51
|
Ganot P, Tambutté E, Caminiti-Segonds N, Toullec G, Allemand D, Tambutté S. Ubiquitous macropinocytosis in anthozoans. eLife 2020; 9:50022. [PMID: 32039759 PMCID: PMC7032929 DOI: 10.7554/elife.50022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Gaëlle Toullec
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
52
|
Torao T, Mimura M, Oshima Y, Fujikawa K, Hasan M, Shimokawa T, Yamazaki N, Ando H, Ishida T, Fukuta T, Tanaka T, Kogure K. Characteristics of unique endocytosis induced by weak current for cytoplasmic drug delivery. Int J Pharm 2020; 576:119010. [DOI: 10.1016/j.ijpharm.2019.119010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/15/2022]
|
53
|
Voci S, Gagliardi A, Fresta M, Cosco D. Antitumor Features of Vegetal Protein-Based Nanotherapeutics. Pharmaceutics 2020; 12:E65. [PMID: 31952147 PMCID: PMC7023308 DOI: 10.3390/pharmaceutics12010065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
The introduction of nanotechnology into pharmaceutical application revolutionized the administration of antitumor drugs through the modulation of their accumulation in specific organs/body compartments, a decrease in their side-effects and their controlled release from innovative systems. The use of plant-derived proteins as innovative, safe and renewable raw materials to be used for the development of polymeric nanoparticles unlocked a new scenario in the drug delivery field. In particular, the reduced size of the colloidal systems combined with the peculiar properties of non-immunogenic polymers favored the characterization and evaluation of the pharmacological activity of the novel nanoformulations. The aim of this review is to describe the physico-chemical properties of nanoparticles composed of vegetal proteins used to retain and deliver anticancer drugs, together with the most important preparation methods and the pharmacological features of these potential nanomedicines.
Collapse
Affiliation(s)
- Silvia Voci
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario “S. Venuta”, Viale S. Venuta, I-88100 Catanzaro, Italy; (S.V.); (A.G.); (M.F.)
| |
Collapse
|
54
|
Francia V, Montizaan D, Salvati A. Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:338-353. [PMID: 32117671 PMCID: PMC7034226 DOI: 10.3762/bjnano.11.25] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/27/2020] [Indexed: 05/17/2023]
Abstract
Nano-sized materials have great potential as drug carriers for nanomedicine applications. Thanks to their size, they can exploit the cellular machinery to enter cells and be trafficked intracellularly, thus they can be used to overcome some of the cellular barriers to drug delivery. Nano-sized drug carriers of very different properties can be prepared, and their surface can be modified by the addition of targeting moieties to recognize specific cells. However, it is still difficult to understand how the material properties affect the subsequent interactions and outcomes at cellular level. As a consequence of this, designing targeted drugs remains a major challenge in drug delivery. Within this context, we discuss the current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell receptors, and the subsequent mechanisms cells use to internalize them. The factors affecting these initial events are discussed. Then, we briefly describe the different pathways of endocytosis in cells and illustrate with some examples the challenges in understanding how nanomaterial properties, such as size, charge, and shape, affect the mechanisms cells use for their internalization. Technical difficulties in characterizing these mechanisms are presented. A better understanding of the first interactions of nano-sized materials with cells will help to design nanomedicines with improved targeting.
Collapse
Affiliation(s)
- Valentina Francia
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Daphne Montizaan
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| | - Anna Salvati
- Groningen Research Institute of Pharmacy, University of Groningen, 9713AV Groningen, Netherlands
| |
Collapse
|
55
|
Rausch V, Hansen CG. The Hippo Pathway, YAP/TAZ, and the Plasma Membrane. Trends Cell Biol 2019; 30:32-48. [PMID: 31806419 DOI: 10.1016/j.tcb.2019.10.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane allows the cell to sense and adapt to changes in the extracellular environment by relaying external inputs via intracellular signaling networks. One central cellular signaling pathway is the Hippo pathway, which regulates homeostasis and plays chief roles in carcinogenesis and regenerative processes. Recent studies have found that mechanical stimuli and diffusible chemical components can regulate the Hippo pathway primarily through receptors embedded in the plasma membrane. Morphologically defined structures within the plasma membrane, such as cellular junctions, focal adhesions, primary cilia, caveolae, clathrin-coated pits, and plaques play additional key roles. Here, we discuss recent evidence highlighting the importance of these specialized plasma membrane domains in cellular feedback via the Hippo pathway.
Collapse
Affiliation(s)
- Valentina Rausch
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carsten G Hansen
- Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK; Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK.
| |
Collapse
|
56
|
Sengupta S, Rothenberg KE, Li H, Hoffman BD, Bursac N. Altering integrin engagement regulates membrane localization of K ir2.1 channels. J Cell Sci 2019; 132:jcs225383. [PMID: 31391240 PMCID: PMC6771140 DOI: 10.1242/jcs.225383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/31/2019] [Indexed: 12/26/2022] Open
Abstract
How ion channels localize and distribute on the cell membrane remains incompletely understood. We show that interventions that vary cell adhesion proteins and cell size also affect the membrane current density of inward-rectifier K+ channels (Kir2.1; encoded by KCNJ2) and profoundly alter the action potential shape of excitable cells. By using micropatterning to manipulate the localization and size of focal adhesions (FAs) in single HEK293 cells engineered to stably express Kir2.1 channels or in neonatal rat cardiomyocytes, we establish a robust linear correlation between FA coverage and the amplitude of Kir2.1 current at both the local and whole-cell levels. Confocal microscopy showed that Kir2.1 channels accumulate in membrane proximal to FAs. Selective pharmacological inhibition of key mediators of protein trafficking and the spatially dependent alterations in the dynamics of Kir2.1 fluorescent recovery after photobleaching revealed that the Kir2.1 channels are transported to the cell membrane uniformly, but are preferentially internalized by endocytosis at sites that are distal from FAs. Based on these results, we propose adhesion-regulated membrane localization of ion channels as a fundamental mechanism of controlling cellular electrophysiology via mechanochemical signals, independent of the direct ion channel mechanogating.
Collapse
Affiliation(s)
- Swarnali Sengupta
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Hanjun Li
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
57
|
Abstract
The vertebrate vasculature displays high organotypic specialization, with the structure and function of blood vessels catering to the specific needs of each tissue. A unique feature of the central nervous system (CNS) vasculature is the blood-brain barrier (BBB). The BBB regulates substance influx and efflux to maintain a homeostatic environment for proper brain function. Here, we review the development and cell biology of the BBB, focusing on the cellular and molecular regulation of barrier formation and the maintenance of the BBB through adulthood. We summarize unique features of CNS endothelial cells and highlight recent progress in and general principles of barrier regulation. Finally, we illustrate why a mechanistic understanding of the development and maintenance of the BBB could provide novel therapeutic opportunities for CNS drug delivery.
Collapse
Affiliation(s)
- Urs H Langen
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Swathi Ayloo
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Chenghua Gu
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
58
|
Hilgemann DW, Lin MJ, Fine M, Deisl C. On the existence of endocytosis driven by membrane phase separations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183007. [PMID: 31202864 DOI: 10.1016/j.bbamem.2019.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 01/15/2023]
Abstract
Large endocytic responses can occur rapidly in diverse cell types without dynamins, clathrin, or actin remodeling. Our experiments suggest that membrane phase separations are crucial with more ordered plasma membrane domains being internalized. Not only do these endocytic processes rely on coalescence of membrane domains, they are promoted by participation of membrane proteins in such domains, one important regulatory influence being palmitoylation. Membrane actin cytoskeleton in general resists membrane phase transitions, and its remodeling may play many roles. Besides membrane 'caging' and 'pinching' roles, typically ascribed to clathrin and dynamins, cytoskeleton remodeling may modify local membrane tension and buckling, as well as the presence and location of actin- and tension-free membrane patches. Endocytosis that depends on membrane phase separations becomes activated in metabolic stress and in response to Ca and PI3 kinase signaling. Internalized membrane traffics normally, and the secretory pathway eventually resupplies membrane to the plasmalemma or directs internalized membrane to other locations, including the extracellular space as exosomes. We describe here that endocytosis driven by membrane phase transitions is regulated by the same signaling mechanisms that regulate macropinocytosis, and it may play diverse roles in cells from nutrient assimilation to membrane recycling, cell migration, and the initiation of quiescent or hibernating cell states. Membrane ordering and phase separations have been shown to promote endocytosis in diverse cell types, including fibroblasts, myocytes, glial cells, and immune cells. We propose that clathrin/dynamin-independent endocytosis represents a continuum of related mechanisms with variable but universal dependence on membrane ordering and actin remodeling. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Donald W Hilgemann
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA.
| | - Mei-Jung Lin
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Michael Fine
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| | - Christine Deisl
- University of Texas Southwestern Medical Center, Department of Physiology, 5323 Harry Hines Boulevard, Dallas, TX 75235-9040, USA
| |
Collapse
|
59
|
Torriani G, Mayor J, Zimmer G, Kunz S, Rothenberger S, Engler O. Macropinocytosis contributes to hantavirus entry into human airway epithelial cells. Virology 2019; 531:57-68. [PMID: 30852272 DOI: 10.1016/j.virol.2019.02.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 01/01/2023]
Abstract
Hantaviruses are emerging rodent-borne negative-strand RNA viruses associated with severe human diseases. Zoonotic transmission occurs via aerosols of contaminated rodent excreta and cells of the human respiratory epithelium represent likely early targets. Here we investigated cellular factors involved in entry of the pathogenic Old and New World hantaviruses Hantaan virus (HTNV) and Andes virus (ANDV) into human respiratory epithelial cells. Screening of a kinase inhibitor library using a biocontained recombinant vesicular stomatitis virus pseudotype platform revealed differential requirement for host kinases for HTNV and ANDV entry and provided first hints for an involvement of macropinocytosis. Examination of a selected panel of well-defined inhibitors of endocytosis confirmed that both HTNV and ANDV enter human respiratory epithelial cells via a pathway that critically depends on sodium proton exchangers and actin, hallmarks of macropinocytosis. However, HTNV and ANDV differed in their individual requirements for regulatory factors of macropinocytosis, indicating virus-specific differences.
Collapse
Affiliation(s)
- Giulia Torriani
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland
| | - Jennifer Mayor
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland; Spiez Laboratory, CH-3700 Spiez, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), CH-3147 Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Stefan Kunz
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland.
| | - Sylvia Rothenberger
- Institute of Microbiology, University Hospital Center and University of Lausanne, Rue du Bugnon 48, CH-1011 Lausanne, Switzerland; Spiez Laboratory, CH-3700 Spiez, Switzerland.
| | | |
Collapse
|
60
|
Takeuchi I, Kanno Y, Uchiro H, Makino K. Polyborane-encapsulated PEGylated Liposomes Prepared Using Post-insertion Technique for Boron Neutron Capture Therapy. J Oleo Sci 2019; 68:1261-1270. [DOI: 10.5650/jos.ess19218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Issei Takeuchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Center for Drug Delivery Research, Tokyo University of Science
| | - Yuudai Kanno
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Hiromi Uchiro
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Center for Drug Delivery Research, Tokyo University of Science
| | - Kimiko Makino
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
- Center for Drug Delivery Research, Tokyo University of Science
| |
Collapse
|
61
|
Rausch V, Bostrom JR, Park J, Bravo IR, Feng Y, Hay DC, Link BA, Hansen CG. The Hippo Pathway Regulates Caveolae Expression and Mediates Flow Response via Caveolae. Curr Biol 2018; 29:242-255.e6. [PMID: 30595521 PMCID: PMC6345631 DOI: 10.1016/j.cub.2018.11.066] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/27/2018] [Accepted: 11/28/2018] [Indexed: 12/11/2022]
Abstract
The Hippo pathway plays major roles in development, regeneration, and cancer. Its activity is tightly regulated by both diffusible chemical ligands and mechanical stimuli. The pathway consists of a series of kinases that can control the sub-cellular localization and stability of YAP or TAZ, homologous transcriptional co-factors. Caveolae, small (60–100 nm) bulb-like invaginations of the plasma membrane, are comprised predominantly of caveolin and cavin proteins and can respond to mechanical stimuli. Here, we show that YAP/TAZ, the major transcriptional mediators of the Hippo pathway, are critical for expression of caveolae components and therefore caveolae formation in both mammalian cells and zebrafish. In essence, without YAP/TAZ, the cell loses an entire organelle. CAVEOLIN1 and CAVIN1, the two essential caveolar genes, are direct target genes of YAP/TAZ, regulated via TEA domain (TEAD) transcription factors. Notably, YAP/TAZ become nuclear enriched and facilitate target gene transcription in cells with diminished levels of caveolae. Furthermore, caveolar-mediated shear stress response activates YAP/TAZ. These data link caveolae to Hippo signaling in the context of cellular responses to mechanical stimuli and suggest activity-based feedback regulation between components of caveolae and the outputs of the Hippo pathway. YAP/TAZ are critical for CAVIN1 and CAVEOLIN1 expression and caveolae formation The essential caveolar genes CAVIN1 and CAVEOLIN1 are direct YAP/TAZ-TEAD target genes YAP/TAZ are hyperactivated in caveolae-deficient cells Caveolae facilitate YAP/TAZ-mediated shear stress response
Collapse
Affiliation(s)
- Valentina Rausch
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Jonathan R Bostrom
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jiwon Park
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Isabel R Bravo
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Yi Feng
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh bioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Brian A Link
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carsten G Hansen
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh bioQuarter, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
62
|
Lambert L, Dubayle D, Fafouri A, Herzog E, Csaba Z, Dournaud P, El Mestikawy S, Bernard V. Endocytosis of Activated Muscarinic m2 Receptor (m2R) in Live Mouse Hippocampal Neurons Occurs via a Clathrin-Dependent Pathway. Front Cell Neurosci 2018; 12:450. [PMID: 30555302 PMCID: PMC6283979 DOI: 10.3389/fncel.2018.00450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/07/2018] [Indexed: 02/02/2023] Open
Abstract
Our aim was to examine the dynamics of the muscarinic m2 receptor (m2R), a G-protein coupled receptor (GPCR), after agonist activation in living hippocampal neurons, and especially clathrin dependency endocytosis. We have previously shown that the m2R undergoes agonist-induced internalization in vivo. However, the nature of the endocytotic pathway used by m2R after activation is still unknown in living neurons. Using live cell imaging and quantitative analyses, we have monitored the effect of stimulation on the fate of the membrane-bound m2R and on its redistribution in intraneuronal compartments. Shortly (6 min) after activation, m2R is internalized into clathrin immunopositive structures. Furthermore, after clathrin-dependent endocytosis, m2R associates with early and late endosomes and with subcellular organelles involved in degradation. Together, these results provide, for the first time, a description of m2R trafficking in living neurons and prove that m2R undergoes clathrin-dependent endocytosis before being degraded.
Collapse
Affiliation(s)
- Lisa Lambert
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | - David Dubayle
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Université Paris Descartes - CNRS UMR 8119, Centre de Neurophysique, Physiologie et Pathologie, Paris, France
| | - Assia Fafouri
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Etienne Herzog
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Interdisciplinary Institute for Neuroscience, University Bordeaux, UMR 5297, Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS, UMR 5297, Bordeaux, France
| | - Zsolt Csaba
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM U1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Salah El Mestikawy
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France.,Department of Psychiatry, Douglas Hospital Research Center, McGill University, Montréal, QC, Canada
| | - Véronique Bernard
- Sorbonne Université, Université Pierre et Marie Curie UM 119 - CNRS UMR 8246 - INSERM U1130, Neurosciences Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| |
Collapse
|
63
|
Petrova V, Eva R. The Virtuous Cycle of Axon Growth: Axonal Transport of Growth-Promoting Machinery as an Intrinsic Determinant of Axon Regeneration. Dev Neurobiol 2018; 78:898-925. [PMID: 29989351 DOI: 10.1002/dneu.22608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 02/02/2023]
Abstract
Injury to the brain and spinal cord has devastating consequences because adult central nervous system (CNS) axons fail to regenerate. Injury to the peripheral nervous system (PNS) has a better prognosis, because adult PNS neurons support robust axon regeneration over long distances. CNS axons have some regenerative capacity during development, but this is lost with maturity. Two reasons for the failure of CNS regeneration are extrinsic inhibitory molecules, and a weak intrinsic capacity for growth. Extrinsic inhibitory molecules have been well characterized, but less is known about the neuron-intrinsic mechanisms which prevent axon re-growth. Key signaling pathways and genetic/epigenetic factors have been identified which can enhance regenerative capacity, but the precise cellular mechanisms mediating their actions have not been characterized. Recent studies suggest that an important prerequisite for regeneration is an efficient supply of growth-promoting machinery to the axon; however, this appears to be lacking from non-regenerative axons in the adult CNS. In the first part of this review, we summarize the evidence linking axon transport to axon regeneration. We discuss the developmental decline in axon regeneration capacity in the CNS, and comment on how this is paralleled by a similar decline in the selective axonal transport of regeneration-associated receptors such as integrins and growth factor receptors. In the second part, we discuss the mechanisms regulating selective polarized transport within neurons, how these relate to the intrinsic control of axon regeneration, and whether they can be targeted to enhance regenerative capacity. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Veselina Petrova
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| | - Richard Eva
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 OPY, United Kingdom
| |
Collapse
|
64
|
Kimura N, Yanagisawa K. Traffic jam hypothesis: Relationship between endocytic dysfunction and Alzheimer's disease. Neurochem Int 2018; 119:35-41. [DOI: 10.1016/j.neuint.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 01/07/2023]
|
65
|
Wang L, Miller SE, Yuan F. Ultrastructural Analysis of Vesicular Transport in Electrotransfection. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:553-563. [PMID: 30334512 PMCID: PMC6196718 DOI: 10.1017/s143192761801509x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Emerging evidence from various studies indicates that plasmid DNA (pDNA) is internalized by cells through an endocytosis-like process when it is used for electrotransfection. To provide morphological evidence of the process, we investigated ultrastructures in cells that were associated with the electrotransfected pDNA, using immunoelectron microscopy. The results demonstrate that four endocytic pathways are involved in the uptake of the pDNA, including caveolae- and clathrin-mediated endocytosis, macropinocytosis, and the clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartment (CLIC/GEEC) pathway. Among them, macropinocytosis is the most common pathway utilized by cells having various pDNA uptake capacities, and the CLIC/GEEC pathway is observed primarily in human umbilical vein endothelial cells. Quantitatively, the endocytic pathways are more active in easy-to-transfect cells than in hard-to-transfect ones. Taken together, our data provide ultrastructural evidence showing that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
66
|
Trovato MC, Andronico D, Sciacchitano S, Ruggeri RM, Picerno I, Di Pietro A, Visalli G. Nanostructures: between natural environment and medical practice. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:295-307. [PMID: 30205650 DOI: 10.1515/reveh-2017-0036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Nanoparticles (NPs) are small structures under 100 nm in dimension. Interrelationships among the morphological parameters and toxicity of NPs have been the focus of several investigations that assessed potential health risk in environmentally-exposed subjects and the realistic uses of NPs in medical practice. In the current review, we provide a summary of the cellular mechanisms of membrane-mediated transport, including old and novel molecules that transport nanostructures across cellular membranes. The effects of geochemical exposure to natural NPs are evaluated through epidemiological data and cancerous pathways activated by Fe2+ NPs. Specifically, we discuss screening for papillary thyroid carcinomas in the inhabitants of the Sicilian volcanic area surrounding Mount Etna to compare the incidence of thyroid carcinoma in this population. Lastly, considering the increased production of carbon nanotubes (CNTs), we examine the toxicity and potential use of these engineered NPs in drug delivery of an extensive amount of therapeutic and imaging molecules (theranosis) that can be conjugated to CNTs.
Collapse
Affiliation(s)
- Maria Concetta Trovato
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Daniele Andronico
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo, Sezione di Catania, Piazza Roma 2, Catania, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena n. 324, Rome, Italy
- Laboratorio di Ricerca Biomedica, Fondazione Università Niccolò Cusano per la Ricerca Medico Scientifica, Via Don Carlo Gnocchi 3, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Isa Picerno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| |
Collapse
|
67
|
Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjani S, Baradaran B, Dolatabadi JEN, Hamblin MR. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. APPLIED MATERIALS TODAY 2018; 12:177-190. [PMID: 30511014 PMCID: PMC6269116 DOI: 10.1016/j.apmt.2018.05.002] [Citation(s) in RCA: 297] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Drug delivery systems for cancer chemotherapy are employed to improve the effectiveness and decrease the side-effects of highly toxic drugs. Most chemotherapy agents have indiscriminate cytotoxicity that affects normal, as well as cancer cells. To overcome these problems, new more efficient nanosystems for drug delivery are increasingly being investigated. Polyamidoamine (PAMAM) dendrimers are an example of a versatile and reproducible type of nanocarrier that can be loaded with drugs, and modified by attaching target-specific ligands that recognize receptors that are over-expressed on cancer cells. PAMAM dendrimers with a high density of cationic charges display electrostatic interactions with nucleic acids (DNA, siRNA, miRNA, etc.), creating dendriplexes that can preserve the nucleic acids from degradation. Dendrimers are prepared by conducting several successive "generations" of synthetic reactions so their size can be easily controlled and they have good uniformity. Dendrimers are particularly well-suited to co-delivery applications (simultaneous delivery of drugs and/or genes). In the current review, we discuss dendrimer-based targeted delivery of drugs/genes and co-delivery systems mainly for cancer therapy.
Collapse
Affiliation(s)
- Fereydoon Abedi-Gaballu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Yekta
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
68
|
Zhang H, Wang Z, Xie L, Zhang Y, Deng T, Li J, Liu J, Xiong W, Zhang L, Zhang L, Peng B, He L, Ye M, Hu X, Tan W. Molecular Recognition and In-Vitro-Targeted Inhibition of Renal Cell Carcinoma Using a DNA Aptamer. MOLECULAR THERAPY-NUCLEIC ACIDS 2018; 12:758-768. [PMID: 30141409 PMCID: PMC6108068 DOI: 10.1016/j.omtn.2018.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 01/12/2023]
Abstract
Renal cell carcinoma (RCC) is the most common malignant tumor of the urinary system, and it has a high frequency of local invasion and distant metastasis. Although multiple advances have been made in the diagnosis and therapy of RCC, the vast majority of patients with metastatic RCC remain incurable. In this study, an aptamer named SW-4 against RCC 786-O cells was identified from a known sequence pool. The identified aptamer exhibited high binding affinity for target cells with dissociation constants in the nanomolar range. Binding analysis revealed that SW-4 only bound to RCC 786-O cells, but not HEK293T cells or human proximal tubular HK-2 cells, indicating that SW-4 has excellent binding selectivity. By sequence optimization, the 26-nt truncated SW-4b demonstrated improved binding affinity, and it was internalized into target cells via caveolae-mediated endocytosis in a temperature-dependent manner. Furthermore, fluorescence imaging confirmed that SW-4b accumulated at tumor sites in 786-O xenograft nude mice models and specifically recognized clinical RCC tissues. Meanwhile, SW-4b inhibited proliferation of 786-O cells by arresting cell cycle progression at the S phase. Taken together, these results indicate that SW-4b is a potential candidate for development into a novel tool for diagnosis and targeted therapy of RCC.
Collapse
Affiliation(s)
- Hui Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Zhibo Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Lin Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Yibin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Jianglin Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, Hunan 410078, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lei Zhang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China
| | - Leye He
- Department of Urology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China.
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha 410082, China.
| |
Collapse
|
69
|
Yoshida A, Sakai N, Uekusa Y, Imaoka Y, Itagaki Y, Suzuki Y, Yoshimura SH. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biol 2018; 16:e2004786. [PMID: 29723197 PMCID: PMC5953504 DOI: 10.1371/journal.pbio.2004786] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. Cells communicate with their environments via the plasma membrane and various membrane proteins. Clathrin-mediated endocytosis (CME) plays a central role in such communication and proceeds with a series of multiprotein assembly, deformation of the plasma membrane, and production of a membrane vesicle that delivers extracellular signaling molecules into the cytoplasm. In this study, we utilized our home-built correlative imaging system comprising high-speed atomic force microscopy (HS-AFM) and confocal fluorescence microscopy to simultaneously image morphological changes of the plasma membrane and protein localization during CME in a living cell. The results revealed a tight correlation between the size of the pit and the amount of clathrin assembled. Actin dynamics play multiple roles in the assembly, maturation, and closing phases of the process, and affects membrane morphology, suggesting a close relationship between endocytosis and dynamic events at the cell cortex. Knock down of dynamin also affected the closing motion of the pit and showed functional correlation with actin.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Yuka Imaoka
- R&D Group, Olympus Corporation, Hachioji, Japan
| | | | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
70
|
Haqqani AS, Delaney CE, Brunette E, Baumann E, Farrington GK, Sisk W, Eldredge J, Ding W, Tremblay TL, Stanimirovic DB. Endosomal trafficking regulates receptor-mediated transcytosis of antibodies across the blood brain barrier. J Cereb Blood Flow Metab 2018; 38:727-740. [PMID: 29140158 PMCID: PMC5888858 DOI: 10.1177/0271678x17740031] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Current methods for examining antibody trafficking are either non-quantitative such as immunocytochemistry or require antibody labeling with tracers. We have developed a multiplexed quantitative method for antibody 'tracking' in endosomal compartments of brain endothelial cells. Rat brain endothelial cells were co-incubated with blood-brain barrier (BBB)-crossing FC5, monovalent FC5Fc or bivalent FC5Fc fusion antibodies and control antibodies. Endosomes were separated using sucrose-density gradient ultracentrifugation and analyzed using multiplexed mass spectrometry to simultaneously quantify endosomal markers, receptor-mediated transcytosis (RMT) receptors and the co-incubated antibodies in each fraction. The quantitation showed that markers of early endosomes were enriched in high-density fractions (HDF), whereas markers of late endosomes and lysosomes were enriched in low-density fractions (LDF). RMT receptors, including transferrin receptor, showed a profile similar to that of early endosome markers. The in vitro BBB transcytosis rates of antibodies were directly proportional to their partition into early endosome fractions of brain endothelial cells. Addition of the Fc domain resulted in facilitated antibody 'redistribution' from LDF into HDF and additionally into multivesicular bodies (MVB). Sorting of various FC5 antibody formats away from late endosomes and lysosomes and into early endosomes and a subset of MVB results in increased antibody transcytosis at the abluminal side of the BBB.
Collapse
Affiliation(s)
- Arsalan S Haqqani
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | - Christie E Delaney
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | - Eric Brunette
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | - Ewa Baumann
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | | | - William Sisk
- 2 2191 Biogen Inc ., Cambridge Center, Cambridge, MA, USA
| | - John Eldredge
- 2 2191 Biogen Inc ., Cambridge Center, Cambridge, MA, USA
| | - Wen Ding
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | - Tammy-Lynn Tremblay
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| | - Danica B Stanimirovic
- 1 National Research Council of Canada, Human Health Therapeutics Portfolio, Ottawa, ON, Canada
| |
Collapse
|
71
|
Scheidel N, Kennedy J, Blacque OE. Endosome maturation factors Rabenosyn-5/VPS45 and caveolin-1 regulate ciliary membrane and polycystin-2 homeostasis. EMBO J 2018; 37:embj.201798248. [PMID: 29572244 DOI: 10.15252/embj.201798248] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 02/08/2018] [Accepted: 02/16/2018] [Indexed: 12/24/2022] Open
Abstract
Primary cilium structure and function relies on control of ciliary membrane homeostasis, regulated by membrane trafficking processes that deliver and retrieve ciliary components at the periciliary membrane. However, the molecular mechanisms controlling ciliary membrane establishment and maintenance, especially in relation to endocytosis, remain poorly understood. Here, using Caenorhabditis elegans, we describe closely linked functions for early endosome (EE) maturation factors RABS-5 (Rabenosyn-5) and VPS-45 (VPS45) in regulating cilium length and morphology, ciliary and periciliary membrane volume, and ciliary signalling-related sensory behaviour. We demonstrate that RABS-5 and VPS-45 control periciliary vesicle number and levels of select EE/endocytic markers (WDFY-2, CAV-1) and the ciliopathy membrane receptor PKD-2 (polycystin-2). Moreover, we show that CAV-1 (caveolin-1) also controls PKD-2 ciliary levels and associated sensory behaviour. These data link RABS-5 and VPS-45 ciliary functions to the processing of periciliary-derived endocytic vesicles and regulation of ciliary membrane homeostasis. Our findings also provide insight into the regulation of PKD-2 ciliary levels via integrated endosomal sorting and CAV-1-mediated endocytosis.
Collapse
Affiliation(s)
- Noémie Scheidel
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Julie Kennedy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Oliver E Blacque
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
72
|
Zhao J, Stenzel MH. Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 2018. [DOI: 10.1039/c7py01603d] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Knowledge of the interactions between nanoparticles (NPs) and cell membranes is of great importance for the design of safe and efficient nanomedicines.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemical Engineering
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design
- The University of New South Wales
- Sydney
- Australia
- School of Chemistry
| |
Collapse
|
73
|
Ferreira APA, Boucrot E. Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends Cell Biol 2017; 28:188-200. [PMID: 29241687 DOI: 10.1016/j.tcb.2017.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Clathrin-independent endocytosis (CIE) mediates the cellular uptake of many extracellular ligands, receptors, and pathogens, including several life-threatening bacterial toxins and viruses. So far, our understanding of CIE carrier formation has lagged behind that of clathrin-coated vesicles. Impediments have been the imprecise definition of some CIE pathways, the lack of specific cargoes being transported and of exclusive cytosolic markers and regulators. Notwithstanding these limitations, three distinct molecular mechanisms by which CIE carriers form can be defined. Cargo capture by cytosolic proteins is the main mechanism used by fast endophilin-mediated endocytosis (FEME) and interleukin 2 receptor (IL-2R) endocytosis. Acute signaling-induced membrane remodeling drives macropinocytosis. Finally, extracellular lipid or cargo clustering by the glycolipid-lectin (GL-Lect) hypothesis mediates the uptake of Shiga and cholera toxins and receptors by the CLIC/GEEC pathway. Here, we review these mechanisms and highlight current gaps in knowledge that will need to be addressed to complete our understanding of CIE.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
74
|
Pernal S, Wu VM, Uskoković V. Hydroxyapatite as a Vehicle for the Selective Effect of Superparamagnetic Iron Oxide Nanoparticles against Human Glioblastoma Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:39283-39302. [PMID: 29058880 PMCID: PMC5796653 DOI: 10.1021/acsami.7b15116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite the early promises of magnetic hyperthermia (MH) as a method for treating cancer, it has been stagnating in the past decade. Some of the reasons for the low effectiveness of superparamagnetic nanoparticles (SPIONs) in MH treatments include (a) low uptake in cancer cells; (b) generation of reactive oxygen species that cause harm to the healthy cells; (c) undeveloped targeting potential; and (d) lack of temperature sensitivity between cancer cells and healthy cells. Here we show that healthy cells, including human mesenchymal stem cells (MSCs) and primary mouse kidney and lung fibroblasts, display an unfavorably increased uptake of SPIONs compared to human brain cancer cells (E297 and U87) and mouse osteosarcomas cells (K7M2). Hydroxyapatite (HAP), the mineral component of our bones, may offer a solution to this unfavorably selective SPION delivery. HAP nanoparticles are commended not only for their exceptional biocompatibility but also for the convenience of their use as an intracellular delivery agent. Here we demonstrate that dispersing SPIONs in HAP using a wet synthesis method could increase the uptake in cancer cells and minimize the risk to healthy cells. Specifically, HAP/SPION nanocomposites retain the superparamagnetic nature of SPIONs, increase the uptake ratio between U87 human brain cancer cells and human MSCs versus their SPION counterparts, reduce migration in a primary brain cancer spheroid model compared to the control, reduce brain cancer cell viability compared to the treatment with SPIONs alone, and retain the viability of healthy human MSCs. A functional synergy between the two components of the nanocomposites was established; as a result, the cancer versus healthy cell (U87/MSC) selectivity in terms of both the uptake and the toxicity was higher for the composite than for SPIONs or HAP alone, allowing it to be damaging to cancer cells and harmless to the healthy ones. The analysis of actin cytoskeleton order at the microscale revealed that healthy MSCs and primary cancer cells after the uptake of SPIONs display reduced and increased anisotropy in their cytoskeletal arrangement, respectively. In contrast, the uptake of SPION/HAP nanocomposites increased the cytoskeletal anisotropy of both the healthy MSCs and the primary cancer cells. In spite of the moderate specific magnetization of HAP/SPION nanohybrids, reaching 15 emu/g for the 28.6 wt % SPION-containing composite, the cancer cell treatment in an alternating magnetic field resulted in an intense hyperthermia effect that increased the temperature by ca. 1 °C per minute of exposure and reduced the cell population treated for 30 min by more than 50%, while leaving the control populations unharmed. These findings on nanocomposites of HAP and SPIONs may open a new avenue for cancer therapies that utilize MH.
Collapse
Affiliation(s)
- Sebastian Pernal
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Irvine, California 92618-1908, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, Irvine, California 92618-1908, United States
| |
Collapse
|
75
|
Lokau J, Agthe M, Flynn CM, Garbers C. Proteolytic control of Interleukin-11 and Interleukin-6 biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
77
|
Du A, Huang S, Zhao X, Feng K, Zhang S, Huang J, Miao X, Baggi F, Ostrom RS, Zhang Y, Chen X, Xu C. Suppression of CHRN endocytosis by carbonic anhydrase CAR3 in the pathogenesis of myasthenia gravis. Autophagy 2017; 13:1981-1994. [PMID: 28933591 PMCID: PMC5788490 DOI: 10.1080/15548627.2017.1375633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction manifested as fatigable muscle weakness, which is typically caused by pathogenic autoantibodies against postsynaptic CHRN/AChR (cholinergic receptor nicotinic) in the endplate of skeletal muscle. Our previous studies have identified CA3 (carbonic anhydrase 3) as a specific protein insufficient in skeletal muscle from myasthenia gravis patients. In this study, we investigated the underlying mechanism of how CA3 insufficiency might contribute to myasthenia gravis. Using an experimental autoimmune myasthenia gravis animal model and the skeletal muscle cell C2C12, we find that inhibition of CAR3 (the mouse homolog of CA3) promotes CHRN internalization via a lipid raft-mediated pathway, leading to accelerated degradation of postsynaptic CHRN. Activation of CAR3 reduces CHRN degradation by suppressing receptor endocytosis. CAR3 exerts this effect by suppressing chaperone-assisted selective autophagy via interaction with BAG3 (BCL2-associated athanogene 3) and by dampening endoplasmic reticulum stress. Collectively, our study illustrates that skeletal muscle cell CAR3 is critical for CHRN homeostasis in the neuromuscular junction, and its deficiency leads to accelerated degradation of CHRN and development of myasthenia gravis, potentially revealing a novel therapeutic approach for this disorder.
Collapse
Affiliation(s)
- Ailian Du
- a Department of Neurology, Tongren Hospital , Shanghai Jiao Tong University School of Medicine (SJTUSM) , Shanghai , China
| | - Shiqian Huang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaonan Zhao
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Kuan Feng
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Shuangyan Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Jiefang Huang
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiang Miao
- c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Fulvio Baggi
- d Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione Istituto Neurologico "Carlo Besta" , Milan , Italy
| | - Rennolds S Ostrom
- e Department of Biomedical and Pharmaceutical Sciences , Chapman University School of Pharmacy , Irvine , CA , USA
| | - Yanyun Zhang
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| | - Xiangjun Chen
- f Department of Neurology , Fudan University Huashan Hospital, and Institute of Neurology, Fudan University , Shanghai , China
| | - Congfeng Xu
- b Shanghai Institute of Immunology, Institutes of Medical Sciences , Shanghai Jiao Tong University School of Medicine , Shanghai , China.,c Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & SJTUSM , Shanghai , China
| |
Collapse
|
78
|
Kokkinopoulou M, Simon J, Landfester K, Mailänder V, Lieberwirth I. Visualization of the protein corona: towards a biomolecular understanding of nanoparticle-cell-interactions. NANOSCALE 2017; 9:8858-8870. [PMID: 28632260 DOI: 10.1039/c7nr02977b] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The use of nanocarriers in biology and medicine is complicated by the current need to understand how nanoparticles interact in complex biological surroundings. When nanocarriers come into contact with serum, proteins immediately adsorb onto their surface, forming a protein corona which defines their biological identity. Although the composition of the protein corona has been widely determined by proteomics, its morphology still remains unclear. In this study we show for the first time the morphology of the protein corona using transmission electron microscopy. We are able to demonstrate that the protein corona is not, as commonly supposed, a dense, layered shell coating the nanoparticle, but an undefined, loose network of proteins. Additionally, we are now able to visualize and discriminate between the soft and hard corona using centrifugation-based separation techniques together with proteomic characterization. The protein composition of the ∼15 nm hard corona strongly depends on the surface chemistry of the respective nanomaterial, thus further affecting cellular uptake and intracellular trafficking. Large diameter protein corona resulting from pre-incubation with soft corona or Apo-A1 inhibits cellular uptake, confirming the stealth-effect mechanism. In summary, the knowledge on protein corona formation, composition and morphology is essential to design therapeutic effective nanoparticle systems.
Collapse
Affiliation(s)
- Maria Kokkinopoulou
- Max Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | | | | | | | | |
Collapse
|
79
|
Deubiquitylating enzymes in receptor endocytosis and trafficking. Biochem J 2017; 473:4507-4525. [PMID: 27941029 DOI: 10.1042/bcj20160826] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/25/2022]
Abstract
In recent times, our knowledge of the roles ubiquitin plays in multiple cellular processes has expanded exponentially, with one example being the role of ubiquitin in receptor endocytosis and trafficking. This has prompted a multitude of studies examining how the different machinery involved in the addition and removal of ubiquitin can influence this process. Multiple deubiquitylating enzymes (DUBs) have been implicated either in facilitating receptor endocytosis and lysosomal degradation or in rescuing receptor levels by preventing endocytosis and/or promoting recycling to the plasma membrane. In this review, we will discuss in detail what is currently known about the role of DUBs in regulating the endocytosis of various transmembrane receptors and ion channels. We will also expand upon the role DUBs play in receptor sorting at the multivesicular body to determine whether a receptor is recycled or trafficked to the lysosome for degradation. Finally, we will briefly discuss how the DUBs implicated in these processes may contribute to the pathogenesis of a range of diseases, and thus the potential these have as therapeutic targets.
Collapse
|
80
|
Delpeut S, Sisson G, Black KM, Richardson CD. Measles Virus Enters Breast and Colon Cancer Cell Lines through a PVRL4-Mediated Macropinocytosis Pathway. J Virol 2017; 91:e02191-16. [PMID: 28250131 PMCID: PMC5411587 DOI: 10.1128/jvi.02191-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy.IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells.
Collapse
Affiliation(s)
- Sebastien Delpeut
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
| | - Gary Sisson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Karen M Black
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Christopher D Richardson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Canadian Centre for Vaccinology, IWK Health Centre, Goldbloom Pavilion, Halifax, Nova Scotia, Canada
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
81
|
Grigorov B, Reungoat E, Gentil Dit Maurin A, Varbanov M, Blaising J, Michelet M, Manuel R, Parent R, Bartosch B, Zoulim F, Ruggiero F, Pécheur EI. Hepatitis C virus infection propagates through interactions between Syndecan-1 and CD81 and impacts the hepatocyte glycocalyx. Cell Microbiol 2017; 19:e12711. [PMID: 27930836 DOI: 10.1111/cmi.12711] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
The hepatitis C virus (HCV) infects hepatocytes after binding to heparan sulfate proteoglycans, in particular Syndecan-1, followed by recognition of the tetraspanin CD81 and other receptors. Heparan sulfate proteoglycans are found in a specific microenvironment coating the hepatocyte surface called the glycocalyx and are receptors for extracellular matrix proteins, cytokines, growth factors, lipoproteins, and infectious agents. We investigated the mutual influence of HCV infection on the glycocalyx and revealed new links between Syndecan-1 and CD81. Hepatocyte infection by HCV was inhibited after knocking down Syndecan-1 or Xylosyltransferase 2, a key enzyme of Syndecan-1 biosynthesis. Simultaneous knockdown of Syndecan-1 and CD81 strongly inhibited infection, suggesting their cooperative action. At early infection stages, Syndecan-1 and virions colocalized at the plasma membrane and were internalized in endosomes. Direct interactions between Syndecan-1 and CD81 were revealed in primary and transformed hepatocytes by immunoprecipitation and proximity ligation assays. Expression of Syndecan-1 and Xylosyltransferase 2 was altered within days post-infection, and the remaining Syndecan-1 pool colocalized poorly with CD81. The data indicate a profound reshuffling of the hepatocyte glycocalyx during HCV infection, possibly required for establishing optimal conditions of viral propagation.
Collapse
Affiliation(s)
- Boyan Grigorov
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | - Emma Reungoat
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | | | | | - Julie Blaising
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | - Maud Michelet
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | - Rachel Manuel
- IGFL, ENS Lyon, CNRS UMR 5242, Université Lyon 1, France
| | - Romain Parent
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | - Birke Bartosch
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | - Fabien Zoulim
- CRCL, Inserm U1052, CNRS 5286, Université Lyon 1, France
| | | | | |
Collapse
|
82
|
Zhou Y, Wu B, Li JH, Nan G, Jiang JL, Chen ZN. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion. Exp Cell Res 2017; 357:9-16. [PMID: 28433697 DOI: 10.1016/j.yexcr.2017.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 04/01/2017] [Accepted: 04/18/2017] [Indexed: 10/25/2022]
Abstract
Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy.
Collapse
Affiliation(s)
- Yang Zhou
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Bo Wu
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Jiang-Hua Li
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Gang Nan
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Jian-Li Jiang
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| | - Zhi-Nan Chen
- National Translational Science Center for Molecular Medicine, Cell Engineering Research Centre and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, PR China.
| |
Collapse
|
83
|
Abstract
Newly synthesized transmembrane proteins undergo a series of steps to ensure that only the required amount of correctly folded protein is localized to the membrane. The regulation of protein quality and its abundance at the membrane are often controlled by ubiquitination, a multistep enzymatic process that results in the attachment of ubiquitin, or chains of ubiquitin to the target protein. Protein ubiquitination acts as a signal for sorting, trafficking, and the removal of membrane proteins via endocytosis, a process through which multiple ubiquitin ligases are known to specifically regulate the functions of a number of ion channels, transporters, and signaling receptors. Endocytic removal of these proteins through ubiquitin-dependent endocytosis provides a way to rapidly downregulate the physiological outcomes, and defects in such controls are directly linked to human pathologies. Recent evidence suggests that ubiquitination is also involved in the shedding of membranes and associated proteins as extracellular vesicles, thereby not only controlling the cell surface levels of some membrane proteins, but also their potential transport to neighboring cells. In this review, we summarize the mechanisms and functions of ubiquitination of membrane proteins and provide specific examples of ubiquitin-dependent regulation of membrane proteins.
Collapse
Affiliation(s)
- Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Tanya Henshall
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| |
Collapse
|
84
|
Chen PH, Yao H, Huang LJS. Cytokine Receptor Endocytosis: New Kinase Activity-Dependent and -Independent Roles of PI3K. Front Endocrinol (Lausanne) 2017; 8:78. [PMID: 28507533 PMCID: PMC5410625 DOI: 10.3389/fendo.2017.00078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/30/2017] [Indexed: 12/14/2022] Open
Abstract
Type I and II cytokine receptors are cell surface sensors that bind cytokines in the extracellular environment and initiate intracellular signaling to control processes such as hematopoiesis, immune function, and cellular growth and development. One key mechanism that regulates signaling from cytokine receptors is through receptor endocytosis. In this mini-review, we describe recent advances in endocytic regulations of cytokine receptors, focusing on new paradigms by which PI3K controls receptor endocytosis through both kinase activity-dependent and -independent mechanisms. These advances underscore the notion that the p85 regulatory subunit of PI3K has functions beyond regulating PI3K kinase activity, and that PI3K plays both positive and negative roles in receptor signaling. On the one hand, the PI3K/Akt pathway controls various aspects downstream of cytokine receptors. On the other hand, it stimulates receptor endocytosis and downregulation, thus contributing to signaling attenuation.
Collapse
Affiliation(s)
- Ping-hung Chen
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lily Jun-shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- *Correspondence: Lily Jun-shen Huang,
| |
Collapse
|
85
|
Fumoto S, Nishida K. Methods for Evaluating the Stimuli-Responsive Delivery of Nucleic Acid and Gene Medicines. Chem Pharm Bull (Tokyo) 2017; 65:642-648. [DOI: 10.1248/cpb.c17-00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Koyo Nishida
- Graduate School of Biomedical Sciences, Nagasaki University
| |
Collapse
|
86
|
Munsell EV, Ross NL, Sullivan MO. Journey to the Center of the Cell: Current Nanocarrier Design Strategies Targeting Biopharmaceuticals to the Cytoplasm and Nucleus. Curr Pharm Des 2016; 22:1227-44. [PMID: 26675220 DOI: 10.2174/1381612822666151216151420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/15/2015] [Indexed: 01/06/2023]
Abstract
New biopharmaceutical molecules, potentially able to provide more personalized and effective treatments, are being identified through the advent of advanced synthetic biology strategies, sophisticated chemical synthesis approaches, and new analytical methods to assess biological potency. However, translation of many of these structures has been significantly limited due to the need for more efficient strategies to deliver macromolecular therapeutics to desirable intracellular sites of action. Engineered nanocarriers that encapsulate peptides, proteins, or nucleic acids are generally internalized into target cells via one of several endocytic pathways. These nanostructures, entrapped within endosomes, must navigate the intracellular milieu to orchestrate delivery to the intended destination, typically the cytoplasm or nucleus. For therapeutics active in the cytoplasm, endosomal escape continues to represent a limiting step to effective treatment, since a majority of nanocarriers trapped within endosomes are ultimately marked for enzymatic degradation in lysosomes. Therapeutics active in the nucleus have the added challenges of reaching and penetrating the nuclear envelope, and nuclear delivery remains a preeminent challenge preventing clinical translation of gene therapy applications. Herein, we review cutting-edge peptide- and polymer-based design strategies with the potential to enable significant improvements in biopharmaceutical efficacy through improved intracellular targeting. These strategies often mimic the activities of pathogens, which have developed innate and highly effective mechanisms to penetrate plasma membranes and enter the nucleus of host cells. Understanding these mechanisms has enabled advances in synthetic peptide and polymer design that may ultimately improve intracellular trafficking and bioavailability, leading to increased access to new classes of biotherapeutics.
Collapse
Affiliation(s)
| | | | - Millicent O Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, Delaware.
| |
Collapse
|
87
|
DDR1 promotes E-cadherin stability via inhibition of integrin-β1-Src activation-mediated E-cadherin endocytosis. Sci Rep 2016; 6:36336. [PMID: 27824116 PMCID: PMC5099905 DOI: 10.1038/srep36336] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/14/2016] [Indexed: 01/08/2023] Open
Abstract
Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase of collagen, is primarily expressed in epithelial cells. Activation of DDR1 stabilises E-cadherin located on the cell membrane; however, the detailed mechanism of DDR1-stabilised E-cadherin remains unclear. We performed DDR1 knockdown (Sh-DDR1) on Mardin-Darby canine kidney cells to investigate the mechanism of DDR1-stabilised E-cadherin. Sh-DDR1 decreased junctional localisation, increased endocytosis of E-cadherin, and increased physical interactions between E-cadherin and clathrin. Treatment of the dynamin inhibitor Dyngo 4a suppressed Sh-DDR1-induced E-cadherin endocytosis. In addition, the phosphorylation level of Src tyrosine 418 was increased in Sh-DDR1 cell junctions, and inhibition of Src activity decreased Sh-DDR1-induced E-cadherin endocytosis. To characterise the molecular mechanisms, blocking integrin β1 decreased Src activity and E-cadherin junctional localisation in Sh-DDR1 cells. Photoconversion results showed that inhibition of Src activity rescued E-cadherin membrane stability and that inhibition of integrin β1-Src signalling decreased stress fibres and rescued E-cadherin membrane stability in Sh-DDR1 cells. Taken together, DDR1 stabilised membrane localisation of E-cadherin by inhibiting the integrin β1-Src-mediated clathrin-dependent endocytosis pathway.
Collapse
|
88
|
Prosser DC, Wrasman K, Woodard TK, O'Donnell AF, Wendland B. Applications of pHluorin for Quantitative, Kinetic and High-throughput Analysis of Endocytosis in Budding Yeast. J Vis Exp 2016. [PMID: 27805610 DOI: 10.3791/54587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Green fluorescent protein (GFP) and its variants are widely used tools for studying protein localization and dynamics of events such as cytoskeletal remodeling and vesicular trafficking in living cells. Quantitative methodologies using chimeric GFP fusions have been developed for many applications; however, GFP is somewhat resistant to proteolysis, thus its fluorescence persists in the lysosome/vacuole, which can impede quantification of cargo trafficking in the endocytic pathway. An alternative method for quantifying endocytosis and post-endocytic trafficking events makes use of superecliptic pHluorin, a pH-sensitive variant of GFP that is quenched in acidic environments. Chimeric fusion of pHluorin to the cytoplasmic tail of transmembrane cargo proteins results in a dampening of fluorescence upon incorporation of the cargo into multivesicular bodies (MVBs) and delivery to the lysosome/vacuole lumen. Thus, quenching of vacuolar fluorescence facilitates quantification of endocytosis and early events in the endocytic pathway. This paper describes methods using pHluorin-tagged cargos for quantification of endocytosis via fluorescence microscopy, as well as population-based assays using flow cytometry.
Collapse
|
89
|
Bernardino de la Serna J, Schütz GJ, Eggeling C, Cebecauer M. There Is No Simple Model of the Plasma Membrane Organization. Front Cell Dev Biol 2016; 4:106. [PMID: 27747212 PMCID: PMC5040727 DOI: 10.3389/fcell.2016.00106] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/14/2016] [Indexed: 12/29/2022] Open
Abstract
Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.
Collapse
Affiliation(s)
- Jorge Bernardino de la Serna
- Science and Technology Facilities Council, Rutherford Appleton Laboratory, Central Laser Facility, Research Complex at Harwell Harwell, UK
| | - Gerhard J Schütz
- Institute of Applied Physics, Technische Universität Wien Wien, Austria
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford Headley Way, UK
| | - Marek Cebecauer
- Department of Biophysical Chemistry, J.Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences Prague, Czech Republic
| |
Collapse
|
90
|
Ha KD, Bidlingmaier SM, Liu B. Macropinocytosis Exploitation by Cancers and Cancer Therapeutics. Front Physiol 2016; 7:381. [PMID: 27672367 PMCID: PMC5018483 DOI: 10.3389/fphys.2016.00381] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022] Open
Abstract
Macropinocytosis has long been known as a primary method for cellular intake of fluid-phase and membrane-bound bulk cargo. This review seeks to re-examine the latest studies to emphasize how cancers exploit macropinocytosis to further their tumorigenesis, including details in how macropinocytosis can be adapted to serve diverse functions. Furthermore, this review will also cover the latest endeavors in targeting macropinocytosis as an avenue for novel therapeutics.
Collapse
Affiliation(s)
- Kevin D Ha
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Scott M Bidlingmaier
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| | - Bin Liu
- Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco San Francisco, CA, USA
| |
Collapse
|
91
|
Wu L, Xu F, Reinhard BM. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis. NANOSCALE 2016; 8:13755-68. [PMID: 27378391 PMCID: PMC5081566 DOI: 10.1039/c6nr02974d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.
Collapse
Affiliation(s)
- L Wu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - F Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - B M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
92
|
Broos K, Van der Jeught K, Puttemans J, Goyvaerts C, Heirman C, Dewitte H, Verbeke R, Lentacker I, Thielemans K, Breckpot K. Particle-mediated Intravenous Delivery of Antigen mRNA Results in Strong Antigen-specific T-cell Responses Despite the Induction of Type I Interferon. MOLECULAR THERAPY-NUCLEIC ACIDS 2016; 5:e326. [PMID: 27327138 PMCID: PMC5022130 DOI: 10.1038/mtna.2016.38] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Abstract
Cancer vaccines based on mRNA are extensively studied. The fragile nature of mRNA has instigated research into carriers that can protect it from ribonucleases and as such enable its systemic use. However, carrier-mediated delivery of mRNA has been linked to production of type I interferon (IFN) that was reported to compromise the effectiveness of mRNA vaccines. In this study, we evaluated a cationic lipid for encapsulation of mRNA. The nanometer-sized, negatively charged lipid mRNA particles (LMPs) efficiently transfected dendritic cells and macrophages in vitro. Furthermore, i.v. delivery of LMPs resulted in rapid expression of the mRNA-encoded protein in spleen and liver, predominantly in CD11c(+) cells and to a minor extent in CD11b(+) cells. Intravenous immunization of mice with LMPs containing ovalbumin, human papilloma virus E7, and tyrosinase-related protein-2 mRNA, either combined or separately, elicited strong antigen-specific T-cell responses. We further showed the production of type I IFNs upon i.v. LMP delivery. Although this decreased the expression of the mRNA-encoded protein, it supported the induction of antigen-specific T-cell responses. These data question the current notion that type I IFNs hamper particle-mediated mRNA vaccines.
Collapse
Affiliation(s)
- Katrijn Broos
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin Van der Jeught
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaerts
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Dewitte
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Rein Verbeke
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Ine Lentacker
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
93
|
|
94
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
95
|
Chapter Six - The Ubiquitin Network in the Control of EGFR Endocytosis and Signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:225-76. [DOI: 10.1016/bs.pmbts.2016.03.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
96
|
Nagre N, Wang S, Kellett T, Kanagasabai R, Deng J, Nishi M, Shilo K, Oeckler RA, Yalowich JC, Takeshima H, Christman J, Hubmayr RD, Zhao X. TRIM72 modulates caveolar endocytosis in repair of lung cells. Am J Physiol Lung Cell Mol Physiol 2015; 310:L452-64. [PMID: 26637632 DOI: 10.1152/ajplung.00089.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 12/01/2015] [Indexed: 01/11/2023] Open
Abstract
Alveolar epithelial and endothelial cell injury is a major feature of the acute respiratory distress syndrome, in particular when in conjunction with ventilation therapies. Previously we showed [Kim SC, Kellett T, Wang S, Nishi M, Nagre N, Zhou B, Flodby P, Shilo K, Ghadiali SN, Takeshima H, Hubmayr RD, Zhao X. Am J Physiol Lung Cell Mol Physiol 307: L449-L459, 2014.] that tripartite motif protein 72 (TRIM72) is essential for amending alveolar epithelial cell injury. Here, we posit that TRIM72 improves cellular integrity through its interaction with caveolin 1 (Cav1). Our data show that, in primary type I alveolar epithelial cells, lack of TRIM72 led to significant reduction of Cav1 at the plasma membrane, accompanied by marked attenuation of caveolar endocytosis. Meanwhile, lentivirus-mediated overexpression of TRIM72 selectively increases caveolar endocytosis in rat lung epithelial cells, suggesting a functional association between these two. Further coimmunoprecipitation assays show that deletion of either functional domain of TRIM72, i.e., RING, B-box, coiled-coil, or PRY-SPRY, abolishes the physical interaction between TRIM72 and Cav1, suggesting that all theoretical domains of TRIM72 are required to forge a strong interaction between these two molecules. Moreover, in vivo studies showed that injurious ventilation-induced lung cell death was significantly increased in knockout (KO) TRIM72(KO) and Cav1(KO) lungs compared with wild-type controls and was particularly pronounced in double KO mutants. Apoptosis was accompanied by accentuation of gross lung injury manifestations in the TRIM72(KO) and Cav1(KO) mice. Our data show that TRIM72 directly and indirectly modulates caveolar endocytosis, an essential process involved in repair of lung epithelial cells through removal of plasma membrane wounds. Given TRIM72's role in endomembrane trafficking and cell repair, we consider this molecule an attractive therapeutic target for patients with injured lungs.
Collapse
Affiliation(s)
- Nagaraja Nagre
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shaohua Wang
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Thomas Kellett
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Ragu Kanagasabai
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jing Deng
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - Konstantin Shilo
- Division of Pulmonary Pathology, Department of Pathology, College of Medicine, The Ohio State University, Columbus, Ohio
| | | | - Jack C Yalowich
- Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan; and
| | - John Christman
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Rolf D Hubmayr
- Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota
| | - Xiaoli Zhao
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia; Division of Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio; Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, College of Medicine, The Ohio State University, Columbus, Ohio;
| |
Collapse
|
97
|
Cheng JPX, Nichols BJ. Caveolae: One Function or Many? Trends Cell Biol 2015; 26:177-189. [PMID: 26653791 DOI: 10.1016/j.tcb.2015.10.010] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/16/2015] [Accepted: 10/22/2015] [Indexed: 02/07/2023]
Abstract
Caveolae are small, bulb-shaped plasma membrane invaginations. Mutations that ablate caveolae lead to diverse phenotypes in mice and humans, making it challenging to uncover their molecular mechanisms. Caveolae have been described to function in endocytosis and transcytosis (a specialized form of endocytosis) and in maintaining membrane lipid composition, as well as acting as signaling platforms. New data also support a model in which the central function of caveolae could be related to the protection of cells from mechanical stress within the plasma membrane. We present evidence for these diverse roles and consider in vitro and in vivo experiments confirming a mechanoprotective role. We conclude by highlighting current gaps in our knowledge of how mechanical signals may be transduced by caveolae.
Collapse
Affiliation(s)
- Jade P X Cheng
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Benjamin J Nichols
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
98
|
Piccini LE, Castilla V, Damonte EB. Dengue-3 Virus Entry into Vero Cells: Role of Clathrin-Mediated Endocytosis in the Outcome of Infection. PLoS One 2015; 10:e0140824. [PMID: 26469784 PMCID: PMC4607419 DOI: 10.1371/journal.pone.0140824] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/29/2015] [Indexed: 01/07/2023] Open
Abstract
The endocytic uptake and intracellular trafficking for penetration of DENV-3 strain H-87 into Vero cells was analyzed by using several biochemical inhibitors and dominant negative mutants of cellular proteins. The results presented show that the infective entry of DENV-3 into Vero cells occurs through a non-classical endocytosis pathway dependent on low pH and dynamin, but non-mediated by clathrin. After uptake, DENV-3 transits through early endosomes to reach Rab 7-regulated late endosomes, and according with the half-time for ammonium chloride resistance viral nucleocapsid is released into the cytosol approximately at 12 min post-infection. Furthermore, the influence of the clathrin pathway in DENV-3 infective entry in other mammalian cell lines of human origin, such as A549, HepG2 and U937 cells, was evaluated demonstrating that variable entry pathways are employed depending on the host cell. Results show for the first time the simultaneous coexistence of infective and non -infective routes for DENV entry into the host cell, depending on the usage of clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Luana E. Piccini
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
| | - Viviana Castilla
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa B. Damonte
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
99
|
Francis MK, Holst MR, Vidal-Quadras M, Henriksson S, Santarella-Mellwig R, Sandblad L, Lundmark R. Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1. J Cell Sci 2015; 128:4183-95. [PMID: 26446261 PMCID: PMC4712783 DOI: 10.1242/jcs.174417] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022] Open
Abstract
Changes in cell morphology require coordination of plasma membrane turnover and cytoskeleton dynamics, processes that are regulated by Rho GTPases. Here, we describe how a direct interaction between the Rho GTPase Cdc42 and the GTPase-activating protein (GAP) GRAF1 (also known as ARHGAP26), facilitates rapid cell surface turnover at the leading edge. Both Cdc42 and GRAF1 were required for fluid-phase uptake and regulated the generation of transient GRAF1-coated endocytic carriers, which were distinct from clathrin-coated vesicles. GRAF1 was found to transiently assemble at discrete Cdc42-enriched punctae at the plasma membrane, resulting in a corresponding decrease in the microdomain association of Cdc42. However, Cdc42 captured in its active state was, through a GAP-domain-mediated interaction, localised together with GRAF1 on accumulated internal structures derived from the cell surface. Correlative fluorescence and electron tomography microscopy revealed that these structures were clusters of small membrane carriers with defective endosomal processing. We conclude that a transient interaction between Cdc42 and GRAF1 drives endocytic turnover and controls the transition essential for endosomal maturation of plasma membrane internalised by this mechanism. Summary: A transient interaction between Cdc42 and GRAF1 drives endocytic turnover at the leading edge, and controls the transition essential for endosomal maturation of plasma membrane internalised by this mechanism.
Collapse
Affiliation(s)
- Monika K Francis
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Mikkel R Holst
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden
| | | | - Sara Henriksson
- Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden Molecular Biology, Umeå University, Umeå 901 87, Sweden
| | | | | | - Richard Lundmark
- Integrative Medical Biology, Umeå University, Umeå 901 87, Sweden Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
100
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015; 12:167. [PMID: 26377184 PMCID: PMC4574118 DOI: 10.1186/s12974-015-0357-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|