51
|
Chera S, Herrera PL. Regeneration of pancreatic insulin-producing cells by in situ adaptive cell conversion. Curr Opin Genet Dev 2016; 40:1-10. [PMID: 27266969 DOI: 10.1016/j.gde.2016.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 12/14/2022]
Abstract
The impaired ability to produce or respond to insulin, a hormone synthetized by the pancreatic β-cells, leads to diabetes. There is an excruciating need of finding new approaches to protect or restore these cells once they are lost. Replacement and ex vivo directed reprogramming methods have an undeniable therapeutic potential, yet they exhibit crucial flaws. The in vivo conversion of adult cells to functional insulin-producing cells is a promising alternative for regenerative treatments in diabetes. The stunning natural transdifferentiation potential of the adult endocrine pancreas was recently uncovered. Modulating molecular targets involved in β-cell fate maintenance or in general differentiation mechanisms can further potentiate this intrinsic cell plasticity, which leads to insulin production reconstitution.
Collapse
Affiliation(s)
- Simona Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 65, 5021 Bergen, Norway
| | - Pedro L Herrera
- Department of Genetic Medicine & Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland.
| |
Collapse
|
52
|
Cox AR, Lam CJ, Rankin MM, King KA, Chen P, Martinez R, Li C, Kushner JA. Extreme obesity induces massive beta cell expansion in mice through self-renewal and does not alter the beta cell lineage. Diabetologia 2016; 59:1231-41. [PMID: 27003683 PMCID: PMC4869735 DOI: 10.1007/s00125-016-3922-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Understanding the developmental biology of beta cell regeneration is critical for developing new diabetes therapies. Obesity is a potent but poorly understood stimulus for beta cell expansion. Current models of obesity are complicated by developmental compensation or concurrent diabetes, limiting their usefulness for identifying the lineage mechanism(s) of beta cell expansion. We aimed to determine whether acute inducible obesity stimulates beta cell expansion and to determine the lineage mechanism of beta cell growth in obesity. METHODS We created whole-body tamoxifen-inducible leptin receptor (LepR)-deficient mice (Ubc-Cre (ERT2) LepR (loxP/loxP) ) as a novel model of acute obesity. Beta cell mass and proliferation were quantified after short-term LepR deletion. Clonal analysis of beta cell expansion using the Brainbow2.1 reporter was performed 6 months post tamoxifen initiation. RESULTS LepR deficiency induced a doubling of body mass within 3 weeks, with moderate glucose intolerance (unlike typical LepR mutant mice [db/db], which have frank diabetes). Beta cell mass expanded threefold through increased beta cell proliferation, without evidence for contribution from specialised progenitors or stem cells (via sequential thymidine labelling and Brainbow2.1 reporter). Thus, self-renewal is the primary lineage mechanism in obesity-induced beta cell expansion. However, even the rapid beta cell proliferation could not exceed the restrictions of the replication refractory period. CONCLUSIONS/INTERPRETATION In summary, we created a novel model of inducible obesity demonstrating that even extreme metabolic demand does not alter beta cell lineage.
Collapse
Affiliation(s)
- Aaron R Cox
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Carol J Lam
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Matthew M Rankin
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kourtney A King
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pan Chen
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramon Martinez
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA
| | - Changhong Li
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jake A Kushner
- Section of Pediatric Diabetes and Endocrinology, McNair Medical Institute, Baylor College of Medicine, Houston, TX, 77030, USA.
- Diabetes and Endocrinology, Feigin Center, Texas Children's Hospital, Houston, TX, USA.
- Diabetes and Endocrinology Service, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
53
|
Damond N, Thorel F, Moyers JS, Charron MJ, Vuguin PM, Powers AC, Herrera PL. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β-cells persist. eLife 2016; 5. [PMID: 27092792 PMCID: PMC4871705 DOI: 10.7554/elife.13828] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/07/2016] [Indexed: 12/15/2022] Open
Abstract
Glucagon secretion dysregulation in diabetes fosters hyperglycemia. Recent studies report that mice lacking glucagon receptor (Gcgr-/-) do not develop diabetes following streptozotocin (STZ)-mediated ablation of insulin-producing β-cells. Here, we show that diabetes prevention in STZ-treated Gcgr-/- animals requires remnant insulin action originating from spared residual β-cells: these mice indeed became hyperglycemic after insulin receptor blockade. Accordingly, Gcgr-/- mice developed hyperglycemia after induction of a more complete, diphtheria toxin (DT)-induced β-cell loss, a situation of near-absolute insulin deficiency similar to type 1 diabetes. In addition, glucagon deficiency did not impair the natural capacity of α-cells to reprogram into insulin production after extreme β-cell loss. α-to-β-cell conversion was improved in Gcgr-/- mice as a consequence of α-cell hyperplasia. Collectively, these results indicate that glucagon antagonism could i) be a useful adjuvant therapy in diabetes only when residual insulin action persists, and ii) help devising future β-cell regeneration therapies relying upon α-cell reprogramming. DOI:http://dx.doi.org/10.7554/eLife.13828.001 After meals, digested food causes sugar to accumulate in the blood. This triggers the release of the hormone insulin from beta cells in the pancreas, which allows liver cells, muscle cells and fat cells to use and store the sugar for energy. Other cells in the pancreas, called alpha cells, release a hormone called glucagon that counteracts the effects of insulin by telling the liver to release sugar into the bloodstream. The balance between the activity of insulin and glucagon keeps blood sugar levels steady. Diabetes results from the body being unable to produce enough insulin or respond to the insulin that is produced, which results in sugar accumulating in the blood. Diabetes also increases the production of glucagon, which further increases blood sugar levels. Recently, some researchers have reported that mice that lack the receptor proteins through which glucagon works do not develop diabetes, even when they are treated with a drug called streptozotocin that wipes out most of their beta cells. This suggests that the high blood sugar levels seen in diabetes result from an excess of glucagon, and not a lack of insulin. Drugs that block the action of glucagon have been found to reduce the symptoms of mild diabetes in mice and are now being tested in humans. However, it is less clear whether this treatment has any benefits in animals with more severe diabetes. Streptozotocin destroys most of a mouse’s beta cells but a significant fraction of them persist, while a different system relying on diphtheria toxin destroys more than 99% of these cells. Damond et al. have now found that treating mice that lack glucagon receptors with diphtheria toxin causes the mice to develop severe diabetes. Mice that lacked glucagon receptors that had been treated with streptozotocin also developed diabetes after they had been treated with an insulin-blocking drug. Further experiments showed that blocking glucagon receptors in typical mice with diabetes reduces blood sugar, but only if there is some insulin left in their bodies. Damond et al. also found that the glucagon receptor-lacking mice have more alpha cells, which have the ability to convert into insulin-producing cells after the widespread destruction of beta cells. Together, the experiments suggest that blocking glucagon could be a useful treatment for diabetes, but only in individuals who still have some insulin-producing cells. Such treatment would help reduce the release of sugar from the liver and increase the production of insulin in converted alpha cells in the pancreas. Damond et al. are now investigating how alpha cells convert into beta cells, with the aim of learning how to make beta cells regenerate more efficiently. DOI:http://dx.doi.org/10.7554/eLife.13828.002
Collapse
Affiliation(s)
- Nicolas Damond
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, United States
| | - Maureen J Charron
- Departments of Biochemistry, Medicine, and Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, United States
| | - Patricia M Vuguin
- Pediatric Endocrinology, Women's and Childrens Health, College of Physicians & Surgeons, Columbia University, New York, United States
| | - Alvin C Powers
- Division of Diabetes, Endocrinology & Metabolism, Department of Medicine, Department of Molecular Physiology, Vanderbilt University, Nashville, United States.,VA Tennessee Valley Healthcare System, Nashville, United States
| | - Pedro L Herrera
- Department of Genetic Medicine and Development of the Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland.,Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| |
Collapse
|
54
|
β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development. PLoS One 2016; 11:e0150010. [PMID: 26901059 PMCID: PMC4763111 DOI: 10.1371/journal.pone.0150010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/08/2016] [Indexed: 01/20/2023] Open
Abstract
The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas.
Collapse
|
55
|
Nivlet L, Herrmann J, Martin DE, Meunier A, Orvain C, Gradwohl G. Expression and functional studies of the GDNF family receptor alpha 3 in the pancreas. J Mol Endocrinol 2016; 56:77-90. [PMID: 26576643 PMCID: PMC5911917 DOI: 10.1530/jme-15-0213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 01/11/2023]
Abstract
The generation of therapeutic β-cells from human pluripotent stem cells relies on the identification of growth factors that faithfully mimic pancreatic β-cell development in vitro. In this context, the aim of the study was to determine the expression and function of the glial cell line derived neurotrophic factor receptor alpha 3 (GFRα3) and its ligand artemin (Artn) in islet cell development and function. GFRα3 and Artn expression were characterized by in situ hybridization, immunochemistry, and qRT-PCR. We used GFRα3-deficient mice to study GFRα3 function and generated transgenic mice overexpressing Artn in the embryonic pancreas to study Artn function. We found that GFRα3 is expressed at the surface of a subset of Ngn3-positive endocrine progenitors as well as of embryonic α- and β-cells, while Artn is found in the pancreatic mesenchyme. Adult β-cells lack GFRα3 but α-cells express the receptor. GFRα3 was also found in parasympathetic and sympathetic intra-islet neurons as well as in glial cells in the embryonic and adult pancreas. The loss of GFRα3 or overexpression of Artn has no impact on Ngn3 and islet cell formation and maintenance in the embryo. Islet organization and innervation as well as glucose homeostasis is normal in GFRα3-deficient mice suggesting functional redundancy.
Collapse
Affiliation(s)
- Laure Nivlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Joel Herrmann
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Delia Esteban Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Aline Meunier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Christophe Orvain
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| | - Gérard Gradwohl
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg (UdS), 1 Rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
56
|
Bankaitis ED, Bechard ME, Wright CVE. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche. Genes Dev 2016; 29:2203-16. [PMID: 26494792 PMCID: PMC4617982 DOI: 10.1101/gad.267914.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the "trunk epithelium." Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial "plexus state," which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium.
Collapse
Affiliation(s)
- Eric D Bankaitis
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Matthew E Bechard
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Christopher V E Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| |
Collapse
|
57
|
Yu K, Fischbach S, Xiao X. Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells. Curr Stem Cell Res Ther 2016; 11:542-546. [PMID: 25429702 PMCID: PMC5078597 DOI: 10.2174/1574888x10666141126113110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 10/17/2014] [Accepted: 11/24/2014] [Indexed: 01/06/2023]
Abstract
Islet transplantation is an effective therapy for severe diabetes. Nevertheless, the short supply of donor pancreases constitutes a formidable obstacle to its extensive clinical application. This shortage heightens the need for alternative sources of insulin-producing beta cells. Since mature beta cells have a very slow proliferation rate, which further declines with age, great efforts have been made to identify beta cell progenitors in the adult pancreas. However, the question whether facultative beta cell progenitors indeed exist in the adult pancreas remains largely unresolved. In the current review, we discuss the problems in past studies and review the milestone studies and recent publications.
Collapse
Affiliation(s)
- Ke Yu
- Beijing Key Laboratory of Diabetes Prevention and Care, Department of Endocrinology, Lu He Hospital, Capital Medical University, Beijing, China
| | - Shane Fischbach
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh,USA
- Division of Biology and Medicine, Brown University, Providence,USA
| | - Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh,USA
| |
Collapse
|
58
|
Abstract
Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.
Collapse
Affiliation(s)
- Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
59
|
Abstract
Lineage tracing studies have revealed that transcription factors play a cardinal role in pancreatic development, differentiation and function. Three transitions define pancreatic organogenesis, differentiation and maturation. In the primary transition, when pancreatic organogenesis is initiated, there is active proliferation of pancreatic progenitor cells. During the secondary transition, defined by differentiation, there is growth, branching, differentiation and pancreatic cell lineage allocation. The tertiary transition is characterized by differentiated pancreatic cells that undergo further remodeling, including apoptosis, replication and neogenesis thereby establishing a mature organ. Transcription factors function at multiple levels and may regulate one another and auto-regulate. The interaction between extrinsic signals from non-pancreatic tissues and intrinsic transcription factors form a complex gene regulatory network ultimately culminating in the different cell lineages and tissue types in the developing pancreas. Mutations in these transcription factors clinically manifest as subtypes of diabetes mellitus. Current treatment for diabetes is not curative and thus, developmental biologists and stem cell researchers are utilizing knowledge of normal pancreatic development to explore novel therapeutic alternatives. This review summarizes current knowledge of transcription factors involved in pancreatic development and β-cell differentiation in rodents.
Collapse
Affiliation(s)
- Reshmi Dassaye
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Strini Naidoo
- a Discipline of Pharmaceutical Sciences; Nelson R. Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Marlon E Cerf
- b Diabetes Discovery Platform, South African Medical Research Council , Cape Town , South Africa
| |
Collapse
|
60
|
Jiang FX, Morahan G. Multipotent pancreas progenitors: Inconclusive but pivotal topic. World J Stem Cells 2015; 7:1251-1261. [PMID: 26730269 PMCID: PMC4691693 DOI: 10.4252/wjsc.v7.i11.1251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/20/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023] Open
Abstract
The establishment of multipotent pancreas progenitors (MPP) should have a significant impact not only on the ontology of the pancreas, but also for the translational research of glucose-responding endocrine β-cells. Deficiency of the latter may lead to the pandemic type 1 or type 2 diabetes mellitus, a metabolic disorder. An ideal treatment of which would potentially be the replacement of destroyed or failed β-cells, by restoring function of endogenous pancreatic endocrine cells or by transplantation of donor islets or in vitro generated insulin-secreting cells. Thus, considerable research efforts have been devoted to identify MPP candidates in the pre- and post-natal pancreas for the endogenous neogenesis or regeneration of endocrine insulin-secreting cells. In order to advance this inconclusive but critical field, we here review the emerging concepts, recent literature and newest developments of potential MPP and propose measures that would assist its forward progression.
Collapse
|
61
|
George NM, Boerner BP, Mir SUR, Guinn Z, Sarvetnick NE. Exploiting Expression of Hippo Effector, Yap, for Expansion of Functional Islet Mass. Mol Endocrinol 2015; 29:1594-607. [PMID: 26378466 DOI: 10.1210/me.2014-1375] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of pancreas β-cell function is the precipitating factor in all forms of diabetes. Cell replacement therapies, such as islet transplantation, remain the best hope for a cure; however, widespread implementation of this method is hampered by availability of donor tissue. Thus, strategies that expand functional β-cell mass are crucial for widespread usage in diabetes cell replacement therapy. Here, we investigate the regulation of the Hippo-target protein, Yes-associated protein (Yap), during development of the endocrine pancreas and its function after reactivation in human cadaveric islets. Our results demonstrate that Yap expression is extinguished at the mRNA level after neurogenin-3-dependent specification of the pancreas endocrine lineage, correlating with proliferation decreases in these cells. Interestingly, when a constitutively active form of Yap was expressed in human cadaver islets robust increases in proliferation were noted within insulin-producing β-cells. Importantly, proliferation in these cells occurs without negatively affecting β-cell differentiation or functional status. Finally, we show that the proproliferative mammalian target of rapamycin pathway is activated after Yap expression, providing at least one explanation for the observed increases in β-cell proliferation. Together, these results provide a foundation for manipulating Yap activity as a novel approach to expand functional islet mass for diabetes regenerative therapy.
Collapse
Affiliation(s)
- Nicholas M George
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Brian P Boerner
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shakeel U R Mir
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Zachary Guinn
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Nora E Sarvetnick
- Holland Regenerative Medicine Program (N.M.G., B.P.B., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha, Nebraska 68198; Department of Surgery (N.M.G., S.U.R.M., Z.G., N.E.S.), University of Nebraska Medical Center, Omaha 68198, Nebraska; and Department of Internal Medicine (B.P.B.), University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
62
|
Mastracci TL, Robertson MA, Mirmira RG, Anderson RM. Polyamine biosynthesis is critical for growth and differentiation of the pancreas. Sci Rep 2015; 5:13269. [PMID: 26299433 PMCID: PMC4547391 DOI: 10.1038/srep13269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/30/2015] [Indexed: 02/03/2023] Open
Abstract
The pancreas, in most studied vertebrates, is a compound organ with both exocrine and endocrine functions. The exocrine compartment makes and secretes digestive enzymes, while the endocrine compartment, organized into islets of Langerhans, produces hormones that regulate blood glucose. High concentrations of polyamines, which are aliphatic amines, are reported in exocrine and endocrine cells, with insulin-producing β cells showing the highest concentrations. We utilized zebrafish as a model organism, together with pharmacological inhibition or genetic manipulation, to determine how polyamine biosynthesis functions in pancreatic organogenesis. We identified that inhibition of polyamine biosynthesis reduces exocrine pancreas and β cell mass, and that these reductions are at the level of differentiation. Moreover, we demonstrate that inhibition of ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis, phenocopies inhibition or knockdown of the enzyme deoxyhypusine synthase (DHS). These data identify that the pancreatic requirement for polyamine biosynthesis is largely mediated through a requirement for spermidine for the downstream posttranslational modification of eIF5A by its enzymatic activator DHS, which in turn impacts mRNA translation. Altogether, we have uncovered a role for polyamine biosynthesis in pancreatic organogenesis and identified that it may be possible to exploit polyamine biosynthesis to manipulate pancreatic cell differentiation.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Pediatrics, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Morgan A Robertson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, USA.,Department of Physiology, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| | - Ryan M Anderson
- Department of Pediatrics, Indiana University School of Medicine, USA.,Department of Physiology, Indiana University School of Medicine, USA.,Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, USA
| |
Collapse
|
63
|
McGrath PS, Watson CL, Ingram C, Helmrath MA, Wells JM. The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas. Diabetes 2015; 64:2497-505. [PMID: 25650326 PMCID: PMC4477351 DOI: 10.2337/db14-1412] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/20/2015] [Indexed: 12/18/2022]
Abstract
Neurogenin3 (NEUROG3) is a basic helix-loop-helix transcription factor required for development of the endocrine pancreas in mice. In contrast, humans with NEUROG3 mutations are born with endocrine pancreas function, calling into question whether NEUROG3 is required for human endocrine pancreas development. To test this directly, we generated human embryonic stem cell (hESC) lines where both alleles of NEUROG3 were disrupted using CRISPR/Cas9-mediated gene targeting. NEUROG3(-/-) hESC lines efficiently formed pancreatic progenitors but lacked detectible NEUROG3 protein and did not form endocrine cells in vitro. Moreover, NEUROG3(-/-) hESC lines were unable to form mature pancreatic endocrine cells after engraftment of PDX1(+)/NKX6.1(+) pancreatic progenitors into mice. In contrast, a 75-90% knockdown of NEUROG3 caused a reduction, but not a loss, of pancreatic endocrine cell development. We conclude that NEUROG3 is essential for endocrine pancreas development in humans and that as little as 10% NEUROG3 is sufficient for formation of pancreatic endocrine cells.
Collapse
Affiliation(s)
- Patrick S McGrath
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Carey L Watson
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH Department of General Surgery, University of Cincinnati, Cincinnati, OH
| | - Cameron Ingram
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Michael A Helmrath
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH Department of General Surgery, University of Cincinnati, Cincinnati, OH
| | - James M Wells
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
64
|
Lemaire LA, Goulley J, Kim YH, Carat S, Jacquemin P, Rougemont J, Constam DB, Grapin-Botton A. Bicaudal C1 promotes pancreatic NEUROG3+ endocrine progenitor differentiation and ductal morphogenesis. Development 2015; 142:858-70. [PMID: 25715394 DOI: 10.1242/dev.114611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells. Genetic inactivation of Bicc1 leads to ductal cell over-proliferation and cyst formation. Transcriptome comparison between WT and Bicc1 KO pancreata, before the phenotype onset, reveals that PKD2 functions downstream of BICC1 in preventing cyst formation in the pancreas. Moreover, the analysis highlights immune cell infiltration and stromal reaction developing early in the pancreas of Bicc1 knockout mice. In addition to these functions in duct morphogenesis, BICC1 regulates NEUROG3(+) endocrine progenitor production. Its deletion leads to a late but sustained endocrine progenitor decrease, resulting in a 50% reduction of endocrine cells. We show that BICC1 functions downstream of ONECUT1 in the pathway controlling both NEUROG3(+) endocrine cell production and ductal morphogenesis, and suggest a new candidate gene for syndromes associating kidney dysplasia with pancreatic disorders, including diabetes.
Collapse
Affiliation(s)
- Laurence A Lemaire
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Joan Goulley
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Yung Hae Kim
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Solenne Carat
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Patrick Jacquemin
- de Duve Institute, Université catholique de Louvain, Brussels B-1200, Belgium
| | - Jacques Rougemont
- BBCF, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Daniel B Constam
- ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, 3B Blegdamsvej, Copenhagen N DK-2200, Denmark ISREC, Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
65
|
Nair G, Hebrok M. Islet formation in mice and men: lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr Opin Genet Dev 2015; 32:171-80. [PMID: 25909383 DOI: 10.1016/j.gde.2015.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 02/24/2015] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
The Islets of Langerhans are crucial 'micro-organs' embedded in the glandular exocrine pancreas that regulate nutrient metabolism. They not only synthesize, but also secrete endocrine hormones in a modulated fashion in response to physiologic metabolic demand. These highly sophisticated structures with intricate organization of multiple cell types, namely endocrine, vascular, neuronal and mesenchymal cells, have evolved to perform this task to perfection over time. Not surprisingly, islet architecture and function are dissimilar between humans and typically studied model organisms, such as rodents and zebrafish. Further, recent findings also suggest noteworthy differences in human islet development from that in mouse, including delayed appearance and gradual resolution of key differentiation markers, a single-phase of endocrine differentiation, and prenatal association of developing islets with neurovascular milieu. In light of these findings, it is imperative that a systematic study is undertaken to compare islet development between human and mouse. Illuminating inter-species differences in islet development will likely be critical in furthering our pursuit to generate an unlimited supply of truly functional and fully mature β-cells from human pluripotent stem cell (hPSC) sources for therapeutic purposes.
Collapse
Affiliation(s)
- Gopika Nair
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Matthias Hebrok
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
66
|
Kim YH, Larsen HL, Rué P, Lemaire LA, Ferrer J, Grapin-Botton A. Cell cycle-dependent differentiation dynamics balances growth and endocrine differentiation in the pancreas. PLoS Biol 2015; 13:e1002111. [PMID: 25786211 PMCID: PMC4364879 DOI: 10.1371/journal.pbio.1002111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/16/2015] [Indexed: 01/23/2023] Open
Abstract
Organogenesis relies on the spatiotemporal balancing of differentiation and proliferation driven by an expanding pool of progenitor cells. In the mouse pancreas, lineage tracing at the population level has shown that the expanding pancreas progenitors can initially give rise to all endocrine, ductal, and acinar cells but become bipotent by embryonic day 13.5, giving rise to endocrine cells and ductal cells. However, the dynamics of individual progenitors balancing self-renewal and lineage-specific differentiation has never been described. Using three-dimensional live imaging and in vivo clonal analysis, we reveal the contribution of individual cells to the global behaviour and demonstrate three modes of progenitor divisions: symmetric renewing, symmetric endocrinogenic, and asymmetric generating a progenitor and an endocrine progenitor. Quantitative analysis shows that the endocrine differentiation process is consistent with a simple model of cell cycle-dependent stochastic priming of progenitors to endocrine fate. The findings provide insights to define control parameters to optimize the generation of β-cells in vitro.
Collapse
Affiliation(s)
- Yung Hae Kim
- DanStem, University of Copenhagen, Copenhagen, Denmark
- Ecole Polytechnique Fédérale de Lausanne, Life Sciences, Institute of Bioengineering, Lausanne, Switzerland
| | | | - Pau Rué
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | | | - Jorge Ferrer
- Department of Medicine, Imperial College London, London, United Kingdom
- Institut d'Investigacions August Pi i Sunyer, CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Barcelona, Spain
| | - Anne Grapin-Botton
- DanStem, University of Copenhagen, Copenhagen, Denmark
- Ecole Polytechnique Fédérale de Lausanne, Life Sciences, Institute of Bioengineering, Lausanne, Switzerland
| |
Collapse
|
67
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
68
|
Vázquez P, Robles AM, de Pablo F, Hernández-Sánchez C. Non-neural tyrosine hydroxylase, via modulation of endocrine pancreatic precursors, is required for normal development of beta cells in the mouse pancreas. Diabetologia 2014; 57:2339-47. [PMID: 25082160 PMCID: PMC4181516 DOI: 10.1007/s00125-014-3341-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/01/2014] [Indexed: 11/07/2022]
Abstract
AIMS/HYPOTHESIS Apart from transcription factors, little is known about the molecules that modulate the proliferation and differentiation of pancreatic endocrine cells. The early expression of tyrosine hydroxylase (TH) in a subset of glucagon(+) cells led us to investigate whether catecholamines have a role in beta cell development. METHODS We studied the immunohistochemical characteristics of TH-expressing cells in wild-type (Th (+/+) ) mice during early pancreas development, and analysed the endocrine pancreas phenotype of TH-deficient (Th (-/-) ) mice. We also studied the effect of dopamine addition and TH-inhibition on insulin-producing cells in explant cultures. RESULTS In the mouse pancreas at embryonic day (E)12.5-E13.5, the ∼10% of early glucagon(+) cells that co-expressed TH rarely proliferated and did not express the precursor marker neurogenin 3 at E13.5. The number of insulin(+) cells in the Th (-/-) embryonic pancreas was decreased as compared with wild-type embryos at E13.5. While no changes in pancreatic and duodenal homeobox 1 (PDX1)(+)-progenitor cell number were observed between groups at E12.5, the number of neurogenin 3 and NK2 homeobox 2 (NKX2.2)-expressing cells was reduced in Th (-/-) embryonic pancreas, an effect that occurred in parallel with increased expression of the transcriptional repressor Hes1. The potential role of dopamine as a pro-beta cell stimulus was tested by treating pancreas explants with this catecholamine, which resulted in an increase in total insulin content and insulin(+) cells relative to control explants. CONCLUSIONS/INTERPRETATION A non-neural catecholaminergic pathway appears to modulate the pancreatic endocrine precursor and insulin producing cell neogenesis. This finding may have important implications for approaches seeking to promote the generation of beta cells to treat diabetes.
Collapse
Affiliation(s)
- Patricia Vázquez
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| | - Ana M. Robles
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Flora de Pablo
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| | - Catalina Hernández-Sánchez
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| |
Collapse
|
69
|
Chera S, Baronnier D, Ghila L, Cigliola V, Jensen JN, Gu G, Furuyama K, Thorel F, Gribble FM, Reimann F, Herrera PL. Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers. Nature 2014; 514:503-7. [PMID: 25141178 PMCID: PMC4209186 DOI: 10.1038/nature13633] [Citation(s) in RCA: 318] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
Total or near-total loss of insulin-producing β-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after β-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy.
Collapse
Affiliation(s)
- Simona Chera
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Delphine Baronnier
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Luiza Ghila
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Valentina Cigliola
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Jan N Jensen
- Novo Nordisk A/S, Niels Steensens Vej 6, DK-2820 Gentofte, Denmark
| | - Guoqiang Gu
- Cell and Developmental Biology, Vanderbilt University Medical Center, 465 21st Av. South, Nashville, Tennessee 37232, USA
| | - Kenichiro Furuyama
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Fabrizio Thorel
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| | - Fiona M Gribble
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Frank Reimann
- Cambridge Institute for Medical Research, Hills Road, Cambridge CB2 0XY, UK
| | - Pedro L Herrera
- Department of Genetic Medicine &Development, Faculty of Medicine, University of Geneva, 1 rue Michel-Servet, 1211 Geneva-4, Switzerland
| |
Collapse
|
70
|
Abstract
Diabetes mellitus is caused by absolute (type 1) or relative (type 2) deficiency of insulin-secreting islet β cells. An ideal treatment of diabetes would, therefore, be to replace the lost or deficient β cells, by transplantation of donated islets or differentiated endocrine cells or by regeneration of endogenous islet cells. Due to their ability of unlimited proliferation and differentiation into all functional lineages in our body, including β cells, embryonic stem cells and induced pluripotent stem cells are ideally placed as cell sources for a diabetic transplantation therapy. Unfortunately, the inability to generate functional differentiated islet cells from pluripotent stem cells and the poor availability of donor islets have severely restricted the broad clinical use of the replacement therapy. Therefore, endogenous sources that can be directed to becoming insulin-secreting cells are actively sought after. In particular, any cell types in the developing or adult pancreas that may act as pancreatic stem cells (PSC) would provide an alternative renewable source for endogenous regeneration. In this review, we will summarize the latest progress and knowledge of such PSC, and discuss ways that facilitate the future development of this often controversial, but crucial research.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, and Centre for Medical Research, The University of Western Australia , Perth, Australia
| | | |
Collapse
|
71
|
Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells. Cell Res 2014; 24:1181-200. [PMID: 25190258 DOI: 10.1038/cr.2014.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.
Collapse
|
72
|
Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2014; 71:2383-402. [PMID: 24221136 PMCID: PMC11113897 DOI: 10.1007/s00018-013-1510-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
The field of pancreas development has markedly expanded over the last decade, significantly advancing our understanding of the molecular mechanisms that control pancreas organogenesis. This growth has been fueled, in part, by the need to generate new therapeutic approaches for the treatment of diabetes. The creation of sophisticated genetic tools in mice has been instrumental in this progress. Genetic manipulation involving activation or inactivation of genes within specific cell types has allowed the identification of many transcription factors (TFs) that play critical roles in the organogenesis of the pancreas. Interestingly, many of these TFs act at multiple stages of pancreatic development, and adult organ function or repair. Interaction with other TFs, extrinsic signals, and epigenetic regulation are among the mechanisms by which TFs may play context-dependent roles during pancreas organogenesis. Many of the pancreatic TFs directly regulate each other and their own expression. These combinatorial interactions generate very specific gene regulatory networks that can define the different cell lineages and types in the developing pancreas. Here, we review recent progress made in understanding the role of pancreatic TFs in mouse pancreas formation. We also summarize our current knowledge of human pancreas development and discuss developmental pancreatic TFs that have been associated with human pancreatic diseases.
Collapse
Affiliation(s)
- David A. Cano
- Endocrinology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Bernat Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Francisco Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
73
|
Szablewski L. Role of immune system in type 1 diabetes mellitus pathogenesis. Int Immunopharmacol 2014; 22:182-91. [PMID: 24993340 DOI: 10.1016/j.intimp.2014.06.033] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/26/2022]
Abstract
The immune system is the body's natural defense system against invading pathogens. It protects the body from infection and works to communicate an individual's well-being through a complex network of interconnected cells and cytokines. This system is an associated host defense. An uncontrolled immune system has the potential to trigger negative complications in the host. Type 1 diabetes results from the destruction of pancreatic β-cells by a β-cell-specific autoimmune process. Examples of β-cell autoantigens are insulin, glutamic acid decarboxylase, tyrosine phosphatase, and insulinoma antigen. There are many autoimmune diseases, but type 1 diabetes mellitus is one of the well-characterized autoimmune diseases. The mechanisms involved in the β-cell destruction are still not clear; it is generally believed that β-cell autoantigens, macrophages, dendritic cells, B lymphocytes, and T lymphocytes are involved in the β-cell-specific autoimmune process. It is necessary to determine what exact factors are causing the immune system to become unregulated in such a manner as to promote an autoimmune response.
Collapse
Affiliation(s)
- Leszek Szablewski
- General Biology and Parasitology, Center of Biostructure Research, Medical University of Warsaw, 5 Chalubinskiego Str., 02-004 Warsaw, Poland.
| |
Collapse
|
74
|
Abstract
Over the last decade, it has been discovered that the transcription factor Sox9 plays several critical roles in governing the development of the embryonic pancreas and the homeostasis of the mature organ. While analysis of pancreata from patients affected by the Sox9 haploinsufficiency syndrome campomelic dysplasia initially alluded to a functional role of Sox9 in pancreatic morphogenesis, transgenic mouse models have been instrumental in mechanistically dissecting such roles. Although initially defined as a marker and maintenance factor for pancreatic progenitors, Sox9 is now considered to fulfill additional indispensable functions during pancreogenesis and in the postnatal organ through its interactions with other transcription factors and signaling pathways such as Fgf and Notch. In addition to maintaining both multipotent and bipotent pancreatic progenitors, Sox9 is also required for initiating endocrine differentiation and maintaining pancreatic ductal identity, and it has recently been unveiled as a key player in the initiation of pancreatic cancer. These functions of Sox9 are discussed in this article, with special emphasis on the knowledge gained from various loss-of-function and lineage tracing mouse models. Also, current controversies regarding Sox9 function in healthy and injured adult pancreas and unanswered questions and avenues of future study are discussed.
Collapse
Affiliation(s)
- Philip A Seymour
- The Danish Stem Cell Center (DanStem), University of Copenhagen, Panum Institute, Blegdamsvej 3B, DK-2200, Copenhagen N, Denmark
| |
Collapse
|
75
|
Annunziata R, Perillo M, Andrikou C, Cole AG, Martinez P, Arnone MI. Pattern and process during sea urchin gut morphogenesis: the regulatory landscape. Genesis 2014; 52:251-68. [PMID: 24376127 DOI: 10.1002/dvg.22738] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 01/02/2023]
Abstract
The development of the endoderm is a multistage process. From the initial specification of the endodermal domain in the embryo to the final regionalization of the gut, there are multiple stages that require the involvement of complex gene regulatory networks. In one concrete case, the sea urchin embryo, some of these stages and their genetic control are (relatively) well understood. Several studies have underscored the relevance of individual transcription factor activities in the process, but very few have focused the attention on gene interactions within specific gene regulatory networks (GRNs). Sea urchins offer an ideal system to study the different factors involved in the morphogenesis of the gut. Here we review the knowledge gained over the last 10 years on the process and its regulation, from the early specification of endodermal lineages to the late events linked to the patterning of functional domains in the gut. A lesson of remarkable importance has been learnt from comparison of the mechanisms involved in gut formation in different bilaterian animals; some of these genetic mechanisms are particularly well conserved. Patterning the gut seems to involve common molecular players and shared interactions, whether we look at mammals or echinoderms. This astounding degree of conservation reveals some key aspects of deep homology that are most probably shared by all bilaterian guts.
Collapse
Affiliation(s)
- Rossella Annunziata
- Cellular and Developmental Biology, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
76
|
Mastracci TL, Evans-Molina C. Pancreatic and Islet Development and Function: The Role of Thyroid Hormone. JOURNAL OF ENDOCRINOLOGY, DIABETES & OBESITY 2014; 2:1044. [PMID: 25506600 PMCID: PMC4261639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A gradually expanding body of literature suggests that Thyroid Hormone (TH) and Thyroid Hormone Receptors (TRs) play a contributing role in pancreatic and islet cell development, maturation, and function. Studies using a variety of model systems capable of exploiting species-specific developmental paradigms have revealed the contribution of TH to cellular differentiation, lineage decisions, and endocrine cell specification. Moreover, in vitro and in vivo evidence suggests that TH is involved in islet β cell proliferation and maturation; however, the signaling pathway(s) connected with this function of TH/TR are not well understood. The purpose of this review is to discuss the current literature that has defined the effects of TH and TRs on pancreatic and islet cell development and function, describe the impact of hyper- and hypothyroidism on whole body metabolism, and highlight future and potential applications of TH in novel therapeutic strategies for diabetes.
Collapse
Affiliation(s)
- Teresa L Mastracci
- Department of Pediatrics, Indiana University School of Medicine, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| | - Carmella Evans-Molina
- Department of Medicine, Indiana University School of Medicine, USA
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, USA
| |
Collapse
|
77
|
Conditional deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant metastatic pancreatic neuroendocrine carcinoma. Oncogene 2013; 33:5706-15. [PMID: 24292676 DOI: 10.1038/onc.2013.514] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 09/18/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022]
Abstract
Efforts to model human pancreatic neuroendocrine tumors (PanNETs) in animals have been moderately successful, with minimal evidence for glucagonomas or metastatic spread. The renin gene, although classically associated with expression in the kidney, is also expressed in many other extrarenal tissues including the pancreas. To induce tumorigenesis within rennin-specific tissues, floxed alleles of p53 and Rb were selectively abrogated using Cre-recombinase driven by the renin promoter. The primary neoplasm generated is a highly metastatic islet cell carcinoma of the pancreas. Lineage tracing identifies descendants of renin-expressing cells as pancreatic alpha cells despite a lack of active renin expression in the mature pancreas. Both primary and metastatic tumors express high levels of glucagon; furthermore, an increased level of glucagon is found in the serum, identifying the pancreatic cancer as a functional glucagonoma. This new model is highly penetrant and exhibits robust frequency of metastases to the lymph nodes and the liver, mimicking human disease, and provides a useful platform for better understanding pancreatic endocrine differentiation and development, as well as islet cell carcinogenesis. The use of fluorescent reporters for lineage tracing of the cells contributing to disease initiation and progression provides an unique opportunity to dissect the timeline of disease, examining mechanisms of the metastatic process, as well as recovering primary and metastatic cells for identifying cooperating mutations that are necessary for progression of disease.
Collapse
|
78
|
Leung KK, Liang J, Zhao S, Chan WY, Leung PS. Angiotensin II type 2 receptor regulates the development of pancreatic endocrine cells in mouse embryos. Dev Dyn 2013; 243:415-27. [DOI: 10.1002/dvdy.24084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/11/2013] [Accepted: 10/09/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Kwan Keung Leung
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Juan Liang
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Shuiling Zhao
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Wood Yee Chan
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| | - Po Sing Leung
- School of Biomedical Sciences, Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong China
| |
Collapse
|
79
|
Shiota C, Prasadan K, Guo P, El-Gohary Y, Wiersch J, Xiao X, Esni F, Gittes GK. α-Cells are dispensable in postnatal morphogenesis and maturation of mouse pancreatic islets. Am J Physiol Endocrinol Metab 2013; 305:E1030-40. [PMID: 23982158 DOI: 10.1152/ajpendo.00022.2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucagon-producing α-cells are the second-most abundant cell type in the islet. Whereas α-cells make up less than 20% of the cells in a mature mouse islet, they occupy a much larger proportion of the pancreatic endocrine cell population during the early postnatal period, the time when morphological and functional maturation occurs to form adult islets. To determine whether α-cells have a role in postnatal islet development, a diphtheria toxin-mediated α-cell ablation mouse model was established. Rapid and persistent depletion of α-cells was achieved by daily injection of the toxin for 2 wk starting at postnatal day 1 (P1). Total pancreatic glucagon content in the α-cell-ablated mice was undetectable at P14 and still less than 0.3% of that of the control mice at 4 mo of age. Histological analyses revealed that formation of spherical islets occurred normally, and the islet size distribution was not changed despite the near-total lack of α-cells. Furthermore, there were no differences in expression of β-cell maturation marker proteins, including urocortin 3 and glucose transporter 2, in the α-cell-ablated islets at P14. Mice lacking α-cells grew normally and appeared healthy. Both glucose and insulin tolerance tests demonstrated that the α-cell-ablated mice had normal glucose homeostasis. These results indicate that α-cells do not play a critical role in postnatal islet morphogenesis or functional maturation of β-cells.
Collapse
Affiliation(s)
- Chiyo Shiota
- Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Abstract
Islets form in the pancreas after the first endocrine cells have arisen as either single cells or small cell clusters in the epithelial cords. These cords constitute the developing pancreas in one of its earliest recognizable stages. Islet formation begins at the time the cords transform into a branching ductal system, continues while the ductal system expands, and finally stops before the exocrine tissue of ducts and acini reaches its final expansion. Thus, islets continuously arise from founder cells located in the branching and ramifying ducts. Islets arising from proximal duct cells locate between the exocrine lobules, develop strong autonomic and sensory innervations, and pass their blood to efferent veins (insulo-venous efferent system). Islets arising from cells of more distal ducts locate within the exocrine lobules, respond to nerve impulses ending at neighbouring blood vessels, and pass their blood to the surrounding acini (insulo-acinar portal system). Consequently, the section of the ductal system from which an islet arises determines to a large extent its future neighbouring tissue, architecture, properties, and functions. We note that islets interlobular in position are frequently found in rodents (rats and mice), whereas intralobularly-located, peripheral duct islets prevail in humans and cattle. Also, we expound on bovine foetal Laguesse islets as a prominent foetal type of type 1 interlobular neuro-insular complexes, similar to neuro-insular associations frequently found in rodents. Finally, we consider the probable physiological and pathophysiological implications of the different islet positions within and between species.
Collapse
|
81
|
Capito C, Simon MT, Aiello V, Clark A, Aigrain Y, Ravassard P, Scharfmann R. Mouse muscle as an ectopic permissive site for human pancreatic development. Diabetes 2013; 62:3479-87. [PMID: 23835344 PMCID: PMC3781474 DOI: 10.2337/db13-0554] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While sporadic human genetic studies have permitted some comparisons between rodent and human pancreatic development, the lack of a robust experimental system has not permitted detailed examination of human pancreatic development. We previously developed a xenograft model of immature human fetal pancreas grafted under the kidney capsule of immune-incompetent mice, which allowed the development of human pancreatic β-cells. Here, we compared the development of human and murine fetal pancreatic grafts either under skeletal muscle epimysium or under the renal capsule. We demonstrated that human pancreatic β-cell development occurs more slowly (weeks) than murine pancreas (days) both by differentiation of pancreatic progenitors and by proliferation of developing β-cells. The superficial location of the skeletal muscle graft and its easier access permitted in vivo lentivirus-mediated gene transfer with a green fluorescent protein-labeled construct under control of the insulin or elastase gene promoter, which targeted β-cells and nonendocrine cells, respectively. This model of engraftment under the skeletal muscle epimysium is a new approach for longitudinal studies, which allows localized manipulation to determine the regulation of human pancreatic development.
Collapse
Affiliation(s)
- Carmen Capito
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Marie-Thérèse Simon
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Virginie Aiello
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
| | - Anne Clark
- Diabetes Research Laboratories, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford, U.K
| | - Yves Aigrain
- Necker Enfants Malades University Hospital, Université Paris Descartes, Paris, France
| | - Philippe Ravassard
- Biotechnology and Biotherapy Team, Université Pierre et Marie Curie-Paris 6, Biotechnology and Biotherapy Team, Centre de Recherche de l’Institut du Cerveau et de la Moelle épinière, UMRS 975, CNRS, UMR 7225, INSERM U975, Paris, France
| | - Raphael Scharfmann
- INSERM U845, Research Center Growth and Signalling, Faculté de Médecine Cochin, Université Paris Descartes, Paris, France
- Corresponding author: Raphael Scharfmann,
| |
Collapse
|
82
|
Lehti MS, Kotaja N, Sironen A. KIF3A is essential for sperm tail formation and manchette function. Mol Cell Endocrinol 2013; 377:44-55. [PMID: 23831641 DOI: 10.1016/j.mce.2013.06.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/29/2013] [Accepted: 06/24/2013] [Indexed: 12/11/2022]
Abstract
KIF3A motor protein is responsible for intraflagellar transport, which is required for protein delivery during axoneme formation in ciliated cells. The function of KIF3A during spermatogenesis is not known. In this study, we show that depletion of KIF3A causes severe impairments in sperm tail formation and interestingly, it also affects manchette organization and the shaping of sperm heads. Our results demonstrate the analogy between the mechanisms governing the formation of cilia in somatic cells and the formation of spermatozoa-specific flagella. Furthermore, this study reveals KIF3A as an important regulator of spermatogenesis and emphasizes the crucial role of KIF3A in maintaining male fertility. We also identified several novel interacting partners for KIF3A, including meiosis-specific nuclear structural protein 1 (MNS1) that colocalizes with KIF3A in the manchette and principal piece of the sperm tail. This study highlights the essential role of KIF3A-mediated microtubular transport in the development of spermatozoa and male fertility.
Collapse
Affiliation(s)
- Mari S Lehti
- Agrifood Research Finland, Biotechnology and Food Research, Animal Genomics, FIN-31600 Jokioinen, Finland.
| | | | | |
Collapse
|
83
|
Hippenmeyer S. Dissection of gene function at clonal level using mosaic analysis with double markers. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11515-013-1279-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
84
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
85
|
Abstract
Cre/LoxP has broad utility for studying the function, development, and oncogenic transformation of pancreatic cells in mice. Here we provide an overview of the Cre driver lines that are available for such studies. We discuss how variegated expression, transgene silencing, and recombination in undesired cell types have conspired to limit the performance of these lines, sometimes leading to serious experimental concerns. We also discuss preferred strategies for achieving high-fidelity driver lines and remind investigators of the continuing need for caution when interpreting results obtained from any Cre/LoxP-based experiment performed in mice.
Collapse
Affiliation(s)
- Mark A Magnuson
- Center for Stem Cell Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | |
Collapse
|
86
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
87
|
Ninov N, Hesselson D, Gut P, Zhou A, Fidelin K, Stainier DYR. Metabolic regulation of cellular plasticity in the pancreas. Curr Biol 2013; 23:1242-50. [PMID: 23791726 DOI: 10.1016/j.cub.2013.05.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/21/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022]
Abstract
Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas.
Collapse
Affiliation(s)
- Nikolay Ninov
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, the Diabetes Center, Institute for Regeneration Medicine and Liver Center, University of California, San Francisco, 1550 4(th) Street, San Francisco, CA 94158, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Arda HE, Benitez CM, Kim SK. Gene regulatory networks governing pancreas development. Dev Cell 2013; 25:5-13. [PMID: 23597482 DOI: 10.1016/j.devcel.2013.03.016] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Indexed: 12/13/2022]
Abstract
Elucidation of cellular and gene regulatory networks (GRNs) governing organ development will accelerate progress toward tissue replacement. Here, we have compiled reference GRNs underlying pancreas development from data mining that integrates multiple approaches, including mutant analysis, lineage tracing, cell purification, gene expression and enhancer analysis, and biochemical studies of gene regulation. Using established computational tools, we integrated and represented these networks in frameworks that should enhance understanding of the surging output of genomic-scale genetic and epigenetic studies of pancreas development and diseases such as diabetes and pancreatic cancer. We envision similar approaches would be useful for understanding the development of other organs.
Collapse
Affiliation(s)
- H Efsun Arda
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
89
|
Xiao X, Chen Z, Shiota C, Prasadan K, Guo P, El-Gohary Y, Paredes J, Welsh C, Wiersch J, Gittes GK. No evidence for β cell neogenesis in murine adult pancreas. J Clin Invest 2013; 123:2207-17. [PMID: 23619362 DOI: 10.1172/jci66323] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/31/2013] [Indexed: 02/06/2023] Open
Abstract
Whether facultative β cell progenitors exist in the adult pancreas is a major unsolved question. To date, lineage-tracing studies have provided conflicting results. To track β cell neogenesis in vivo, we generated transgenic mice that transiently coexpress mTomato and GFP in a time-sensitive, nonconditional Cre-mediated manner, so that insulin-producing cells express GFP under control of the insulin promoter, while all other cells express mTomato (INSCremTmG mice). Newly differentiated β cells were detected by flow cytometry and fluorescence microscopy, taking advantage of their transient coexpression of GFP and mTomato fluorescent proteins. We found that β cell neogenesis predominantly occurs during embryogenesis, decreases dramatically shortly after birth, and is completely absent in adults across various models of β cell loss, β cell growth and regeneration, and inflammation. Moreover, we demonstrated upregulation of neurogenin 3 (NGN3) in both proliferating ducts and preexisting β cells in the ligated pancreatic tail after pancreatic ductal ligation. These results are consistent with some recent reports, but argue against the widely held belief that NGN3 marks cells undergoing endocrine neogenesis in the pancreas. Our data suggest that β cell neogenesis in the adult pancreas occurs rarely, if ever, under either normal or pathological conditions.
Collapse
Affiliation(s)
- Xiangwei Xiao
- Division of Pediatric Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Merkwitz C, Lochhead P, Böttger J, Matz-Soja M, Sakurai M, Gebhardt R, Ricken AM. Dual origin, development, and fate of bovine pancreatic islets. J Anat 2013; 222:358-71. [PMID: 23171225 PMCID: PMC3582255 DOI: 10.1111/joa.12014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 01/20/2023] Open
Abstract
Endocrine cells are evident at an early stage in bovine pancreatic development when the pancreas still consists of primitive epithelial cords. At this stage, the endocrine cells are interspersed between the precursor cells destined to form the ductulo-acinar trees of later exocrine lobules. We here demonstrate that, in bovine fetuses of crown rump length ≥ 11 cm, the endocrine cells become increasingly segregated from the developing exocrine pancreas by assembly into two units that differ in histogenesis, architecture, and fate. Small numbers of 'perilobular giant islets' are distinguishable from larger numbers of 'intralobular small islets'. The two types of islets arise in parallel from the ends of the ductal tree. Aside from differences in number, location, and size, the giant and small islets differ in cellular composition (predominantly insulin-synthesising cells vs. mixtures of endocrine cells), morphology (epithelial trabeculae with gyriform and rosette-like appearance vs. compact circular arrangements of endocrine cells), and in their relationships to intrapancreatic ganglia and nerves. A further difference becomes apparent during the antenatal period; while the 'interlobular small islets' persist in the pancreata of calves and adult cattle, the perilobular giant islets are subject to regression, characterised by involution of the parenchyma, extensive haemorrhage, leukocyte infiltration (myeloid and T-cells) and progressive fibrotic replacement. In conclusion, epithelial precursor cells of the ductolo-acinar tree may give rise to populations of pancreatic islets with different histomorphology, cellular composition and fates. This should be taken into account when using these cells for the generation of pancreatic islets for transplantation therapy.
Collapse
Affiliation(s)
- Claudia Merkwitz
- Institute of Anatomy, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
91
|
Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel. Proc Natl Acad Sci U S A 2013; 110:3907-12. [PMID: 23431132 DOI: 10.1073/pnas.1301889110] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The study of hematopoietic colony-forming units using semisolid culture media has greatly advanced the knowledge of hematopoiesis. Here we report that similar methods can be used to study pancreatic colony-forming units. We have developed two pancreatic colony assays that enable quantitative and functional analyses of progenitor-like cells isolated from dissociated adult (2-4 mo old) murine pancreas. We find that a methylcellulose-based semisolid medium containing Matrigel allows growth of duct-like "Ring/Dense" colonies from a rare (∼1%) population of total pancreatic single cells. With the addition of roof plate-specific spondin 1, a wingless-int agonist, Ring/Dense colony-forming cells can be expanded more than 100,000-fold when serially dissociated and replated in the presence of Matrigel. When cells grown in Matrigel are then transferred to a Matrigel-free semisolid medium with a unique laminin-based hydrogel, some cells grow and differentiate into another type of colony, which we name "Endocrine/Acinar." These Endocrine/Acinar colonies are comprised mostly of endocrine- and acinar-like cells, as ascertained by RNA expression analysis, immunohistochemistry, and electron microscopy. Most Endocrine/Acinar colonies contain beta-like cells that secrete insulin/C-peptide in response to D-glucose and theophylline. These results demonstrate robust self-renewal and differentiation of adult Ring/Dense colony-forming units in vitro and suggest an approach to producing beta-like cells for cell replacement of type 1 diabetes. The methods described, which include microfluidic expression analysis of single cells and colonies, should also advance study of pancreas development and pancreatic progenitor cells.
Collapse
|
92
|
Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet 2013; 9:e1003278. [PMID: 23408910 PMCID: PMC3567185 DOI: 10.1371/journal.pgen.1003278] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 12/12/2012] [Indexed: 12/12/2022] Open
Abstract
During pancreatic development, transcription factor cascades gradually commit precursor populations to the different endocrine cell fate pathways. Although mutational analyses have defined the functions of many individual pancreatic transcription factors, the integrative transcription factor networks required to regulate lineage specification, as well as their sites of action, are poorly understood. In this study, we investigated where and how the transcription factors Nkx2.2 and Neurod1 genetically interact to differentially regulate endocrine cell specification. In an Nkx2.2 null background, we conditionally deleted Neurod1 in the Pdx1+ pancreatic progenitor cells, the Neurog3+ endocrine progenitor cells, or the glucagon+ alpha cells. These studies determined that, in the absence of Nkx2.2 activity, removal of Neurod1 from the Pdx1+ or Neurog3+ progenitor populations is sufficient to reestablish the specification of the PP and epsilon cell lineages. Alternatively, in the absence of Nkx2.2, removal of Neurod1 from the Pdx1+ pancreatic progenitor population, but not the Neurog3+ endocrine progenitor cells, restores alpha cell specification. Subsequent in vitro reporter assays demonstrated that Nkx2.2 represses Neurod1 in alpha cells. Based on these findings, we conclude that, although Nkx2.2 and Neurod1 are both necessary to promote beta cell differentiation, Nkx2.2 must repress Neurod1 in a Pdx1+ pancreatic progenitor population to appropriately commit a subset of Neurog3+ endocrine progenitor cells to the alpha cell lineage. These results are consistent with the proposed idea that Neurog3+ endocrine progenitor cells represent a heterogeneous population of unipotent cells, each restricted to a particular endocrine lineage. Diabetes mellitus is a family of metabolic diseases that can result from either destruction or dysfunction of the insulin-producing beta cells of the pancreas. Recent studies have provided hope that generating insulin-producing cells from alternative cell sources may be a possible treatment for diabetes; this includes the observation that pancreatic glucagon-expressing alpha cells can be converted into beta cells under certain physiological or genetic conditions. Our study focuses on two essential beta cell regulatory factors, Nkx2.2 and Neurod1, and demonstrates how their genetic interactions can promote the development of other hormone-expressing cell types, including alpha cells. We determined that, while Nkx2.2 is required to activate Neurod1 to promote beta cell formation, Nkx2.2 must prevent expression of Neurod1 to allow alpha cell formation. Furthermore, the inactivation of Neurod1 must occur in the earliest pancreatic progenitors, at a stage in the differentiation process earlier than previously believed. These studies contribute to our understanding of the overlapping gene regulatory networks that specify islet cell types and identify the importance of timing and cellular context for these regulatory interactions. Furthermore, our data have broad implications regarding the manipulation of alpha cells or human pluripotent stem cells to generate insulin-producing beta cells for therapeutic purposes.
Collapse
|
93
|
Schaffer AE, Taylor BL, Benthuysen JR, Liu J, Thorel F, Yuan W, Jiao Y, Kaestner KH, Herrera PL, Magnuson MA, May CL, Sander M. Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 2013; 9:e1003274. [PMID: 23382704 PMCID: PMC3561089 DOI: 10.1371/journal.pgen.1003274] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022] Open
Abstract
All pancreatic endocrine cell types arise from a common endocrine precursor cell population, yet the molecular mechanisms that establish and maintain the unique gene expression programs of each endocrine cell lineage have remained largely elusive. Such knowledge would improve our ability to correctly program or reprogram cells to adopt specific endocrine fates. Here, we show that the transcription factor Nkx6.1 is both necessary and sufficient to specify insulin-producing beta cells. Heritable expression of Nkx6.1 in endocrine precursors of mice is sufficient to respecify non-beta endocrine precursors towards the beta cell lineage, while endocrine precursor- or beta cell-specific inactivation of Nkx6.1 converts beta cells to alternative endocrine lineages. Remaining insulin+ cells in conditional Nkx6.1 mutants fail to express the beta cell transcription factors Pdx1 and MafA and ectopically express genes found in non-beta endocrine cells. By showing that Nkx6.1 binds to and represses the alpha cell determinant Arx, we identify Arx as a direct target of Nkx6.1. Moreover, we demonstrate that Nkx6.1 and the Arx activator Isl1 regulate Arx transcription antagonistically, thus establishing competition between Isl1 and Nkx6.1 as a critical mechanism for determining alpha versus beta cell identity. Our findings establish Nkx6.1 as a beta cell programming factor and demonstrate that repression of alternative lineage programs is a fundamental principle by which beta cells are specified and maintained. Given the lack of Nkx6.1 expression and aberrant activation of non-beta endocrine hormones in human embryonic stem cell (hESC)–derived insulin+ cells, our study has significant implications for developing cell replacement therapies. Diabetes is a disease caused by the loss or dysfunction of insulin-producing beta cells in the pancreas. Recent studies suggest that modification of the beta cells' differentiation state is among the earliest events marking the progressive failure of beta cells in diabetes. Currently, very little is known about the factors that instruct cells to adopt beta cell characteristics and maintain the differentiated state of beta cells. We have discovered that a single transcription factor can instruct precursor cells of other endocrine cell types to change their identity and differentiate into beta cells. Conversely, inactivation of the transcription factor in endocrine precursors prevents their differentiation into beta cells and results in excess production of other endocrine cell types. When the factor is specifically inactivated in beta cells, beta cells lose their identity and adopt characteristics of other endocrine cell types, similar to what is seen in animal models of diabetes. Thus, we have identified a single factor that is both sufficient to program beta cells and necessary for maintaining their differentiated state. This factor could be an important target for diabetes therapy and could help reprogram other cell types into beta cells.
Collapse
Affiliation(s)
- Ashleigh E. Schaffer
- Department of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Brandon L. Taylor
- Department of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jacqueline R. Benthuysen
- Department of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Jingxuan Liu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Fabrizio Thorel
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Weiping Yuan
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Yang Jiao
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Klaus H. Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pedro L. Herrera
- Department of Genetic Medicine and Development, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Mark A. Magnuson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Catherine Lee May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maike Sander
- Department of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
94
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
95
|
Abstract
Type 1 and some forms of type 2 diabetes mellitus are caused by deficiency of insulin-secretory islet β cells. An ideal treatment for these diseases would therefore be to replace β cells, either by transplanting donated islets or via endogenous regeneration (and controlling the autoimmunity in type 1 diabetes). Unfortunately, the poor availability of donor islets has severely restricted the broad clinical use of islet transplantation. The ability to differentiate embryonic stem cells into insulin-expressing cells initially showed great promise, but the generation of functional β cells has proven extremely difficult and far slower than originally hoped. Pancreatic stem cells (PSC) or transdifferentiation of other cell types in the pancreas may hence provide an alternative renewable source of surrogate β cells. However, the existence of PSC has been hotly debated for many years. In this review, we will discuss the latest development and future perspectives of PSC research, giving readers an overview of this controversial but important area.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- Centre for Diabetes Research, Western Australian Institute for Medical Research, The University of Western Australia, 50 Murray St (Rear), Perth, WA 6000, Australia.
| | | |
Collapse
|
96
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
97
|
Abstract
The mammalian pancreas is required for normal metabolism, with defects in this vital organ commonly observed in cancer and diabetes. Development must therefore be tightly controlled in order to produce a pancreas of correct size, cell type composition, and physiologic function. Through negative regulation of Yap-dependent proliferation, the Hippo kinase cascade is a critical regulator of organ growth. To investigate the role of Hippo signaling in pancreas biology, we deleted Hippo pathway components in the developing mouse pancreas. Unexpectedly, the pancreas from Hippo-deficient offspring was reduced in size, with defects evident throughout the organ. Increases in the dephosphorylated nuclear form of Yap are apparent throughout the exocrine compartment and correlate with increases in levels of cell proliferation. However, the mutant exocrine tissue displays extensive disorganization leading to pancreatitis-like autodigestion. Interestingly, our results suggest that Hippo signaling does not directly regulate the pancreas endocrine compartment as Yap expression is lost following endocrine specification through a Hippo-independent mechanism. Altogether, our results demonstrate that Hippo signaling plays a crucial role in pancreas development and provide novel routes to a better understanding of pathological conditions that affect this organ.
Collapse
|
98
|
Ono H, Yanagihara K, Sakamoto H, Yoshida T, Saeki N. Prostate stem cell antigen gene is expressed in islets of pancreas. Anat Cell Biol 2012; 45:149-54. [PMID: 23094202 PMCID: PMC3472140 DOI: 10.5115/acb.2012.45.3.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/19/2012] [Accepted: 08/14/2012] [Indexed: 01/08/2023] Open
Abstract
Prostate stem cell antigen (PSCA) is a glycosylphosphatidylinositol-anchored cell surface antigen with an organ-dependent expression pattern in cancers; e.g., up-regulated in prostate cancer and down-regulated in gastric cancer. Previously it was reported that PSCA is not expressed in the normal pancreas but aberrantly expressed in pancreatic cancer. In this present study, we identified PSCA expression in islets of the pancreas by immunohistochemistry, which was co-localized with four islet-cell markers: insulin, glucagon, somatostatin and pancreatic polypeptide. In our investigation of the transcription start site of PSCA, we found a non-coding splicing variant of PSCA as well as authentic PSCA transcripts in mRNA samples from a normal pancreas. Both the transcripts were also identified in several pancreatic cancer cell lines. We previously reported that PSCA expression is correlated to the methylation status of the enhancer region in gastric and gallbladder cancer cell lines but not in pancreatic cancer cell lines, suggesting that PSCA expression is regulated in a diff erent mode in pancreatic cancer from that in gastric and gallbladder cancers.
Collapse
Affiliation(s)
- Hiroe Ono
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | |
Collapse
|
99
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
100
|
Leung KK, Liang J, Ma MT, Leung PS. Angiotensin II type 2 receptor is critical for the development of human fetal pancreatic progenitor cells into islet-like cell clusters and their potential for transplantation. Stem Cells 2012; 30:525-36. [PMID: 22162314 DOI: 10.1002/stem.1008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Local renin-angiotensin systems (RASs) regulate the differentiation of tissue progenitors. However, it is not known whether such systems can regulate the development of pancreatic progenitor cells (PPCs). To address this issue, we characterized the expression profile of major RAS components in human fetal PPC preparations and examined their effects on the differentiation of PPCs into functional islet-like cell clusters (ICCs). We found that expression of RAS components was highly regulated throughout PPC differentiation and that locally generated angiotensin II (Ang II) maintained PPC growth and differentiation via Ang II type 1 and type 2 (AT(1) and AT(2)) receptors. In addition, we observed colocalization of AT(2) receptors with critical β-cell phenotype markers in PPCs/ICCs, as well as AT(2) receptor upregulation during differentiation, suggesting that these receptors may regulate β-cell development. In fact, we found that AT(2) , but not AT(1) , receptor was a key mediator of Ang II-induced upregulation of transcription factors important in β-cell development. Furthermore, lentivirus-mediated knockdown of AT(2) receptor suppressed the expression of these transcription factors in ICCs. Transplantation of AT(2) receptor-depleted ICCs into immune-privileged diabetic mice failed to ameliorate hyperglycemia, implying that AT(2) receptors are indispensable during ICC maturation in vivo. These data strongly indicate that a local RAS is involved in governing the functional maturation of pancreatic progenitors toward the endocrine lineage.
Collapse
Affiliation(s)
- Kwan Keung Leung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|