51
|
Kif5 regulates mitochondrial movement, morphology, function and neuronal survival. Mol Cell Neurosci 2016; 72:22-33. [PMID: 26767417 DOI: 10.1016/j.mcn.2015.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 12/15/2015] [Accepted: 12/31/2015] [Indexed: 11/21/2022] Open
Abstract
Due to the unique architecture of neurons, trafficking of mitochondria throughout processes to regions of high energetic demand is critical to sustain neuronal health. It has been suggested that compromised mitochondrial trafficking may play a role in neurodegenerative diseases. We evaluated the consequences of disrupted kif5c-mediated mitochondrial trafficking on mitochondrial form and function in primary rat cortical neurons. Morphological changes in mitochondria appeared to be due to remodelling, a phenomenon distinct from mitochondrial fission, which resulted in punctate-shaped mitochondria. We also demonstrated that neurons displaying punctate mitochondria exhibited relatively decreased ROS and increased cellular ATP levels using ROS-sensitive GFP and ATP FRET probes, respectively. Somewhat unexpectedly, neurons overexpressing the dominant negative form of kif5c exhibited enhanced survival following excitotoxicity, suggesting that the impairment of mitochondrial trafficking conferred some form of neuroprotection. However, when neurons were exposed to H2O2, disruption of kif5c exacerbated cell death indicating that the effect on cell viability was dependent on the mode of toxicity. Our results suggest a novel role of kif5c. In addition to mediating mitochondrial transport, kif5c plays a role in the mechanism of regulating mitochondrial morphology. Our results also suggest that kif5c mediated mitochondrial dynamics may play an important role in regulating mitochondrial function and in turn cellular health. Moreover, our studies demonstrate an interesting interplay between the regulation of mitochondrial motility and morphology.
Collapse
|
52
|
Mussel M, Zeevy K, Diamant H, Nevo U. Drag of the cytosol as a transport mechanism in neurons. Biophys J 2015; 106:2710-9. [PMID: 24940788 DOI: 10.1016/j.bpj.2014.04.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/26/2014] [Accepted: 04/28/2014] [Indexed: 01/15/2023] Open
Abstract
Axonal transport is typically divided into two components, which can be distinguished by their mean velocity. The fast component includes steady trafficking of different organelles and vesicles actively transported by motor proteins. The slow component comprises nonmembranous materials that undergo infrequent bidirectional motion. The underlying mechanism of slow axonal transport has been under debate during the past three decades. We propose a simple displacement mechanism that may be central for the distribution of molecules not carried by vesicles. It relies on the cytoplasmic drag induced by organelle movement and readily accounts for key experimental observations pertaining to slow-component transport. The induced cytoplasmic drag is predicted to depend mainly on the distribution of microtubules in the axon and the organelle transport rate.
Collapse
Affiliation(s)
- Matan Mussel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Keren Zeevy
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Haim Diamant
- School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
53
|
Bros H, Niesner R, Infante-Duarte C. An ex vivo model for studying mitochondrial trafficking in neurons. Methods Mol Biol 2015; 1264:465-72. [PMID: 25631035 DOI: 10.1007/978-1-4939-2257-4_38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Distribution of mitochondria throughout the cytoplasm is necessary for cellular function and health. Due to their unique, highly polarized morphology, neurons are particularly vulnerable to defects of mitochondrial transport, and its disruption can contribute to neuropathology. In this chapter, we present an ex vivo method for monitoring mitochondrial transport within myelinated sensory and motor axons from spinal nerve roots. This approach can be used to investigate mitochondrial behavior under a number of experimental conditions, e.g., by applying ion channel modulators, ionophores, or toxins, as well as for testing the therapeutic potential of new strategies targeting axonal mitochondrial dynamics.
Collapse
Affiliation(s)
- Helena Bros
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany,
| | | | | |
Collapse
|
54
|
Valenti D, de Bari L, De Filippis B, Henrion-Caude A, Vacca RA. Mitochondrial dysfunction as a central actor in intellectual disability-related diseases: An overview of Down syndrome, autism, Fragile X and Rett syndrome. Neurosci Biobehav Rev 2014; 46 Pt 2:202-17. [DOI: 10.1016/j.neubiorev.2014.01.012] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/05/2013] [Accepted: 01/13/2014] [Indexed: 12/26/2022]
|
55
|
Maeder CI, San-Miguel A, Wu EY, Lu H, Shen K. In vivo neuron-wide analysis of synaptic vesicle precursor trafficking. Traffic 2014; 15:273-91. [PMID: 24320232 DOI: 10.1111/tra.12142] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 12/13/2022]
Abstract
During synapse development, synaptic proteins must be targeted to sites of presynaptic release. Directed transport as well as local sequestration of synaptic vesicle precursors (SVPs), membranous organelles containing many synaptic proteins, might contribute to this process. Using neuron-wide time-lapse microscopy, we studied SVP dynamics in the DA9 motor neuron in Caenorhabditis elegans. SVP transport was highly dynamic and bi-directional throughout the entire neuron, including the dendrite. While SVP trafficking was anterogradely biased in axonal segments prior to the synaptic domain, directionality of SVP movement was stochastic in the dendrite and distal axon. Furthermore, frequency of movement and speed were variable between different compartments. These data provide evidence that SVP transport is differentially regulated in distinct neuronal domains. It also suggests that polarized SVP transport in concert with local vesicle capturing is necessary for accurate presynapse formation and maintenance. SVP trafficking analysis of two hypomorphs for UNC-104/KIF1A in combination with mathematical modeling identified directionality of movement, entry of SVPs into the axon as well as axonal speeds as the important determinants of steady-state SVP distributions. Furthermore, detailed dissection of speed distributions for wild-type and unc-104/kif1a mutant animals revealed an unexpected role for UNC-104/KIF1A in dendritic SVP trafficking.
Collapse
Affiliation(s)
- Celine I Maeder
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA,, USA
| | | | | | | | | |
Collapse
|
56
|
Monitoring mitochondrial dynamics and complex I dysfunction in neurons: implications for Parkinson's disease. Biochem Soc Trans 2013; 41:1618-24. [DOI: 10.1042/bst20130189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial dynamics are essential for maintaining organelle stability and function. Through fission, fusion and mitophagic events, optimal populations of mitochondria are retained. Subsequently, alterations in such processes can have profound effects on the individual mitochondrion and the cell within which they reside. Neurons are post-mitotic energy-dependent cells and, as such, are particularly vulnerable to alterations in cellular bioenergetics and increased stress that may occur as a direct or indirect result of mitochondrial dysfunction. The trafficking of mitochondria to areas of higher energy requirements, such as synapses, where mitochondrial densities fluctuate, further highlights the importance of efficient mitochondrial dynamics in neurons. PD (Parkinson's disease) is a common progressive neurodegenerative disorder which is characterized by the loss of dopaminergic neurons within the substantia nigra. Complex I, the largest of all of the components of the electron transport chain is heavily implicated in PD pathogenesis. The exact series of events that lead to cell loss, however, are not fully elucidated, but are likely to involve dysfunction of mitochondria, their trafficking and dynamics.
Collapse
|
57
|
Eckert A, Nisbet R, Grimm A, Götz J. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1258-66. [PMID: 24051203 DOI: 10.1016/j.bbadis.2013.08.013] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
The energy demand and calcium buffering requirements of the brain are met by the high number of mitochondria in neurons and in these, especially at the synapses. Mitochondria are the major producer of reactive oxygen species (ROS); at the same time, they are damaged by ROS that are induced by abnormal protein aggregates that characterize human neurodegenerative diseases such as Alzheimer's disease (AD). Because synaptic mitochondria are long-lived, any damage exerted by these aggregates impacts severely on neuronal function. Here we review how increased TAU, a defining feature of AD and related tauopathies, impairs mitochondrial function by following the principle: 'March separate, strike together!' In the presence of amyloid-β, TAU's toxicity is augmented suggesting synergistic pathomechanisms. In order to restore mitochondrial functions in neurodegeneration as a means of therapeutic intervention it will be important to integrate the various aspects of dysfunction and get a handle on targeting distinct cell types and subcellular compartments.
Collapse
Affiliation(s)
- Anne Eckert
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Switzerland
| | - Rebecca Nisbet
- Centre for Ageing Dementia Research (CADR), Queensland Brain Institute (QBI), The University of Queensland, Australia
| | - Amandine Grimm
- Neurobiology Laboratory, Psychiatric University Clinics Basel, University of Basel, Switzerland
| | - Jürgen Götz
- Centre for Ageing Dementia Research (CADR), Queensland Brain Institute (QBI), The University of Queensland, Australia.
| |
Collapse
|
58
|
DuBoff B, Feany M, Götz J. Why size matters - balancing mitochondrial dynamics in Alzheimer's disease. Trends Neurosci 2013; 36:325-35. [PMID: 23582339 DOI: 10.1016/j.tins.2013.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Once perceived as solitary structures, mitochondria are now recognized as highly dynamic, interconnected organelles. The tight control of their fusion and fission, a process termed 'mitochondrial dynamics', is crucial for neurons, given their unique architecture and special energy and calcium-buffering requirements at the synapse. Interestingly, in Alzheimer's disease (AD), a condition initiated at the synapse, mitochondrial dynamics are severely impaired. Of the two proteins implicated in AD pathogenesis, amyloid-β (Aβ) and TAU, only the impact of Aβ on mitochondrial dynamics has been studied in detail. We highlight recent findings that TAU exerts a determinative effect in the regulation of mitochondrial dynamics, and therefore neuronal function. In this process, the GTPase DRP1 has emerged as a key target of both Aβ and TAU.
Collapse
Affiliation(s)
- Brian DuBoff
- Brigham and Women's Hospital and Harvard Medical School, Department of Pathology, Brigham and Women's Hospital, Harvard New Research Building, Room 630, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | |
Collapse
|
59
|
Yu H, Wark L, Ji H, Willard L, Jaing Y, Han J, He H, Ortiz E, Zhang Y, Medeiros DM, Lin D. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Mol Nutr Food Res 2013; 57:1158-69. [PMID: 23505020 DOI: 10.1002/mnfr.201200642] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/25/2022]
Abstract
SCOPE Our aim was to investigate whether dietary wolfberry altered carotenoid metabolic gene expression and enhanced mitochondrial biogenesis in the retina of diabetic mice. METHODS AND RESULTS Six-week-old male db/db and wild-type mice were fed the control or wolfberry diets for 8 weeks. At study termination, liver and retinal tissues were collected for analysis by transmission electron microscopy, real-time PCR, immunoprecipitation, Western blot, and HPLC. Wolfberry elevated zeaxanthin and lutein levels in the liver and retinal tissues and stimulated expression of retinal scavenger receptor class B type I, glutathione S-transferase Pi 1, and β,β-carotene 9',10'-oxygenase 2, and induced activation and nuclear enrichment of retinal AMP-activated protein kinase α2 (AMPK-α2). Furthermore, wolfberry attenuated hypoxia and mitochondrial stress as demonstrated by declined expression of hypoxia-inducible factor-1-α, vascular endothelial growth factor, and heat shock protein 60. Wolfberry enhanced retinal mitochondrial biogenesis in diabetic retinas as demonstrated by reversed mitochondrial dispersion in the retinal pigment epithelium, increased mitochondrial copy number, elevated citrate synthase activity, and upregulated expression of peroxisome proliferator-activated receptor γ co-activator 1α, nuclear respiratory factor 1, and mitochondrial transcription factor A. CONCLUSION Consumption of dietary wolfberry could be beneficial to retinoprotection through reversal of mitochondrial function in diabetic mice.
Collapse
Affiliation(s)
- Huifeng Yu
- Department of Human Nutrition, Kansas State University, Manhattan, KS, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Mitochondrial trafficking in neuropsychiatric diseases. Neurobiol Dis 2013; 51:66-71. [DOI: 10.1016/j.nbd.2012.06.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/07/2012] [Accepted: 06/22/2012] [Indexed: 12/31/2022] Open
|
61
|
Lovas JR, Wang X. The meaning of mitochondrial movement to a neuron's life. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:184-94. [PMID: 22548961 PMCID: PMC3413748 DOI: 10.1016/j.bbamcr.2012.04.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 11/21/2022]
Abstract
Cells precisely regulate mitochondrial movement in order to balance energy needs and avoid cell death. Neurons are particularly susceptible to disturbance of mitochondrial motility and distribution due to their highly extended structures and specialized function. Regulation of mitochondrial motility plays a vital role in neuronal health and death. Here we review the current understanding of regulatory mechanisms that govern neuronal mitochondrial transport and probe their implication in health and disease. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology.
Collapse
Affiliation(s)
- Jonathan R. Lovas
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| | - Xinnan Wang
- Stanford Institute for Neuro-innovation and Translational Neurosciences and Department of Neurosurgery, Stanford University School of Medicine
| |
Collapse
|
62
|
Badding MA, Lapek JD, Friedman AE, Dean DA. Proteomic and functional analyses of protein-DNA complexes during gene transfer. Mol Ther 2012; 21:775-85. [PMID: 23164933 DOI: 10.1038/mt.2012.231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the barriers to successful nonviral gene delivery is the crowded cytoplasm, which plasmids need to actively traverse for gene expression. Relatively little is known about how this process occurs, but our lab and others have shown that the microtubule network and motors are required for plasmid movement to the nucleus. To further investigate how plasmids exploit normal physiological processes to transfect cells, we have taken a proteomics approach to identify the proteins that comprise the plasmid-trafficking complex. We have developed a live cell DNA-protein pull-down assay to isolate complexes at certain time points post-transfection (15 minutes to 4 hours) for analysis by mass spectrometry (MS). Plasmids containing promoter sequences bound hundreds of unique proteins as early as 15 minutes post-electroporation, while a plasmid lacking any eukaryotic sequences failed to bind many of the proteins. Specific proteins included microtubule-based motor proteins (e.g., kinesin and dynein), proteins involved in protein nuclear import (e.g., importin 1, 2, 4, and 7, Crm1, RAN, and several RAN-binding proteins), a number of heterogeneous nuclear ribonucleoprotein (hnRNP)- and mRNA-binding proteins, and transcription factors. The significance of several of the proteins involved in protein nuclear localization and plasmid trafficking was determined by monitoring movement of microinjected fluorescently labeled plasmids via live cell particle tracking in cells following protein knockdown by small-interfering RNA (siRNA) or through the use of specific inhibitors. While importin β1 was required for plasmid trafficking and subsequent nuclear import, importin α1 played no role in microtubule trafficking but was required for optimal plasmid nuclear import. Surprisingly, the nuclear export protein Crm1 also was found to complex with the transfected plasmids and was necessary for plasmid trafficking along microtubules and nuclear import. Our results show that various proteins involved in nuclear import and export influence intracellular trafficking of plasmids and subsequent nuclear accumulation.
Collapse
Affiliation(s)
- Melissa A Badding
- Department of Pediatrics, Division of Neonatology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
63
|
Owens GC, Walcott EC. Extensive fusion of mitochondria in spinal cord motor neurons. PLoS One 2012; 7:e38435. [PMID: 22701641 PMCID: PMC3368829 DOI: 10.1371/journal.pone.0038435] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 05/09/2012] [Indexed: 12/04/2022] Open
Abstract
The relative roles played by trafficking, fission and fusion in the dynamics of mitochondria in neurons have not been fully elucidated. In the present study, a slow widespread redistribution of mitochondria within cultured spinal cord motor neurons was observed as a result of extensive organelle fusion. Mitochondria were labeled with a photoconvertible fluorescent protein (mitoKaede) that is red-shifted following brief irradiation with blue light. The behavior of these selectively labeled mitochondria was followed by live fluorescence imaging. Marking mitochondria within the cell soma revealed a complete mixing, within 18 hours, of these organelles with mitochondria coming from the surrounding neurites. Fusion of juxtaposed mitochondria was directly observed in neuritic processes at least 200 microns from the cell body. Within 24 hours, photoconverted mitoKaede was dispersed to all of the mitochondria in the portion of neurite under observation. When time lapse imaging over minutes was combined with long-term observation of marked mitochondria, moving organelles that traversed the field of view did not initially contain photoconverted protein, but after several hours organelles in motion contained both fluorescent proteins, coincident with widespread fusion of all of the mitochondria within the length of neurite under observation. These observations suggest that there is a widespread exchange of mitochondrial components throughout a neuron as a result of organelle fusion.
Collapse
Affiliation(s)
- Geoffrey C Owens
- The Neurosciences Institute, San Diego, California, United States of America.
| | | |
Collapse
|
64
|
Frampton JP, Guo C, Pierchala BA. Expression of axonal protein degradation machinery in sympathetic neurons is regulated by nerve growth factor. J Neurosci Res 2012; 90:1533-46. [PMID: 22411744 DOI: 10.1002/jnr.23041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/06/2012] [Accepted: 01/15/2012] [Indexed: 12/17/2022]
Abstract
Deficiencies in protein degradation and proteolytic function within neurons are linked to a number of neurodegenerative diseases and developmental disorders. Compartmentalized cultures of peripheral neurons were used to investigate the properties and relative abundance of the proteolytic machinery in the axons and cell bodies of sympathetic and sensory neurons. Immunoblotting of axonal proteins demonstrated that LAMP2, LC3, and PSMA2 were abundant in axons, suggesting that lysosomes, autophagosomes and proteasomes were located in axons. Interestingly, the expression of proteins associated with lysosomes and proteasomes were upregulated selectively in axons by NGF stimulation of the distal axons of sympathetic neurons, suggesting that axonal growth and maintenance requires local protein turnover. The regulation of the abundance of both proteasomes and lysosomes in axons by NGF provides a link between protein degradation and the trophic status of peripheral neurons. Inhibition of proteasomes located in axons resulted in an accumulation of ubiquitinated proteins in these axons. In contrast, lysosome inhibition in axons did not result in an accumulation of ubiquitinated proteins or the transferrin receptor, a transmembrane protein degraded by lysosomes. Interestingly, lysosomes were transported both retrogradely and anterogradely, so it is likely that ubiquitinated proteins that are normally destined for degradation by lysosomes in axons can be transported to the cell bodies for degradation. In summary, proteasomal degradation occurs locally, whereas proteins degraded by lysosomes can most likely either be degraded locally in axons or be transported to cell bodies for degradation.
Collapse
Affiliation(s)
- John P Frampton
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|
65
|
Abstract
Mitochondria provide most of the energy production in cells. They are involved in the regulation of free radicals, calcium buffering, and redox signaling and take part in the intrinsic pathway of apoptosis. Mutations or polymorphisms of mitochondrial DNA, mitochondria-mediated oxidative stress, decrease of adenosine triphosphate production, changes of intracellular calcium and oxidative stress are concerned in various diseases. There is increasing evidence that impaired functions of mitochondria are associated with mood disorders. It is suggested that disturbed energetic metabolism and/or reactive oxygen species production take part in the pathophysiology of mood disorders and could participate in the therapeutic effects or side-effects of antidepressants and mood stabilizers.
Collapse
Affiliation(s)
- Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic.
| | | |
Collapse
|
66
|
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro 2010; 2:e00045. [PMID: 20957078 PMCID: PMC2949087 DOI: 10.1042/an20100019] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022] Open
Abstract
The production of neurons from neural progenitor cells, the growth of axons and dendrites and the formation and reorganization of synapses are examples of neuroplasticity. These processes are regulated by cell-autonomous and intercellular (paracrine and endocrine) programs that mediate responses of neural cells to environmental input. Mitochondria are highly mobile and move within and between subcellular compartments involved in neuroplasticity (synaptic terminals, dendrites, cell body and the axon). By generating energy (ATP and NAD(+)), and regulating subcellular Ca(2+) and redox homoeostasis, mitochondria may play important roles in controlling fundamental processes in neuroplasticity, including neural differentiation, neurite outgrowth, neurotransmitter release and dendritic remodelling. Particularly intriguing is emerging data suggesting that mitochondria emit molecular signals (e.g. reactive oxygen species, proteins and lipid mediators) that can act locally or travel to distant targets including the nucleus. Disturbances in mitochondrial functions and signalling may play roles in impaired neuroplasticity and neuronal degeneration in Alzheimer's disease, Parkinson's disease, psychiatric disorders and stroke.
Collapse
Key Words
- AD, Alzheimer's disease
- AP, adaptor protein
- APP, amyloid precursor protein
- Aβ, amyloid β-peptide
- BDNF, brain-derived neurotrophic factor
- CR, caloric restriction
- CREB, cAMP-response-element-binding protein
- CaMK, Ca2+/calmodulin-dependent protein kinase
- ES, embryonic stem
- ETC, electron transport chain
- HD, Huntington's disease
- LRRK2, leucine-rich repeat kinase 2
- LTP, long-term potentiation
- MAPK, mitogen-activated protein kinase
- Mn-SOD, manganese superoxide dismutase
- NGF, nerve growth factor
- NMDA, N-methyl-d-aspartate
- Nrf1, nuclear respiratory factor 1
- OPA1, Optic Atrophy-1
- PD, Parkinson's disease
- PGC1α, peroxisome-proliferator-activated receptor γ co-activator 1α
- PINK1, PTEN (phosphatase and tensin homologue deleted on chromosome 10)-induced kinase 1
- PPAR, peroxisome-proliferator-activated receptor
- UCP, uncoupling protein
- mitochondria biogenesis
- mitochondria fission and fusion
- neural progenitor cell
Collapse
Affiliation(s)
- Aiwu Cheng
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Yan Hou
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
| | - Mark P Mattson
- *Laboratory of Neurosciences, National Institute of Aging Intramural Research Program, Baltimore, MD 21224, U.S.A
- †Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, U.S.A
| |
Collapse
|
67
|
Fernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010; 5:39-49. [PMID: 20729997 PMCID: PMC2924887 DOI: 10.1586/eem.09.55] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Diabetic neuropathy is a major complication of diabetes that affects the sensory and autonomic nervous systems and leads to significant morbidity and impact on quality of life of patients. Mitochondrial stress has been proposed as a major mediator of neurodegeneration in diabetes. This review briefly summarizes the nature of sensory and autonomic nerve dysfunction and presents these findings in the context of diabetes-induced nerve degeneration mediated by alterations in mitochondrial ultrastructure, physiology and trafficking. Diabetes-induced dysfunction in calcium homeostasis is discussed at length and causative associations with sub-optimal mitochondrial physiology are developed. It is clear that across a range of complications of diabetes that mitochondrial physiology is impaired, in general a reduction in electron transport chain capability is apparent. This abnormal activity may predispose mitochondria to generate elevated reactive oxygen species (ROS), although experimental proof remains lacking, but more importantly will deleteriously alter the bioenergetic status of neurons. It is proposed that the next five years of research should focus on identifying changes in mitochondrial phenotype and associated cellular impact, identifying sources of ROS in neurons and analyzing mitochondrial trafficking under diabetic conditions.
Collapse
Affiliation(s)
- Paul Fernyhough
- Division of Neurodegenerative Disorders, St Boniface Hospital Research Centre, R4046 - 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada and Department of Pharmacology & Therapeutics, University of Manitoba, Winnipeg, MB, Canada, Tel: (204) 235 3692
| | | | | |
Collapse
|
68
|
Tsubouchi A, Tsuyama T, Fujioka M, Kohda H, Okamoto-Furuta K, Aigaki T, Uemura T. Mitochondrial protein Preli-like is required for development of dendritic arbors and prevents their regression in the Drosophila sensory nervous system. Development 2009; 136:3757-66. [PMID: 19855018 DOI: 10.1242/dev.042135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dynamic morphological changes in mitochondria depend on the balance of fusion and fission in various eukaryotes, and are crucial for mitochondrial activity. Mitochondrial dysfunction has emerged as a common theme that underlies numerous neurological disorders, including neurodegeneration. However, how this abnormal mitochondrial activity leads to neurodegenerative disorders is still largely unknown. Here, we show that the Drosophila mitochondrial protein Preli-like (Prel), a member of the conserved PRELI/MSF1 family, contributes to the integrity of mitochondrial structures, the activity of respiratory chain complex IV and the cellular ATP level. When Prel function was impaired in neurons in vivo, the cellular ATP level decreased and mitochondria became fragmented and sparsely distributed in dendrites and axons. Notably, the dendritic arbors were simplified and downsized, probably as a result of breakage of proximal dendrites and progressive retraction of terminal branches. By contrast, abrogation of the mitochondria transport machinery per se had a much less profound effect on the arbor morphogenesis. Interestingly, overexpression of Drob-1 (Debcl), a Drosophila Bax-like Bcl-2 family protein, in the wild-type background produced dendrite phenotypes that were reminiscent of the prel phenotype. Moreover, expression of the Drob-1 antagonist Buffy in prel mutant neurons substantially restored the dendritic phenotype. Our observations suggest that Prel-dependent regulation of mitochondrial activity is important for both growth and prevention of breakage of dendritic branches.
Collapse
Affiliation(s)
- Asako Tsubouchi
- Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
69
|
Dominant-negative myosin Va impairs retrograde but not anterograde axonal transport of large dense core vesicles. Cell Mol Neurobiol 2009; 30:369-79. [PMID: 19787448 DOI: 10.1007/s10571-009-9459-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/12/2009] [Indexed: 01/05/2023]
Abstract
Axonal transport of peptide and hormone-containing large dense core vesicles (LDCVs) is known to be a microtubule-dependent process. Here, we suggest a role for the actin-based motor protein myosin Va specifically in retrograde axonal transport of LDCVs. Using live-cell imaging of transfected hippocampal neurons grown in culture, we measured the speed, transport direction, and the number of LDCVs that were labeled with ectopically expressed neuropeptide Y fused to EGFP. Upon expression of a dominant-negative tail construct of myosin Va, a general reduction of movement in both dendrites and axons was observed. In axons, it was particularly interesting that the retrograde speed of LDCVs was significantly impaired, although anterograde transport remained unchanged. Moreover, particles labeled with the dominant-negative construct often moved in the retrograde direction but rarely in the anterograde direction. We suggest a model where myosin Va acts as an actin-dependent vesicle motor that facilitates retrograde axonal transport.
Collapse
|
70
|
Rintoul GL, Reynolds IJ. Mitochondrial trafficking and morphology in neuronal injury. Biochim Biophys Acta Mol Basis Dis 2009; 1802:143-50. [PMID: 19747973 DOI: 10.1016/j.bbadis.2009.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 01/05/2023]
Abstract
Alterations in mitochondrial function may have a central role in the pathogenesis of many neurodegenerative diseases. The study of mitochondrial dysfunction has typically focused on ATP generation, calcium homeostasis and the production of reactive oxygen species. However, there is a growing appreciation of the dynamic nature of mitochondria within cells. Mitochondria are highly motile organelles, and also constantly undergo fission and fusion. This raises the possibility that impairment of mitochondrial dynamics could contribute to the pathogenesis of neuronal injury. In this review we describe the mechanisms that govern mitochondrial movement, fission and fusion. The key proteins that are involved in mitochondrial fission and fusion have also been linked to some inherited neurological diseases, including autosomal dominant optic atrophy and Charcot-Marie-Tooth disease 2A. We will discuss the evidence that altered movement, fission and fusion are associated with impaired neuronal viability. There is a growing collection of literature that links impaired mitochondrial dynamics to a number of disease models. Additionally, the concept that the failure to deliver a functional mitochondrion to the appropriate site within a neuron could contribute to neuronal dysfunction provides an attractive framework for understanding the mechanisms underlying neurologic disease. However, it remains difficult to clearly establish that altered mitochondrial dynamics clearly represent a cause of neuronal dysfunction.
Collapse
Affiliation(s)
- Gordon L Rintoul
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada V5A1S6
| | | |
Collapse
|
71
|
Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 2009; 162:1001-10. [DOI: 10.1016/j.neuroscience.2009.05.038] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/07/2009] [Accepted: 05/07/2009] [Indexed: 12/26/2022]
|
72
|
Mironov SL. Complexity of mitochondrial dynamics in neurons and its control by ADP produced during synaptic activity. Int J Biochem Cell Biol 2009; 41:2005-14. [PMID: 19379829 DOI: 10.1016/j.biocel.2009.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/07/2009] [Accepted: 04/09/2009] [Indexed: 12/20/2022]
Abstract
This review focuses on different aspects of dynamics of mitochondria in neuronal cytoplasm which play an important role in the life and fate of neurons. It starts with description of the energy supply in the brain; considers the typical patterns of mitochondrial movements; relates them to the neuronal activity and in particular at the synapses; extends to the analysis of the origin of local ATP changes in the cytoplasm; considers main features of motor-assisted movements of mitochondria and their role in determining a transport velocity; describes the measurements of ATP gradients in neuronal processes and relates them to spatial variations in the mobility of mitochondria that occur in the vicinity of synapses due to the local ADP increases; considers the influence of hypoxia and intracellular signalling pathways on mitochondria movements. Finally, the recent views on the mechanisms and possible functional role of mitochondrial network as a whole in neurons are discussed and unresolved issues and future perspectives in this field of research are delineated.
Collapse
Affiliation(s)
- Sergei L Mironov
- DFG-Center of Molecular Physiology of the Brain, Georg-August-University, Department of Neuro- and Sensory Physiology, Humboldtallee 23, Göttingen, 37075, Germany.
| |
Collapse
|
73
|
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2009; 60:748-66. [PMID: 19081372 DOI: 10.1016/j.neuron.2008.10.010] [Citation(s) in RCA: 795] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 12/12/2022]
Abstract
Mitochondrial electron transport generates the ATP that is essential for the excitability and survival of neurons, and the protein phosphorylation reactions that mediate synaptic signaling and related long-term changes in neuronal structure and function. Mitochondria are highly dynamic organelles that divide, fuse, and move purposefully within axons and dendrites. Major functions of mitochondria in neurons include the regulation of Ca(2+) and redox signaling, developmental and synaptic plasticity, and the arbitration of cell survival and death. The importance of mitochondria in neurons is evident in the neurological phenotypes in rare diseases caused by mutations in mitochondrial genes. Mitochondria-mediated oxidative stress, perturbed Ca(2+) homeostasis, and apoptosis may also contribute to the pathogenesis of prominent neurological diseases including Alzheimer's, Parkinson's, and Huntington's diseases; stroke; amyotrophic lateral sclerosis; and psychiatric disorders. Advances in understanding the molecular and cell biology of mitochondria are leading to novel approaches for the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD 21224, USA.
| | | | | |
Collapse
|
74
|
Cai Q, Sheng ZH. Mitochondrial transport and docking in axons. Exp Neurol 2009; 218:257-67. [PMID: 19341731 DOI: 10.1016/j.expneurol.2009.03.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 01/06/2023]
Abstract
Proper transport and distribution of mitochondria in axons and at synapses are critical for the normal physiology of neurons. Mitochondria in axons display distinct motility patterns and undergo saltatory and bidirectional movement, where mitochondria frequently stop, start moving again, and change direction. While approximately one-third of axonal mitochondria are mobile in mature neurons, a large proportion remains stationary. Their net movement is significantly influenced by recruitment to stationary or motile states. In response to the diverse physiological states of axons and synapses, the mitochondrial balance between motile and stationary phases is a possible target of regulation by intracellular signals and synaptic activity. Efficient control of mitochondrial retention (docking) at particular stations, where energy production and calcium homeostasis capacity are highly demanded, is likely essential for neuronal development and function. In this review, we introduce the molecular and cellular mechanisms underlying the complex mobility patterns of axonal mitochondria and discuss how motor adaptor complexes and docking machinery contribute to mitochondrial transport and distribution in axons and at synapses. In addition, we briefly discuss the physiological evidence how axonal mitochondrial mobility impacts synaptic function.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, USA.
| | | |
Collapse
|
75
|
Macaskill AF, Rinholm JE, Twelvetrees AE, Arancibia-Carcamo IL, Muir J, Fransson A, Aspenstrom P, Attwell D, Kittler JT. Miro1 is a calcium sensor for glutamate receptor-dependent localization of mitochondria at synapses. Neuron 2009; 61:541-55. [PMID: 19249275 PMCID: PMC2670979 DOI: 10.1016/j.neuron.2009.01.030] [Citation(s) in RCA: 516] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/09/2008] [Accepted: 01/27/2009] [Indexed: 01/02/2023]
Abstract
Energy use, mainly to reverse ion movements in neurons, is a fundamental constraint on brain information processing. Trafficking of mitochondria to locations in neurons where there are large ion fluxes is essential for powering neural function. Mitochondrial trafficking is regulated by Ca2+ entry through ionotropic glutamate receptors, but the underlying mechanism is unknown. We show that the protein Miro1 links mitochondria to KIF5 motor proteins, allowing mitochondria to move along microtubules. This linkage is inhibited by micromolar levels of Ca2+ binding to Miro1. With the EF hand domains of Miro1 mutated to prevent Ca2+ binding, Miro1 could still facilitate mitochondrial motility, but mitochondrial stopping induced by glutamate or neuronal activity was blocked. Activating neuronal NMDA receptors with exogenous or synaptically released glutamate led to Miro1 positioning mitochondria at the postsynaptic side of synapses. Thus, Miro1 is a key determinant of how energy supply is matched to energy usage in neurons.
Collapse
Affiliation(s)
- Andrew F Macaskill
- Department of Neuroscience, Physiology, and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Wang X, Schwarz TL. The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell 2009; 136:163-74. [PMID: 19135897 DOI: 10.1016/j.cell.2008.11.046] [Citation(s) in RCA: 684] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/14/2008] [Accepted: 11/24/2008] [Indexed: 01/05/2023]
Abstract
Mitochondria are mobile organelles and cells regulate mitochondrial movement in order to meet the changing energy needs of each cellular region. Ca(2+) signaling, which halts both anterograde and retrograde mitochondrial motion, serves as one regulatory input. Anterograde mitochondrial movement is generated by kinesin-1, which interacts with the mitochondrial protein Miro through an adaptor protein, milton. We show that kinesin is present on all axonal mitochondria, including those that are stationary or moving retrograde. We also show that the EF-hand motifs of Miro mediate Ca(2+)-dependent arrest of mitochondria and elucidate the regulatory mechanism. Rather than dissociating kinesin-1 from mitochondria, Ca(2+)-binding permits Miro to interact directly with the motor domain of kinesin-1, preventing motor/microtubule interactions. Thus, kinesin-1 switches from an active state in which it is bound to Miro only via milton, to an inactive state in which direct binding to Miro prevents its interaction with microtubules. Disrupting Ca(2+)-dependent regulation diminishes neuronal resistance to excitotoxicity.
Collapse
Affiliation(s)
- Xinnan Wang
- F.M. Kirby Neurobiology Center, Children's Hospital Boston, Boston, MA 02115, USA
| | | |
Collapse
|
77
|
Abstract
Mitochondrial dynamics and transport have emerged as key factors in the regulation of neuronal differentiation and survival. Mitochondria are dynamically transported in and out of axons and dendrites to maintain neuronal and synaptic function. Transport proceeds through a controlled series of plus- and minus-end directed movements along microtubule tracks (MTs) that are often interrupted by short stops. This bidirectional motility of mitochondria is facilitated by plus end-directed kinesin and minus end-directed dynein motors, and may be coordinated and controlled by a number of mechanisms that integrate intracellular signals to ensure efficient transport and targeting of mitochondria. In this chapter, we discuss our understanding of mechanisms that facilitate mitochondrial transport and delivery to specific target sites in dendrites and axons.
Collapse
|
78
|
Abstract
Neuronal mitochondria need to be transported and distributed in axons and dendrites in order to ensure an adequate energy supply and provide sufficient Ca(2+) buffering in each portion of these highly extended cells. Errors in mitochondrial transport are implicated in neurodegenerative diseases. Here we present useful tools to analyze axonal transport of mitochondria both in vitro in cultured rat neurons and in vivo in Drosophila larval neurons. These methods enable investigators to take advantage of both systems to study the properties of mitochondrial motility under normal or pathological conditions.
Collapse
Affiliation(s)
- Xinnan Wang
- F. M. Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
79
|
Schmidt RE, Parvin CA, Green KG. Synaptic ultrastructural alterations anticipate the development of neuroaxonal dystrophy in sympathetic ganglia of aged and diabetic mice. J Neuropathol Exp Neurol 2008; 67:1166-86. [PMID: 19018240 PMCID: PMC2665250 DOI: 10.1097/nen.0b013e318190d6db] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neuroaxonal dystrophy, a distinctive axonopathy characterized by marked enlargement of distal axons, is the hallmark pathologic alteration in aged and diabetic human prevertebral sympathetic ganglia and in corresponding rodent models. Neuroaxonal dystrophy is thought to represent the abnormal outcome of cycles of synaptic degeneration and regeneration; a systematic study of identified axon terminals in aged and diabetic prevertebral ganglia, however, has not previously been performed. We examined the initial changes that develop in presynaptic and postsynaptic elements in sympathetic ganglia of aged and diabetic mice and found numerous synaptic changes involving both presynaptic and postsynaptic elements. Early alterations in presynaptic axon terminal size, vesicle content, and morphology culminate in the development of anastomosing membranous tubulovesicular aggregates, accumulation of autophagosomes, and amorphous debris that form a continuum with progressively larger classically dystrophic swellings. Dendritic changes consist of the development of swellings composed of delicate tubulovesicular elements and mitochondriopathy characterized by increased numbers of small mitochondria and, exclusively in aged ganglia, megamitochondria. These results support the hypothesis that neuroaxonal dystrophy results from progressive changes in presynaptic axon terminals that likely involve membrane dynamics and which are accompanied by distinctive changes in postsynaptic dendritic elements.
Collapse
Affiliation(s)
- Robert E Schmidt
- Division of Neuropathology, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
80
|
Measurement of instantaneous velocity vectors of organelle transport: mitochondrial transport and bioenergetics in hippocampal neurons. Biophys J 2008; 95:3079-99. [PMID: 18757564 DOI: 10.1529/biophysj.108.135657] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe an application of "optical flow", the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determination from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhodamine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters and is correlated the best to the size of the mitochondria.
Collapse
|
81
|
Kuiper JWP, Oerlemans FTJJ, Fransen JAM, Wieringa B. Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria. BMC Neurosci 2008; 9:73. [PMID: 18662381 PMCID: PMC2515853 DOI: 10.1186/1471-2202-9-73] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 07/28/2008] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neurons require an elaborate system of intracellular transport to distribute cargo throughout axonal and dendritic projections. Active anterograde and retrograde transport of mitochondria serves in local energy distribution, but at the same time also requires input of ATP. Here we studied whether brain-type creatine kinase (CK-B), a key enzyme for high-energy phosphoryl transfer between ATP and CrP in brain, has an intermediary role in the reciprocal coordination between mitochondrial motility and energy distribution. Therefore, we analysed the impact of brain-type creatine kinase (CK-B) deficiency on transport activity and velocity of mitochondria in primary murine neurons and made a comparison to the fate of amyloid precursor protein (APP) cargo in these cells, using live cell imaging. RESULTS Comparison of average and maximum transport velocities and global transport activity showed that CK-B deficiency had no effect on speed of movement of mitochondria or APP cargo, but that the fraction of motile mitochondria was significantly increased by 36% in neurons derived from CK-B knockout mice. The percentage of motile APP vesicles was not altered. CONCLUSION CK-B activity does not directly couple to motor protein activity but cells without the enzyme increase the number of motile mitochondria, possibly as an adaptational strategy aimed to enhance mitochondrial distribution versatility in order to compensate for loss of efficiency in the cellular network for ATP distribution.
Collapse
Affiliation(s)
- Jan W P Kuiper
- Department of Cell Biology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
82
|
Abstract
Mitochondria form a dynamic network responsible for energy production, calcium homeostasis and cell signaling. Appropriate distribution of the mitochondrial network contributes to organelle function and is essential for cell survival. Highly polarized cells, including neurons and budding yeast, are particularly sensitive to defects in mitochondrial movement and have emerged as model systems for studying mechanisms that regulate organelle distribution. Mitochondria in multicellular eukaryotes move along microtubule tracks. Actin, the primary cytoskeletal component used for transport in yeast, has more subtle functions in other organisms. Kinesin, dynein and myosin isoforms drive motor-based movement along cytoskeletal tracks. Milton and syntabulin have recently been identified as potential organelle-specific adaptor molecules for microtubule-based motors. Miro, a conserved GTPase, may function with Milton to regulate transport. In yeast, Mmr1p and Ypt11p, a Rab GTPase, are implicated in myosin V-based mitochondrial movement. These potential adaptors could regulate motor activity and therefore determine individual organelle movements. Anchoring of stationary mitochondria also contributes to organelle retention at specific sites in the cell. Together, movement and anchoring ultimately determine mitochondrial distribution throughout the cell.
Collapse
Affiliation(s)
- Rebecca L Frederick
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
83
|
Chihara T, Luginbuhl D, Luo L. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 2007; 10:828-37. [PMID: 17529987 DOI: 10.1038/nn1910] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/18/2007] [Indexed: 12/16/2022]
Abstract
We identified a mutation in Aats-gly (also known as gars or glycyl-tRNA synthetase), the Drosophila melanogaster ortholog of the human GARS gene that is associated with Charcot-Marie-Tooth neuropathy type 2D (CMT2D), from a mosaic genetic screen. Loss of gars in Drosophila neurons preferentially affects the elaboration and stability of terminal arborization of axons and dendrites. The human and Drosophila genes each encode both a cytoplasmic and a mitochondrial isoform. Using additional mutants that selectively disrupt cytoplasmic or mitochondrial protein translation, we found that cytoplasmic protein translation is required for terminal arborization of both dendrites and axons during development. In contrast, disruption of mitochondrial protein translation preferentially affects the maintenance of dendritic arborization in adults. We also provide evidence that human GARS shows equivalent functions in Drosophila, and that CMT2D causal mutations show loss-of-function properties. Our study highlights different demands of protein translation for the development and maintenance of axons and dendrites.
Collapse
Affiliation(s)
- Takahiro Chihara
- Howard Hughes Medical Institute, Department of Biological Sciences, 385 Serra Mall, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
84
|
Stommel EW, van Hoff RM, Graber DJ, Bercury KK, Langford GM, Harris BT. Tumor necrosis factor-alpha induces changes in mitochondrial cellular distribution in motor neurons. Neuroscience 2007; 146:1013-9. [PMID: 17418957 DOI: 10.1016/j.neuroscience.2007.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Motor neuron (MN) mitochondrial abnormalities and elevation in spinal fluid levels of the inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) have been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). The mechanism of neuron death in ALS remains unclear, along with the contributions of mitochondrial dysfunction and inflammation in the process. Cell cultures enriched for MN derived from embryonic rat spinal cords were established and directly exposed in vitro to recombinant TNF-alpha for varying lengths of time. Although cytokine exposure for up to 4 days failed to induce MN death, mitochondrial changes were observed shortly after initiating treatment. Our results demonstrate that TNF-alpha induced mitochondrial redistribution toward the soma in MN. We postulate that inflammation may precede, and in fact cause, the mitochondrial changes observed in ALS tissue.
Collapse
Affiliation(s)
- E W Stommel
- Department of Medicine, Section of Neurology, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH 03756, and Department of Biology, Dartmouth College, Hanover 03755, USA.
| | | | | | | | | | | |
Collapse
|
85
|
Abstract
Mitochondria often reside in subcellular regions with high metabolic demands. We examined the mechanisms that can govern the relocation of mitochondria to these sites in respiratory neurons. Mitochondria were visualized using tetramethylrhodamineethylester, and their movements were analyzed by applying single-particle tracking. Intracellular ATP ([ATP](i)) was assessed by imaging the luminescence of luciferase, the fluorescence of the ATP analog TNP-ATP, and by monitoring the activity of K(ATP) channels. Directed movements of mitochondria were accompanied by transient increases in TNP-ATP fluorescence. Application of glutamate and hypoxia reversibly decreased [ATP](i) levels and inhibited the directed transport. Injections of ATP did not rescue the motility of mitochondria after its inhibition by hypoxia. Introduction of ADP suppressed mitochondrial movements and occluded the effects of subsequent hypoxia. Mitochondria decreased their velocity in the proximity of synapses that correlated with local [ATP](i) depletions. Using a model of motor-assisted transport and Monte Carlo simulations, we showed that mitochondrial traffic is more sensitive to increases in [ADP](i) than to [ATP](i) depletions. We propose that consumption of synaptic ATP can produce local increases in [ADP](i) and facilitate the targeting of mitochondria to synapses.
Collapse
Affiliation(s)
- Sergej L Mironov
- DFG-Center Molecular Physiology of the Brain, Department of Neuro and Sensory Physiology, Georg-August-University, Göttingen, Germany.
| |
Collapse
|
86
|
Bartolini F, Gundersen GG. Generation of noncentrosomal microtubule arrays. J Cell Sci 2007; 119:4155-63. [PMID: 17038542 DOI: 10.1242/jcs.03227] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most proliferating and migrating animal cells, the centrosome is the main site for microtubule (MT) nucleation and anchoring, leading to the formation of radial MT arrays in which MT minus ends are anchored at the centrosomes and plus ends extend to the cell periphery. By contrast, in most differentiated animal cell types, including muscle, epithelial and neuronal cells, as well as most fungi and vascular plant cells, MTs are arranged in noncentrosomal arrays that are non-radial. Recent studies suggest that these noncentrosomal MT arrays are generated by a three step process. The initial step involves formation of noncentrosomal MTs by distinct mechanisms depending on cell type: release from the centrosome, catalyzed nucleation at noncentrosomal sites or breakage of pre-existing MTs. The second step involves transport by MT motor proteins or treadmilling to sites of assembly. In the final step, the noncentrosomal MTs are rearranged into cell-type-specific arrays by bundling and/or capture at cortical sites, during which MTs acquire stability. Despite their relative stability, the final noncentrosomal MT arrays may still exhibit dynamic properties and in many cases can be remodeled.
Collapse
|
87
|
De Vos KJ, Sheetz MP. Visualization and quantification of mitochondrial dynamics in living animal cells. Methods Cell Biol 2007; 80:627-82. [PMID: 17445716 DOI: 10.1016/s0091-679x(06)80030-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kurt J De Vos
- Department of Neuroscience, MRC Centre for Neurodegeneration Research, The Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London, United Kingdom
| | | |
Collapse
|
88
|
Chang DTW, Reynolds IJ. Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol 2006; 80:241-68. [PMID: 17188795 DOI: 10.1016/j.pneurobio.2006.09.003] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Revised: 09/14/2006] [Accepted: 09/18/2006] [Indexed: 12/21/2022]
Abstract
Mitochondria are the primary generators of ATP and are important regulators of intracellular calcium homeostasis. These organelles are dynamically transported along lengthy neuronal processes, presumably for appropriate distribution to cellular regions of high metabolic demand and elevated intracellular calcium, such as synapses. The removal of damaged mitochondria that produce harmful reactive oxygen species and promote apoptosis is also thought to be mediated by transport of mitochondria to autophagosomes. Mitochondrial trafficking is therefore important for maintaining neuronal and mitochondrial health while cessation of movement may lead to neuronal and mitochondrial dysfunction. Mitochondrial morphology is also dynamic and is remodeled during neuronal injury and disease. Recent studies reveal different manifestations and mechanisms of impaired mitochondrial movement and altered morphology in injured neurons. These are likely to cause varied courses toward neuronal degeneration and death. The goal of this review is to provide an appreciation of the full range of mitochondrial function, morphology and trafficking, and the critical role these parameters play in neuronal physiology and pathophysiology.
Collapse
Affiliation(s)
- Diane T W Chang
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
89
|
Abstract
Mitochondria are central for various cellular processes that include ATP production, intracellular Ca(2+) signaling, and generation of reactive oxygen species. Neurons critically depend on mitochondrial function to establish membrane excitability and to execute the complex processes of neurotransmission and plasticity. While much information about mitochondrial properties is available from studies on isolated mitochondria and dissociated cell cultures, less is known about mitochondrial function in intact neurons in brain tissue. However, a detailed description of the interactions between mitochondrial function, energy metabolism, and neuronal activity is crucial for the understanding of the complex physiological behavior of neurons, as well as the pathophysiology of various neurological diseases. The combination of new fluorescence imaging techniques, electrophysiology, and brain slice preparations provides a powerful tool to study mitochondrial function during neuronal activity, with high spatiotemporal resolution. This review summarizes recent findings on mitochondrial Ca(2+) transport, mitochondrial membrane potential (DeltaPsi(m)), and energy metabolism during neuronal activity. We will first discuss interactions of these parameters for experimental stimulation conditions that can be related to the physiological range. We will then describe how mitochondrial and metabolic dysfunction develops during pathological neuronal activity, focusing on temporal lobe epilepsy and its experimental models. The aim is to illustrate that 1) the structure of the mitochondrial compartment is highly dynamic in neurons, 2) there is a fine-tuned coupling between neuronal activity and mitochondrial function, and 3) mitochondria are of central importance for the complex behavior of neurons.
Collapse
Affiliation(s)
- Oliver Kann
- Institut für Neurophysiologie, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
| | | |
Collapse
|
90
|
Chang DTW, Reynolds IJ. Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience 2006; 141:727-736. [PMID: 16797853 DOI: 10.1016/j.neuroscience.2006.01.034] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 01/06/2006] [Accepted: 01/27/2006] [Indexed: 01/31/2023]
Abstract
Mitochondria have many roles critical to the function of neurons including the generation of ATP and regulation of intracellular Ca2+. Mitochondrial movement is highly dynamic in neurons and is thought to direct mitochondria to specific cellular regions of increased need and to transport damaged or old mitochondria to autophagosomes. Morphology also varies between individual mitochondria and is modulated by fusion and fission proteins such as mitofusin-1 and dynamin-related protein-1, respectively. Although mitochondrial movement and morphology are thought to be modulated to best meet cellular demands, few regulatory signals have been identified. In this study, we examined how the different cellular environments of synaptically immature and mature rat cortical neurons affect mitochondrial movement, morphology, distribution and function. In younger cells, mitochondria were more mobile, were shorter, occupied a smaller percentage of neuronal processes, and expressed greater mitofusin-1 and lower dynamin-related protein-1 protein levels compared with older cells. However, the number of mitochondria per mum of neuronal process, mitochondrial membrane potential and the amount of basally sequestered mitochondrial Ca2+ were similar. Our results suggest that while mitochondria in young neurons are functionally similar to mature neurons, their enhanced motility may permit faster energy dispersal for cellular demands, such as synaptogenesis. As cells mature, mitochondria in the processes may then elongate and reduce their motility for long-term support of synaptic structures.
Collapse
Affiliation(s)
- D T W Chang
- Department of Pharmacology, University of Pittsburgh, W1351 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | - I J Reynolds
- Department of Pharmacology, University of Pittsburgh, W1351 Biomedical Science Tower, Pittsburgh, PA 15261, USA.
| |
Collapse
|
91
|
Mironov SL. Spontaneous and evoked neuronal activities regulate movements of single neuronal mitochondria. Synapse 2006; 59:403-11. [PMID: 16485263 DOI: 10.1002/syn.20256] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondria produce ATP and act as internal Ca2+ storage sites in neurons. Their localization at active synapses can be beneficial both for the maintenance of normal neuronal activity and for preventing neurodegeneration. Mitochondrial distribution in neurons is a dynamic process that can, in turn, be determined by their activity. To examine these relationships, we used respiratory neurons that possess persistent rhythmic activity, to which mitochondria substantially contributed. Mitochondria were visualized using potentiometric dyes and two-photon microscopy. The trajectories of mitochondrial movements were obtained by single particle tracking. Spontaneous and evoked synaptic activity and intracellular Ca2+ were measured by using FM 1-43 and fura-2, respectively. Inhibition of synaptic activity with N-type Ca2+ and Na+ channel blockers, omega-conotoxin GVIA, and tetrodotoxin, increased the run-lengths of the directed transport. After brief periods of spontaneous synaptic activity and after membrane depolarization, mitochondrial movements were inhibited in correlation with the duration of intracellular [Ca2+] elevations. Movements of mitochondria were also suppressed after membrane depolarization in Ca2+-free solutions, indicating that the effects of Ca2+ are indirect and other factors, e.g., ATP depletion, may be involved. Through the use of experimentally determined parameters of mitochondrial motions, we modeled the behavior of mitochondrial ensembles and showed a tendency of mitochondria to produce linear aggregates whose formation is enhanced by irregularities of mitochondrial movements. We propose that accumulation and clustering of mitochondria in neurons are caused by interruptions in the directed transport of mitochondria, leading to the inhibition of their movements at the active synapses.
Collapse
Affiliation(s)
- S L Mironov
- DFG-Center of Molecular Physiology of the Brain, Department of Neuro- and Sensory Physiology, Georg-August-University, Göttingen, Humboldtallee 23, 37073, Germany.
| |
Collapse
|
92
|
Montoya J, López-Pérez MJ, Ruiz-Pesini E. Mitochondrial DNA transcription and diseases: past, present and future. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1179-89. [PMID: 16697348 DOI: 10.1016/j.bbabio.2006.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/21/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
The transcription of mitochondrial DNA has been studied for 30 years. However, many of the earlier observations are still unsolved. In this review we will recall the basis of mitochondrial DNA transcription, established more than twenty years ago, will include some of the recent progress in the understanding of this process and will suggest hypotheses for some of the unexplained topics. Moreover, we will show some examples of mitochondrial pathology due to altered transcription and RNA metabolism.
Collapse
Affiliation(s)
- Julio Montoya
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza-Instituto Aragonés de Ciencias de la Salud, Miguel Servet 177, 50013-Zaragoza, Spain.
| | | | | |
Collapse
|
93
|
Abstract
Organelle transport is vital for the development and maintenance of axons, in which the distances between sites of organelle biogenesis, function, and recycling or degradation can be vast. Movement of mitochondria in axons can serve as a general model for how all organelles move: mitochondria are easy to identify, they move along both microtubule and actin tracks, they pause and change direction, and their transport is modulated in response to physiological signals. However, they can be distinguished from other axonal organelles by the complexity of their movement and their unique functions in aerobic metabolism, calcium homeostasis and cell death. Mitochondria are thus of special interest in relating defects in axonal transport to neuropathies and degenerative diseases of the nervous system. Studies of mitochondrial transport in axons are beginning to illuminate fundamental aspects of the distribution mechanism. They use motors of one or more kinesin families, along with cytoplasmic dynein, to translocate along microtubules, and bidirectional movement may be coordinated through interaction between dynein and kinesin-1. Translocation along actin filaments is probably driven by myosin V, but the protein(s) that mediate docking with actin filaments remain unknown. Signaling through the PI 3-kinase pathway has been implicated in regulation of mitochondrial movement and docking in the axon, and additional mitochondrial linker and regulatory proteins, such as Milton and Miro, have recently been described.
Collapse
Affiliation(s)
- Peter J Hollenbeck
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
94
|
Rintoul GL, Bennett VJ, Papaconstandinou NA, Reynolds IJ. Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 2006; 97:800-6. [PMID: 16573650 DOI: 10.1111/j.1471-4159.2006.03788.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) has a number of physiological and pathophysiological effects in the nervous system. One target of NO is the mitochondrion, where it inhibits respiration and ATP synthesis, which may contribute to NO-mediated neuronal injury. Our recent studies suggested that impaired mitochondrial function impairs mitochondrial trafficking, which could also contribute to neuronal injury. Here, we studied the effects of NO on mitochondrial movement and morphology in primary cultures of forebrain neurons using a mitochondrially targeted enhanced yellow fluorescent protein. NO produced by two NO donors, papa non-oate and diethylamine/NO complex, caused a rapid cessation of mitochondrial movement but did not alter morphology. Movement recovered after removal of NO. The effects of NO on movement were associated with dissipation of the mitochondrial membrane potential. Increasing cGMP levels using 8-bromoguanosine 3',5'-cyclic monophosphate, did not mimic the effects on mitochondrial movement. Furthermore, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of NO-induced activation of soluble guanylate cyclase, did not block the effects of NO. Thus, neither increasing nor decreasing cGMP levels had an effect on mitochondrial movement. Based on these data, we conclude that NO is a novel modulator of mitochondrial trafficking in neurons, which may act through the inhibition of mitochondrial function.
Collapse
Affiliation(s)
- Gordon L Rintoul
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
95
|
Brough D, Schell M, Irvine R. Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 2006; 392:291-7. [PMID: 15982187 PMCID: PMC1316264 DOI: 10.1042/bj20050738] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Using fluorescently tagged markers for organelles in conjunction with confocal microscopy, we have studied the effects of agonist-induced Ca2+ signals on the motility of mitochondria and the ER (endoplasmic reticulum). We observed that the muscarinic agonist carbachol produced a rapid, simultaneous and reversible cessation of the movements of both organelles, which was dependent on a rise in cytosolic Ca2+. This rise in Ca2+ was shown to cause a fall in cellular ATP levels, and the effect of carbachol on organelle movement could be mimicked by depleting ATP with metabolic inhibitors in the absence of any such rise in Ca2+. However, a Ca2+-sensing process independent of ATP appears also to be involved, because we identified conditions where the ATP depletion was blocked (by inhibitors of the Ca2+ pumps), but the organelle movements still ceased following a rise in cytosolic Ca2+. We conclude that the co-ordinated cessation of mitochondria and ER motility is a process regulated by the cytosolic concentration of both Ca2+ and ATP, and that these two parameters are likely to synergize to regulate the localization of the two organelles, and to facilitate the transfer of Ca2+ between them.
Collapse
Affiliation(s)
- David Brough
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Michael J. Schell
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Robin F. Irvine
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
96
|
Cai Q, Gerwin C, Sheng ZH. Syntabulin-mediated anterograde transport of mitochondria along neuronal processes. ACTA ACUST UNITED AC 2005; 170:959-69. [PMID: 16157705 PMCID: PMC1804288 DOI: 10.1083/jcb.200506042] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In neurons, proper distribution of mitochondria in axons and at synapses is critical for neurotransmission, synaptic plasticity, and axonal outgrowth. However, mechanisms underlying mitochondrial trafficking throughout the long neuronal processes have remained elusive. Here, we report that syntabulin plays a critical role in mitochondrial trafficking in neurons. Syntabulin is a peripheral membrane-associated protein that targets to mitochondria through its carboxyl-terminal tail. Using real-time imaging in living cultured neurons, we demonstrate that a significant fraction of syntabulin colocalizes and co-migrates with mitochondria along neuronal processes. Knockdown of syntabulin expression with targeted small interfering RNA or interference with the syntabulin–kinesin-1 heavy chain interaction reduces mitochondrial density within axonal processes by impairing anterograde movement of mitochondria. These findings collectively suggest that syntabulin acts as a linker molecule that is capable of attaching mitochondrial organelles to the microtubule-based motor kinesin-1, and in turn, contributes to anterograde trafficking of mitochondria to neuronal processes.
Collapse
Affiliation(s)
- Qian Cai
- Synaptic Function Unit, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
97
|
Scheffler IE. A century of mitochondrial research: achievements and perspectives. Mitochondrion 2005; 1:3-31. [PMID: 16120266 DOI: 10.1016/s1567-7249(00)00002-7] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- I E Scheffler
- Division of Biology, University of California, San Diego, and Center for Molecular Genetics, La Jolla, CA 92093-0322, USA.
| |
Collapse
|
98
|
Richardson JL, Shivdasani RA, Boers C, Hartwig JH, Italiano JE. Mechanisms of organelle transport and capture along proplatelets during platelet production. Blood 2005; 106:4066-75. [PMID: 16118320 PMCID: PMC1895242 DOI: 10.1182/blood-2005-06-2206] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Megakaryocytes generate platelets by remodeling their cytoplasm into long proplatelet extensions, which serve as assembly lines for platelet production. Platelet packaging and release concludes at the tips of each proplatelet. Essential in this process is the distribution of organelles and platelet-specific granules into the nascent platelets. To investigate the mechanism of delivery of organelles into putative platelets, the distribution and dynamics of organelles/granules was monitored. Individual organelles are sent from the cell body to the proplatelets where they move bidirectionally until they are captured at proplatelet ends. Movement occurs at approximately 0.2 microm/min, but pauses and changes in direction are frequent. At any given time, approximately 30% of organelles/granules are in motion. Actin poisons do not diminish organelle motion, and vesicular structures are intimately associated with the microtubules. Therefore, movement appears to involve microtubule-based forces. Bidirectional organelle movement is conveyed by the bipolar organization of microtubules within the proplatelet, as kinesin-coated beads move bidirectionally on the microtubule arrays of permeabilized proplatelets. Movement of organelles along proplatelets involves 2 mechanisms: organelles travel along microtubules, and the linked microtubules move relative to each other. These studies demonstrate that the components that form platelets are delivered to and assembled de novo along proplatelets.
Collapse
Affiliation(s)
- Jennifer L Richardson
- Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
99
|
Nixon RA. Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 2005; 26:373-82. [PMID: 15639316 DOI: 10.1016/j.neurobiolaging.2004.09.018] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 09/07/2004] [Accepted: 09/15/2004] [Indexed: 11/20/2022]
Abstract
Endocytosis is universally important in cell function. In the brain, the roles of endosomes are relatively more complex due to the unique polar morphology of neurons and specialized needs for inter-cellular communication. New evidence shows that endosome function is altered in a surprising range of neurodegenerative disorders, including in several inherited neurologic disorders where the causative mutations occur in genes that regulate endosome function. In Alzheimer's disease (AD), endosome abnormalities are among the earliest neuropathologic features to develop and have now been closely linked to genetic risk factors for AD, including APP triplication in Trisomy 21 (Down syndrome, DS) and ApoE4 genotype in sporadic AD. Recent findings on endosome regulation and developmental and late-onset neurodegenerative disease disorders are beginning to reveal how endocytic pathway impairment may lead to neuronal dysfunction and cell death in these disorders and may also promote amyloidogenesis in AD.
Collapse
Affiliation(s)
- Ralph A Nixon
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
100
|
Takeuchi H, Mizuno T, Zhang G, Wang J, Kawanokuchi J, Kuno R, Suzumura A. Neuritic beading induced by activated microglia is an early feature of neuronal dysfunction toward neuronal death by inhibition of mitochondrial respiration and axonal transport. J Biol Chem 2005; 280:10444-54. [PMID: 15640150 DOI: 10.1074/jbc.m413863200] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies suggest that excitotoxicity may contribute to neuronal damage in neurodegenerative diseases including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis. Activated microglia have been observed around degenerative neurons in these diseases, and they are thought to act as effector cells in the degeneration of neural cells in the central nervous system. Neuritic beading, focal bead-like swellings in the dendrites and axons, is a neuropathological sign in epilepsy, trauma, ischemia, aging, and neurodegenerative diseases. Previous reports showed that neuritic beading is induced by various stimuli including glutamate or nitric oxide and is a neuronal response to harmful stimuli. However, the precise physiologic significance of neuritic beading is unclear. We provide evidence that neuritic beading induced by activated microglia is a feature of neuronal cell dysfunction toward neuronal death, and the neurotoxicity of activated microglia is mediated through N-methyl-d-aspartate (NMDA) receptor signaling. Neuritic beading occurred concordant with a rapid drop in intracellular ATP levels and preceded neuronal death. The actual neurite beads consisted of collapsed cytoskeletal proteins and motor proteins arising from impaired neuronal transport secondary to cellular energy loss. The drop in intracellular ATP levels was because of the inhibition of mitochondrial respiratory chain complex IV activity downstream of NMDA receptor signaling. Blockage of NMDA receptors nearly completely abrogated mitochondrial dysfunction and neurotoxicity. Thus, neuritic beading induced by activated microglia occurs through NMDA receptor signaling and represents neuronal cell dysfunction preceding neuronal death. Blockage of NMDA receptors may be an effective therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | |
Collapse
|