effecting in lipid metabolism were quantitated using real-time polymerase chain reaction. ORO staining procedure and spectrophotometric analysis demonstrated decreased lipid accumulation following treatments. LEO and its major constituents significantly inhibited expression of sterol response binding protein 2, cluster of differentiation 36, fatty acid binding protein 4, and peripilin. These results indicate modulation of lipid accumulation through decreased lipid uptake, increased lipolysis, decreased differentiation, and downregulated lipid biosynthesis. This investigation suggests that LEO and its constituents exert effects on adipocyte metabolism and are important for understanding metabolic disease. Further investigation is required to elucidate the degree that each mechanism implicated contributes to the observed effect.
Collapse
Affiliation(s)
- Steven Sprenger
- Department of Basic Science, California Northstate University College of Medicine, Elk Grove, California, USA
| | - Tibebe Woldemariam
- Department of Pharmaceutical & Biomedical Science, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Simeon Kotchoni
- Department of Pharmaceutical & Biomedical Science, California Northstate University College of Pharmacy, Elk Grove, California, USA
| | - Hatem A Elshabrawy
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, Texas, USA
| | - Lakshmi Shankar Chaturvedi
- Department of Pharmaceutical & Biomedical Sciences, College of Pharmacy, Basic Science and Surgery, California Northstate University College of Medicine, Elk Grove, California, USA
| |
Collapse
|
53
|
Uruno A, Saigusa D, Suzuki T, Yumoto A, Nakamura T, Matsukawa N, Yamazaki T, Saito R, Taguchi K, Suzuki M, Suzuki N, Otsuki A, Katsuoka F, Hishinuma E, Okada R, Koshiba S, Tomioka Y, Shimizu R, Shirakawa M, Kensler TW, Shiba D, Yamamoto M. Nrf2 plays a critical role in the metabolic response during and after spaceflight. Commun Biol 2021; 4:1381. [PMID: 34887485 PMCID: PMC8660801 DOI: 10.1038/s42003-021-02904-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/16/2021] [Indexed: 11/09/2022] Open
Abstract
Space travel induces stresses that contribute to health problems, as well as inducing the expression of Nrf2 (NF-E2-related factor-2) target genes that mediate adaptive responses to oxidative and other stress responses. The volume of epididymal white adipose tissue (eWAT) in mice increases during spaceflight, a change that is attenuated by Nrf2 knockout. We conducted metabolome analyses of plasma from wild-type and Nrf2 knockout mice collected at pre-flight, in-flight and post-flight time points, as well as tissues collected post-flight to clarify the metabolic responses during and after spaceflight and the contribution of Nrf2 to these responses. Plasma glycerophospholipid and sphingolipid levels were elevated during spaceflight, whereas triacylglycerol levels were lower after spaceflight. In wild-type mouse eWAT, triacylglycerol levels were increased, but phosphatidylcholine levels were decreased, and these changes were attenuated in Nrf2 knockout mice. Transcriptome analyses revealed marked changes in the expression of lipid-related genes in the liver and eWAT after spaceflight and the effects of Nrf2 knockout on these changes. Based on these results, we concluded that space stress provokes significant responses in lipid metabolism during and after spaceflight; Nrf2 plays critical roles in these responses.
Collapse
Affiliation(s)
- Akira Uruno
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Daisuke Saigusa
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Suzuki
- grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Tomohiro Nakamura
- grid.69566.3a0000 0001 2248 6943Department of Health Record Informatics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Naomi Matsukawa
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Takahiro Yamazaki
- grid.69566.3a0000 0001 2248 6943Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ristumi Saito
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiko Taguchi
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Mikiko Suzuki
- grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norio Suzuki
- grid.69566.3a0000 0001 2248 6943Division of Oxygen Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akihito Otsuki
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Fumiki Katsuoka
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Seizo Koshiba
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Advanced Research Center for Innovations in Next-GEneration Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- grid.69566.3a0000 0001 2248 6943Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ritsuko Shimizu
- grid.69566.3a0000 0001 2248 6943Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan ,grid.69566.3a0000 0001 2248 6943Department of Molecular Hematology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan
| | - Thomas W. Kensler
- grid.270240.30000 0001 2180 1622Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA USA
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Japan.
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
54
|
Anti-Obesity Effects of Combined Cornus officinalis and Ribes fasciculatum Extract in High-Fat Diet-Induced Obese Male Mice. Animals (Basel) 2021; 11:ani11113187. [PMID: 34827919 PMCID: PMC8614376 DOI: 10.3390/ani11113187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Obesity is a general health problem representing a high risk factor for a low-quality lifestyle. Various Food and Drug Administration-approved pharmacological medications have been established for the treatment and prevention of obesity. However, some pharmacotherapies present adverse effects and limited long-term use. Natural herbal medicines as alternative cures have shown low side-effects and suitability for long-term treatment. Cornus officinalis and Ribes fasciculatum (CR) are well-known oriental plants used for health dietary supplements and herbal medicine. This study examined the anti-obesity effect of CR in high-fat diet (HFD)-induced obese male mice. Treatment of CR extract prevented body weight gain through the downregulation of adipogenic inducible genes and recovered the dysregulated energy metabolism in HFD-induced obese male mice. Therefore, CR reduced elevated biochemical obesity parameters in plasma, as well as inhibited hepatic steatosis in the liver and adipocyte size increase in fat tissue. These findings of the study reveal the potential anti-obesity effects of CR as an herbal medicine. Abstract Medicinal plants are widely used as supplements for the treatment of various diseases because of their few side-effects. Here, we examined the anti-obesity effects of a mixture extract of Cornus officinalis and Ribes fasciculatum (CR) in high-fat diet (HFD)-induced obese male mice. Four week old male C57BL/6J mice were fed a normal diet (ND) or 60% high-fat diet (HFD) with different concentrations of CR extracts (75, 150, and 300 mg/kg/day) by oral administration for 12 weeks. CR extract administration prevented HFD-induced weight gain, hepatic steatosis, and adipocyte enlargement through the downregulation of adipogenesis-associated genes in obese male mice. In addition, CR administration improved the impaired glucose metabolism, insulin action, biochemical obesity parameters, and metabolic profiles in HFD-induced male mice. Consequently, the CR extract exhibited beneficial effects on HFD-induced systemic metabolic challenges. Taken together, our findings suggest that CR extract may be a potent therapeutic supplement for the treatment and prevention of obesity.
Collapse
|
55
|
Serum Perilipin 2 (PLIN2) Predicts Multiple Organ Dysfunction in Critically Ill Patients. Biomedicines 2021; 9:biomedicines9091210. [PMID: 34572396 PMCID: PMC8468514 DOI: 10.3390/biomedicines9091210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet protein with various metabolic functions. However, studies investigating PLIN2 in the context of inflammation, especially in systemic and acute inflammation, are lacking. Hence, we assessed the relevance of serum PLIN2 in critically ill patients. We measured serum PLIN2 serum in 259 critically ill patients (166 with sepsis) upon admission to a medical intensive care unit (ICU) compared to 12 healthy controls. A subset of 36 patients underwent computed tomography to quantify body composition. Compared to controls, serum PLIN2 concentrations were elevated in critically ill patients at ICU admission. Interestingly, PLIN2 independently indicated multiple organ dysfunction (MOD), defined as a SOFA score > 9 points, at ICU admission, and was also able to independently predict MOD after 48 h. Moreover, serum PLIN2 levels were associated with severe respiratory failure potentially reflecting a moribund state. However, PLIN2 was neither a predictor of ICU mortality nor did it reflect metabolic dysregulation. Conclusively, the first study assessing serum PLIN2 in critical illness proved that it may assist in risk stratification because it is capable of independently indicating MOD at admission and predicting MOD 48 h after PLIN2 measurement. Further evaluation regarding the underlying mechanisms is warranted.
Collapse
|
56
|
Byun KA, Oh S, Son M, Oh SE, Park CH, Son KH, Byun K. Dieckol-Attenuated High-Fat Diet Induced Muscle Atrophy by Modulating Muscular Deposition of Lipid Droplets. Nutrients 2021; 13:3160. [PMID: 34579038 PMCID: PMC8467349 DOI: 10.3390/nu13093160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/17/2022] Open
Abstract
An excessive fat diet induces intramuscular fat deposition that accumulates as a form of lipid droplet (LD) and leads to lipotoxicity, including muscle atrophy or decreasing muscle strength. Lipotoxicity depends on the number of LDs, subcellular distribution (intermyofibrillar, IMF, LDs or subsarcolemmal, SS), and fiber type-specific differences (type I or type II fiber) as well as the size of LD. Ecklonia cava extracts (ECE), which is known to increase peroxisome proliferator-activated receptor alpha (PPAR-α), which leads to decreasing expression level of perilipin2 (PLIN2). PLIN2 is involved in modulating the size of LDs. This study shows that ECE and dieckol could decrease PLIN2 expression and decrease the size and number of LDs in the muscle of high-fat diet (HF)-fed animals and lead to attenuating muscle atrophy. Expression level of PPAR-α was decreased, and PLIN2 was increased by HF. ECE and dieckol increased PPAR-α expression and decreased PLIN2. The diameter of LDs was increased in high-fat diet condition, and it was decreased by ECE or dieckol treatment. The number of LDs in type II fibers/total LDs was increased by HF and it was decreased by ECE or dieckol. The SS LDs were increased, and IMF LDs were decreased by HF. ECE or dieckol decreased SS LDs and increased IMF LDs. The ECE or dieckol attenuated the upregulation of muscle atrophy-related genes including Murf1, Atrogin-1, and p53 by HF. ECE or dieckol increased the cross-sectional area of the muscle fibers and grip strength, which were decreased by HF. In conclusion, ECE or dieckol decreased the size of LDs and modulated the contribution of LDs to less toxic ones by decreasing PLIN2 expression and thus attenuated muscle atrophy and strength, which were induced by HF.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy&Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (S.E.O.)
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (S.E.O.)
| | - Myeongjoo Son
- Department of Anatomy&Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (S.E.O.)
| | - Seung Eon Oh
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (S.E.O.)
| | - Chul-Hyun Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Korea;
| | - Kyunghee Byun
- Department of Anatomy&Cell Biology, Gachon University College of Medicine, Incheon 21936, Korea; (K.-A.B.); (M.S.)
- Functional Cellular Networks Laboratory, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, Incheon 21999, Korea; (S.O.); (S.E.O.)
| |
Collapse
|
57
|
Zembroski AS, Xiao C, Buhman KK. The Roles of Cytoplasmic Lipid Droplets in Modulating Intestinal Uptake of Dietary Fat. Annu Rev Nutr 2021; 41:79-104. [PMID: 34283920 DOI: 10.1146/annurev-nutr-110320-013657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary fat absorption is required for health but also contributes to hyperlipidemia and metabolic disease when dysregulated. One step in the process of dietary fat absorption is the formation of cytoplasmic lipid droplets (CLDs) in small intestinal enterocytes; these CLDs serve as dynamic triacylglycerol storage organelles that influence the rate at which dietary fat is absorbed. Recent studies have uncovered novel factors regulating enterocyte CLD metabolism that in turn influence the absorption of dietary fat. These include peroxisome proliferator-activated receptor α activation, compartmentalization of different lipid pools, the gut microbiome, liver X receptor and farnesoid X receptor activation, obesity, and physiological factors stimulating CLD mobilization. Understanding how enterocyte CLD metabolism is regulated is key in modulating the absorption of dietary fat in the prevention of hyperlipidemia and its associated metabolic disorders. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alyssa S Zembroski
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
58
|
Caputo M, Cansby E, Kumari S, Kurhe Y, Nair S, Ståhlman M, Kulkarni NM, Borén J, Marschall HU, Blüher M, Mahlapuu M. STE20-Type Protein Kinase MST4 Controls NAFLD Progression by Regulating Lipid Droplet Dynamics and Metabolic Stress in Hepatocytes. Hepatol Commun 2021; 5:1183-1200. [PMID: 34278168 PMCID: PMC8279465 DOI: 10.1002/hep4.1702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide, primarily because of the massive global increase in obesity. Despite intense research efforts in this field, the factors that govern the initiation and subsequent progression of NAFLD are poorly understood, which hampers the development of diagnostic tools and effective therapies in this area of high unmet medical need. Here we describe a regulator in molecular pathogenesis of NAFLD: STE20-type protein kinase MST4. We found that MST4 expression in human liver biopsies was positively correlated with the key features of NAFLD (i.e., hepatic steatosis, lobular inflammation, and hepatocellular ballooning). Furthermore, the silencing of MST4 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion, while inhibiting fatty acid influx and lipid synthesis. Conversely, overexpression of MST4 in human hepatocytes exacerbated fat deposition by suppressing mitochondrial fatty acid oxidation and triacylglycerol efflux, while enhancing lipogenesis. In parallel to these reciprocal alterations in lipid storage, we detected substantially decreased or aggravated oxidative/endoplasmic reticulum stress in human hepatocytes with reduced or increased MST4 levels, respectively. Interestingly, MST4 protein was predominantly associated with intracellular lipid droplets in both human and rodent hepatocytes. Conclusion: Together, our results suggest that hepatic lipid droplet-decorating protein MST4 is a critical regulatory node governing susceptibility to NAFLD and warrant future investigations to address the therapeutic potential of MST4 antagonism as a strategy to prevent or mitigate the development and aggravation of this disease.
Collapse
Affiliation(s)
- Mara Caputo
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Emmelie Cansby
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Sima Kumari
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Syam Nair
- Institute of Neuroscience and Physiology, and Institute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg LaboratoryInstitute of MedicineUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| | | | - Margit Mahlapuu
- Department of Chemistry and Molecular BiologyUniversity of Gothenburg and Sahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
59
|
Mishra A, Liu S, Promes J, Harata M, Sivitz W, Fink B, Bhardwaj G, O'Neill BT, Kang C, Sah R, Strack S, Stephens S, King T, Jackson L, Greenberg AS, Anokye-Danso F, Ahima RS, Ankrum J, Imai Y. Perilipin 2 downregulation in β cells impairs insulin secretion under nutritional stress and damages mitochondria. JCI Insight 2021; 6:144341. [PMID: 33784258 PMCID: PMC8262280 DOI: 10.1172/jci.insight.144341] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in β cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects β cell function under nutritional stress, PLIN2 was downregulated in mouse β cells, INS1 cells, and human islet cells. β Cell–specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in β cells has an important role in preserving insulin secretion, β cell metabolism, and mitochondrial function under nutritional stress.
Collapse
Affiliation(s)
- Akansha Mishra
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Siming Liu
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Joseph Promes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Mikako Harata
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - William Sivitz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian Fink
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Gourav Bhardwaj
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Brian T O'Neill
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Chen Kang
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rajan Sah
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stefan Strack
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA
| | - Samuel Stephens
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Timothy King
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Laura Jackson
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Andrew S Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | - Rexford S Ahima
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - James Ankrum
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa, USA
| | - Yumi Imai
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
60
|
Maheshwari G, Wen G, Gessner DK, Ringseis R, Lochnit G, Eder K, Zorn H, Timm T. Tandem mass tag-based proteomics for studying the effects of a biotechnologically produced oyster mushroom against hepatic steatosis in obese Zucker rats. J Proteomics 2021; 242:104255. [PMID: 33957313 DOI: 10.1016/j.jprot.2021.104255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022]
Abstract
Hepatic steatosis is a very common response to liver injury and often attributed to metabolic disorders. Prior studies have demonstrated the efficacy of a biotechnologically produced oyster mushroom (Pleurotus sajor-caju, PSC) in alleviating hepatic steatosis in obese Zucker rats. This study aims to elucidate molecular events underlying the anti-steatotic effects of PSC. Tandem mass tag (TMT) peptide labeling coupled with LC-MS/MS/MS was used to quantify and compare proteins in the livers of lean Zucker rats fed a control diet (LC), obese Zucker rats fed the same control diet (OC) and obese Zucker rats fed the control diet supplemented with 5% PSC (OPSC) for 4 weeks. Using this technique 3128 proteins could be quantified, out of which 108 were differentially abundant between the OPSC and OC group. Functional enrichment analysis of the up-regulated proteins showed that these proteins were mainly involved in metabolic processes, while the down-regulated proteins were involved in inflammatory processes. Results from proteomic analysis were successfully validated for two up-regulated (carbonic anhydrase 3, regucalcin) and two down-regulated (cadherin-17, ceruloplasmin) proteins by means of immunoblotting. SIGNIFICANCE: Valorization of low-grade agricultural waste by edible fungi, such as the mushroom Pleurotus sajor-caju (PSC), represents a promising strategy for the production of protein rich biomass since they boast of a unique enzyme system that has the ability to recover nutrients and energy from biodegradable waste. Herein, we describe the metabolic effects of PSC feeding using a combined quantitative proteomics and bioinformatics approach. In total, 108 proteins were identified to be regulated by PSC feeding in the liver of the obese rats. Complementary usage of a bioinformatics approach allowed us to decipher the mechanisms underlying the recently observed lipid-lowering and anti-inflammatory activity of PSC feeding in obese Zucker rats, namely a reduction of fatty acid synthesis, an improvement of hepatoprotective mechanisms and an enhancement of anti-inflammatory effects.
Collapse
Affiliation(s)
- Garima Maheshwari
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Gaiping Wen
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany.
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392 Giessen, Germany
| |
Collapse
|
61
|
Griffin JD, Bejarano E, Wang XD, Greenberg AS. Integrated Action of Autophagy and Adipose Tissue Triglyceride Lipase Ameliorates Diet-Induced Hepatic Steatosis in Liver-Specific PLIN2 Knockout Mice. Cells 2021; 10:cells10051016. [PMID: 33923083 PMCID: PMC8145136 DOI: 10.3390/cells10051016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023] Open
Abstract
An imbalance in the storage and breakdown of hepatic lipid droplet (LD) triglyceride (TAG) leads to hepatic steatosis, a defining feature of non-alcoholic fatty liver disease (NAFLD). The two primary cellular pathways regulating hepatic TAG catabolism are lipolysis, initiated by adipose triglyceride lipase (ATGL), and lipophagy. Each of these processes requires access to the LD surface to initiate LD TAG catabolism. Ablation of perilipin 2 (PLIN2), the most abundant lipid droplet-associated protein in steatotic liver, protects mice from diet-induced NAFLD. However, the mechanisms underlaying this protection are unclear. We tested the contributions of ATGL and lipophagy mediated lipolysis to reduced hepatic TAG in mice with liver-specific PLIN2 deficiency (PLIN2LKO) fed a Western-type diet for 12 weeks. We observed enhanced autophagy in the absence of PLIN2, as determined by ex vivo p62 flux, as well as increased p62- and LC3-positive autophagic vesicles in PLIN2LKO livers and isolated primary hepatocytes. Increased levels of autophagy correlated with significant increases in cellular fatty acid (FA) oxidation in PLIN2LKO hepatocytes. We observed that inhibition of either autophagy or ATGL blunted the increased FA oxidation in PLIN2LKO hepatocytes. Additionally, combined inhibition of ATGL and autophagy reduced FA oxidation to the same extent as treatment with either inhibitor alone. In sum, these studies show that protection against NAFLD in the absence of hepatic PLIN2 is driven by the integrated actions of both ATGL and lipophagy.
Collapse
Affiliation(s)
- John D. Griffin
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- School of Health Sciences, Universidad CEU Cardenal Herrera, 46001 Valencia, Spain
| | - Xiang-Dong Wang
- Laboratory for Nutrition and Cancer Biology, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
| | - Andrew S. Greenberg
- Obesity and Metabolism Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA;
- Correspondence:
| |
Collapse
|
62
|
Bertschi NL, Bazzini C, Schlapbach C. The Concept of Pathogenic TH2 Cells: Collegium Internationale Allergologicum Update 2021. Int Arch Allergy Immunol 2021; 182:365-380. [PMID: 33845475 DOI: 10.1159/000515144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
Abstract
T helper (TH) cells have evolved into distinct subsets that mediate specific immune responses to protect the host against a myriad of infectious and noninfectious challenges. However, if dysregulated, TH-cell subsets can cause inflammatory disease. Emerging evidence now suggests that human allergic disease is caused by a distinct subpopulation of pathogenic TH2 cells. Pathogenic TH2 cells from different type-2-driven diseases share a core phenotype and show overlapping functional attributes. The unique differentiation requirements, activating signals, and metabolic characteristics of pathogenic TH2 cells are just being discovered. A better knowledge of this particular TH2 cell population will enable the specific targeting of disease-driving pathways in allergy. In this review, we introduce a rational for classifying TH cells into distinct subsets, discuss the current knowledge on pathogenic TH2 cells, and summarize their involvement in allergic diseases.
Collapse
Affiliation(s)
- Nicole L Bertschi
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cecilia Bazzini
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
63
|
Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ Open Diabetes Res Care 2021; 9:9/1/e002091. [PMID: 33903117 PMCID: PMC8076933 DOI: 10.1136/bmjdrc-2020-002091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood. RESEARCH DESIGN AND METHODS To investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503. RESULTS We found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs. CONCLUSION Glyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.
Collapse
Affiliation(s)
- Cécile Guillon
- Urgo Research Innovation and Development, Chenôve, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sandra Ferraro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sophie Clément
- Urgo Research Innovation and Development, Chenôve, France
| | | | | | - Christelle Bonod
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| |
Collapse
|
64
|
Li Y, Khanal P, Norheim F, Hjorth M, Bjellaas T, Drevon CA, Vaage J, Kimmel AR, Dalen KT. Plin2 deletion increases cholesteryl ester lipid droplet content and disturbs cholesterol balance in adrenal cortex. J Lipid Res 2021; 62:100048. [PMID: 33582145 PMCID: PMC8044703 DOI: 10.1016/j.jlr.2021.100048] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl esters (CEs) are the water-insoluble transport and storage form of cholesterol. Steroidogenic cells primarily store CEs in cytoplasmic lipid droplet (LD) organelles, as contrasted to the majority of mammalian cell types that predominantly store triacylglycerol (TAG) in LDs. The LD-binding Plin2 binds to both CE- and TAG-rich LDs, and although Plin2 is known to regulate degradation of TAG-rich LDs, its role for regulation of CE-rich LDs is unclear. To investigate the role of Plin2 in the regulation of CE-rich LDs, we performed histological and molecular characterization of adrenal glands from Plin2+/+ and Plin2-/- mice. Adrenal glands of Plin2-/- mice had significantly enlarged organ size, increased size and numbers of CE-rich LDs in cortical cells, elevated cellular unesterified cholesterol levels, and increased expression of macrophage markers and genes facilitating reverse cholesterol transport. Despite altered LD storage, mobilization of adrenal LDs and secretion of corticosterone induced by adrenocorticotropic hormone stimulation or starvation were similar in Plin2+/+ and Plin2-/- mice. Plin2-/- adrenals accumulated ceroid-like structures rich in multilamellar bodies in the adrenal cortex-medulla boundary, which increased with age, particularly in females. Finally, Plin2-/- mice displayed unexpectedly high levels of phosphatidylglycerols, which directly paralleled the accumulation of these ceroid-like structures. Our findings demonstrate an important role of Plin2 for regulation of CE-rich LDs and cellular cholesterol balance in the adrenal cortex.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Prabhat Khanal
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; Faculty of Biosciences and Aquaculture, Nord University, Steinkjer, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; VITAS AS, Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Research and Development, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD, USA
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
65
|
Conn CS, Yang H, Tom HJ, Ikeda K, Oses-Prieto JA, Vu H, Oguri Y, Nair S, Gill RM, Kajimura S, DeBerardinis RJ, Burlingame AL, Ruggero D. The major cap-binding protein eIF4E regulates lipid homeostasis and diet-induced obesity. Nat Metab 2021; 3:244-257. [PMID: 33619378 DOI: 10.1038/s42255-021-00349-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022]
Abstract
Obesity is a global epidemic leading to increased mortality and susceptibility to comorbidities, with few viable therapeutic interventions. A hallmark of disease progression is the ectopic deposition of lipids in the form of lipid droplets in vital organs such as the liver. However, the mechanisms underlying the dynamic storage and processing of lipids in peripheral organs remain an outstanding question. Here, we show an unexpected function for the major cap-binding protein, eIF4E, in high-fat-diet-induced obesity. In response to lipid overload, select networks of proteins involved in fat deposition are altered in eIF4E-deficient mice. Specifically, distinct messenger RNAs involved in lipid metabolic processing and storage pathways are enhanced at the translation level by eIF4E. Failure to translationally upregulate these mRNAs results in increased fatty acid oxidation, which enhances energy expenditure. We further show that inhibition of eIF4E phosphorylation genetically-and by a potent clinical compound-restrains weight gain following intake of a high-fat diet. Together, our study uncovers translational control of lipid processing as a driver of high-fat-diet-induced weight gain and provides a pharmacological target to treat obesity.
Collapse
Affiliation(s)
- Crystal S Conn
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- School of Medicine and Department of Urology, University of California, San Francisco, CA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Haojun Yang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- School of Medicine and Department of Urology, University of California, San Francisco, CA, USA.
| | - Harrison J Tom
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- School of Medicine and Department of Urology, University of California, San Francisco, CA, USA
| | - Kenji Ikeda
- Diabetes Center, University of California, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Hieu Vu
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yasuo Oguri
- Diabetes Center, University of California, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Supna Nair
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Ryan M Gill
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Shingo Kajimura
- Diabetes Center, University of California, San Francisco, CA, USA
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Ralph J DeBerardinis
- Children's Research Institute and Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alma L Burlingame
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Davide Ruggero
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA.
- School of Medicine and Department of Urology, University of California, San Francisco, CA, USA.
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
66
|
Graffmann N, Ncube A, Martins S, Fiszl AR, Reuther P, Bohndorf M, Wruck W, Beller M, Czekelius C, Adjaye J. A stem cell based in vitro model of NAFLD enables the analysis of patient specific individual metabolic adaptations in response to a high fat diet and AdipoRon interference. Biol Open 2021; 10:bio.054189. [PMID: 33372064 PMCID: PMC7860118 DOI: 10.1242/bio.054189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. Its development and progression depend on genetically predisposed susceptibility of the patient towards several ‘hits’ that induce fat storage first and later inflammation and fibrosis. Here, we differentiated induced pluripotent stem cells (iPSCs) derived from four distinct donors with varying disease stages into hepatocyte like cells (HLCs) and determined fat storage as well as metabolic adaptations after stimulations with oleic acid. We could recapitulate the complex networks that control lipid and glucose metabolism and we identified distinct gene expression profiles related to the steatosis phenotype of the donor. In an attempt to reverse the steatotic phenotype, cells were treated with the small molecule AdipoRon, a synthetic analogue of adiponectin. Although the responses varied between cells lines, they suggest a general influence of AdipoRon on metabolism, transport, immune system, cell stress and signalling. Summary: A stem cell based in vitro model of NAFLD recapitulates regulatory networks and suggests a steatosis associated phenotype. AdipoRon treatment influences metabolism, immune system, cell stress and signalling.
Collapse
Affiliation(s)
- Nina Graffmann
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Audrey Ncube
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Soraia Martins
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Aurelian Robert Fiszl
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Philipp Reuther
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Martina Bohndorf
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Mathias Beller
- Institute for Mathematical Modeling of Biological Systems, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany.,Systems Biology of Lipid Metabolism, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - Constantin Czekelius
- Institute of Organic Chemistry and Macromolecular Chemistry, Heinrich-Heine University Düsseldorf 40225, Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University Düsseldorf, Medical faculty, Moorenstrasse 5, 40225 Düsseldorf, Germany
| |
Collapse
|
67
|
Huang X, Sun J, Bian C, Ji S, Ji H. Perilipin 1-3 in grass carp Ctenopharyngodon idella: molecular characterization, gene structure, tissue distribution, and mRNA expression in DHA-induced lipid droplet formation in adipocytes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2311-2322. [PMID: 32996002 DOI: 10.1007/s10695-020-00857-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Perilipin family is the main structural proteins of lipid droplet (LD) that is intracellular neutral lipid store ponds, and regulates LD assembly and formation, and is crucial for lipid metabolism. Here three paralogs of perilipin family were characterized from grass carp and their complete coding sequences (CDS) were obtained, including perilipin1, perilipin2, and perilipin3, coding peptides of 492, 454, and 419 amino acids, respectively. The alignment of the homology of grass carp perilipin deduced amino acid sequences with other teleost species showed that the homology with mammalian was less than 55%. PAT (perilipin) domain in mammalian was also predicted in grass carp perilipin 1-3 proteins. Genomic organization analysis revealed that grass carp perilipin1 contained 6 coding exons, while both perilipin2 and perilipin3 consisted of 7 coding exons. The mRNA encoding three paralogs were expressed in a wide range of tissues; perilipin1-3 were primarily expressed in adipose tissue and liver; besides, perilipin3 was also highly expressed in the heart. In vitro, 200 μM DHA increased the proportion of smaller lipid droplets effectively in fully differentiated adipocytes of grass carp. The mRNA expression of perilipin1, perilipin2, and perilipin3 was significantly increased in the adipocytes treated with DHA (P < 0.05, P < 0.01). The same responses of different paralogs in the adipocytes during DHA treatment suggest that they might play synergistic roles in the formation of LDs.
Collapse
Affiliation(s)
- Xiaocheng Huang
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Chenchen Bian
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Shanghong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest Agriculture and Forestry University, Yangling, 712100, China.
| |
Collapse
|
68
|
Wang H, Wen X, Yan M, Chang M, Zhang G, Peng W, Wu Y, Shen Y, Zhou J, Li H. The role of perilipin 2 in Pseudomonas aeruginosa pulmonary infection. Respir Physiol Neurobiol 2020; 281:103497. [DOI: 10.1016/j.resp.2020.103497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/23/2020] [Accepted: 07/14/2020] [Indexed: 01/24/2023]
|
69
|
Delcourt M, Tagliatti V, Delsinne V, Colet JM, Declèves AE. Influence of Nutritional Intake of Carbohydrates on Mitochondrial Structure, Dynamics, and Functions during Adipogenesis. Nutrients 2020; 12:nu12102984. [PMID: 33003504 PMCID: PMC7600802 DOI: 10.3390/nu12102984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is an alarming yet increasing phenomenon worldwide, and more effective obesity management strategies have become essential. In addition to the numerous anti-adipogenic treatments promising a restauration of a healthy white adipose tissue (WAT) function, numerous studies reported on the critical role of nutritional parameters in obesity development. In a metabolic disorder context, a better control of nutrient intake is a key step in slowing down adipogenesis and therefore obesity. Of interest, the effect on WAT remodeling deserves deeper investigations. Among the different actors of WAT plasticity, the mitochondrial network plays a central role due to its dynamics and essential cellular functions. Hence, the present in vitro study, conducted on the 3T3-L1 cell line, aimed at evaluating the incidence of modulating the carbohydrates intake on adipogenesis through an integrated assessment of mitochondrial structure, dynamics, and functions-correlated changes. For this purpose, our experimental strategy was to compare the occurrence of adipogenesis in 3T3-L1 cells cultured either in a high-glucose (HG) medium (25 mM) or in a low-glucose (LG) medium (5 mM) supplemented with equivalent galactose (GAL) levels (20 mM). The present LG-GAL condition was associated, in differentiating adipocytes, to a reduced lipid droplet network, lower expressions of early and late adipogenic genes and proteins, an increased mitochondrial network with higher biogenesis marker expression, an equilibrium in the mitochondrial fusion/fission pattern, and a decreased expression of mitochondrial metabolic overload protein markers. Therefore, those main findings show a clear effect of modulating glucose accessibility on 3T3-L1 adipogenesis through a combined effect of adipogenesis modulation and overall improvement of the mitochondrial health status. This nutritional approach offers promising opportunities in the control and prevention of obesity.
Collapse
Affiliation(s)
- Manon Delcourt
- Metabolic and Molecular Biochemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 place du Parc, 7000 Mons, Belgium;
- Human Biology and Toxicology unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.T.); (V.D.); (J.-M.C.)
- Correspondence: ; Tel.: +32-(0)65-373506
| | - Vanessa Tagliatti
- Human Biology and Toxicology unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.T.); (V.D.); (J.-M.C.)
| | - Virginie Delsinne
- Human Biology and Toxicology unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.T.); (V.D.); (J.-M.C.)
| | - Jean-Marie Colet
- Human Biology and Toxicology unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 Place du Parc, 7000 Mons, Belgium; (V.T.); (V.D.); (J.-M.C.)
| | - Anne-Emilie Declèves
- Metabolic and Molecular Biochemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, UMONS, 20 place du Parc, 7000 Mons, Belgium;
| |
Collapse
|
70
|
Korovila I, Jung T, Deubel S, Grune T, Ott C. Punicalagin Attenuates Palmitate-Induced Lipid Droplet Content by Simultaneously Improving Autophagy in Hepatocytes. Mol Nutr Food Res 2020; 64:e2000816. [PMID: 32918380 DOI: 10.1002/mnfr.202000816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 12/17/2022]
Abstract
SCOPE Several studies show that excessive lipid intake can cause hepatic steatosis. To investigate lipotoxicity on cellular level, palmitate (PA) is often used to highly increase lipid droplets (LDs). One way to remove LDs is autophagy, while it is controversially discussed if autophagy is also affected by PA. It is aimed to investigate whether PA-induced LD accumulation can impair autophagy and punicalagin, a natural autophagy inducer from pomegranate, can improve it. METHODS AND RESULTS To verify the role of autophagy in LD degradation, HepG2 cells are treated with PA and analyzed for LD and perilipin 2 content in presence of autophagy inducer Torin 1 and inhibitor 3-Methyladenine. PA alone seems to initially induce autophagy-related proteins but impairs autophagic-flux in a time-dependent manner, considering 6 and 24 h PA. To examine whether punicalagin can prevent autophagy impairment, cells are cotreated for 24 h with PA and punicalagin. Results show that punicalagin preserves expression of autophagy-related proteins and autophagic flux, while simultaneously decreasing LDs and perilipin 2. CONCLUSION Data provide new insights into the role of PA-induced excessive LD content on autophagy and suggest autophagy-inducing properties of punicalagin, indicating that punicalagin can be a health-beneficial compound for future research on lipotoxicity in liver.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany
| | - Stefanie Deubel
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany.,Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Cluster-Office NutriAct, Nuthetal, 14558, Germany.,German Center for Diabetes Research (DZD), Munich, Neuherberg, 85764, Germany
| | - Christiane Ott
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Nuthetal, 14558, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Berlin, 13347, Germany
| |
Collapse
|
71
|
Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 2020; 11:1231-1245. [PMID: 32167023 PMCID: PMC7524283 DOI: 10.1080/19490976.2020.1737307] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accumulating evidence points to Akkermansia muciniphila as a novel candidate to prevent or treat obesity-related metabolic disorders. We recently observed, in mice and in humans, that pasteurization of A. muciniphila increases its beneficial effects on metabolism. However, it is currently unknown if the observed beneficial effects on body weight and fat mass gain are due to specific changes in energy expenditure. Therefore, we investigated the effects of pasteurized A. muciniphila on whole-body energy metabolism during high-fat diet feeding by using metabolic chambers. We confirmed that daily oral administration of pasteurized A. muciniphila alleviated diet-induced obesity and decreased food energy efficiency. We found that this effect was associated with an increase in energy expenditure and spontaneous physical activity. Strikingly, we discovered that energy expenditure was enhanced independently from changes in markers of thermogenesis or beiging of the white adipose tissue. However, we found in brown and white adipose tissues that perilipin2, a factor associated with lipid droplet and known to be altered in obesity, was decreased in expression by pasteurized A. muciniphila. Finally, we observed that treatment with pasteurized A. muciniphila increased energy excretion in the feces. Interestingly, we demonstrated that this effect was not due to the modulation of intestinal lipid absorption or chylomicron synthesis but likely involved a reduction of carbohydrates absorption and enhanced intestinal epithelial turnover. In conclusion, this study further dissects the mechanisms by which pasteurized A. muciniphila reduces body weight and fat mass gain. These data also further support the impact of targeting the gut microbiota by using specific bacteria to control whole-body energy metabolism.
Collapse
Affiliation(s)
- Clara Depommier
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Amandine Everard
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium
| | - Willem M. De Vos
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), UCLouvain, Université Catholique De Louvain, Brussels, Belgium,CONTACT Patrice D. Cani UCLouvain, Université Catholique De Louvain, LDRI, Metabolism and Nutrition Research Group, Av. E. Mounier, 73 Box B1.73.11, B-1200Brussels, Belgium
| |
Collapse
|
72
|
Maternal high-fat diet induces long-term obesity with sex-dependent metabolic programming of adipocyte differentiation, hypertrophy and dysfunction in the offspring. Clin Sci (Lond) 2020; 134:921-939. [PMID: 32239178 DOI: 10.1042/cs20191229] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Abstract
Maternal obesity determines obesity and metabolic diseases in the offspring. The white adipose tissue (WAT) orchestrates metabolic pathways, and its dysfunction contributes to metabolic disorders in a sex-dependent manner. Here, we tested if sex differences influence the molecular mechanisms of metabolic programming of WAT in offspring of obese dams. To this end, maternal obesity was induced with high-fat diet (HFD) and the offspring were studied at an early phase [postnatal day 21 (P21)], a late phase (P70) and finally P120. In the early phase we found a sex-independent increase in WAT in offspring of obese dams using magnetic resonance imaging (MRI), which was more pronounced in females than males. While the adipocyte size increased in both sexes, the distribution of WAT differed in males and females. As mechanistic hints, we identified an inflammatory response in females and a senescence-associated reduction in the preadipocyte factor DLK in males. In the late phase, the obese body composition persisted in both sexes, with a partial reversal in females. Moreover, female offspring recovered completely from both the adipocyte hypertrophy and the inflammatory response. These findings were linked to a dysregulation of lipolytic, adipogenic and stemness-related markers as well as AMPKα and Akt signaling. Finally, the sex-dependent metabolic programming persisted with sex-specific differences in adipocyte size until P120. In conclusion, we do not only provide new insights into the molecular mechanisms of sex-dependent metabolic programming of WAT dysfunction, but also highlight the sex-dependent development of low- and high-grade pathogenic obesity.
Collapse
|
73
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Involvement of hepatic lipid droplets and their associated proteins in the detoxification of aflatoxin B 1 in aflatoxin-resistance BALB/C mouse. Toxicol Rep 2020; 7:795-804. [PMID: 32642446 PMCID: PMC7334552 DOI: 10.1016/j.toxrep.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
The highly potent carcinogen, Aflatoxin B1, induces liver cancer in many animals including humans but some mice strains are highly resistant. This murine resistance is due to a rapid detoxification of AFB1. Hepatic lipid droplets (LDs) ultimately impact the liver functions but their potential role in AFB1 detoxification has not been addressed. This study describes the structural and functional impacts on hepatic LDs in BALB/C mice after exposure to 44 (low dose) or 663 (high dose) μg AFB1/kg of body weight. After 7 days, the liver of AFB1-dosed mice did not accumulate any detectable AFB1 or its metabolites and this was associated with a net increase in gene transcripts of the AhR-mediating pathway. Of particular interest, the livers of high-dose mice accumulated many more LDs than those of low-dose mice. This was accompanied with a net increase in transcript levels of LD-associated protein-encoding genes including Plin2, Plin3 and Cideb and an alteration in the LDs lipid profiles that could be likely due to the induction of lipoxygenase and cyclooxygenase genes. Interestingly, our data suggest that hepatic LDs catalyze the in vitro activation of AFB1 into AFB1-exo-8,9-epoxide and subsequent hydrolysis of this epoxide into its corresponding dihydrodiol. Finally, transcript levels of CYP1A2, CYP1B1, GSTA3 and EH1 genes were elevated in livers of high-dose mice. These data suggest new roles for hepatic LDs in the trapping and detoxifying of aflatoxins.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Damascus University, Damascus, Syria
| | - Denis J Murphy
- Genomics and Computational Biology Group, University of South Wales, Wales, United Kingdom
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria
| |
Collapse
|
74
|
Santos FO, Correia BRO, Marinho TS, Barbosa-da-Silva S, Mandarim-de-Lacerda CA, Souza-Mello V. Anti-steatotic linagliptin pleiotropic effects encompasses suppression of de novo lipogenesis and ER stress in high-fat-fed mice. Mol Cell Endocrinol 2020; 509:110804. [PMID: 32259637 DOI: 10.1016/j.mce.2020.110804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022]
Abstract
AIM To investigate the effects of linagliptin treatment on hepatic energy metabolism and ER stress in high-fat-fed C57BL/6 mice. METHODS Forty male C57BL/6 mice, three months of age, received a control diet (C, 10% of lipids as energy, n = 20) or high-fat diet (HF, 50% of lipids as energy, n = 20) for 10 weeks. The groups were randomly subdivided into four groups to receive linagliptin, for five weeks, at a dose of 30 mg/kg/day added to the diets: C, C-L, HF, and HF-L groups. RESULTS The HF group showed higher body mass, total and hepatic cholesterol levels and total and hepatic triacylglycerol levels than the C group, all of which were significantly diminished by linagliptin in the HF-L group. The HF group had higher hepatic steatosis than the C group, whereas linagliptin markedly reduced the hepatic steatosis (less 52%, P < 0.001). The expression of Sirt1 and Pgc1a was more significant in the HF-L group than in the HF group. Linagliptin also elicited enhanced GLP-1 concentrations and a reduction in the expression of the lipogenic genes Fas and Srebp1c. Besides, HF-L showed a reduction in the genes related to endoplasmic reticulum stress Chop, Atf4, and Gadd45 coupled with reduced apoptotic nuclei immunostaining. CONCLUSION Linagliptin caused a marked reduction in hepatic steatosis as a secondary effect of its glucose-lowering property. NAFLD countering involved reduced lipogenesis, increased beta-oxidation, and relief in endoplasmic reticulum stress, leading to reduced apoptosis and better preservation of the hepatic structure. Therefore, linagliptin may be used, preferably in diabetic patients, to avoid the progression of hepatic steatosis.
Collapse
Affiliation(s)
- F O Santos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - B R O Correia
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T S Marinho
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Souza-Mello
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Institute of Biology, The University of the State of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
75
|
Xu H, Chen GF, Ma YS, Zhang HW, Zhou Y, Liu GH, Chen DY, Ping J, Liu YH, Mou X, Fu D. Hepatic Proteomic Changes and Sirt1/AMPK Signaling Activation by Oxymatrine Treatment in Rats With Non-alcoholic Steatosis. Front Pharmacol 2020; 11:216. [PMID: 32210812 PMCID: PMC7076077 DOI: 10.3389/fphar.2020.00216] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/14/2020] [Indexed: 12/24/2022] Open
Abstract
Background Currently, active ingredients of herbal extracts that can suppress lipid accumulation in the liver have been considered a potential treatment option for non-alcoholic fatty liver disease. Methods Steatosis rat model was created by high fat and high sucrose diet feeding and treated with oxymatrine (OMT). Serum biochemical parameters, liver histology and lipid profiles were examined. Hepatic differentially expressed proteins (DEPs) which were significantly changed by OMT treatment were identified by iTRAQ analysis. The expressions of representative DEPs, Sirt1 and AMPKα were evaluated by western blotting. Results OMT significantly reduced the body weight and liver weight of steatosis animals, decreased the serum levels of triglyceride and total cholesterol as well as the hepatic triglyceride and free fatty acid levels, and effectively alleviated fatty degeneration in the liver. A list of OMT-related DEPs have been screened and evaluated by bioinformatics analysis. OMT significantly decreased the expressions of L-FABP, Plin2, FASN and SCD1 and increased Sirt1 expression and AMPKα phosphorylation in the liver of rats with steatosis. Conclusion The present study has confirmed the significant efficacy of OMT for improving steatosis and revealed hepatic proteomic changes and Sirt1/AMPK signaling activation by OMT treatment in rats with steatosis.
Collapse
Affiliation(s)
- Hong Xu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Gao-Feng Chen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Wei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yang Zhou
- Liver Cirrhosis Section, Department of Hepatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-Hui Liu
- Department of Endocrinology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dong-Ya Chen
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Jian Ping
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi-Hui Liu
- Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Xin Mou
- Department of Endocrinology, Hangzhou Red Cross Hospital, Hangzhou, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
76
|
Hatchwell L, Harney DJ, Cielesh M, Young K, Koay YC, O’Sullivan JF, Larance M. Multi-omics Analysis of the Intermittent Fasting Response in Mice Identifies an Unexpected Role for HNF4α. Cell Rep 2020; 30:3566-3582.e4. [DOI: 10.1016/j.celrep.2020.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 12/21/2022] Open
|
77
|
Tong X, Dai C, Walker JT, Nair GG, Kennedy A, Carr RM, Hebrok M, Powers AC, Stein R. Lipid Droplet Accumulation in Human Pancreatic Islets Is Dependent On Both Donor Age and Health. Diabetes 2020; 69:342-354. [PMID: 31836690 PMCID: PMC7034188 DOI: 10.2337/db19-0281] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022]
Abstract
Human but not mouse islets transplanted into immunodeficient NSG mice effectively accumulate lipid droplets (LDs). Because chronic lipid exposure is associated with islet β-cell dysfunction, we investigated LD accumulation in the intact human and mouse pancreas over a range of ages and states of diabetes. Very few LDs were found in normal human juvenile pancreatic acinar and islet cells, with numbers subsequently increasing throughout adulthood. While accumulation appeared evenly distributed in postjuvenile acinar and islet cells in donors without diabetes, LDs were enriched in islet α- and β-cells from donors with type 2 diabetes (T2D). LDs were also found in the islet β-like cells produced from human embryonic cell-derived β-cell clusters. In contrast, LD accumulation was nearly undetectable in the adult rodent pancreas, even in hyperglycemic and hyperlipidemic models or 1.5-year-old mice. Taken together, there appear to be significant differences in pancreas islet cell lipid handling between species, and the human juvenile and adult cell populations. Moreover, our results suggest that LD enrichment could be impactful to T2D islet cell function.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Chunhua Dai
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
| | - John T Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Gopika G Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC
| | - Rotonya M Carr
- Division of Gastroenterology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alvin C Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt, University Medical Center, Nashville, TN
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| |
Collapse
|
78
|
Irungbam K, Churin Y, Matono T, Weglage J, Ocker M, Glebe D, Hardt M, Koeppel A, Roderfeld M, Roeb E. Cannabinoid receptor 1 knockout alleviates hepatic steatosis by downregulating perilipin 2. J Transl Med 2020; 100:454-465. [PMID: 31570772 PMCID: PMC7044114 DOI: 10.1038/s41374-019-0327-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/30/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
The endocannabinoid (EC) system has been implicated in the pathogenesis of several metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). With the current study we aimed to verify the modulatory effect of endocannabinoid receptor 1 (CB1)-signaling on perilipin 2 (PLIN2)-mediated lipophagy. Here, we demonstrate that a global knockout of the cannabinoid receptor 1 gene (CB1-/-) reduced the expression of the lipid droplet binding protein PLIN2 in the livers of CB1-/- and hepatitis B surface protein (HBs)-transgenic mice, which spontaneously develop hepatic steatosis. In addition, the pharmacologic activation and antagonization of CB1 in cell culture also caused an induction or reduction of PLIN2, respectively. The decreased PLIN2 expression was associated with suppressed lipogenesis and triglyceride (TG) synthesis and enhanced autophagy as shown by increased colocalization of LC3B with lysosomal-associated membrane protein 1 (LAMP1) in HBs/CB1-/- mice. The induction of autophagy was further supported by the increased expression of LAMP1 in CB1-/- and HBs/CB1-/- mice. LAMP1 and PLIN2 were co-localized in HBs/CB1-/- indicating autophagy of cytoplasmic lipid droplets (LDs) i.e., lipophagy. Lipolysis of lipid droplets was additionally indicated by elevated expression of lysosomal acid lipase. In conclusion, these results suggest that loss of CB1 signaling leads to reduced PLIN2 abundance, which triggers lipophagy. Our new findings about the association between CB1 signaling and PLIN2 may stimulate translational studies analyzing new diagnostic and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Karuna Irungbam
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Tomomitsu Matono
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Jakob Weglage
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
- Department of Gastroenterology CBF, Translational Medicine Oncology, Charité University Medicine Berlin and Bayer AG, Experimental Medicine Oncology, Berlin, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B and D Viruses, Justus-Liebig-University, Giessen, Germany
| | - Martin Hardt
- Central Biotechnical Facility, Justus-Liebig-University, Giessen, Germany
| | - Alica Koeppel
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
79
|
Choi K, Jin M, Zouboulis CC, Lee Y. Increased Lipid Accumulation under Hypoxia in SZ95 Human Sebocytes. Dermatology 2020; 237:131-141. [PMID: 32088721 DOI: 10.1159/000505537] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Excessive sebum is produced by specialized cells called sebocytes and is considered a cause or consequence of acne, sebaceous cysts, hyperplasia, and sebaceous adenoma. OBJECTIVE To report changes in lipid accumulation in human sebocytes under hypoxia, which occurs under conditions of seborrhea. METHODS Sebocytes from the immortalized human gland cell line SZ95 were cultured under conditions of hypoxia for 48 h; lipid formation was confirmed by Nile red and Oil Red O staining. To investigate whether HIF-1α plays a role in lipid accumulation, SZ95 cells transfected or treated with dimethyloxalylglycine (DMOG) were assessed by Nile red. For protein expression of the sterol regulatory element-binding protein-1 (SREBP-1) and perilipin 2 (PLIN2), Western blot analysis was performed. Differentially expressed genes (DEGs) in SZ95 sebocytes under hypoxia were revealed by RNA-Seq analyses, and the statistical significance of the correlation between hypoxic and acne/non-acne skin was evaluated using gene set enrichment analysis. RESULTS Hypoxia induces lipid accumulation in SZ95 sebocytes. In addition, the levels of SREBP-1 and PLIN2 were regulated by HIF-1α in SZ95 sebocytes under hypoxia. RNA-Seq analyses of DEGs in SZ95 sebocytes under hypoxia revealed 256 DEGs, including several lipid droplet-associated genes. DEGs between acne and non-acne skin are significantly enriched in hypoxia gene sets. We also detected 93 differentially expressed inflammatory mediators. CONCLUSIONS To the best of our knowledge, this study is the first to show that a hypoxic microenvironment can increase lipogenesis and provides a link between seborrhea and inflammation.
Collapse
Affiliation(s)
- KeunOh Choi
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Mirim Jin
- Department of Microbiology, College of Medicine, Gachon University, Incheon, Republic of Korea.,Department of Health Science and Technology, GAHIST, Gachon University, Incheon, Republic of Korea
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - YoungJoo Lee
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea,
| |
Collapse
|
80
|
Kato Y, Arakawa S, Terasawa K, Inokuchi JI, Iwata T, Shimizu S, Watabe T, Hara-Yokoyama M. The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide induces large lipid droplet accumulation and highlights the effect of LAMP-2 deficiency on lipid droplet degradation. Bioorg Med Chem Lett 2020; 30:126891. [PMID: 31874824 DOI: 10.1016/j.bmcl.2019.126891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022]
Abstract
Excess accumulation of intracellular lipids leads to various diseases. Lipid droplets (LDs) are ubiquitous cellular organelles for lipid storage. LDs are hydrolyzed via cytosolic lipases (lipolysis) and also degraded in lysosomes through autophagy; namely, lipophagy. A recent study has shown the size-dependent selection of LDs by the two major catabolic pathways (lipolysis and lipophagy), and thus experimental systems that can manipulate the size of LDs are now needed. The ceramide analogue N-(1-hydroxy-3-morpholino-1-phenylpropan-2-yl)decanamide (PDMP) affects the structures and functions of lysosomes/late endosomes and the endoplasmic reticulum (ER), and alters cholesterol homeostasis. We previously reported that PDMP induces autophagy via the inhibition of mTORC1. In the present study, we found that PDMP induced the accumulation of LDs, especially that of large LDs, in mouse fibroblast (L cells). Surprisingly, the LD accumulation was relieved by PDMP in L cells deficient in lysosome-associated membrane protein-2 (LAMP-2), which is reportedly important for lipophagy. An electron microscopy analysis demonstrated that the LAMP-2 deficiency caused enlarged autophagosomes/autolysosomes in L cells, which may promote the sequestration and degradation of the PDMP-dependent large LDs. Accordingly, PDMP will be useful to explore the mechanism of LD degradation, by inducing large LDs.
Collapse
Affiliation(s)
- Yuji Kato
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Satoko Arakawa
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Jin-Ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8549, Japan.
| |
Collapse
|
81
|
The Puzzling Conservation and Diversification of Lipid Droplets from Bacteria to Eukaryotes. Results Probl Cell Differ 2020; 69:281-334. [PMID: 33263877 DOI: 10.1007/978-3-030-51849-3_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Membrane compartments are amongst the most fascinating markers of cell evolution from prokaryotes to eukaryotes, some being conserved and the others having emerged via a series of primary and secondary endosymbiosis events. Membrane compartments comprise the system limiting cells (one or two membranes in bacteria, a unique plasma membrane in eukaryotes) and a variety of internal vesicular, subspherical, tubular, or reticulated organelles. In eukaryotes, the internal membranes comprise on the one hand the general endomembrane system, a dynamic network including organelles like the endoplasmic reticulum, the Golgi apparatus, the nuclear envelope, etc. and also the plasma membrane, which are linked via direct lateral connectivity (e.g. between the endoplasmic reticulum and the nuclear outer envelope membrane) or indirectly via vesicular trafficking. On the other hand, semi-autonomous organelles, i.e. mitochondria and chloroplasts, are disconnected from the endomembrane system and request vertical transmission following cell division. Membranes are organized as lipid bilayers in which proteins are embedded. The budding of some of these membranes, leading to the formation of the so-called lipid droplets (LDs) loaded with hydrophobic molecules, most notably triacylglycerol, is conserved in all clades. The evolution of eukaryotes is marked by the acquisition of mitochondria and simple plastids from Gram-positive bacteria by primary endosymbiosis events and the emergence of extremely complex plastids, collectively called secondary plastids, bounded by three to four membranes, following multiple and independent secondary endosymbiosis events. There is currently no consensus view of the evolution of LDs in the Tree of Life. Some features are conserved; others show a striking level of diversification. Here, we summarize the current knowledge on the architecture, dynamics, and multitude of functions of the lipid droplets in prokaryotes and in eukaryotes deriving from primary and secondary endosymbiosis events.
Collapse
|
82
|
Grefhorst A, van de Peppel IP, Larsen LE, Jonker JW, Holleboom AG. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2020; 11:601627. [PMID: 33597924 PMCID: PMC7883485 DOI: 10.3389/fendo.2020.601627] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) or metabolic (dysfunction) associated liver disease (MAFLD), is, with a global prevalence of 25%, the most common liver disorder worldwide. NAFLD comprises a spectrum of liver disorders ranging from simple steatosis to steatohepatitis, fibrosis, cirrhosis and eventually end-stage liver disease. The cause of NAFLD is multifactorial with genetic susceptibility and an unhealthy lifestyle playing a crucial role in its development. Disrupted hepatic lipid homeostasis resulting in hepatic triglyceride accumulation is an hallmark of NAFLD. This disruption is commonly described based on four pathways concerning 1) increased fatty acid influx, 2) increased de novo lipogenesis, 3) reduced triglyceride secretion, and 4) reduced fatty acid oxidation. More recently, lipophagy has also emerged as pathway affecting NAFLD development and progression. Lipophagy is a form of autophagy (i.e. controlled autolysosomal degradation and recycling of cellular components), that controls the breakdown of lipid droplets in the liver. Here we address the role of hepatic lipid homeostasis in NAFLD and specifically review the current literature on lipophagy, describing its underlying mechanism, its role in pathophysiology and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- *Correspondence: Aldo Grefhorst,
| | - Ivo P. van de Peppel
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Lars E. Larsen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Johan W. Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Adriaan G. Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, Netherlands
| |
Collapse
|
83
|
Fan H, Diao H, Lu Y, Xie J, Cheng X. The relation between serum adipose differentiation-related protein and non-alcoholic fatty liver disease in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2020; 11:2042018820969025. [PMID: 33194172 PMCID: PMC7607795 DOI: 10.1177/2042018820969025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adipose differentiation-related protein (ADRP) is an adipokine. In vitro and animal studies have verified the role of ADRP in lipid metabolism and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the interaction between levels of ADRP and NAFLD in type 2 diabetes mellitus (T2DM). METHODS Cross-sectional design. A total of 142 patients with T2DM were assigned to NAFLD (Group-I) and non-NAFLD (Group-II). Anthropometric data were collected. Serum ADRP levels and biochemical parameters were also determined. t test or χ2 test was conducted to compare the data between two groups. Receiver operating characteristic (ROC) curve analysis and logistic regression models were used to assess the interaction between ADRP levels and NAFLD in T2DM. Pearson correlation analysis and linear regression model were used to assess the correlations between serum ADRP levels and other parameters. RESULTS The serum ADRP level was higher in Group-I than in Group-II. Further, binary logistic regression models demonstrated that ADRP was an independent risk factor related to NAFLD in patients with T2DM. Moreover, as the ADRP level elevated across its tertiles, the percentage of NAFLD in T2DM increased. Multivariate logistic regression models demonstrated that the odds ratio of NAFLD was 8.831 in the highest tertile of ADRP, after adjustment for potential confounders. Area under THE ROC curve of ADRP for predicting the presence of NAFLD in T2DM was 0.738. Finally, multiple stepwise regression analysis indicated that age, waist circumference (WC), homeostasis model assessment of insulin resistance index (HOMA-IR) and triglyceride (TG) were independent factors associated with ADRP levels. CONCLUSION High serum ADRP level may be used as an independent risk factor for NAFLD in T2DM. The expression of ADRP may be affected by age, WC, HOMA-IR and TG.
Collapse
Affiliation(s)
- Huaying Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongjie Diao
- XieTang Community Health Service Center, Suzhou, Jiangsu, China
| | | | | | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
84
|
Tian S, Lei P, Teng C, Sun Y, Song X, Li B, Shan Y. Targeting PLIN2/PLIN5-PPARγ: Sulforaphane Disturbs the Maturation of Lipid Droplets. Mol Nutr Food Res 2019; 63:e1900183. [PMID: 31325205 DOI: 10.1002/mnfr.201900183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/08/2019] [Indexed: 01/05/2023]
Abstract
SCOPE The effects of sulforaphane (SFN) on the maturation of lipid droplets (LDs)-the storage units for free fatty acids and sterols as triacylglycerides (TAG) and cholesterol esters (CE)-are far from being understood, despite the fact that SFN is known to be beneficial for ameliorating lipid metabolism disorders. METHODS AND RESULTS High-fat-intake models are established in both HHL-5 hepatocytes and rodents. The numbers and sizes of LDs are decreased by SFN. The accumulation of lipid core components (TAG & CE) is reduced and the expression of their key synthetases, acyl-coenzyme A: diacylglycerol acyltransferases 2 (DGAT2) and acyl-coenzyme A: cholesterol acyltransferases 1 (ACAT1), is also inhibited. Moreover, SFN decreases LD-associated protein PLIN2 and PLIN5 expression, but not that of PLIN1 and PLIN3, both in vivo and in vitro. Furthermore, over-expression of peroxisome proliferator-activated receptor gamma (PPARγ) induces the accumulation of TAG and the up-regulation of PLIN2 and PLIN5, which are not reversed by SFN. These results suggest that PPARγ may be a target of SFN in lipid metabolism. CONCLUSION SFN disturbs LD maturation by inhibiting the formation of the neutral lipid core and decreases PLIN2 and PLIN5 via down-regulation of PPARγ.
Collapse
Affiliation(s)
- Sicong Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Peng Lei
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunying Teng
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yao Sun
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xinyue Song
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Baolong Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
85
|
|
86
|
Zhou PL, Li M, Han XW, Bi YH, Zhang WG, Wu ZY, Wu G. Perilipin 5 deficiency promotes atherosclerosis progression through accelerating inflammation, apoptosis, and oxidative stress. J Cell Biochem 2019; 120:19107-19123. [PMID: 31297870 DOI: 10.1002/jcb.29238] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/09/2017] [Indexed: 01/11/2023]
Abstract
Excessive plasma triglyceride (TG) and cholesterol levels promote the progression of several prevalent cardiovascular risk factors, including atherosclerosis, which is a leading death cause. Perilipin 5 (Plin5), an important perilipin protein, is abundant in tissues with very active lipid catabolism and is involved in the regulation of oxidative stress. Although inflammation and oxidative stress play a critical role in atherosclerosis development, the underlying mechanisms are complex and not completely understood. In the present study, we demonstrated the role of Plin5 in high-fat-diet-induced atherosclerosis in apolipoprotein E null (ApoE-/- ) mice. Our results suggested that Plin5 expressions increased in the artery tissues of ApoE-/- mice. ApoE/Plin5 double knockout (ApoE-/- Plin5-/- ) exacerbated severer atherogenesis, accompanied with significantly disturbed plasma metabolic profiles, such as elevated TG, total cholesterol, and low-density lipoprotein cholesterol levels and reduced high-density lipoprotein cholesterol contents. ApoE-/- Plin5-/- exhibited a higher number of inflammatory monocytes and neutrophils, as well as overexpression of cytokines and chemokines linked with an inflammatory response. Consistently, the IκBα/nuclear factor kappa B pathway was strongly activated in ApoE-/- Plin5-/- . Notably, apoptosis was dramatically induced by ApoE-/- Plin5-/- , as evidenced by increased cleavage of Caspase-3 and Poly (ADP-ribose) polymerase-2. In addition, ApoE-/- Plin5-/- contributed to oxidative stress generation in the aortic tissues, which was linked with the activation of phosphatidylinositol 3-kinase/protein kinase B and mitogen-activated protein kinases pathways. In vitro, oxidized low-density lipoprotein (ox-LDL) increased Plin5 expression in RAW264.7 cells. Its knockdown enhanced inflammation, apoptosis, oxidative stress, and lipid accumulation, while promotion of Plin5 markedly reduced all the effects induced by ox-LDL in cells. These studies strongly supported that Plin5 could be a new regulator against atherosclerosis, providing new insights on therapeutic solutions.
Collapse
Affiliation(s)
- Peng-Li Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Min Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong-Hua Bi
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wen-Guang Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zheng-Yang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Gang Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
87
|
Cansby E, Kulkarni NM, Magnusson E, Kurhe Y, Amrutkar M, Nerstedt A, Ståhlman M, Sihlbom C, Marschall HU, Borén J, Blüher M, Mahlapuu M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans. FASEB J 2019; 33:9974-9989. [PMID: 31173506 DOI: 10.1096/fj.201900356rr] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ectopic lipid storage in the liver is considered the main risk factor for nonalcoholic steatohepatitis (NASH). Understanding the molecular networks controlling hepatocellular lipid deposition is therefore essential for developing new strategies to effectively prevent and treat this complex disease. Here, we describe a new regulator of lipid partitioning in human hepatocytes: mammalian sterile 20-like (MST) 3. We found that MST3 protein coats lipid droplets in mouse and human liver cells. Knockdown of MST3 attenuated lipid accumulation in human hepatocytes by stimulating β-oxidation and triacylglycerol secretion while inhibiting fatty acid influx and lipid synthesis. We also observed that lipogenic gene expression and acetyl-coenzyme A carboxylase protein abundance were reduced in MST3-deficient hepatocytes, providing insight into the molecular mechanisms underlying the decreased lipid storage. Furthermore, MST3 expression was positively correlated with key features of NASH (i.e., hepatic lipid content, lobular inflammation, and hepatocellular ballooning) in human liver biopsies. In summary, our results reveal a role of MST3 in controlling the dynamic metabolic balance of liver lipid catabolism vs. lipid anabolism. Our findings highlight MST3 as a potential drug target for the prevention and treatment of NASH and related complex metabolic diseases.-Cansby, E., Kulkarni, N. M., Magnusson, E., Kurhe, Y., Amrutkar, M., Nerstedt, A., Ståhlman, M., Sihlbom, C., Marschall, H.-U., Borén, J., Blüher, M., Mahlapuu, M. Protein kinase MST3 modulates lipid homeostasis in hepatocytes and correlates with nonalcoholic steatohepatitis in humans.
Collapse
Affiliation(s)
- Emmelie Cansby
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nagaraj M Kulkarni
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elin Magnusson
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Manoj Amrutkar
- Department of Hepato-Pancreato-Biliary Surgery, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Annika Nerstedt
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Margit Mahlapuu
- Department of Chemistry and Molecular Biology, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
88
|
Su W, Mao Z, Liu Y, Zhang X, Zhang W, Gustafsson JA, Guan Y. Role of HSD17B13 in the liver physiology and pathophysiology. Mol Cell Endocrinol 2019; 489:119-125. [PMID: 30365983 DOI: 10.1016/j.mce.2018.10.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (HSD17Bs) comprise a large family of 15 members that are mainly involved in sex hormone metabolism. Some HSD17Bs enzymes also play key roles in cholesterol and fatty acid metabolism. Recent study showed that hydroxysteroid 17β-dehydrogenase 13 (HSD17B13), an enzyme with unknown biological function, is a novel liver-specific lipid droplet (LD)-associated protein in mouse and humans. HSD17B13 expression is markedly upregulated in patients and mice with non-alcoholic fatty liver disease (NAFLD). Hepatic overexpression of HSD17B13 promotes lipid accumulation in the liver. In this review, we summarize recent progress regarding the role of HSD17B13 in the regulation of hepatic lipid homeostasis and discuss genetic, genomic and proteomic evidence supporting the pathogenic role of HSD17B13 in NAFLD. We also emphasize its potential as a biomarker of advanced liver disease, such as non-alcoholic steatohepatitis (NASH) and liver cancer.
Collapse
Affiliation(s)
- Wen Su
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China; Department of Pathology, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhuo Mao
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yiao Liu
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Weizhen Zhang
- Shenzhen University Medical Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Jan-Ake Gustafsson
- Center for Nuclear Receptors and Cell Signaling, University of Houston, 3013 Cullen Blv, 77204, Houston, TX, USA; Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China; Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, 116044, China.
| |
Collapse
|
89
|
Mardani I, Tomas Dalen K, Drevinge C, Miljanovic A, Ståhlman M, Klevstig M, Scharin Täng M, Fogelstrand P, Levin M, Ekstrand M, Nair S, Redfors B, Omerovic E, Andersson L, Kimmel AR, Borén J, Levin MC. Plin2-deficiency reduces lipophagy and results in increased lipid accumulation in the heart. Sci Rep 2019; 9:6909. [PMID: 31061399 PMCID: PMC6502866 DOI: 10.1038/s41598-019-43335-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial dysfunction is commonly associated with accumulation of cardiac lipid droplets (LDs). Perilipin 2 (Plin2) is a LD protein that is involved in LD formation, stability and trafficking events within the cell. Even though Plin2 is highly expressed in the heart, little is known about its role in myocardial lipid storage. A recent report shows that cardiac overexpression of Plin2 result in massive myocardial steatosis suggesting that Plin2 stabilizes LDs. In this study, we hypothesized that deficiency in Plin2 would result in reduced myocardial lipid storage. In contrast to our hypothesis, we found increased accumulation of triglycerides in hearts, and specifically in cardiomyocytes, from Plin2−/− mice. Although Plin2−/− mice had markedly enhanced lipid levels in the heart, they had normal heart function under baseline conditions and under mild stress. However, after an induced myocardial infarction, stroke volume and cardiac output were reduced in Plin2−/− mice compared with Plin2+/+ mice. We further demonstrated that the increased triglyceride accumulation in Plin2-deficient hearts was caused by altered lipophagy. Together, our data show that Plin2 is important for proper hydrolysis of LDs.
Collapse
Affiliation(s)
- Ismena Mardani
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christina Drevinge
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azra Miljanovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martina Klevstig
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margareta Scharin Täng
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Fogelstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Matias Ekstrand
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linda Andersson
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Malin C Levin
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, the Sahlgrenska Academy at University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
90
|
Graus-Nunes F, Santos FDO, Marinho TDS, Miranda CS, Barbosa-da-Silva S, Souza-Mello V. Beneficial effects of losartan or telmisartan on the local hepatic renin-angiotensin system to counter obesity in an experimental model. World J Hepatol 2019; 11:359-369. [PMID: 31114640 PMCID: PMC6504859 DOI: 10.4254/wjh.v11.i4.359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/23/2019] [Accepted: 03/16/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity has been associated with hepatic overexpression of the renin-angiotensin system (RAS). AIM To evaluate the action of two angiotensin II (ANGII) receptor blockers (losartan or telmisartan) on the modulation of local hepatic RAS and the resulting metabolic effects in a diet-induced obesity murine model. METHODS Twenty C57BL/6 mice were randomly divided into two nutritional groups for 10 wk: control group (C, n = 5, 10% of energy as fat) or high-fat group (HF, n = 15, 50% of energy as fat). After treatment started, the HF group was randomly divided into three groups: untreated HF group (n = 5), HF treated with losartan (HFL, n = 5) and HF treated with telmisartan (HFT, n = 5). The treatments lasted for 5 wk, and the dose was 10 mg/kg body mass. RESULTS HF diet induced body mass gain (+28%, P < 0.0001), insulin resistance (+69%, P = 0.0079), high hepatic triacylglycerol (+127%, P = 0.0004), and overexpression of intrahepatic angiotensin-converting enzyme (ACE) 1/ ANGII type 1 receptor (AT1r) (+569.02% and +141.40%, respectively, P < 0.0001). The HFL and HFT groups showed higher ACE2/rMAS gene expression compared to the HF group (ACE2: +465.57%, P = 0.0002 for HFL and +345.17%, P = 0.0049 for HFT; rMAS: +711.39%, P < 0.0001 for HFL and +539.75%, P < 0.0001 for HFT), followed by reduced insulin/glucose ratio (-30% for HFL and -33% for HFT, P = 0.0181), hepatic triacylglycerol levels (-28%, P = 0.0381 for HFL; and -45%, P = 0.0010 for HFT, and Plin2 expression. CONCLUSION Modulation of the intrahepatic RAS, with favored involvement of the ACE2/rMAS axis over the ACE1/AT1r axis after losartan or telmisartan treatments, caused hepatic and metabolic beneficial effects as demonstrated by reduced hepatic triacylglycerol levels coupled with reduced PLIN 2 expression and improved glycemic control.
Collapse
Affiliation(s)
- Francielle Graus-Nunes
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Felipe de Oliveira Santos
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Thatiany de Souza Marinho
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Carolline Santos Miranda
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Sandra Barbosa-da-Silva
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil
| | - Vanessa Souza-Mello
- Laboratório de Morfometria, Metabolismo e Doenças Cardiovasculares, Departamento de Anatomia, Instituto de Biologia Roberto Alcântara Gomes, Rio de Janeiro 20551-030, Brazil.
| |
Collapse
|
91
|
Redwan EM, Alkarim SA, El-Hanafy AA, Saad YM, Almehdar HA, Uversky VN. Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane. J Biomol Struct Dyn 2019; 38:1214-1229. [PMID: 30896308 DOI: 10.1080/07391102.2019.1592027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Milk fat globules (MFGs), which are secreted by the epithelial cells of the lactating mammary glands, account for the most of the nutritional value of milk. They are enveloped by the milk fat globule membrane (MFGM), a complex structure consisting of three phospholipid membrane monolayers and containing various lipids. Depending on the origin of milk, specific proteins accounts for 5-70% of the MFGM mass. Proteome of MFGMs includes hundreds of proteins, with nine major components being adipophilin, butyrophilin, cluster of differentiation 36, fatty acid binding protein, lactadherin, mucin 1, mucin 15, tail-interacting protein 47 (TIP47), and xanthine oxidoreductase. Two of the MFGM components, adipophilin and TIP47, belong to the five-member perilipin family of lipid droplet proteins. Adipophilin is involved in the formation of cytoplasmic lipid droplets and secretion of MFGs. This protein is also related to the formation of other lipid droplets that exist in most cell types, playing an important role in the transport of lipids from ER to the surface of lipid droplets. TIP47 acts as a cytoplasmic sorting factor for mannose 6-phosphate receptors and is recruited to the MFGM. Therefore, both adipophilin and TIP47 are moonlighting proteins, each possessing several unrelated functions. This review focuses on the main functions and specific structural features of adipophilin and TIP47, analyzes similarities and differences of these proteins among different species, and describes these proteins in the context of other members of the perilipin family.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Saleh A Alkarim
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr A El-Hanafy
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Borg EL-Arab, Alexandria, Egypt
| | - Yasser M Saad
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Hussein A Almehdar
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russia Moscow Region.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
92
|
Orlicky DJ, Libby AE, Bales ES, McMahan RH, Monks J, La Rosa FG, McManaman JL. Perilipin-2 promotes obesity and progressive fatty liver disease in mice through mechanistically distinct hepatocyte and extra-hepatocyte actions. J Physiol 2019; 597:1565-1584. [PMID: 30536914 PMCID: PMC6418763 DOI: 10.1113/jp277140] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS Wild-type mice and mice with hepatocyte-specific or whole-body deletions of perilipin-2 (Plin2) were used to define hepatocyte and extra-hepatocyte effects of altered cellular lipid storage on obesity and non-alcoholic fatty liver disease (NAFLD) pathophysiology in a Western-diet (WD) model of these disorders. Extra-hepatocyte actions of Plin2 are responsible for obesity, adipose inflammation and glucose clearance abnormalities in WD-fed mice. Hepatocyte and extra-hepatic actions of Plin2 mediate fatty liver formation in WD-fed mice through distinct mechanisms. Hepatocyte-specific actions of Plin2 are primary mediators of immune cell infiltration and fibrotic injury in livers of obese mice. ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is an obesity- and insulin resistance-related metabolic disorder with progressive pathology. Perilipin-2 (Plin2), a ubiquitously expressed cytoplasmic lipid droplet scaffolding protein, is hypothesized to contribute to NAFLD in humans and rodent models through effects on cellular lipid metabolism. In this study, we delineate hepatocyte-specific and extra-hepatocyte Plin2 mechanisms regulating the effects of obesity and insulin resistance on NAFLD pathophysiology in mice fed an obesogenic Western-style diet (WD). Total Plin2 deletion (Plin2-Null) fully protected WD-fed mice from obesity, insulin resistance, adipose inflammation, steatohepatitis (NASH) and liver fibrosis found in WT animals. Hepatocyte-specific Plin2 deletion (Plin2-HepKO) largely protected against NASH and fibrosis and partially protected against steatosis in WD-fed animals, but it did not protect against obesity, insulin resistance, or adipose inflammation. Significantly, total or hepatocyte-specific Plin2 deletion impaired WD-induced monocyte recruitment and pro-inflammatory macrophage polarization found in livers of WT mice. Analyses of the molecular and cellular processes mediating steatosis, inflammation and fibrosis identified differences in total and hepatocyte-specific actions of Plin2 on the mechanisms promoting NAFLD pathophysiology. Our results demonstrate that hepatocyte-specific actions of Plin2 are central to the initiation and pathological progression of NAFLD in obese and insulin-resistant mice through effects on immune cell recruitment and fibrogenesis. Conversely, extra-hepatocyte Plin2 actions promote NAFLD pathophysiology through effects on obesity, inflammation and insulin resistance. Our findings provide new insight into hepatocyte and extra-hepatocyte mechanisms underlying NAFLD development and progression.
Collapse
Affiliation(s)
- David J. Orlicky
- Department of PathologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Andrew E. Libby
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Elise S. Bales
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | - Rachel H. McMahan
- Division of Gastroenterology and HepatologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Jenifer Monks
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
| | | | - James L. McManaman
- Graduate Program in Integrated PhysiologyUniversity of Colorado School of MedicineAuroraCOUSA
- Division of Reproductive SciencesUniversity of Colorado School of MedicineAuroraCOUSA
- Center for Human NutritionUniversity of Colorado School of MedicineAuroraCOUSA
| |
Collapse
|
93
|
Kennedy L, Francis H, Alpini G. Hepatocyte-specific and extra-hepatocyte actions of perilipin-2 during fatty liver disease: benefits of being extra. J Physiol 2019; 597:1431-1432. [PMID: 30656685 DOI: 10.1113/jp277539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Lindsey Kennedy
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heather Francis
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Research, Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
94
|
Lassen S, Grüttner C, Nguyen-Dinh V, Herker E. Perilipin-2 is critical for efficient lipoprotein and hepatitis C virus particle production. J Cell Sci 2019; 132:jcs.217042. [PMID: 30559250 DOI: 10.1242/jcs.217042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
In hepatocytes, PLIN2 is the major protein coating lipid droplets (LDs), an organelle the hepatitis C virus (HCV) hijacks for virion morphogenesis. We investigated the consequences of PLIN2 deficiency on LDs and on HCV infection. Knockdown of PLIN2 did not affect LD homeostasis, likely due to compensation by PLIN3, but severely impaired HCV particle production. PLIN2-knockdown cells had slightly larger LDs with altered protein composition, enhanced local lipase activity and higher β-oxidation capacity. Electron micrographs showed that, after PLIN2 knockdown, LDs and HCV-induced vesicular structures were tightly surrounded by ER-derived double-membrane sacs. Strikingly, the LD access for HCV core and NS5A proteins was restricted in PLIN2-deficient cells, which correlated with reduced formation of intracellular HCV particles that were less infectious and of higher density, indicating defects in maturation. PLIN2 depletion also reduced protein levels and secretion of ApoE due to lysosomal degradation, but did not affect the density of ApoE-containing lipoproteins. However, ApoE overexpression in PLIN2-deficient cells did not restore HCV spreading. Thus, PLIN2 expression is required for trafficking of core and NS5A proteins to LDs, and for formation of functional low-density HCV particles prior to ApoE incorporation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Susan Lassen
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Cordula Grüttner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Van Nguyen-Dinh
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Eva Herker
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany .,Institute of Virology, Philipps University Marburg, 35043 Marburg, Germany
| |
Collapse
|
95
|
Listenberger L, Townsend E, Rickertsen C, Hains A, Brown E, Inwards EG, Stoeckman AK, Matis MP, Sampathkumar RS, Osna NA, Kharbanda KK. Decreasing Phosphatidylcholine on the Surface of the Lipid Droplet Correlates with Altered Protein Binding and Steatosis. Cells 2018; 7:230. [PMID: 30477200 PMCID: PMC6316228 DOI: 10.3390/cells7120230] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/05/2023] Open
Abstract
Alcoholic fatty liver disease (AFLD) is characterized by an abnormal accumulation of lipid droplets (LDs) in the liver. Here, we explore the composition of hepatic LDs in a rat model of AFLD. Five to seven weeks of alcohol consumption led to significant increases in hepatic triglyceride mass, along with increases in LD number and size. Additionally, hepatic LDs from rats with early alcoholic liver injury show a decreased ratio of surface phosphatidylcholine (PC) to phosphatidylethanolamine (PE). This occurred in parallel with an increase in the LD association of perilipin 2, a prominent LD protein. To determine if changes to the LD phospholipid composition contributed to differences in protein association with LDs, we constructed liposomes that modeled the LD PC:PE ratios in AFLD and control rats. Reducing the ratio of PC to PE increased the binding of perilipin 2 to liposomes in an in vitro experiment. Moreover, we decreased the ratio of LD PC:PE in NIH 3T3 and AML12 cells by culturing these cells in choline-deficient media. We again detected increased association of specific LD proteins, including perilipin 2. Taken together, our experiments suggest an important link between LD phospholipids, protein composition, and lipid accumulation.
Collapse
Affiliation(s)
- Laura Listenberger
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA.
| | - Elizabeth Townsend
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA.
| | - Cassandra Rickertsen
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA.
| | - Anastasia Hains
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA.
| | - Elizabeth Brown
- Departments of Biology and Chemistry, St. Olaf College, Northfield, MN 55057, USA.
| | - Emily G Inwards
- Department of Chemistry, Bethel University, St. Paul, MN 55112, USA.
| | | | - Mitchell P Matis
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE and Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Rebecca S Sampathkumar
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE and Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Natalia A Osna
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE and Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| | - Kusum K Kharbanda
- Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE and Departments of Internal Medicine and Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA.
| |
Collapse
|
96
|
Schnell DM, Walton RG, Vekaria HJ, Sullivan PG, Bollinger LM, Peterson CA, Thomas DT. Vitamin D produces a perilipin 2-dependent increase in mitochondrial function in C2C12 myotubes. J Nutr Biochem 2018; 65:83-92. [PMID: 30658160 DOI: 10.1016/j.jnutbio.2018.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/10/2018] [Indexed: 02/08/2023]
Abstract
Vitamin D has been connected with increased intramyocellular lipid (IMCL) and has also been shown to increase mitochondrial function and insulin sensitivity. Evidence suggests that perilipin 2 (PLIN2), a perilipin protein upregulated with calcitriol treatment, may be integral to managing increased IMCL capacity and lipid oxidation in skeletal muscle. Therefore, we hypothesized that PLIN2 is required for vitamin D induced IMCL accumulation and increased mitochondrial oxidative function. To address this hypothesis, we treated C2C12 myotubes with 100 nM calcitriol (the active form of vitamin D) and/or PLIN2 siRNA in a four group design and analyzed markers of IMCL accumulation and metabolism using qRT-PCR, cytochemistry, and oxygen consumption assay. Expression of PLIN2, but not PLIN3 or PLIN5 mRNA was increased with calcitriol, and PLIN2 induction was prevented with siRNA knockdown without compensation by other perilipins. PLIN2 knockdown did not appear to prevent lipid accumulation. Calcitriol treatment increased mRNA expression of triglyceride synthesizing genes DGAT1 and DGAT2 and also lipolytic genes ATGL and CGI-58. PLIN2 knockdown decreased the expression of CGI-58 and CPT1, and was required for calcitriol-induced upregulation of DGAT2. Calcitriol increased oxygen consumption rate while PLIN2 knockdown decreased oxygen consumption rate. PLIN2 was required for a calcitriol-induced increase in oxygen consumption driven by mitochondrial complex II. We conclude that calcitriol increases mitochondrial function in myotubes and that this increase is at least in part mediated by PLIN2.
Collapse
Affiliation(s)
| | - R Grace Walton
- Department of Rehabilitation Sciences; Center for Muscle Biology.
| | | | | | | | | | - D Travis Thomas
- Department of Clinical Sciences, University of Kentucky, Lexington, KY 40536.
| |
Collapse
|
97
|
Wang K, Ruan H, Song Z, Cao Q, Bao L, Liu D, Xu T, Xiao H, Wang C, Cheng G, Tong J, Meng X, Yang H, Chen K, Zhang X. PLIN3 is up-regulated and correlates with poor prognosis in clear cell renal cell carcinoma. Urol Oncol 2018; 36:343.e9-343.e19. [PMID: 29773494 DOI: 10.1016/j.urolonc.2018.04.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND PLIN3, one of the members of the perilipin family, has been reported to be involved in the formation and accumulation of lipid droplets. However, the expression levels and diagnostic and prognostic value of PLIN3 in renal cell carcinoma (RCC) remain unclear. METHODS Bioinformatic analysis was used to assess the levels of PLIN3 and the correlation between PLIN3 levels and clinicopathological parameters in renal cancer. The expression levels of PLIN3 were determined in human RCC tissues and cell lines by western blot, immunofluorescence and immunohistochemistry assays. Receiver operating characteristic curves and Kaplan-Meier curves were used to analyze the diagnostic and prognostic significance of PLIN3 in RCC. RESULTS The expression level of PLIN3 was elevated in RCC tissues and cell lines, which was consistent with the analysis of the TCGA and Oncomine cancer database. The receiver operating characteristic curve indicated that high PLIN3 expression can distinguish cancer tissues from normal kidney tissues (area under the curve = 0.7270, P<0.0001). Kaplan-Meier curves revealed that elevated PLIN3 predicted poor disease-free survival and overall survival. CONCLUSIONS PLIN3 is highly expressed in kidney cancer, and high expression of PLIN3 can serve as a useful diagnostic and prognostic biomarker. PLIN3 functional inhibition can be used as a new clinical treatment option.
Collapse
Affiliation(s)
- Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HaiLong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhengShuai Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - TianBo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HaiBing Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gong Cheng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - JunWei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - XianGui Meng
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - HongMei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - XiaoPing Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
98
|
Jin Y, Tan Y, Chen L, Liu Y, Ren Z. Reactive Oxygen Species Induces Lipid Droplet Accumulation in HepG2 Cells by Increasing Perilipin 2 Expression. Int J Mol Sci 2018; 19:ijms19113445. [PMID: 30400205 PMCID: PMC6274801 DOI: 10.3390/ijms19113445] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world's most common liver disease. The disease can develop liver fibrosis or even carcinomas from the initial hepatic steatosis, and this process is influenced by many factors. Reactive oxygen species (ROS), as potent oxidants in cells, have been reported previously to play an important role in the development of NAFLD progression via promoting neutral lipid accumulation. Here, we found that ROS can promote lipid droplet formation in hepatocytes by promoting perilipin2 (PLIN2) expression. First, we used different concentrations of hydrogen peroxide to treat HepG2 cells and found that the number of lipid droplets in the cells increased, however also that this effect was dose-independent. Then, the mRNA level of several lipid droplet-associated genes was detected with hydrogen peroxide treatment and the expression of PLIN2, PLIN5, and FSP27 genes was significantly up-regulated (p < 0.05). We overexpressed PLIN2 in HepG2 cells and found that the lipid droplets in the cells were markedly increased. Interference with PLIN2 inhibits ROS-induced lipid droplet formation, revealing that PLIN2 is a critical factor in this process. We subsequently analyzed the regulatory pathway and protein interaction network that is involved in PLIN2 and found that PLIN2 can regulate intracellular lipid metabolism through the PPARα/RXRA and CREB/CREBBP signaling pathways. The majority of the data indicated the correlation between hydrogen peroxide-induced PLIN2 and lipid droplet upregulation. In conclusion, ROS up-regulates the expression of PLIN2 in hepatocytes, whereas PLIN2 promotes the formation of lipid droplets resulting in lipid accumulation in liver tissues.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
99
|
Ferguson JF, Roberts-Lee K, Borcea C, Smith HM, Midgette Y, Shah R. Omega-3 polyunsaturated fatty acids attenuate inflammatory activation and alter differentiation in human adipocytes. J Nutr Biochem 2018; 64:45-49. [PMID: 30428424 DOI: 10.1016/j.jnutbio.2018.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Omega-3 polyunsaturated fatty acids, specifically the fish-oil-derived eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have been proposed as inflammation-resolving agents via their effects on adipose tissue. OBJECTIVE We proposed to determine the effects of EPA and DHA on human adipocyte differentiation and inflammatory activation in vitro. METHODS Primary human subcutaneous adipocytes from lean and obese subjects were treated with 100 μM EPA and/or DHA throughout differentiation (differentiation studies) or for 72 h postdifferentiation (inflammatory studies). THP-1 monocytes were added to adipocyte wells for co-culture experiments. Subcutaneous and visceral adipose explants from obese subjects were treated for 72 h with EPA and DHA. Oil Red O staining was performed on live cells. Cells were collected for mRNA analysis by quantitative polymerase chain reaction, and media were collected for protein quantification by enzyme-linked immunosorbent assay. RESULTS Incubation with EPA and/or DHA attenuated inflammatory response to lipopolysaccharide (LPS) and monocyte co-culture with reduction in post-LPS mRNA expression and protein levels of IL6, CCL2 and CX3CL1. Expression of inflammatory genes was also reduced in the endogenous inflammatory response in obese adipose. Both DHA and EPA reduced lipid droplet formation and lipogenic gene expression without alteration in expression of adipogenic genes or adiponectin secretion. CONCLUSIONS EPA and DHA attenuate inflammatory activation of in vitro human adipocytes and reduce lipogenesis.
Collapse
Affiliation(s)
- Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kailey Roberts-Lee
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cristina Borcea
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Holly M Smith
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yasmeen Midgette
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rachana Shah
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
100
|
Sohn JH, Lee YK, Han JS, Jeon YG, Kim JI, Choe SS, Kim SJ, Yoo HJ, Kim JB. Perilipin 1 (Plin1) deficiency promotes inflammatory responses in lean adipose tissue through lipid dysregulation. J Biol Chem 2018; 293:13974-13988. [PMID: 30042231 DOI: 10.1074/jbc.ra118.003541] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/18/2018] [Indexed: 12/11/2022] Open
Abstract
Lipid droplets are specialized cellular organelles that contain neutral lipid metabolites and play dynamic roles in energy homeostasis. Perilipin 1 (Plin1), one of the major lipid droplet-binding proteins, is highly expressed in adipocytes. In mice, Plin1 deficiency impairs peripheral insulin sensitivity, accompanied with reduced fat mass. However, the mechanisms underlying insulin resistance in lean Plin1 knockout (Plin1-/-) mice are largely unknown. The current study demonstrates that Plin1 deficiency promotes inflammatory responses and lipolysis in adipose tissue, resulting in insulin resistance. M1-type adipose tissue macrophages (ATMs) were higher in Plin1-/- than in Plin1+/+ mice on normal chow diet. Moreover, using lipidomics analysis, we discovered that Plin1-/- adipocytes promoted secretion of pro-inflammatory lipid metabolites such as prostaglandins, which potentiated monocyte migration. In lean Plin1-/- mice, insulin resistance was relieved by macrophage depletion with clodronate, implying that elevated pro-inflammatory ATMs might be attributable for insulin resistance under Plin1 deficiency. Together, these data suggest that Plin1 is required to restrain fat loss and pro-inflammatory responses in adipose tissue by reducing futile lipolysis to maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Jee Hyung Sohn
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Yun Kyung Lee
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Ji Seul Han
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Yong Geun Jeon
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Jong In Kim
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Sung Sik Choe
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| | - Su Jung Kim
- the Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul KS013, South Korea
| | - Hyun Ju Yoo
- the Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul KS013, South Korea
| | - Jae Bum Kim
- From the National Creative Research Initiatives Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, Department of Biological Sciences, Seoul National University, Seoul KS013 and
| |
Collapse
|