51
|
Ghazalli N, Mahdavi A, Feng T, Jin L, Kozlowski MT, Hsu J, Riggs AD, Tirrell DA, Ku HT. Postnatal Pancreas of Mice Contains Tripotent Progenitors Capable of Giving Rise to Duct, Acinar, and Endocrine Cells In Vitro. Stem Cells Dev 2015; 24:1995-2008. [PMID: 25941840 DOI: 10.1089/scd.2015.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Postnatal pancreas is a potential source for progenitor cells to generate endocrine β-cells for treating type 1 diabetes. However, it remains unclear whether young (1-week-old) pancreas harbors multipotent progenitors capable of differentiating into duct, acinar, and endocrine cells. Laminin is an extracellular matrix (ECM) protein important for β-cells' survival and function. We established an artificial extracellular matrix (aECM) protein that contains the functional IKVAV (Ile-Lys-Val-Ala-Val) sequence derived from laminin (designated aECM-lam). Whether IKVAV is necessary for endocrine differentiation in vitro is unknown. To answer these questions, we cultured single cells from 1-week-old pancreas in semi-solid media supplemented with aECM-lam, aECM-scr (which contains a scrambled sequence instead of IKVAV), or Matrigel. We found that colonies were generated in all materials. Individual colonies were examined by microfluidic reverse transcription-polymerase chain reaction, immunostaining, and electron microscopy analyses. The majority of the colonies expressed markers for endocrine, acinar, and ductal lineages, demonstrating tri-lineage potential of individual colony-forming progenitors. Colonies grown in aECM-lam expressed higher levels of endocrine markers Insulin1, Insulin2, and Glucagon compared with those grown in aECM-scr and Matrigel, indicating that the IKVAV sequence enhances endocrine differentiation. In contrast, Matrigel was inhibitory for endocrine gene expression. Colonies grown in aECM-lam displayed the hallmarks of functional β-cells: mature insulin granules and glucose-stimulated insulin secretion. Colony-forming progenitors were enriched in the CD133(high) fraction and among 230 micro-manipulated single CD133(high) cells, four gave rise to colonies that expressed tri-lineage markers. We conclude that young postnatal pancreas contains multipotent progenitor cells and that aECM-lam promotes differentiation of β-like cells in vitro.
Collapse
Affiliation(s)
- Nadiah Ghazalli
- 1 Irell & Manella Graduate School of Biological Sciences, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California.,2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| | - Alborz Mahdavi
- 3 Department of Bioengineering, California Institute of Technology , Pasadena, California
| | - Tao Feng
- 2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| | - Liang Jin
- 2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| | - Mark T Kozlowski
- 4 Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California
| | - Jasper Hsu
- 2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| | - Arthur D Riggs
- 1 Irell & Manella Graduate School of Biological Sciences, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California.,2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| | - David A Tirrell
- 4 Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California
| | - H Teresa Ku
- 1 Irell & Manella Graduate School of Biological Sciences, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California.,2 The Department of Translational Research & Cellular Therapeutics, Diabetes & Metabolism Research Institute at City of Hope , Duarte, California
| |
Collapse
|
52
|
PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells. Stem Cell Reports 2015; 4:578-90. [PMID: 25843046 PMCID: PMC4400640 DOI: 10.1016/j.stemcr.2015.02.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Inactivation of the Pancreatic and Duodenal Homeobox 1 (PDX1) gene causes pancreatic agenesis, which places PDX1 high atop the regulatory network controlling development of this indispensable organ. However, little is known about the identity of PDX1 transcriptional targets. We simulated pancreatic development by differentiating human embryonic stem cells (hESCs) into early pancreatic progenitors and subjected this cell population to PDX1 chromatin immunoprecipitation sequencing (ChIP-seq). We identified more than 350 genes bound by PDX1, whose expression was upregulated on day 17 of differentiation. This group included known PDX1 targets and many genes not previously linked to pancreatic development. ChIP-seq also revealed PDX1 occupancy at hepatic genes. We hypothesized that simultaneous PDX1-driven activation of pancreatic and repression of hepatic programs underlie early divergence between pancreas and liver. In HepG2 cells and differentiating hESCs, we found that PDX1 binds and suppresses expression of endogenous liver genes. These findings rebrand PDX1 as a context-dependent transcriptional repressor and activator within the same cell type. Early pancreatic progenitor (ePP) cells are efficiently derived from hESCs High levels of the homeobox transcription factor PDX1 label ePP cells PDX1 binds a battery of foregut/midgut and early pancreatic genes in ePP cells PDX1 binds and represses hepatic genes
Collapse
|
53
|
van der Meulen T, Huising MO. Role of transcription factors in the transdifferentiation of pancreatic islet cells. J Mol Endocrinol 2015; 54:R103-17. [PMID: 25791577 PMCID: PMC4373662 DOI: 10.1530/jme-14-0290] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The α and β cells act in concert to maintain blood glucose. The α cells release glucagon in response to low levels of glucose to stimulate glycogenolysis in the liver. In contrast, β cells release insulin in response to elevated levels of glucose to stimulate peripheral glucose disposal. Despite these opposing roles in glucose homeostasis, α and β cells are derived from a common progenitor and share many proteins important for glucose sensing and hormone secretion. Results from recent work have underlined these similarities between the two cell types by revealing that β-to-α as well as α-to-β transdifferentiation can take place under certain experimental circumstances. These exciting findings highlight unexpected plasticity of adult islets and offer hope of novel therapeutic paths to replenish β cells in diabetes. In this review, we focus on the transcription factor networks that establish and maintain pancreatic endocrine cell identity and how they may be perturbed to facilitate transdifferentiation.
Collapse
Affiliation(s)
- Talitha van der Meulen
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| | - Mark O Huising
- Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA Department of NeurobiologyPhysiology and Behavior, College of Biological SciencesDepartment of Physiology and Membrane BiologySchool of Medicine, University of California, 193 Briggs Hall, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
54
|
McKenna B, Guo M, Reynolds A, Hara M, Stein R. Dynamic recruitment of functionally distinct Swi/Snf chromatin remodeling complexes modulates Pdx1 activity in islet β cells. Cell Rep 2015; 10:2032-42. [PMID: 25801033 DOI: 10.1016/j.celrep.2015.02.054] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/21/2015] [Accepted: 02/23/2015] [Indexed: 02/03/2023] Open
Abstract
Pdx1 is a transcription factor of fundamental importance to pancreas formation and adult islet β cell function. However, little is known about the positive- and negative-acting coregulators recruited to mediate transcriptional control. Here, we isolated numerous Pdx1-interacting factors possessing a wide range of cellular functions linked with this protein, including, but not limited to, coregulators associated with transcriptional activation and repression, DNA damage response, and DNA replication. Because chromatin remodeling activities are essential to developmental lineage decisions and adult cell function, our analysis focused on investigating the influence of the Swi/Snf chromatin remodeler on Pdx1 action. The two mutually exclusive and indispensable Swi/Snf core ATPase subunits, Brg1 and Brm, distinctly affected target gene expression in β cells. Furthermore, physiological and pathophysiological conditions dynamically regulated Pdx1 binding to these Swi/Snf complexes in vivo. We discuss how context-dependent recruitment of coregulatory complexes by Pdx1 could impact pancreas cell development and adult islet β cell activity.
Collapse
Affiliation(s)
- Brian McKenna
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Min Guo
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Albert Reynolds
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Manami Hara
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
55
|
Kaneto H, Matsuoka TA. Role of pancreatic transcription factors in maintenance of mature β-cell function. Int J Mol Sci 2015; 16:6281-97. [PMID: 25794287 PMCID: PMC4394532 DOI: 10.3390/ijms16036281] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/12/2022] Open
Abstract
A variety of pancreatic transcription factors including PDX-1 and MafA play crucial roles in the pancreas and function for the maintenance of mature β-cell function. However, when β-cells are chronically exposed to hyperglycemia, expression and/or activities of such transcription factors are reduced, which leads to deterioration of β-cell function. These phenomena are well known as β-cell glucose toxicity in practical medicine as well as in the islet biology research area. Here we describe the possible mechanism for β-cell glucose toxicity found in type 2 diabetes. It is likely that reduced expression levels of PDX-1 and MafA lead to suppression of insulin biosynthesis and secretion. In addition, expression levels of incretin receptors (GLP-1 and GIP receptors) in β-cells are decreased, which likely contributes to the impaired incretin effects found in diabetes. Taken together, down-regulation of insulin gene transcription factors and incretin receptors explains, at least in part, the molecular mechanism for β-cell glucose toxicity.
Collapse
Affiliation(s)
- Hideaki Kaneto
- Department of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, 577, Matsushima, Kurashiki 701-0192, Japan.
| | - Taka-aki Matsuoka
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan.
| |
Collapse
|
56
|
The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling. J Gastroenterol 2015; 50:46-57. [PMID: 24789573 DOI: 10.1007/s00535-014-0958-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/07/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gastrointestinal tract (GIT) is subdivided into different anatomical organs with many shared functions and characteristics, but also distinct differences. We have combined a genome-wide transcriptomics analysis with immunohistochemistry-based protein profiling to describe the gene and protein expression patterns that define the human GIT. METHODS RNA sequencing data derived from stomach, duodenum, jejunum/ileum and colon specimens were compared to gene expression levels in 23 other normal human tissues analysed with the same method. Protein profiling based on immunohistochemistry and tissue microarrays was used to sub-localize the corresponding proteins with GIT-specific expression into sub-cellular compartments and cell types. RESULTS Approximately 75% of all human protein-coding genes were expressed in at least one of the GIT tissues. Only 51 genes showed enriched expression in either one of the GIT tissues and an additional 83 genes were enriched in two or more GIT tissues. The list of GIT-enriched genes with validated protein expression patterns included various well-known but also previously uncharacterised or poorly studied genes. For instance, the colon-enriched expression of NXPE family member 1 (NXPE1) was established, while NLR family, pyrin domain-containing 6 (NLRP6) expression was primarily found in the human small intestine. CONCLUSIONS We have applied a genome-wide analysis based on transcriptomics and antibody-based protein profiling to identify genes that are expressed in a specific manner within the human GIT. These genes and proteins constitute important starting points for an improved understanding of the normal function and the different states of disease associated with the GIT.
Collapse
|
57
|
Kim JH, Kim KS, Lee SW, Kim HW, Joo DJ, Kim YS, Suh H. Retinoic Acid-induced Differentiation of Rat Mesenchymal Stem Cells into β-Cell Lineage. ACTA ACUST UNITED AC 2015. [DOI: 10.4285/jkstn.2015.29.3.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jae Hyung Kim
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Sik Kim
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Woo Lee
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Woo Kim
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Jin Joo
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Yu Seun Kim
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Hwal Suh
- Graduate Program of Nano Science and Technology, Graduate School of Yonsei University, Seoul, Korea
- Department of Medical Engineering, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
58
|
Riley KG, Gannon M. Pancreas Development and Regeneration. PRINCIPLES OF DEVELOPMENTAL GENETICS 2015:565-590. [DOI: 10.1016/b978-0-12-405945-0.00031-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
59
|
Ediger BN, Du A, Liu J, Hunter CS, Walp ER, Schug J, Kaestner KH, Stein R, Stoffers DA, May CL. Islet-1 Is essential for pancreatic β-cell function. Diabetes 2014; 63:4206-17. [PMID: 25028525 PMCID: PMC4237994 DOI: 10.2337/db14-0096] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal β-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, β-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal β-cells reduced glucose tolerance without significantly reducing β-cell mass or increasing β-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and βTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the β-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal β-cell function, directly regulates Pdx1 and Slc2a2, and has a mature β-cell cistrome distinct from that of pancreatic endocrine progenitors.
Collapse
Affiliation(s)
- Benjamin N Ediger
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Aiping Du
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jingxuan Liu
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Erik R Walp
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jonathan Schug
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN
| | - Doris A Stoffers
- Department of Medicine and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Catherine L May
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA Janssen Research & Development, Spring House, PA
| |
Collapse
|
60
|
Vázquez P, Robles AM, de Pablo F, Hernández-Sánchez C. Non-neural tyrosine hydroxylase, via modulation of endocrine pancreatic precursors, is required for normal development of beta cells in the mouse pancreas. Diabetologia 2014; 57:2339-47. [PMID: 25082160 PMCID: PMC4181516 DOI: 10.1007/s00125-014-3341-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/01/2014] [Indexed: 11/07/2022]
Abstract
AIMS/HYPOTHESIS Apart from transcription factors, little is known about the molecules that modulate the proliferation and differentiation of pancreatic endocrine cells. The early expression of tyrosine hydroxylase (TH) in a subset of glucagon(+) cells led us to investigate whether catecholamines have a role in beta cell development. METHODS We studied the immunohistochemical characteristics of TH-expressing cells in wild-type (Th (+/+) ) mice during early pancreas development, and analysed the endocrine pancreas phenotype of TH-deficient (Th (-/-) ) mice. We also studied the effect of dopamine addition and TH-inhibition on insulin-producing cells in explant cultures. RESULTS In the mouse pancreas at embryonic day (E)12.5-E13.5, the ∼10% of early glucagon(+) cells that co-expressed TH rarely proliferated and did not express the precursor marker neurogenin 3 at E13.5. The number of insulin(+) cells in the Th (-/-) embryonic pancreas was decreased as compared with wild-type embryos at E13.5. While no changes in pancreatic and duodenal homeobox 1 (PDX1)(+)-progenitor cell number were observed between groups at E12.5, the number of neurogenin 3 and NK2 homeobox 2 (NKX2.2)-expressing cells was reduced in Th (-/-) embryonic pancreas, an effect that occurred in parallel with increased expression of the transcriptional repressor Hes1. The potential role of dopamine as a pro-beta cell stimulus was tested by treating pancreas explants with this catecholamine, which resulted in an increase in total insulin content and insulin(+) cells relative to control explants. CONCLUSIONS/INTERPRETATION A non-neural catecholaminergic pathway appears to modulate the pancreatic endocrine precursor and insulin producing cell neogenesis. This finding may have important implications for approaches seeking to promote the generation of beta cells to treat diabetes.
Collapse
Affiliation(s)
- Patricia Vázquez
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| | - Ana M. Robles
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Flora de Pablo
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| | - Catalina Hernández-Sánchez
- 3D (Development, Differentiation, Degeneration) Lab, Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) (ISCIII), Ministerio de Economía y Competitividad, Spain, http://www.ciberdem.org/
| |
Collapse
|
61
|
Osipovich AB, Long Q, Manduchi E, Gangula R, Hipkens SB, Schneider J, Okubo T, Stoeckert CJ, Takada S, Magnuson MA. Insm1 promotes endocrine cell differentiation by modulating the expression of a network of genes that includes Neurog3 and Ripply3. Development 2014; 141:2939-49. [PMID: 25053427 PMCID: PMC4197673 DOI: 10.1242/dev.104810] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Insulinoma associated 1 (Insm1) plays an important role in regulating the development of cells in the central and peripheral nervous systems, olfactory epithelium and endocrine pancreas. To better define the role of Insm1 in pancreatic endocrine cell development we generated mice with an Insm1GFPCre reporter allele and used them to study Insm1-expressing and null populations. Endocrine progenitor cells lacking Insm1 were less differentiated and exhibited broad defects in hormone production, cell proliferation and cell migration. Embryos lacking Insm1 contained greater amounts of a non-coding Neurog3 mRNA splice variant and had fewer Neurog3/Insm1 co-expressing progenitor cells, suggesting that Insm1 positively regulates Neurog3. Moreover, endocrine progenitor cells that express either high or low levels of Pdx1, and thus may be biased towards the formation of specific cell lineages, exhibited cell type-specific differences in the genes regulated by Insm1. Analysis of the function of Ripply3, an Insm1-regulated gene enriched in the Pdx1-high cell population, revealed that it negatively regulates the proliferation of early endocrine cells. Taken together, these findings indicate that in developing pancreatic endocrine cells Insm1 promotes the transition from a ductal progenitor to a committed endocrine cell by repressing a progenitor cell program and activating genes essential for RNA splicing, cell migration, controlled cellular proliferation, vasculogenesis, extracellular matrix and hormone secretion.
Collapse
Affiliation(s)
- Anna B Osipovich
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiaoming Long
- Department of Animal Science, Cornell University, Ithaca, NY 14850, USA
| | - Elisabetta Manduchi
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Rama Gangula
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Susan B Hipkens
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Judsen Schneider
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tadashi Okubo
- Department of Laboratory Animal Science, Kitasato University School of Medicine, Sagamihara, 252-0374, Japan
| | - Christian J Stoeckert
- Penn Center for Bioinformatics, Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Mark A Magnuson
- Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
62
|
Avolio F, Pfeifer A, Courtney M, Gjernes E, Ben-Othman N, Vieira A, Druelle N, Faurite B, Collombat P. From pancreas morphogenesis to β-cell regeneration. Curr Top Dev Biol 2014; 106:217-38. [PMID: 24290351 DOI: 10.1016/b978-0-12-416021-7.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing β-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve β-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into β-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional β-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of β-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into β-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.
Collapse
Affiliation(s)
- Fabio Avolio
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, Nice, France; Inserm, iBV, U1091, Nice, France; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Zhang J, McKenna LB, Bogue CW, Kaestner KH. The diabetes gene Hhex maintains δ-cell differentiation and islet function. Genes Dev 2014; 28:829-34. [PMID: 24736842 PMCID: PMC4003275 DOI: 10.1101/gad.235499.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been linked to type 2 diabetes mellitus in genome-wide association studies. Zhang et al. discover that Hhex is selectively expressed in the somatostatin-secreting δ cell of the adult pancreas. Hhex was required for δ-cell differentiation, and the reduced somatostatin levels in Hhex-deficient islets caused disrupted paracrine inhibition of insulin release from δ cells. This study identifies Hhex as the first transcriptional regulator specifically required for islet δ cells and suggests compromised paracrine control as a contributor to type 2 diabetes. The homeodomain transcription factor HHEX (hematopoietically expressed homeobox) has been repeatedly linked to type 2 diabetes mellitus (T2DM) using genome-wide association studies. We report here that within the adult endocrine pancreas, Hhex is selectively expressed in the somatostatin-secreting δ cell. Using two mouse models with Hhex deficiency in the endocrine pancreas, we show that Hhex is required for δ-cell differentiation. Decreased somatostatin levels in Hhex-deficient islets cause disrupted paracrine inhibition of insulin release from β cells. These findings identify Hhex as the first transcriptional regulator specifically required for islet δ cells and suggest compromised paracrine control as a contributor to T2DM.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
64
|
Yamato E, Bamba Y, Kamiya Y, Yagi K, Miyazaki JI. Analysis of the transcription factor cascade that induces endocrine and exocrine cell lineages from pancreatic progenitor cells using a polyoma-based episomal vector system. J Diabetes Investig 2014; 3:41-51. [PMID: 24843545 PMCID: PMC4014932 DOI: 10.1111/j.2040-1124.2011.00136.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Aims/Introduction: We recently established a strategy for isolating multipotential duct‐like cells, called pdx‐1‐positive pancreatic cell‐derived (PPPD) cells, from the pancreas. To analyze the molecular mechanisms of pancreatic cell differentiation, we introduced a polyoma‐based episomal vector system into PPPD cells. Materials and Methods: PPPD cells were stably transfected with a polyoma large T (PLT)‐expressing plasmid vector, which included the polyoma origin of replication, to generate PLT‐PPPD cells. Various cDNA for pancreas‐related transcription factors were subcloned into the expression plasmid pPyCAG, which included the polyoma origin of replication. PLT‐PPPD cells were stably transfected with the resulting plasmid vectors and then subjected to gene and protein expression analyses. Results: The coexpression of Mafa, Neurod1 and Ipf1 induced Ins1 and Ins2 expression in PLT‐PPPD cells. The forced expression of Pax6 alone induced the expression of glucagon. The coexpression of Neurod1 and Isl1 induced Ins2 and Sst expression. In contrast, the expression of Ptf1a and Foxa2 induced the expression of exocrine markers Cpa1 and Amy2. Transfections with multiple transcription factors showed that Isl1 is required for the differentiation of both insulin‐positive cells and somatostatin‐positive cells. In addition, Foxa2 induced the differentiation of glucagon‐positive cells and inhibited the differentiation of insulin‐positive and somatostatin‐positive cells. PLT‐PPPD cells allow episomal vector‐based gene expression and should be useful for studying the transcription factor cascades involved in the differentiation of pancreatic cell types in vitro. Conclusions: Our coexpression study showed novel critical roles for Isl1 and Foxa2 in the differentiation of PPPD cells into endocrine cells. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00136.x, 2012)
Collapse
Affiliation(s)
- Eiji Yamato
- Stem Cell Regulation Research, Osaka University Graduate School of Medicine
| | - Yohei Bamba
- Stem Cell Regulation Research, Osaka University Graduate School of Medicine
| | - Yukimasa Kamiya
- Stem Cell Regulation Research, Osaka University Graduate School of Medicine ; Bio-functional Molecular Chemistry, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Kiyohito Yagi
- Bio-functional Molecular Chemistry, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - Jun-Ichi Miyazaki
- Stem Cell Regulation Research, Osaka University Graduate School of Medicine
| |
Collapse
|
65
|
Soto C, Raya L, Juárez J, Pérez J, González I. Effect of Silymarin in Pdx-1 expression and the proliferation of pancreatic β-cells in a pancreatectomy model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:233-9. [PMID: 24176839 DOI: 10.1016/j.phymed.2013.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/27/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
In type 1 Diabetes Mellitus (DM) there is a destruction of pancreatic β-cells (80-90%) at the time of detection, in DM type 2 these cells are decreased significantly. The Pdx1 transcription factor plays a central role in pancreatic development and in insulin gene expression. Previously, we have demonstrated that Silymarin recovers the normal morphology and endocrine function of damaged pancreatic tissue in alloxan induced diabetic rats. The aim of this study was to analyze the effect of Silymarin in Pdx1 gene expression and its repercussion on insulin gene expression and β-cell proliferation. 72 Wistar rats were partially pancreatectomized (60%) and divided into 12 groups. Six groups were treated daily with Silymarin (200mg/kg p.o.) for 3, 7, 14, 21, 42 and 63 day periods. Also, an unpancreatectomized control group was performed. At each time interval three animals from each group were administered BrdU 18 h before the sacrifice. Insulin and Pdx-1 gene expression were assessed by RT-PCR assay in total pancreatic RNA. β-Cell proliferation was determined by immunoperoxidase assay. In contrast to the animals that were only pancreatectomized, the Silymarin treatment induced an increase in both Pdx1 and insulin gene expression as well as β-cell proliferation in pancreatic tissue (control=2.6±0.28%; untreated=14.25±0.56%; treated=39.08±4.62%). Consequently, serum insulin levels rose (control=1.01±0.02 ng/ml; untreated=1.18±0.42 ng/ml; treated=4.58±0.58 ng/ml) and serum glucose levels decreased in these animals (control=6.2±0.01 mM; untreated=9.02±0.41 mM; treated=6.41±0.32 mM). These results suggest that Silymarin may induce the proliferation of insulin-producing cells.
Collapse
MESH Headings
- Animals
- Blood Glucose/metabolism
- Cell Differentiation
- Cell Proliferation
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Disease Models, Animal
- Gene Expression/drug effects
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Insulin/blood
- Insulin/genetics
- Insulin/metabolism
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Male
- Silybum marianum/chemistry
- Pancreatectomy
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- RNA/metabolism
- Rats
- Rats, Wistar
- Silymarin/pharmacology
- Silymarin/therapeutic use
- Trans-Activators/genetics
- Trans-Activators/metabolism
Collapse
Affiliation(s)
- C Soto
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico.
| | - L Raya
- Facultad de Medicina, Universidad Nacional Autónoma de México, México, D.F., Mexico
| | - J Juárez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| | - J Pérez
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| | - I González
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Mexico
| |
Collapse
|
66
|
Bose B, Katikireddy KR, Shenoy PS. Regenerative medicine for diabetes: differentiation of human pluripotent stem cells into functional β-cells in vitro and their proposed journey to clinical translation. VITAMINS AND HORMONES 2014; 95:223-48. [PMID: 24559920 DOI: 10.1016/b978-0-12-800174-5.00009-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Diabetes is a group of metabolic diseases, rising globally at an alarming rate. Type 1 (juvenile diabetes) is the autoimmune version of diabetes where the pancreas is unable to produce insulin, whereas type 2 (adult onset diabetes) is caused due to insulin resistance of the cells. In either of the cases, elevated blood glucose levels are observed which leads to progressive comorbidity like renal failure, cardiovascular disease, retinopathy, etc. Metformin, sulphonyl urea group of drugs, as well as insulin injections are the available therapies. In advanced cases of diabetes, the drug alone or drug in combination with insulin injections are not able to maintain a steady level of blood glucose. Moreover, frequent insulin injections are rather cumbersome for the patient. So, regenerative medicine could be a permanent solution for fighting diabetes. Islet transplantation has been tried with a limited amount of success on a large population of diabetics because of the shortage of cadaveric pancreas. Therefore, the best proposed alternative is regenerative medicine involving human pluripotent stem cell (hPSC)-derived beta islet transplantation which can be obtained in large quantities. Efficient protocols for in vitro differentiation of hPSC into a large number of sustained insulin-producing beta cells for transplantation will be considered to be a giant leap to address global rise in diabetic cases. Although most of the protocols mimic in vivo pancreatic development in humans, considerable amount of lacuna persists for near-perfect differentiation strategies. Moreover, beta islets differentiated from hPSC have not yet been successfully translated under clinical scenario.
Collapse
Affiliation(s)
- Bipasha Bose
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore.
| | | | - P Sudheer Shenoy
- Nanyang Technological University, School of Biological Sciences, NTU Lab Location @ Level 2 Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Singapore, Singapore
| |
Collapse
|
67
|
Kaitsuka T, Noguchi H, Shiraki N, Kubo T, Wei FY, Hakim F, Kume S, Tomizawa K. Generation of functional insulin-producing cells from mouse embryonic stem cells through 804G cell-derived extracellular matrix and protein transduction of transcription factors. Stem Cells Transl Med 2013; 3:114-27. [PMID: 24292793 DOI: 10.5966/sctm.2013-0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells have potential applications to regenerative medicine for diabetes; however, a useful and safe way to generate pancreatic β cells has not been developed. In this study, we tried to establish an effective method of differentiation through the protein transduction of three transcription factors (Pdx1, NeuroD, and MafA) important to pancreatic β cell development. The method poses no risk of unexpected genetic modifications in target cells. Transduction of the three proteins induced the differentiation of mouse ES and mouse iPS cells into insulin-producing cells. Furthermore, a laminin-5-rich extracellular matrix efficiently induced differentiation under feeder-free conditions. Cell differentiation was confirmed with the expression of the insulin 1 gene in addition to marker genes in pancreatic β cells, the differentiated cells secreted glucose-responsive C-peptide, and their transplantation restored normoglycemia in diabetic mice. Moreover, Pdx1 protein transduction had facilitative effects on differentiation into pancreatic endocrine progenitors from human iPS cells. These results suggest the direct delivery of recombinant proteins and treatment with laminin-5-rich extracellular matrix to be useful for the generation of insulin-producing cells.
Collapse
Affiliation(s)
- Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Department of Stem Cell Biology, Institute of Molecular Embryology and Genetics, and The Global Center of Excellence Program, Kumamoto University, Kumamoto, Japan; Department of Surgery, Chiba-East National Hospital, National Hospital Organization, Chiba, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Belo J, Krishnamurthy M, Oakie A, Wang R. The Role of SOX9 Transcription Factor in Pancreatic and Duodenal Development. Stem Cells Dev 2013; 22:2935-43. [DOI: 10.1089/scd.2013.0106] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Jamie Belo
- Children's Health Research Institute, Western University, London, Canada
| | | | - Amanda Oakie
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Rennian Wang
- Children's Health Research Institute, Western University, London, Canada
- Department of Physiology and Pharmacology, Western University, London, Canada
| |
Collapse
|
69
|
Wang H, Yang Y, Ho G, Lin X, Wu W, Li W, Lin L, Feng X, Huo X, Jiang J, Liu X, Huang T, Wei C, Ma L. Programming of human umbilical cord mesenchymal stem cells in vitro to promote pancreatic gene expression. Mol Med Rep 2013; 8:769-74. [PMID: 23900717 DOI: 10.3892/mmr.2013.1598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/11/2013] [Indexed: 02/05/2023] Open
Abstract
Human umbilical cord mesenchymal stem cells (HUMSCs) are candidates for tissue engineering and may potentially be used for transdifferentiation into pancreatic endocrine cells. The adenoviral vector is effective in transducing genes into stem cells that are refractory to gene delivery by non‑viral approaches. qPCR was used to detect the pancreatic endogenous gene expression of HUMSCs transfected by islet cell-specific transcription factors (TFs). In the present study, using adenoviruses, the mouse TFs, pancreatic and duodenal homeobox 1 (pdx1), V-maf musculoaponeurotic fibrosarcoma oncogene homolog A (mafa) and class B basic helix‑loop‑helix factor neurogenin 3 (ngn3), which are essential for pancreatic cell development, were introduced into HUMSCs to assess the expression of the pancreatic genes, glucagon, pdx1 and nk2 homeobox 2 (nkx2.2). When pdx1, mafa and ngn3 were cotransduced into HUMSCs, the expression of glucagon increased by 21‑fold at days 3 and 7 following transduction, while the endogenous pdx1 gene expression was increased by 15‑fold at day 3 and decreased by 70% at day 7. When mafa and ngn3 were cotransduced into HUMSCs, there was a 5‑fold increase in pdx1 gene expression at day 7, but no activation was observed at day 3. When mafa alone was introduced into HUMSCs, the pdx1 gene expression was elevated by 6‑fold at day 3 and decreased by 3‑fold at day 7. Transduction of ngn3 alone into HUMSCs induced nkx2.2 gene expression at day 3 but the expression levels were decreased at day 7. However, when pdx1 and ngn3 were cotransduced into HUMSCs, the expression levels of glucagon, pdx1 and nks2.2 were all lower than those observed with pdx1 or ngn3 transduction alone. These results suggested that the transduction of pdx1, mafa and ngn3 genes into HUMSCs induced the expression of the pancreatic genes, glucagon, pdx‑1 and nkx2.2, and that the expression was time dependent. In addition, different combinations of the TFs may demonstrate synergistic or antagonistic effects. This data may be beneficial for guiding future studies obtaining mature pancreatic endocrine cells from HUMSCs.
Collapse
Affiliation(s)
- Hongwu Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Cox AR, Beamish CA, Carter DE, Arany EJ, Hill DJ. Cellular mechanisms underlying failed beta cell regeneration in offspring of protein-restricted pregnant mice. Exp Biol Med (Maywood) 2013; 238:1147-59. [PMID: 23986224 DOI: 10.1177/1535370213493715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Low birth weight and poor foetal growth following low protein (LP) exposure are associated with altered islet development and glucose intolerance in adulthood. Additionally, LP-fed offspring fail to regenerate their β-cells following depletion with streptozotocin (STZ) in contrast to control-fed offspring that restore β-cell mass. Our objective was to identify signalling pathways and cellular functions that may be critically altered in LP offspring rendering them susceptible to developing long-term glucose intolerance and decreased β-cell plasticity. Pregnant Balb/c mice were fed a control (C; 20% protein) or an isocaloric LP (8% protein) diet throughout gestation and C diet thereafter. Female offspring were injected intraperitoneally with 35 mg/kg STZ or vehicle on days 1 to 5 for each dietary treatment. At 30 days of age, total RNA was extracted from pancreatic tissue for microarray analysis using the Affymetrix GeneChip Mouse Genome 430 2.0. Gene and protein expression were quantified from isolated islets. Finally, β-cell proliferation was determined in vitro following REG1α treatment. The microarray data and GO enrichment analysis indicated that foetal protein restriction alters the early expression of genes necessary for many cell functions, such as oxidative phosphorylation and free radical scavenging. Expression of Reg1 was upregulated following STZ, whereas protein content was decreased in LP + STZ islets. Furthermore, REG1α failed to stimulate β-cell proliferation in vitro in LP + STZ islets. Therefore, early nutritional insults may programme the Reg1 pathway resulting in a limited ability to increase β-cell mass during metabolic stress. In conclusion, this study implicates the Reg1 pathway in β-cell regeneration and describes altered programming of gene expression in LP offspring, which underlies later development of cell dysfunction and glucose intolerance in adulthood.
Collapse
Affiliation(s)
- Aaron R Cox
- Lawson Health Research Institute, St. Joseph's Health Care, London, Ontario, Canada, N6A 4V2
| | | | | | | | | |
Collapse
|
71
|
Retinoblastoma tumor suppressor protein in pancreatic progenitors controls α- and β-cell fate. Proc Natl Acad Sci U S A 2013; 110:14723-8. [PMID: 23946427 DOI: 10.1073/pnas.1303386110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pancreatic endocrine cells expand rapidly during embryogenesis by neogenesis and proliferation, but during adulthood, islet cells have a very slow turnover. Disruption of murine retinoblastoma tumor suppressor protein (Rb) in mature pancreatic β-cells has a limited effect on cell proliferation. Here we show that deletion of Rb during embryogenesis in islet progenitors leads to an increase in the neurogenin 3-expressing precursor cell population, which persists in the postnatal period and is associated with increased β-cell mass in adults. In contrast, Rb-deficient islet precursors, through repression of the cell fate factor aristaless related homeobox, result in decreased α-cell mass. The opposing effect on survival of Rb-deficient α- and β-cells was a result of opposing effects on p53 in these cell types. As a consequence, loss of Rb in islet precursors led to a reduced α- to β-cell ratio, leading to improved glucose homeostasis and protection against diabetes.
Collapse
|
72
|
Babin V, Wang D, Rose RB, Sagui C. Binding polymorphism in the DNA bound state of the Pdx1 homeodomain. PLoS Comput Biol 2013; 9:e1003160. [PMID: 23950697 PMCID: PMC3738460 DOI: 10.1371/journal.pcbi.1003160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022] Open
Abstract
The subtle effects of DNA-protein recognition are illustrated in the homeodomain fold. This is one of several small DNA binding motifs that, in spite of limited DNA binding specificity, adopts crucial, specific roles when incorporated in a transcription factor. The homeodomain is composed of a 3-helix domain and a mobile N-terminal arm. Helix 3 (the recognition helix) interacts with the DNA bases through the major groove, while the N-terminal arm becomes ordered upon binding a specific sequence through the minor groove. Although many structural studies have characterized the DNA binding properties of homeodomains, the factors behind the binding specificity are still difficult to elucidate. A crystal structure of the Pdx1 homeodomain bound to DNA (PDB 2H1K) obtained previously in our lab shows two complexes with differences in the conformation of the N-terminal arm, major groove contacts, and backbone contacts, raising new questions about the DNA recognition process by homeodomains. Here, we carry out fully atomistic Molecular Dynamics simulations both in crystal and aqueous environments in order to elucidate the nature of the difference in binding contacts. The crystal simulations reproduce the X-ray experimental structures well. In the absence of crystal packing constraints, the differences between the two complexes increase during the solution simulations. Thus, the conformational differences are not an artifact of crystal packing. In solution, the homeodomain with a disordered N-terminal arm repositions to a partially specific orientation. Both the crystal and aqueous simulations support the existence of different stable binding conformers identified in the original crystallographic data with different degrees of specificity. We propose that protein-protein and protein-DNA interactions favor a subset of the possible conformations. This flexibility in DNA binding may facilitate multiple functions for the same transcription factor.
Collapse
Affiliation(s)
- Volodymyr Babin
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Chemistry and Biochemistry, UC San Diego, La Jolla, California, United States of America
| | - Dongli Wang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Robert B. Rose
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| | - Celeste Sagui
- Center for High Performance Simulations (CHiPS) and Department of Physics, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail: (RBR); (CS)
| |
Collapse
|
73
|
Snyder CS, Harrington AR, Kaushal S, Mose E, Lowy AM, Hoffman RM, Bouvet M. A dual-color genetically engineered mouse model for multispectral imaging of the pancreatic microenvironment. Pancreas 2013; 42:952-8. [PMID: 23648841 PMCID: PMC3713119 DOI: 10.1097/mpa.0b013e31828643df] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To develop a mouse model for multispectral fluorescence imaging of the pancreas and pancreatic microenvironment. METHODS Cre/loxP technology was used to develop this model. We crossed mT/mG indicator mice, engineered to constitutively express a conditional tdTomato transgene that converts to green fluorescent protein (GFP) expression after exposure to Cre recombinase, with Pdx1-Cre transgenic mice. To characterize this model for studies of pancreas biology, we performed bright light and fluorescence imaging of body cavities and intact organs and confocal microscopy of pancreata from offspring of Pdx1-Cre and mT/mG crosses. RESULTS Pdx1-Cre-mT/mG mice demonstrated bright GFP expression within the pancreas and duodenum and intense tdTomato expression in all other organs. Green fluorescent protein expression was mosaic in Pdx1-Cre-mT/mG pancreata, with most showing extensive conversion from tdTomato to GFP expression within the epithelial-derived elements of the pancreatic parenchyma. Because both GFP and tdTomato are membrane targeted, individual cell borders were clearly outlined in confocal images of mT/mG pancreata. CONCLUSIONS This mouse model enables multispectral fluorescence imaging of individual cells and cell processes at the microscopic level of the pancreatic microenvironment; it should prove valuable for a variety of fluorescence imaging studies, ranging from pancreatic development to pancreatic cancer biology.
Collapse
Affiliation(s)
- Cynthia S Snyder
- Department of Surgery, UCSD Moores Cancer Center, La Jolla, CA 92093-0987, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
75
|
Ben-Othman N, Courtney M, Vieira A, Pfeifer A, Druelle N, Gjernes E, Faurite B, Avolio F, Collombat P. From pancreatic islet formation to beta-cell regeneration. Diabetes Res Clin Pract 2013; 101:1-9. [PMID: 23380136 DOI: 10.1016/j.diabres.2013.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus represents a major healthcare burden and, due to the increasing prevalence of type I diabetes and the complications arising from current treatments, other alternative therapies must be found. Type I diabetes arises as a result of a cell-mediated autoimmune destruction of insulin producing pancreatic β-cells. Thus, a cell replacement therapy would be appropriate, using either in vitro or in vivo cell differentiation/reprogramming from different cell sources. Increasing our understanding of the molecular mechanisms controlling endocrine cell specification during pancreas morphogenesis and gaining further insight into the complex transcriptional network and signaling pathways governing β-cell development should facilitate efforts to achieve this ultimate goal, that is to regenerate insulin-producing β-cells. This review will therefore describe briefly the genetic program underlying mouse pancreas development and present new insights regarding β-cell regeneration.
Collapse
Affiliation(s)
- Nouha Ben-Othman
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Monica Courtney
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Andhira Vieira
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Anja Pfeifer
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Noémie Druelle
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Elisabet Gjernes
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Biljana Faurite
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Fabio Avolio
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA
| | - Patrick Collombat
- Université de Nice-Sophia Antipolis, FR-06108 Nice, France; Inserm U1091, IBV, Diabetes Genetics Team, FR-06108 Nice, France; JDRF, 26 Broadway, NY-10004, USA.
| |
Collapse
|
76
|
Kaya-Dagistanli F, Ozturk M. The role of clusterin on pancreatic beta cell regeneration after exendin-4 treatment in neonatal streptozotocin administrated rats. Acta Histochem 2013; 115:577-86. [PMID: 23351716 DOI: 10.1016/j.acthis.2012.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
We investigated the effects of exendin-4 (Ex4) treatment on expression of clusterin and β cell regeneration in the endocrine pancreas in neonatal streptozotocin (nSTZ) diabetic rats. Three groups were used: (1) n2-STZ group; on the second day after birth 100mg/kg STZ was given i.p. to two groups of newborn rats, (2) n2-STZ+Ex4 group; 3μg/kg/day Ex4 was given for 5 days starting on the third day, and (3) control group. In situ hybridization for mRNAs of insulin and clusterin, double immunostaining for insulin/clusterin and insulin/BrdU were carried out. Immunostaining for insulin, glucagon, somatostatin, clusterin, synaptophysin and pdx-1 was performed. In the n2-STZ+Ex4 group, BrdU/insulin and insulin/clusterin immunopositive cells were significantly increased in the islets of Langerhans in comparison to the other groups. The areas occupied by the insulin mRNA and peptide positive cells and also pdx-1 immunopositive cells were decreased in the n2-STZ diabetic group compared with the other groups. The clusterin mRNA and protein positive cells, and also the glucagon and somatostatin cells, were significantly increased in the islets of the n2-STZ and the n2-STZ+Ex4 groups compared with the control group. The results show that Ex4 treatment induces new beta cell clusters via up-regulation of clusterin, which might be effective on beta-cell proliferation and neogenesis.
Collapse
|
77
|
Crivello M, Bonaventura MM, Chamson-Reig A, Arany E, Bettler B, Libertun C, Lux-Lantos V. Postnatal development of the endocrine pancreas in mice lacking functional GABAB receptors. Am J Physiol Endocrinol Metab 2013; 304:E1064-76. [PMID: 23531612 DOI: 10.1152/ajpendo.00569.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adult mice lacking functional GABAB receptors (GABAB1KO) have glucose metabolism alterations. Since GABAB receptors (GABABRs) are expressed in progenitor cells, we evaluated islet development in GABAB1KO mice. Postnatal day 4 (PND4) and adult, male and female, GABAB1KO, and wild-type littermates (WT) were weighed and euthanized, and serum insulin and glucagon was measured. Pancreatic glucagon and insulin content were assessed, and pancreas insulin, glucagon, PCNA, and GAD65/67 were determined by immunohistochemistry. RNA from PND4 pancreata and adult isolated islets was obtained, and Ins1, Ins2, Gcg, Sst, Ppy, Nes, Pdx1, and Gad1 transcription levels were determined by quantitative PCR. The main results were as follows: 1) insulin content was increased in PND4 GABAB1KO females and in both sexes in adult GABAB1KOs; 2) GABAB1KO females had more clusters (<500 μm(2)) and less islets than WT females; 3) cluster proliferation was decreased at PND4 and increased in adult GABAB1KO mice; 4) increased β-area at the expense of the α-cell area was present in GABAB1KO islets; 5) Ins2, Sst, and Ppy transcription were decreased in PND4 GABAB1KO pancreata, adult GABAB1KO female islets showed increased Ins1, Ins2, and Sst expression, Pdx1 was increased in male and female GABAB1KO islets; and 6) GAD65/67 was increased in adult GABAB1KO pancreata. We demonstrate that several islet parameters are altered in GABAB1KO mice, further pinpointing the importance of GABABRs in islet physiology. Some changes persist from neonatal ages to adulthood (e.g., insulin content in GABAB1KO females), whereas other features are differentially regulated according to age (e.g., Ins2 was reduced in PND4, whereas it was upregulated in adult GABAB1KO females).
Collapse
Affiliation(s)
- Martín Crivello
- Neuroendocrinology Laboratory, Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
78
|
Human embryonic stem cell differentiation into insulin secreting β-cells for diabetes. Cell Biol Int 2013; 36:1013-20. [PMID: 22897387 DOI: 10.1042/cbi20120210] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
hESC (human embryonic stem cells), when differentiated into pancreatic β ILC (islet-like clusters), have enormous potential for the cell transplantation therapy for Type 1 diabetes. We have developed a five-step protocol in which the EBs (embryoid bodies) were first differentiated into definitive endoderm and subsequently into pancreatic lineage followed by formation of functional endocrine β islets, which were finally matured efficiently under 3D conditions. The conventional cytokines activin A and RA (retinoic acid) were used initially to obtain definitive endoderm. In the last step, ILC were further matured under 3D conditions using amino acid rich media (CMRL media) supplemented with anti-hyperglycaemic hormone-Glp1 (glucagon-like peptide 1) analogue Liraglutide with prolonged t(½) and Exendin 4. The differentiated islet-like 3D clusters expressed bonafide mature and functional β-cell markers-PDX1 (pancreatic and duodenal homoeobox-1), C-peptide, insulin and MafA. Insulin synthesis de novo was confirmed by C-peptide ELISA of culture supernatant in response to varying concentrations of glucose as well as agonist and antagonist of functional 3D β islet cells in vitro. Our results indicate the presence of almost 65% of insulin producing cells in 3D clusters. The cells were also found to ameliorate hyperglycaemia in STZ (streptozotocin) induced diabetic NOD/SCID (non-obese diabetic/severe combined immunodeficiency) mouse up to 96 days of transplantation. This protocol provides a basis for 3D in vitro generation of long-term in vivo functionally viable islets from hESC.
Collapse
|
79
|
Bramswig NC, Everett LJ, Schug J, Dorrell C, Liu C, Luo Y, Streeter PR, Naji A, Grompe M, Kaestner KH. Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest 2013; 123:1275-84. [PMID: 23434589 DOI: 10.1172/jci66514] [Citation(s) in RCA: 317] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/13/2012] [Indexed: 12/16/2022] Open
Abstract
Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type-specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes.
Collapse
Affiliation(s)
- Nuria C Bramswig
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Guerra C, Barbacid M. Genetically engineered mouse models of pancreatic adenocarcinoma. Mol Oncol 2013; 7:232-47. [PMID: 23506980 DOI: 10.1016/j.molonc.2013.02.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 02/14/2013] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal types of human cancer for which there are no effective therapies. Deep sequencing of PDAC tumors has revealed the presence of a high number of mutations (>50) that affect at least a dozen key signaling pathways. This scenario highlights the urgent need to develop experimental models that faithfully reproduce the natural history of these human tumors in order to understand their biology and to design therapeutic approaches that might effectively interfere with their multiple mutated pathways. Over the last decade, several models, primarily based on the genetic activation of resident KRas oncogenes knocked-in within the endogenous KRas locus have been generated. These models faithfully reproduce the histological lesions that characterize human pancreatic tumors. Decoration of these models with additional mutations, primarily involving tumor suppressor loci known to be also mutated in human PDAC tumors, results in accelerated tumor progression and in the induction of invasive and metastatic malignancies. Mouse PDACs also display a desmoplastic stroma and inflammatory responses that closely resemble those observed in human patients. Interestingly, adult mice appear to be resistant to PDAC development unless the animals undergo pancreatic damage, mainly in the form of acute, chronic or even temporary pancreatitis. In this review, we describe the most representative models available to date and how their detailed characterization is allowing us to understand their cellular origin as well as the events involved in tumor progression. Moreover, their molecular dissection is starting to unveil novel therapeutic strategies that could be translated to the clinic in the very near future.
Collapse
Affiliation(s)
- Carmen Guerra
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Melchor Fernandez Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
81
|
Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol 2013; 48:277-85. [PMID: 22790351 DOI: 10.1007/s00535-012-0633-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 06/13/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Glucose intolerance in patients with liver cirrhosis (LC), known as hepatogenous diabetes, is thought to be distinct from type 2 diabetes (T2DM) in some aspects. Hyperinsulinemia and/or insulin resistance in liver disease is associated with hepatocarcinogenesis, growth of hepatocellular carcinoma, and poor prognosis. However, the pathophysiological processes in islets that are responsible for hyperinsulinemia in LC are still not precisely known. Therefore, we investigated the histopathological differences in islets of Langerhans cells between LC and T2DM. METHODS A total of 35 human autopsy pancreatic tissue samples were used in this study (control, n = 18; T2DM, n = 6; LC, n = 11). The expression of insulin, glucagon, somatostatin, pancreatic duodenal homeobox-1 (PDX-1), proliferating cell nuclear antigen (PCNA), and Ki-67 was examined using immunohistochemistry and quantitated by image analysis. RESULTS Islet hypertrophy and a significant increase in PCNA-positive cells in islets were observed in the tissues from LC cases. The insulin-positive areas in islets were significantly decreased in LC cases compared with control and T2DM cases (P = 0.001, P = 0.035, respectively), whereas the PDX-1-positive area was significantly increased in LC cases (P = 0.001) compared with the control. Furthermore, disorganization of pancreatic endocrine cells and nucleocytoplasmic translocation of PDX-1 were both seen in the LC subjects. CONCLUSIONS In LC, islets undergo hypertrophy and exhibit paradoxical expression of insulin and PDX-1. In the subjects autopsied, insulin expression was decreased, whereas expression of the pancreatic transcription factor PDX-1 was increased in LC. These results point to important distinctions between LC and T2DM.
Collapse
|
82
|
Hunter CS, Stein R. Characterization of an apparently novel β-cell line-enriched 80-88 kDa transcriptional activator of the MafA and Pdx1 genes. J Biol Chem 2012; 288:3795-803. [PMID: 23269676 DOI: 10.1074/jbc.m112.434282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MafA and Pdx1 represent critical transcriptional regulators required for the maintenance of pancreatic islet β-cell function. The in vivo β-cell-enriched expression pattern of these genes is principally directed by islet transcription factors binding within conserved Region 3 (base pairs (bp) -8118/-7750) of MafA and Area II (bp -2153/-1923) of the Pdx1 gene. Comprehensive mutational analysis of conserved MafA Region 3 revealed two new β-cell line-specific cis-activation elements, termed Site 4 (bp -7997 to -7988) and Site 12 (bp -7835 to -7826). Gel mobility and antibody super-shift analysis identified Pdx1 as the Site 4 binding factor, while an 80-88 kilodalton (kDa) β-cell line-enriched protein complex bound Site 12 and similar aligned nucleotides within Pdx1 Area II. The 80-88 kDa activator was also found in adult mouse islet extract. Strikingly, the molecular weight, DNA binding, and antibody recognition properties of this activator were unique when compared with all other key islet transcription factors tested, including Prox1 (83 kDa), Hnf1α (67 kDa), FoxA2 (48 kDa), MafA (46 kDa), Isl1 (44 kDa), Pdx1 (42 kDa), and Nkx2.2 (30 kDa). Collectively, these data define an apparently novel MafA Region 3 and Pdx1 Area II activator contributing to expression in β-cells.
Collapse
Affiliation(s)
- Chad S Hunter
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
83
|
Chun SY, Mack DL, Moorefield E, Oh SH, Kwon TG, Pettenati MJ, Yoo JJ, Coppi PD, Atala A, Soker S. Pdx1 and controlled culture conditions induced differentiation of human amniotic fluid-derived stem cells to insulin-producing clusters. J Tissue Eng Regen Med 2012; 9:540-9. [PMID: 23147868 DOI: 10.1002/term.1631] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/01/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
Abstract
This study investigated the differentiation of human amniotic fluid-derived stem cells (hAFSCs) into insulin-producing clusters in vitro. Adenovirally-delivered mouse Pdx1 (Ad-Pdx1) induced human Pdx1 expression in hAFSCs and enhanced the coordinated expression of downstream β-cell markers. When Ad-Pdx1-transduced hAFSCs were sequentially treated with activin A, bFGF and nicotinamide and the culture plate surface coated with poly-l-ornithine, the expression of islet-associated human mRNAs for Pdx1, Pax6, Ngn3 and insulin was increased. C-peptide ELISA confirmed that Ad-Pdx1-transduced hAFSCs processed and secreted insulin in a manner consistent with that pathway in pancreatic β-cells. To sustain the β-cell-like phenotype and investigate the effect of three-dimensional (3D) conformation on the differentiation of hAFSCs, Pdx1-transduced cells were encapsulated in alginate and cultured long-term under serum-free conditions. Over 2 weeks, partially differentiated hAFSC clusters increased in size and increased insulin secretion. Taken together, these data demonstrate that ectopic Pdx1 expression initiates pancreatic differentiation in hAFSCs and that a β-cell-like phenotype can be augmented by culture conditions that mimic the stromal components and 3D geometry associated with pancreatic islets.
Collapse
Affiliation(s)
- So Young Chun
- Joint Institute for Regenerative Medicine, Kyungpook National University Hospital, Daegu, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Takemitsu H, Yamamoto I, Lee P, Ohta T, Mori N, Arai T. cDNA cloning and mRNA expression of canine pancreatic and duodenum homeobox 1 (Pdx-1). Res Vet Sci 2012; 93:770-5. [DOI: 10.1016/j.rvsc.2011.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 10/18/2011] [Accepted: 11/02/2011] [Indexed: 11/27/2022]
|
85
|
Webb MA, Chen JJ, Illouz SC, Pollard CA, Dennison B, West KP, James RFL, Dennison AR. The impact of potential islet precursor cells on islet autotransplantation outcomes. Cell Transplant 2012; 22:1041-51. [PMID: 23007077 DOI: 10.3727/096368912x655046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Islet autotransplant patients represent excellent subjects to assess the posttransplant impact of islet precursors, as chronic pancreatitis (CP) causes an elevation of ductal cells, pancreatic precursors cells, and hormone-positive acinar cells. The relationship between these cell types and autograft outcomes should be more apparent than would be the case in the context of an allograft program with confounding immunological variables. To improve diabetic control following total pancreatectomy for CP, nonpurified islets were autotransplanted into the liver. Pancreas specimens were recovered from 23 patients and stained for antigens including: insulin, glucagon, cytokeratin 19, cytokeratin 7, and PDX-1. In line with previous reports, the prevalence of ductal cells, non-islet endocrine cells and non-islet PDX-1-expressing cells was significantly higher in CP glands compared with normal pancreata. When correlating follow-up data (i.e., fasting and stimulated C-peptide/glucose levels and HbA1c%) with pancreas immunoreactivity, high levels of ductal cells, non-islet PDX-1-positive cells, and non-islet glucagon-positive cells were associated with superior outcomes, detectable up to 2 years posttransplant. To conclude, the acinar parenchyma and ductal epithelium of the CP pancreas show an upregulation of both endocrine and pre-endocrine cell types, which appear to have a positive effect on islet graft outcomes in autotransplantation setting.
Collapse
Affiliation(s)
- M A Webb
- Department of Hepatobiliary Surgery, University Hospitals of Leicester, NHS Trust, Leicester General Hospital, Leicester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Villasenor A, Marty-Santos L, Dravis C, Fletcher P, Henkemeyer M, Cleaver O. EphB3 marks delaminating endocrine progenitor cells in the developing pancreas. Dev Dyn 2012; 241:1008-19. [PMID: 22434763 DOI: 10.1002/dvdy.23781] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Understanding the process by which pancreatic beta-cells acquire their "fate" is critical to the development of in vitro directed differentiation protocols for cell replacement therapies for diabetics. To date, these efforts are hampered by a paucity of markers that distinguish pancreatic endocrine cells at different stages of differentiation. RESULTS Here, we identify EphB3 as a novel pro-endocrine marker and use its expression to track delaminating islet lineages. First, we provide a detailed developmental expression profile for EphB3 and other EphB family members in the embryonic pancreas. We demonstrate that EphB3 transiently marks endocrine cells as they delaminate from the pancreatic epithelium, prior to their differentiation. Using a Tet-inducible EphB3(rtTA-lacZ) reporter line, we show that short-term pulse-labeled EphB3(+) cells co-express Pdx1, Nkx6.1, Ngn3, and Synaptophysin, but not insulin, glucagon, or other endocrine hormones. Prolonged labeling tracks EphB3(+) cells from their exit from the epithelium to their differentiation. CONCLUSIONS These studies demonstrate that pro-endocrine cell differentiation during late gestation, from delamination to maturation, takes approximately 2 days. Together, these data introduce EphB3 as a new biomarker to identify beta-cells at a critical step during their step-wise differentiation and define the timeframe of endocrine differentiation.
Collapse
Affiliation(s)
- Alethia Villasenor
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | | | |
Collapse
|
87
|
A fate map of the murine pancreas buds reveals a multipotent ventral foregut organ progenitor. PLoS One 2012; 7:e40707. [PMID: 22815796 PMCID: PMC3398925 DOI: 10.1371/journal.pone.0040707] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 06/12/2012] [Indexed: 11/23/2022] Open
Abstract
The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2–4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification.
Collapse
|
88
|
Chen C, Leavitt T, Sibley E. Intestinal Pdx1 mediates nutrient metabolism gene networks and maternal expression is essential for perinatal growth in mice. Biochem Biophys Res Commun 2012; 424:549-53. [PMID: 22771330 DOI: 10.1016/j.bbrc.2012.06.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 11/17/2022]
Abstract
The homeodomain transcription factor Pdx1 is essential for pancreas formation and functions in pancreatic islets cells to regulate genes involved in maintenance of glucose homeostasis. In order to investigate a role for Pdx1 in intestinal cells, we analyzed the functions and networks associated with genes differentially expressed by Pdx1 overexpression in human Caco-2 cells. In agreement with previous results for intestine isolated from mice with Pdx1 inactivation, functional analysis of genes differentially expressed with Pdx1 overexpression revealed functions significantly associated with nutrient metabolism. Similarly, network analysis examining the interactions among the differentially expressed genes revealed gene networks involved in lipid metabolism. Consistent with defects in maternal nutrient metabolism, mouse pups born to dams with intestine-specific Pdx1 inactivation are underweight and fail to thrive in the neonatal period compared to pups born to control dams. We conclude that Pdx1 mediates lipid metabolism gene networks in intestinal cells and that maternal expression is essential for perinatal growth in mice.
Collapse
Affiliation(s)
- Chin Chen
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | | | | |
Collapse
|
89
|
Cai Q, Brissova M, Reinert RB, Pan FC, Brahmachary P, Jeansson M, Shostak A, Radhika A, Poffenberger G, Quaggin SE, Jerome WG, Dumont DJ, Powers AC. Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation. Dev Biol 2012; 367:40-54. [PMID: 22546694 PMCID: PMC3391601 DOI: 10.1016/j.ydbio.2012.04.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 04/12/2012] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
There is a reciprocal interaction between pancreatic islet cells and vascular endothelial cells (EC) in which EC-derived signals promote islet cell differentiation and islet development while islet cell-derived angiogenic factors promote EC recruitment and extensive islet vascularization. To examine the role of angiogenic factors in the coordinated development of islets and their associated vessels, we used a "tet-on" inducible system (mice expressing rat insulin promoter-reverse tetracycline activator transgene and a tet-operon-angiogenic factor transgene) to increase the β cell production of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1 (Ang1), or angiopoietin-2 (Ang2) during islet cell differentiation and islet development. In VEGF-A overexpressing embryos, ECs began to accumulate around epithelial tubes residing in the central region of the developing pancreas (associated with endocrine cells) as early as embryonic day 12.5 (E12.5) and increased dramatically by E16.5. While α and β cells formed islet cell clusters in control embryos at E16.5, the increased EC population perturbed endocrine cell differentiation and islet cell clustering in VEGF-A overexpressing embryos. With continued overexpression of VEGF-A, α and β cells became scattered, remained adjacent to ductal structures, and never coalesced into islets, resulting in a reduction in β cell proliferation and β cell mass at postnatal day 1. A similar impact on islet morphology was observed when VEGF-A was overexpressed in β cells during the postnatal period. In contrast, increased expression of Ang1 or Ang2 in β cells in developing or adult islets did not alter islet differentiation, development, or morphology, but altered islet EC ultrastructure. These data indicate that (1) increased EC number does not promote, but actually impairs β cell proliferation and islet formation; (2) the level of VEGF-A production by islet endocrine cells is critical for islet vascularization during development and postnatally; (3) angiopoietin-Tie2 signaling in endothelial cells does not have a crucial role in the development or maintenance of islet vascularization.
Collapse
Affiliation(s)
- Qing Cai
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marcela Brissova
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Rachel B. Reinert
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Fong Cheng Pan
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Brahmachary
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marie Jeansson
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Aramandla Radhika
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Susan E. Quaggin
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - W. Gray Jerome
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel J. Dumont
- Division of Molecular and Cellular Biology Research, Sunnybrook Research Institute, Toronto, Ontario, Canada, M4N 3M5
| | - Alvin C. Powers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| |
Collapse
|
90
|
Gunasekaran U, Hudgens CW, Wright BT, Maulis MF, Gannon M. Differential regulation of embryonic and adult β cell replication. Cell Cycle 2012; 11:2431-42. [PMID: 22659844 PMCID: PMC3404874 DOI: 10.4161/cc.20545] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diabetes results from an inadequate functional β cell mass, either due to autoimmune destruction (Type 1 diabetes) or insulin resistance combined with β cell failure (Type 2 diabetes). Strategies to enhance β cell regeneration or increase cell proliferation could improve outcomes for patients with diabetes. Research conducted over the past several years has revealed that factors regulating embryonic β cell mass expansion differ from those regulating replication ofβ cells post-weaning. This article aims to compare and contrast factors known to control embryonic and postnatal β cell replication. In addition, we explore the possibility that connective tissue growth factor (CTGF) could increase adult β cell replication. We have already shown that CTGF is required for embryonicβ cell proliferation and is sufficient to induce replication of embryonic β cells. Here we examine whether adult β cell replication and expansion of β cell mass can be enhanced by increased CTGF expression in mature β cells.
Collapse
Affiliation(s)
- Uma Gunasekaran
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
91
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
92
|
Reprogramming of pancreatic exocrine cells towards a beta (β) cell character using Pdx1, Ngn3 and MafA. Biochem J 2012; 442:539-50. [PMID: 22150363 PMCID: PMC3286861 DOI: 10.1042/bj20111678] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pdx1 (pancreatic and duodenal homeobox 1), Ngn3 (neurogenin 3) and MafA (v-maf musculoaponeurotic fibrosarcoma oncogene family, protein A) have been reported to bring about the transdifferentiation of pancreatic exocrine cells to beta (β) cells in vivo. We have investigated the mechanism of this process using a standard in vitro model of pancreatic exocrine cells, the rat AR42j-B13 cell line. We constructed a new adenoviral vector encoding all three genes, called Ad-PNM (adenoviral Pdx1, Ngn3, MafA construct). When introduced into AR42j-B13 cells, Ad-PNM caused a rapid change to a flattened morphology and a cessation of cell division. The expression of exocrine markers is suppressed. Both insulin genes are up-regulated as well as a number of transcription factors normally characteristic of beta cells. At the chromatin level, histone tail modifications of the Pdx1, Ins1 (insulin 1) and Ins2 (insulin 2) gene promoters are shifted in a direction associated with gene activity, and the level of DNA CpG methylation is reduced at the Ins1 promoter. The transformed cells secrete insulin and are capable of relieving diabetes in streptozotocin-treated NOD-SCID (non-obese diabetic severe combined immunodeficiency) mice. However the transformation is not complete. The cells lack expression of several genes important for beta cell function and they do not show glucose-sensitive insulin secretion. We conclude that, for this exocrine cell model, although the transformation is dramatic, the reprogramming is not complete and lacks critical aspects of the beta cell phenotype.
Collapse
|
93
|
Kim B, Yoon BS, Moon JH, Kim J, Jun EK, Lee JH, Kim JS, Baik CS, Kim A, Whang KY, You S. Differentiation of human labia minora dermis-derived fibroblasts into insulin-producing cells. Exp Mol Med 2012; 44:26-35. [PMID: 22020533 DOI: 10.3858/emm.2012.44.1.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Recent evidence has suggested that human skin fibroblasts may represent a novel source of therapeutic stem cells. In this study, we report a 3-stage method to induce the differentiation of skin fibroblasts into insulin- producing cells (IPCs). In stage 1, we establish the isolation, expansion and characterization of mesenchymal stem cells from human labia minora dermis- derived fibroblasts (hLMDFs) (stage 1: MSC expansion). hLMDFs express the typical mesenchymal stem cell marker proteins and can differentiate into adipocytes, osteoblasts, chondrocytes or muscle cells. In stage 2, DMEM/F12 serum-free medium with ITS mix (insulin, transferrin, and selenite) is used to induce differentiation of hLMDFs into endoderm-like cells, as determined by the expression of the endoderm markers Sox17, Foxa2, and PDX1 (stage 2: mesenchymal-endoderm transition). In stage 3, cells in the mesenchymal- endoderm transition stage are treated with nicotinamide in order to further differentiate into self-assembled, 3-dimensional islet cell-like clusters that express multiple genes related to pancreatic β-cell development and function (stage 3: IPC). We also found that the transplantation of IPCs can normalize blood glucose levels and rescue glucose homeostasis in streptozotocin- induced diabetic mice. These results indicate that hLMDFs have the capacity to differentiate into functionally competent IPCs and represent a potential cell-based treatment for diabetes mellitus.
Collapse
Affiliation(s)
- Bona Kim
- Laboratory of Cell Function Regulation College of Life Sciences and Biotechnology Korea University Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Chen C, Fang R, Chou LC, Lowe AW, Sibley E. PDX1 regulation of FABP1 and novel target genes in human intestinal epithelial Caco-2 cells. Biochem Biophys Res Commun 2012; 423:183-7. [PMID: 22640736 DOI: 10.1016/j.bbrc.2012.05.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
Abstract
The transcription factor pancreatic and duodenal homeobox 1 (PDX1) plays an essential role in pancreatic development and in maintaining proper islet function via target gene regulation. Few intestinal PDX1 targets, however, have been described. We sought to define novel PDX1-regulated intestinal genes. Caco-2 human intestinal epithelial cells were engineered to overexpress PDX1 and gene expression profiles relative to control cells were assessed. Expression of 80 genes significantly increased while that of 49 genes significantly decreased more than 4-fold following PDX1 overexpression in differentiated Caco-2 cells. Analysis of the differentially regulated genes with known functional annotations revealed genes encoding transcription factors, growth factors, kinases, digestive glycosidases, nutrient transporters, nutrient binding proteins, and structural components. The gene for fatty acid binding protein 1, liver, FABP1, is repressed by PDX1 in Caco-2 cells. PDX1 overexpression in Caco-2 cells also results in repression of promoter activity driven by the 0.6kb FABP1 promoter. PDX1 regulation of promoter activity is consistent with the decrease in FABP1 RNA abundance resulting from PDX1 overexpression and identifies FABP1 as a candidate PDX1 target. PDX1 repression of FABP1, LCT, and SI suggests a role for PDX1 in patterning anterior intestinal development.
Collapse
Affiliation(s)
- Chin Chen
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA 94305-5208, United States
| | | | | | | | | |
Collapse
|
95
|
Xu CR, Zaret KS. Chromatin "pre-pattern" and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm. Nucleus 2012; 3:150-4. [PMID: 22555599 DOI: 10.4161/nucl.19321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding the basis for multipotency, whereby stem cells and other progenitors can differentiate into certain tissues and not others, provides insights into the mechanism of cell programming in development, homeostasis, and disease. We recently reported a screen of diverse chromatin marks to obtain clues about chromatin states in the multipotent embryonic endoderm. Genetic and pharmacologic tests of certain marks' function demonstrated that the relevant chromatin modifying factors modulate the fate choice for liver or pancreas induction in the endoderm. The information about chromatin states from embryonic studies can be used to predict lineage-specific developmental potential and chromatin modifiers to enhance particular cell fate transitions from stem cells.
Collapse
Affiliation(s)
- Cheng-Ran Xu
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
96
|
Du A, McCracken KW, Walp ER, Terry NA, Klein TJ, Han A, Wells JM, May CL. Arx is required for normal enteroendocrine cell development in mice and humans. Dev Biol 2012; 365:175-88. [PMID: 22387004 DOI: 10.1016/j.ydbio.2012.02.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 02/13/2012] [Accepted: 02/15/2012] [Indexed: 12/25/2022]
Abstract
Enteroendocrine cells of the gastrointestinal (GI) tract play a central role in metabolism, digestion, satiety and lipid absorption, yet their development remains poorly understood. Here we show that Arx, a homeodomain-containing transcription factor, is required for the normal development of mouse and human enteroendocrine cells. Arx expression is detected in a subset of Neurogenin3 (Ngn3)-positive endocrine progenitors and is also found in a subset of hormone-producing cells. In mice, removal of Arx from the developing endoderm results in a decrease of enteroendocrine cell types including gastrin-, glucagon/GLP-1-, CCK-, secretin-producing cell populations and an increase of somatostatin-expressing cells. This phenotype is also observed in mice with endocrine-progenitor-specific Arx ablation suggesting that Arx is required in the progenitor for enteroendocrine cell development. In addition, depletion of human ARX in developing human intestinal tissue results in a profound deficit in expression of the enteroendocrine cell markers CCK, secretin and glucagon while expression of a pan-intestinal epithelial marker, CDX2, and other non-endocrine markers remained unchanged. Taken together, our findings uncover a novel and conserved role of Arx in mammalian endocrine cell development and provide a potential cause for the chronic diarrhea seen in both humans and mice carrying Arx mutations.
Collapse
Affiliation(s)
- Aiping Du
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Chen C, Sibley E. Expression profiling identifies novel gene targets and functions for Pdx1 in the duodenum of mature mice. Am J Physiol Gastrointest Liver Physiol 2012; 302:G407-19. [PMID: 22135308 PMCID: PMC3287393 DOI: 10.1152/ajpgi.00314.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/28/2011] [Indexed: 01/31/2023]
Abstract
Transcription factor pancreatic and duodenal homeobox 1 (Pdx1) plays an essential role in the pancreas to regulate its development and maintain proper islet function. However, the functions of Pdx1 in mature small intestine are less known. We aimed to investigate the intestinal role of Pdx1 by profiling the expression of genes differentially regulated in response to inactivation of Pdx1 specifically in the intestinal epithelium. Pdx1 was conditionally inactivated in the intestinal epithelium of Pdx1(flox/flox);VilCre mice. Total RNA was isolated from the first 5 cm of the small intestine from mature Pdx1(flox/flox);VilCre and littermate control mice. Microarray analysis identified 86 probe sets representing 68 genes significantly upregulated or downregulated 1.5-fold or greater in Pdx(flox/flox);VilCre mice maintained under standard conditions. Ingenuity Pathway Analysis revealed that functions of the differentially expressed genes are significantly associated with metabolism of nutrients including lipids and iron. Network analysis examining the interactions among the differentially expressed genes further supports the notion that Pdx1 may modulate metabolism of lipids and iron from mature intestinal epithelium. Following forced oil feeding, Pdx1(flox/flox);VilCre mice showed diminished lipid staining in the duodenal epithelium and decreased serum triglyceride levels, indicating reduced lipid absorption compared with control duodenal epithelium. Blood samples from Pdx1(flox/flox);VilCre mice have significantly lower mean values for mean corpuscular volume and mean corpuscular hemoglobin, consistent with iron deficiency. The absence of nonheme iron in the villous epithelium and lamina propria of Pdx1(flox/flox);VilCre duodenum indicates that the duodenal epithelium lacking Pdx1 may have defects in importing iron through enterocytes, resulting in iron deficiency in Pdx1(flox/flox);VilCre mice.
Collapse
Affiliation(s)
- Chin Chen
- Dept. of Pediatrics, Stanford Univ. School of Medicine, Stanford, CA 94305-5208, USA.
| | | |
Collapse
|
98
|
Abstract
Diseases related to the pancreas are of highest importance in public health. It is anticipated that a detailed understanding of the molecular events that govern the embryonic development of this organ will have an immediate impact on clinical research relating to this issue. One major aim is the reconstruction of embryonic development in vitro with appropriate precursor cells, a second strategy is aimed at understanding the transdifferentiation of non-pancreatic into pancreatic tissue, and a third avenue is defined by the stimulation of the intrinsic ability of the pancreas to regenerate. Recent progress in developmental biology with respect to these different topics is reviewed in the present article. In addition, we also address evolutionary aspects of pancreas development, emphasizing the role of the South African clawed frog, Xenopus laevis, as an additional useful model system to study the molecular control of pancreas development.
Collapse
Affiliation(s)
- Tomas Pieler
- Georg-August-Universität Göttingen, Zentrum Biochemie und Molekulare Zellbiologie, Abteilung Entwicklungsbiochemie, Justus von Liebig Weg 11, 37077 Göttingen, Germany.
| | | |
Collapse
|
99
|
Potter LA, Choi E, Hipkens SB, Wright CVE, Magnuson MA. A recombinase-mediated cassette exchange-derived cyan fluorescent protein reporter allele for Pdx1. Genesis 2012; 50:384-92. [PMID: 21913313 DOI: 10.1002/dvg.20804] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 01/13/2023]
Abstract
Fluorescent protein (FP) reporter alleles are useful both for identifying and purifying specific cell populations in the mouse. Here, we report the generation of mouse embryonic stem cells that contain a pancreatic and duodenal homeobox 1 (Pdx1) loxed cassette acceptor (Pdx1(LCA)) allele and the use of recombinase-mediated cassette exchange to derive mice that contain a Pdx1(CFP) (Cerulean) reporter allele. Mice with this allele exhibited cyan fluorescence within the previously well-characterized Pdx1 expression domain in posterior foregut endoderm. Immunolabeling showed that endogenous Pdx1 was coexpressed with CFP at all time points examined. Furthermore, fluorescence-activated cell sorting was used to isolate CFP-positive cells from E11.5 and E18.5 embryonic tissues using both 405 and 445 nm lasers, although the latter resulted in a nearly 50-fold increase in emission intensity. The Pdx1(CFP) allele will enable the isolation of specific foregut endoderm and pancreatic cell populations, both alone and in combination with other FP reporter alleles.
Collapse
Affiliation(s)
- Leah A Potter
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0494, USA
| | | | | | | | | |
Collapse
|
100
|
Mastracci TL, Sussel L. The endocrine pancreas: insights into development, differentiation, and diabetes. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2012; 1:609-28. [PMID: 23799564 PMCID: PMC3420142 DOI: 10.1002/wdev.44] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the developing embryo, appropriate patterning of the endoderm fated to become pancreas requires the spatial and temporal coordination of soluble factors secreted by the surrounding tissues. Once pancreatic progenitor cells are specified in the developing gut tube epithelium, epithelial-mesenchymal interactions, as well as a cascade of transcription factors, subsequently delineate three distinct lineages, including endocrine, exocrine, and ductal cells. Simultaneous morphological changes, including branching, vascularization, and proximal organ development, also influence the process of specification and differentiation. Decades of research using mouse genetics have uncovered many of the key factors involved in pancreatic cell fate decisions. When pancreas development or islet cell functions go awry, due to mutations in genes important for proper organogenesis and development, the result can lead to a common pancreatic affliction, diabetes mellitus. Current treatments for diabetes are adequate but not curative. Therefore, researchers are utilizing the current understanding of normal embryonic pancreas development in vivo, to direct embryonic stem cells toward a pancreatic fate with the goal of transplanting these in vitro generated 'islets' into patients. Mimicking development in vitro has proven difficult; however, significant progress has been made and the current differentiation protocols are becoming more efficient. The continued partnership between developmental biologists and stem cell researchers will guarantee that the in vitro generation of insulin-producing β cells is a possible therapeutic option for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Lori Sussel
- Department of Genetics and Development, Columbia University
| |
Collapse
|