51
|
Clark CG, Alsmark UCM, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N. Structure and content of the Entamoeba histolytica genome. ADVANCES IN PARASITOLOGY 2008; 65:51-190. [PMID: 18063096 DOI: 10.1016/s0065-308x(07)65002-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The intestinal parasite Entamoeba histolytica is one of the first protists for which a draft genome sequence has been published. Although the genome is still incomplete, it is unlikely that many genes are missing from the list of those already identified. In this chapter we summarise the features of the genome as they are currently understood and provide previously unpublished analyses of many of the genes.
Collapse
Affiliation(s)
- C G Clark
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Sahin A, Espiau B, Tetaud E, Cuvillier A, Lartigue L, Ambit A, Robinson DR, Merlin G. The leishmania ARL-1 and Golgi traffic. PLoS One 2008; 3:e1620. [PMID: 18286177 PMCID: PMC2237903 DOI: 10.1371/journal.pone.0001620] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 01/19/2008] [Indexed: 12/20/2022] Open
Abstract
We present here the characterisation of the Leishmania small G protein ADP-Ribosylation Factor-Like protein 1 (ARL-1). The ARL-1 gene is present in one copy per haploid genome and conserved among trypanosomatids. It encodes a protein of 20 kDa, which is equally expressed in the insect promastigote and mammalian amastigote forms of the parasite. ARL-1 localises to the Trans-Golgi Network (TGN); N-terminal myristoylation is essential for TGN localisation. In vivo expression of the LdARL-1/Q74L and LdARL-1/T51N mutants (GTP- and GDP-bound blocked forms respectively) shows that GDP/GTP cycling occurs entirely within the TGN. This is contrary to previous reports in yeast and mammals, where the mutant empty form devoid of nucleotide has been considered as the GDP-blocked form. The dominant-negative empty form mutant LdARL-1/T34N inhibits endocytosis and intracellular trafficking from the TGN to the Lysosome/Multivesicular Tubule and to the acidocalcisomes; these defects are probably related to a mislocalisation of the GRIP domain-containing vesicle tethering factors which cannot be recruited to the TGN by the cytoplasmic LdARL-1/T34N. Thus, besides the functional characterization of a new mutant and a better understanding of ARL-1 GDP/GTP cycling, this work shows that Leishmania ARL-1 is a key component of an essential pathway worth future study.
Collapse
Affiliation(s)
- Annelise Sahin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Benoît Espiau
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Emmanuel Tetaud
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Armelle Cuvillier
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Lydia Lartigue
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Audrey Ambit
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Derrick R. Robinson
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
| | - Gilles Merlin
- Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR CNRS 5234, Université Bordeaux 2, Bordeaux, France
- *E-mail:
| |
Collapse
|
53
|
Sahin A, Espiau B, Marchand C, Merlin G. Flagellar length depends on LdARL-3A GTP/GDP unaltered cycling in Leishmania amazonensis. Mol Biochem Parasitol 2007; 157:83-7. [PMID: 17889949 DOI: 10.1016/j.molbiopara.2007.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 08/11/2007] [Accepted: 08/13/2007] [Indexed: 01/09/2023]
Abstract
We have shown previously that expression of the GTP-blocked form of the small G protein LdARL-3A/Q70L led to a marked shortening of Leishmania promastigotes flagella. In contrast, there was no effect with the T30N mutant, thought to represent the GDP-blocked form. However, recent data, obtained with human ARF-6, a member of the same family of G proteins, revealed that the corresponding mutant T27N was nucleotide-free and that the GDP-blocked form was the T44N mutant. When expressed in Leishmania, the corresponding new mutant, LdARL-3A/T47N, provoked also flagellum shortening. Then, it is the interruption of the cycling of LdARL-3A between a GDP- and a GTP-bound form which leads to the reduction of the flagellar length. This findings change significantly the understanding and the approaches for studying the mode of action and the role of LdARL-3A.
Collapse
Affiliation(s)
- Annelise Sahin
- University of Bordeaux 2, 146 rue Léo Saignat, 33000 Bordeaux, France
| | | | | | | |
Collapse
|
54
|
Zahn C, Hommel A, Lu L, Hong W, Walther DJ, Florian S, Joost HG, Schürmann A. Knockout of Arfrp1 leads to disruption of ARF-like1 (ARL1) targeting to the trans-Golgi in mouse embryos and HeLa cells. Mol Membr Biol 2007; 23:475-85. [PMID: 17127620 DOI: 10.1080/09687860600840100] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ADP-ribosylation factor related protein 1 (ARFRP1) is a member of the ARF-family of GTPases which operate as molecular switches in the regulation of intracellular protein traffic. Deletion of the mouse Arfrp1 gene leads to embryonic lethality during early gastrulation, suggesting that ARFRP1 is required for cell adhesion-related processes. Here we show that ARFRP1 specifically controls targeting of ARL1 and its effector Golgin-245 to the trans-Golgi. GTP-bound ARFRP1 (ARFRP1-Q79L mutant) is associated with Golgi membranes and co-localized with the GTPase ARL1. In contrast, the guanine nucleotide exchange defective ARFRP1 mutant (ARFRP1-T31N) clusters within the cytosol. ARFRP1-T31N or depletion of endogenous ARFRP1 by RNA interference disrupts the Golgi association of ARL1 and of the GRIP-domain protein Golgin-245 and alters the distribution of a trans-Golgi network marker, syntaxin 6. In contrast, the targeting of two other Golgi-associated proteins, GM130 and giantin, was unaffected. Furthermore, in Arfrp1-/ - embryos ARL1 dislocated from Golgi membranes whereas it was associated with intracellular membranes in wild-type embryos. These data suggest that lethality of Arfrp1 knockout embryos is due to a specific disruption of protein targeting, e.g., of ARL1 and Golgin-245, to the Golgi.
Collapse
Affiliation(s)
- Claudia Zahn
- Department of Pharmacology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral ("early") and centralized ("late") structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived "mirror compartments" at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation.
Collapse
Affiliation(s)
- Jaakko Saraste
- *Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway; and
| | - Bruno Goud
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 144, Institut Curie, Section de Recherche, 75248 Paris Cedex 05, France
| |
Collapse
|
56
|
Derby MC, Gleeson PA. New Insights into Membrane Trafficking and Protein Sorting. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 261:47-116. [PMID: 17560280 DOI: 10.1016/s0074-7696(07)61002-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein transport in the secretory and endocytic pathways is a multistep process involving the generation of transport carriers loaded with defined sets of cargo, the shipment of the cargo-loaded transport carriers between compartments, and the specific fusion of these transport carriers with a target membrane. The regulation of these membrane-mediated processes involves a complex array of protein and lipid interactions. As the machinery and regulatory processes of membrane trafficking have been defined, it is increasingly apparent that membrane transport is intimately connected with a number of other cellular processes, such as quality control in the endoplasmic reticulum (ER), cytoskeletal dynamics, receptor signaling, and mitosis. The fidelity of membrane trafficking relies on the correct assembly of components on organelles. Recruitment of peripheral proteins plays a critical role in defining organelle identity and the establishment of membrane subdomains, essential for the regulation of vesicle transport. The molecular mechanisms for the biogenesis of membrane subdomains are also central to understanding how cargo is sorted and segregated and how different populations of transport carriers are generated. In this review we will focus on the emerging themes of organelle identity, membrane subdomains, regulation of Golgi trafficking, and advances in dissecting pathways in physiological systems.
Collapse
Affiliation(s)
- Merran C Derby
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | |
Collapse
|
57
|
Mironov AA, Banin VV, Sesorova IS, Dolgikh VV, Luini A, Beznoussenko GV. Evolution of the Endoplasmic Reticulum and the Golgi Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 607:61-72. [DOI: 10.1007/978-0-387-74021-8_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
58
|
Das S, Pellett PE. Members of the HCMV US12 family of predicted heptaspanning membrane proteins have unique intracellular distributions, including association with the cytoplasmic virion assembly complex. Virology 2006; 361:263-73. [PMID: 17188320 DOI: 10.1016/j.virol.2006.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 10/31/2006] [Accepted: 11/03/2006] [Indexed: 11/23/2022]
Abstract
The human cytomegalovirus (HCMV) US12 gene family is a group of 10 predicted seven-transmembrane domain proteins that have some features in common with G-protein-coupled receptors. Little is known of their patterns of expression, localization, or functional interactions. Here, we studied the intracellular localization of three US12 family members, US14, US17, and US18, with respect to various intracellular markers and the cytoplasmic virion assembly compartment (AC). The three proteins have distinct patterns of expression, which include associations with the AC. US14 is often distributed in a uniform granular manner throughout the cytoplasm, concentrating in the AC in some cells. US17 is expressed in a segmented manner, with its N-terminal domain localizing to the periphery of what we show here to be the AC and the C-terminal domain localizing to nuclei and the cytoplasm [Das, S., Skomorovska-Prokvolit, Y., Wang, F. Z., Pellett, P.E., 2006. Infection-dependent nuclear localization of US17, a member of the US12 family of human cytomegalovirus-encoded seven-transmembrane proteins. J. Virol. 80, 1191-1203]. Here, we show that the C-terminal domain is present at the center of the AC, in close association with markers of early endosomes; the N-terminal staining corresponds to an area stained by markers for the Golgi and trans-Golgi. US18 is distributed throughout the cytoplasm, concentrating in the AC at later stages of infection; it is localized more to the periphery of the AC than are US14 and US17C, in association with markers of the trans-Golgi. Although not detected in virions, their structures and localization in various zones within the AC suggest possible roles for these proteins in the process of virion maturation and egress.
Collapse
Affiliation(s)
- Subhendu Das
- Department of Molecular Genetics, Section of Virology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
59
|
Liu YW, Lee SW, Lee FJS. Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci 2006; 119:3845-55. [PMID: 16926193 DOI: 10.1242/jcs.03148] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms involved in the transport of GPI-anchored proteins from the trans-Golgi network (TGN) to the cell periphery have not been established. Arl1p is a member of the Arf-like protein (Arl) subfamily of small GTPases and is localized in the late Golgi. Although Arl1p is implicated in regulation of Golgi structure and function, no endogenous cargo protein that is regulated by Arl1p has been identified in yeast. In this study, we demonstrate that Arl1p is involved in the anterograde transport from the Golgi to the cell surface of the glycosylphosphatidylinositol (GPI)-anchored plasma-membrane-resident protein Gas1p, but not the cell-wall-localized GPI-anchored proteins Crh1p, Crh2p and Cwp1p, or non-GPI-anchored plasma membrane-protein Gap1p. We also show that regulators of Arl1p (Sys1p, Arl3p and Gcs1p) and an effector (Imh1p) all participate in the transport of Gas1p. Thus, we infer that the signaling cascade Sys1p-Arl3p-Arl1p-Imh1p specifically participates in the transport of a GPI-anchored protein from the late Golgi to the plasma membrane.
Collapse
Affiliation(s)
- Ya-Wen Liu
- Institute of Molecular Medicine, School of Medicine, National Taiwan University, and Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | | | | |
Collapse
|
60
|
Abstract
Golgin-97, RanBP2alpha, Imh1p and p230/golgin-245 (GRIP) domain golgins are targeted to the Golgi membrane through their GRIP domains. By analyzing more than 30 mutants of golgin-97 and golgin-245 GRIP domains for their properties of dimerization, interaction with ARF like protein 1 (Arl1)-GTP and Golgi targeting, we found hierarchically organized three-tier interactions governing the Golgi targeting of GRIP domain golgins. GRIP domain self-dimerization is necessary for bivalent interaction with Arl1-GTP. Unexpectedly, however, these two interactions are not sufficient for Golgi targeting, as a third group of residues, including positive-charged arginine between alpha1 and alpha2 and hydrophobic residues C-terminal to the GRIP domain, turn out to be essential. Surface plasmon resonance analysis indicates that GRIP domain interacts directly with membrane lipid, partially through the third group of residues such as W744 of golgin-97. This third tier of interaction with the membrane could be mediated by non-specific hydrophobic and electrostatic forces.
Collapse
Affiliation(s)
- Lei Lu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos Building, 61 Biopolis Drive, Singapore
| | | | | | | | | |
Collapse
|
61
|
Stefano G, Renna L, Hanton SL, Chatre L, Haas TA, Brandizzi F. ARL1 plays a role in the binding of the GRIP domain of a peripheral matrix protein to the Golgi apparatus in plant cells. PLANT MOLECULAR BIOLOGY 2006; 61:431-49. [PMID: 16830178 DOI: 10.1007/s11103-006-0022-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 02/02/2006] [Indexed: 05/10/2023]
Abstract
ARF GTPases play a central role in regulating membrane dynamics and protein transport in eukaryotic cells. ARF-like (ARL) proteins are close relatives of the ARF regulators of vesicular transport, but their function in plant cells is poorly characterized. Here, by means of live cell imaging and site-directed mutagenesis, we have investigated the cellular function of the plant GTPase ARL1. We provide direct evidence for a role of this ARL family member in the association of a plant golgin with the plant Golgi apparatus. Our data reveal the existence of key residues within the conserved GRIP-domain of the golgin and within the GTPase ARL1 that are central to ARL1-GRIP interaction. Mutations of these residues abolish the interaction of GRIP with the GTP-bound ARL1 and induce a redistribution of GRIP into the cytosol. This indicates that the localization of GRIP to the Golgi apparatus is strongly influenced by the interaction of GRIP with Golgi-localized ARL1. Our results assign a cellular role to a member of the Arabidopsis ARL family in the plant secretory pathway and propose mechanisms for localization of peripheral golgins to the plant Golgi apparatus.
Collapse
Affiliation(s)
- Giovanni Stefano
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, S7N 5E2, SK, Canada
| | | | | | | | | | | |
Collapse
|
62
|
Vogel V, Sheetz M. Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 2006; 7:265-75. [PMID: 16607289 DOI: 10.1038/nrm1890] [Citation(s) in RCA: 1611] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The shapes of eukaryotic cells and ultimately the organisms that they form are defined by cycles of mechanosensing, mechanotransduction and mechanoresponse. Local sensing of force or geometry is transduced into biochemical signals that result in cell responses even for complex mechanical parameters such as substrate rigidity and cell-level form. These responses regulate cell growth, differentiation, shape changes and cell death. Recent tissue scaffolds that have been engineered at the micro- and nanoscale level now enable better dissection of the mechanosensing, transduction and response mechanisms.
Collapse
Affiliation(s)
- Viola Vogel
- Laboratory for Biologically Oriented Materials, Department of Materials, Swiss Federal Institute of Technology (ETH), Zurich, Wolfgang-Pauli-Strasse 10, ETH Hönggerberg, HCI F443, CH-8093 Zürich, Switzerland.
| | | |
Collapse
|
63
|
Hofmann I, Munro S. An N-terminally acetylated Arf-like GTPase is localised to lysosomes and affects their motility. J Cell Sci 2006; 119:1494-503. [PMID: 16537643 DOI: 10.1242/jcs.02958] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Small GTPases of the Arf and Rab families play key roles in the function of subcellular organelles. Each GTPase is usually found on only one compartment and, hence, they confer organelle specificity to many intracellular processes. However, there has so far been little evidence for specific GTPases present on lysosomes. Here, we report that two closely related human Arf-like GTPases, Arl8a and Arl8b (also known as Arl10b/c and Gie1/2), localise to lysosomes in mammalian cells, with the single homologue in Drosophila cells having a similar location. Conventionally, membrane binding of Arf and Arl proteins is mediated by both an N-terminal myristoyl group and an N-terminal amphipathic helix that is inserted into the lipid bilayer upon activation of the GTPase. Arl8a and Arl8b do not have N-terminal myristoylation sites, and we find that Arl8b is instead N-terminally acetylated, and an acetylated methionine is necessary for its lysosomal localization. Overexpression of Arl8a or Arl8b results in a microtubule-dependent redistribution of lysosomes towards the cell periphery. Live cell imaging shows that lysosomes move more frequently both toward and away from the cell periphery, suggesting a role for Arl8a and Arl8b as positive regulators of lysosomal transport.
Collapse
Affiliation(s)
- Irmgard Hofmann
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
64
|
Shin OH, Exton JH. Assays and properties of arfaptin 2 binding to Rac1 and ADP-ribosylation factors (Arfs). Methods Enzymol 2006; 404:359-67. [PMID: 16413282 DOI: 10.1016/s0076-6879(05)04031-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Arfaptin 1 and 2 were identified as targets for GTP bound ADP-ribosylation factors (Arfs). Arfaptin 1 had no significant effects on guanine nucleotide binding to Arfs, nor enzymatic activities of guanine nucleotide exchange factor (GEF) and GTPase activating protein (GAP) acting on Arfs. However, arfaptin 1 inhibited Arf activation of cholera toxin and phospholipase D (PLD) in a dose-dependent manner. Only GTP-bound forms of Arf1, 5, and 6 interacted with arfaptin 1 and 2, but GTP-Arf1 showed the strongest binding to the arfaptins. In contrast to the binding of Arfs to arfaptins, GDP-Rac1 or dominant negative Rac1-N17N bound to arfaptin 2, whereas GTP-Rac1 or dominant active Rac1-Q61L did not bind to arfaptin 2. Neither GTP-Rac1 nor GDP-Rac1 bound to arfaptin 1. Based on our observation, we propose that arfaptin 2 is a target for GDP-Rac1 and for GTP-Arf1, and is involved in interactions between the Rac1 and Arfs signaling pathways. This chapter describes methods for investigating the interactions of arfaptins 1 and 2 with GTP- or GDP-liganded Arfs and Rac1.
Collapse
Affiliation(s)
- Ok-Ho Shin
- Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, USA
| | | |
Collapse
|
65
|
Zhou C, Cunningham L, Marcus AI, Li Y, Kahn RA. Arl2 and Arl3 regulate different microtubule-dependent processes. Mol Biol Cell 2006; 17:2476-87. [PMID: 16525022 PMCID: PMC1446103 DOI: 10.1091/mbc.e05-10-0929] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Arl2 and Arl3 are closely related members of the Arf family of regulatory GTPases that arose from a common ancestor early in eukaryotic evolution yet retain extensive structural, biochemical, and functional features. The presence of Arl3 in centrosomes, mitotic spindles, midzones, midbodies, and cilia are all supportive of roles in microtubule-dependent processes. Knockdown of Arl3 by siRNA resulted in changes in cell morphology, increased acetylation of alpha-tubulin, failure of cytokinesis, and increased number of binucleated cells. We conclude that Arl3 binds microtubules in a regulated manner to alter specific aspects of cytokinesis. In contrast, an excess of Arl2 activity, achieved by expression of the [Q70L]Arl2 mutant, caused the loss of microtubules and cell cycle arrest in M phase. Initial characterization of the underlying defects suggests a defect in the ability to polymerize tubulin in the presence of excess Arl2 activity. We also show that Arl2 is present in centrosomes and propose that its action in regulating tubulin polymerization is mediated at centrosomes. Somewhat paradoxically, no phenotypes were observed Arl2 expression was knocked down or Arl3 activity was increased in HeLa cells. We conclude that Arl2 and Arl3 have related but distinct roles at centrosomes and in regulating microtubule-dependent processes.
Collapse
Affiliation(s)
- Chengjing Zhou
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050, USA
| | | | | | | | | |
Collapse
|
66
|
Efe JA, Plattner F, Hulo N, Kressler D, Emr SD, Deloche O. Yeast Mon2p is a highly conserved protein that functions in the cytoplasm-to-vacuole transport pathway and is required for Golgi homeostasis. J Cell Sci 2006; 118:4751-64. [PMID: 16219684 DOI: 10.1242/jcs.02599] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although the small Arf-like GTPases Arl1-3 are highly conserved eukaryotic proteins, they remain relatively poorly characterized. The yeast and mammalian Arl1 proteins bind to the Golgi complex, where they recruit specific structural proteins such as Golgins. Yeast Arl1p directly interacts with Mon2p/Ysl2p, a protein that displays some sequence homology to the large Sec7 guanine exchange factors (GEFs) of Arf1. Mon2p also binds the putative aminophospholipid translocase (APT) Neo1p, which performs essential function(s) in membrane trafficking. Our detailed analysis reveals that Mon2p contains six distinct amino acid regions (A to F) that are conserved in several other uncharacterized homologs in higher eukaryotes. As the conserved A, E and F domains are unique to these homologues, they represent the signature of a new protein family. To investigate the role of these domains, we made a series of N- and C-terminal deletions of Mon2p. Although fluorescence and biochemical studies showed that the B and C domains (also present in the large Sec7 GEFs) predominantly mediate interaction with Golgi/endosomal membranes, growth complementation studies revealed that the C-terminal F domain is essential for the activity of Mon2p, indicating that Mon2p might also function independently of Arl1p. We provide evidence that Mon2p is required for efficient recycling from endosomes to the late Golgi. Intriguingly, although transport of CPY to the vacuole was nearly normal in the Deltamon2 strain, we found the constitutive delivery of Aminopeptidase 1 from the cytosol to the vacuole to be almost completely blocked. Finally, we show that Mon2p exhibits genetic and physical interactions with Dop1p, a protein with a putative function in cell polarity. We propose that Mon2p is a scaffold protein with novel conserved domains, and is involved in multiple aspects of endomembrane trafficking.
Collapse
Affiliation(s)
- Jem A Efe
- Division of Biology, Department of Cellular and Molecular Medicine, and the Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093-0668, USA
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Myristoyl-CoA protein:NMT (N-myristoyl transferase) catalyses the N-myristoylation of cellular proteins with a range of functions and is essential for viability in the protozoan parasites, Leishmania major and Trypanosoma brucei. In our investigations to define the essential downstream targets of NMT, we have focused on the ARF (ADP-ribosylation factor) family of proteins, as growth arrest in Saccharomyces cerevisiae mutants with reduced NMT activity correlates with decreased modification of members of this group of proteins. We have identified nine ARF/ARLs (where ARL stands for ARF-like) encoded in the T. brucei and T. cruzi genomes and ten in L. major. The T. brucei ARL1 protein is expressed only in the mammalian bloodstream form of the parasite, in which it is localized to the Golgi apparatus. RNAi (RNA interference) has been used to demonstrate that ARL1 is essential for viability in these infective cells. Before cell death, depletion of ARL1 protein results in disintegration of the Golgi structure and a delay in exocytosis of the abundant GPI (glycosylphosphatidylinositol)-anchored VSG (variant surface glycoprotein) to the parasite surface.
Collapse
Affiliation(s)
- H P Price
- Immunology and Infection Unit, Department of Biology, Hull York Medical School, University of York, Heslington, York YO10 5YW, UK.
| | | | | |
Collapse
|
68
|
Abstract
Small GTP-binding proteins of the Rab and Arf (ADP-ribosylation factor) families play a central role in the membrane trafficking pathways of eukaryotic cells. The prototypical members of the Arf family are Arf1-Arf6 and Sar1, which have well-characterized roles in membrane traffic or cytoskeletal reorganization. However, eukaryotic genomes encode additional proteins, which share the characteristic structural features of the Arf family, but the role of these 'Arf-like' (Arl) proteins is less well understood. This review discusses Arl1, a GTPase that is widely conserved in evolution, and which is localized to the Golgi in all species so far examined. The best-characterized effectors of Arl1 are coiled-coil proteins which share a C-terminal GRIP domain, but other apparent effectors include the GARP (Golgi-associated retrograde protein)/VFT (Vps fifty-three) vesicle-tethering complex and Arfaptin 2. As least some of these proteins are believed to have a role in membrane traffic. Genetic analysis in a number of species has shown that Arl1 is not essential for exocytosis, but rather suggest that it is required for traffic from endosomes to the Golgi.
Collapse
Affiliation(s)
- S Munro
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| |
Collapse
|
69
|
Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T, Uchiyama Y, Nakayama K. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J Cell Sci 2005; 118:4039-48. [PMID: 16129887 DOI: 10.1242/jcs.02524] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ADP-ribosylation factor (ARF)-related protein 1 (ARFRP1) is a small GTPase with significant similarity to the ARF family. However, little is known about the function of ARFRP1 in mammalian cells, although knockout mice of its gene are embryonic lethal. In the present study, we demonstrate that ARFRP1 is associated mainly with the trans-Golgi compartment and the trans-Golgi network (TGN) and is an essential regulatory factor for targeting of Arl1 and GRIP domain-containing proteins, golgin-97 and golgin-245, onto Golgi membranes. Furthermore, we show that, in concert with Arl1 and GRIP proteins, ARFRP1 is implicated in the Golgi-to-plasma membrane transport of the vesicular stomatitis virus G protein as well as in the retrograde transport of TGN38 and Shiga toxin from endosomes to the TGN.
Collapse
Affiliation(s)
- Hye-Won Shin
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
70
|
Latijnhouwers M, Hawes C, Carvalho C, Oparka K, Gillingham AK, Boevink P. An Arabidopsis GRIP domain protein locates to the trans-Golgi and binds the small GTPase ARL1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:459-70. [PMID: 16236155 DOI: 10.1111/j.1365-313x.2005.02542.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
GRIP domain proteins are a class of golgins that have been described in yeast and animals. They locate to the trans-Golgi network and are thought to play a role in endosome-to-Golgi trafficking. The Arabidopsis GRIP domain protein, AtGRIP, fused to the green fluorescent protein (GFP), locates to Golgi stacks but does not exactly co-locate with the Golgi marker sialyl transferase (ST)-mRFP, nor with the t-SNAREs Memb11, SYP31 and BS14a. We conclude that the location of AtGRIP is further to the trans side of the stack than STtmd-mRFP. The 185-aa C-terminus of AtGRIP containing the GRIP domain targeted GFP to the Golgi, although a proportion of the fusion protein was still found in the cytosol. Mutation of a conserved tyrosine (Y717) to alanine in the GRIP domain disrupted Golgi localization. ARL1 is a small GTPase required for Golgi targeting of GRIP domain proteins in other systems. An Arabidopsis ARL1 homologue was isolated and shown to target to Golgi stacks. The GDP-restricted mutant of ARL1, AtARL1-T31N, was observed to locate partially to the cytosol, whereas the GTP-restricted mutant AtARL1-Q71L labelled the Golgi and a population of small structures. Increasing the levels of AtARL1 in epidermal cells increased the proportion of GRIP-GFP fusion protein on Golgi stacks. We show, moreover, that AtARL1 interacted with the GRIP domain in a GTP-dependent manner in vitro in affinity chromatography and in the yeast two-hybrid system. This indicates that AtGRIP and AtARL1 interact directly. We conclude that the pathway involving ARL1 and GRIP domain golgins is conserved in plants.
Collapse
Affiliation(s)
- Maita Latijnhouwers
- Cell-to-Cell Communication Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | |
Collapse
|
71
|
Abstract
The organization and sorting of proteins within the Golgi stack to establish and maintain its cis to trans polarization remains an enigma. The function of Golgi compartments involves coat assemblages that facilitate vesicle traffic, Rab-tether-SNAP receptor (SNARE) machineries that dictate membrane identity, as well as matrix components that maintain structure. We have investigated how the Golgi complex achieves compartmentalization in response to a key component of the coat complex I (COPI) coat assembly pathway, the ARF1 GTPase, in relationship to GTPases-regulating endoplasmic reticulum (ER) exit (Sar1) and targeting fusion (Rab1). Following collapse of the Golgi into the ER in response to inhibition of activation of ARF1 by Brefeldin A, we found that Sar1- and Rab1-dependent Golgi reformation took place at multiple peripheral and perinuclear ER exit sites. These rapidly converged into immature Golgi that appeared as onion-like structures composed of multiple concentrically arrayed cisternae of mixed enzyme composition. During clustering to the perinuclear region, Golgi enzymes were sorted to achieve the degree of polarization within the stack found in mature Golgi. Surprisingly, we found that sorting of Golgi enzymes into their subcompartments was insensitive to the dominant negative GTP-restricted ARF1 mutant, a potent inhibitor of COPI coat disassembly and vesicular traffic. We suggest that a COPI-independent, Rab-dependent mechanism is involved in the rapid reorganization of resident enzymes within the Golgi stack following synchronized release from the ER, suggesting an important role for Rab hubs in directing Golgi polarization.
Collapse
Affiliation(s)
- Serguei I Bannykh
- Department of Pathology, Yale University Medical School, 310 Cedar Street, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
72
|
Wang ZX, Shi L, Liu JF, An XM, Chang WR, Liang DC. 2.0 A crystal structure of human ARL5-GDP3'P, a novel member of the small GTP-binding proteins. Biochem Biophys Res Commun 2005; 332:640-5. [PMID: 15896705 DOI: 10.1016/j.bbrc.2005.04.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
ARL5 is a member of ARLs, which is widespread in high eukaryotes and homologous between species. But no structure or biological function of this member is reported. We expressed, purified, and resolved the structure of human ARL5 with bound GDP3'P at 2.0 A resolution. A comparison with the known structures of ARFs shows that besides the typical features of ARFs, human ARL5 has specific features of its own. Bacterially expressed human ARL5 contains bound GDP3'P which is seldom seen in other structures. The hydrophobic tail of the introduced detergent Triton X-305 binds at the possible myristoylation site of Gly2, simulating the myristoylated state of N-terminal amphipathic helix in vivo. The structural features of the nucleotide binding motifs and the switch regions prove that ARL5 will undergo the typical GDP/GTP structural cycle as other members of ARLs, which is the basis of their biological functions.
Collapse
Affiliation(s)
- Zhan-Xin Wang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | | | |
Collapse
|
73
|
Short B, Haas A, Barr FA. Golgins and GTPases, giving identity and structure to the Golgi apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:383-95. [PMID: 15979508 DOI: 10.1016/j.bbamcr.2005.02.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 02/09/2005] [Accepted: 02/09/2005] [Indexed: 12/22/2022]
Abstract
In this review we will focus on the recent advances in how coiled-coil proteins of the golgin family give identity and structure to the Golgi apparatus in animal cells. A number of recent studies reveal a common theme for the targeting of golgins containing the ARL-binding GRIP domain, and the related ARF-binding GRAB domain. Similarly, other golgins such as the vesicle tethering factor p115 and Bicaudal-D are targeted by the Rab GTPases, Rab1 and Rab6, respectively. Together golgins and their regulatory GTPases form a complex network, commonly known as the Golgi matrix, which organizes Golgi membranes and regulates membrane trafficking.
Collapse
Affiliation(s)
- Benjamin Short
- Intracellular Protein Transport, Independent Junior Research Group, Max-Planck-Institute of Biochemistry, Martinsried, 82152, Germany
| | | | | |
Collapse
|
74
|
Liu YW, Huang CF, Huang KB, Lee FJS. Role for Gcs1p in regulation of Arl1p at trans-Golgi compartments. Mol Biol Cell 2005; 16:4024-33. [PMID: 15975906 PMCID: PMC1196316 DOI: 10.1091/mbc.e05-01-0023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
ADP-ribosylation factor (ARF) and ARF-like (ARL) proteins are members of the ARF family, which are critical components of several different vesicular trafficking pathways. ARFs have little or no detectable GTPase activity without the assistance of a GTPase-activating protein (GAP). Here, we demonstrate that yeast Gcs1p exhibits GAP activity toward Arl1p and Arf1p in vitro, and Arl1p can interact with Gcs1p in a GTP-dependent manner. Arl1p was observed both on trans-Golgi and in cytosol and was recruited from cytosol to membranes in a GTP-dependent manner. In gcs1 mutant cells, the fraction of Arl1p in cytosol relative to trans-Golgi was less than it was in wild-type cells. Increasing Gcs1p levels returned the distribution toward that of wild-type cells. Both Arl1p and Gcs1p influenced the distribution of Imh1p, an Arl1p effector. Our data are consistent with the conclusion that Arl1p moves in a dynamic equilibrium between trans-Golgi and cytosol, and the release of Arl1p from membranes in cells requires the hydrolysis of bound GTP, which is accelerated by Gcs1p.
Collapse
Affiliation(s)
- Ya-Wen Liu
- Institute of Molecular Medicine, College of Medicine, and Department of Medical Research, National Taiwan University Hospital, National Taiwan University, Taipei 100, Taiwan
| | | | | | | |
Collapse
|
75
|
Li Y, Kelly WG, Logsdon JM, Schurko AM, Harfe BD, Hill-Harfe KL, Kahn RA. Functional genomic analysis of the ADP-ribosylation factor family of GTPases: phylogeny among diverse eukaryotes and function in C. elegans. FASEB J 2005; 18:1834-50. [PMID: 15576487 DOI: 10.1096/fj.04-2273com] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ADP-ribosylation factor (Arf) and Arf-like (Arl) proteins are a family of highly conserved 21 kDa GTPases that emerged early in the evolution of eukaryotes. These proteins serve regulatory roles in vesicular traffic, lipid metabolism, microtubule dynamics, development, and likely other cellular processes. We found evidence for the presence of 6 Arf family members in the protist Giardia lamblia and 22 members in mammals. A phylogenetic analysis was performed to delineate the evolutionary relationships among Arf family members and to attempt to organize them by both their evolutionary origins and functions in cells and/or organisms. The approximately 100 protein sequences analyzed from animals, fungi, plants, and protists clustered into 11 groups, including Arfs, nine Arls, and Sar proteins. To begin functional analyses of the family in a metazoan model organism, we examined roles for all three C. elegans Arfs (Arf-1, Arf-3, and Arf-6) and three Arls (Arl-1, Arl-2, and Arl-3) by use of RNA-mediated interference (RNAi). Injection of double-stranded RNA (dsRNA) encoding Arf-1 or Arf-3 into N2 hermaphrodites produced embryonic lethality in their offspring and, later, sterility in the injected animals themselves. Injection of Arl-2 dsRNA resulted in a disorganized germline and sterility in early offspring, with later offspring exhibiting an early embryonic arrest. Thus, of the six Arf family members examined in C. elegans, at least three are required for embryogenesis. These data represent the first analysis of the role(s) of multiple members of this family in the development of a multicellular organism.
Collapse
Affiliation(s)
- Yawei Li
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
Honda A, Al-Awar OS, Hay JC, Donaldson JG. Targeting of Arf-1 to the early Golgi by membrin, an ER-Golgi SNARE. ACTA ACUST UNITED AC 2005; 168:1039-51. [PMID: 15781476 PMCID: PMC2171843 DOI: 10.1083/jcb.200409138] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Arf and Rab family GTPases regulate membrane traffic in cells, yet little is known about how they are targeted to distinct organelles. To identify sequences in Arf-1 necessary for Golgi targeting, we examined the localization of chimeras between Arf-1 and Arf-6. Here, we identify a 16–amino acid sequence in Arf-1 that specifies Golgi targeting and contains a motif (MXXE) that is important for Arf-1 binding to membrin, an ER-Golgi SNARE protein. The MXXE motif is conserved in all Arfs known to localize to the Golgi and enables Arf-1 to localize to the early Golgi. Arf-1 lacking these 16 aa can still localize to the late Golgi where it displays a more rapid Golgi-cytosol cycle than wild-type Arf-1. These studies suggest that membrin recruits Arf-1 to the early Golgi and reveal distinct kinetic cycles for Arf-1 at early and late Golgi determined by different sets of Arf regulators and effectors.
Collapse
Affiliation(s)
- Akira Honda
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
77
|
Donaldson JG, Honda A, Weigert R. Multiple activities for Arf1 at the Golgi complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:364-73. [PMID: 15979507 DOI: 10.1016/j.bbamcr.2005.03.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/28/2005] [Accepted: 03/01/2005] [Indexed: 10/25/2022]
Abstract
The Arf family of GTPases regulates membrane traffic and organelle structure. At the Golgi complex, Arf proteins facilitate membrane recruitment of many cytoplasmic coat proteins to allow sorting of membrane proteins for transport, stimulate the activity of enzymes that modulate the lipid composition of the Golgi, and assemble a cytoskeletal scaffold on the Golgi. Arf1 is the Arf family member most closely studied for its function at the Golgi complex. A number of regulators that activate and inactivate Arf1 on the Golgi have been described that localize to different regions of the organelle. This spatial distribution of Arf regulators may facilitate the recruitment of the coat proteins and other Arf effectors to different regions of the Golgi complex.
Collapse
Affiliation(s)
- Julie G Donaldson
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 50, Room 2503, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
78
|
Price HP, Panethymitaki C, Goulding D, Smith DF. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J Cell Sci 2005; 118:831-41. [PMID: 15687105 PMCID: PMC2705012 DOI: 10.1242/jcs.01624] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Myristoyl-CoA:protein N-myristoyltransferase (NMT), an essential protein in Trypanosoma brucei and Leishmania major, catalyses the covalent attachment of the fatty acid myristate to the N-terminus of a range of target proteins. In order to define the essential targets contributing to lethality in the absence of NMT activity, we have focused on the ADP-ribosylation factor (Arf) family of GTP-binding proteins, as growth arrest in Saccharomyces cerevisiae mutants with reduced NMT activity correlates with a decrease in N-myristoylated Arf proteins. We have identified nine Arf/Arls in the T. brucei and T. cruzi genomes and ten in L. major. Characterization of the T. brucei ARL1 homologue has revealed that the protein is localized in the Golgi apparatus and is expressed only in the mammalian bloodstream form of the parasite and not in the insect procyclic stage. This is the only reported example to date of a differentially expressed ARL1 homologue in any species. We have used RNA interference to demonstrate that ARL1 is essential for viability in T. brucei bloodstream parasites. Prior to cell death, depletion of ARL1 protein in bloodstream parasites results in abnormal morphology, including disintegration of the Golgi structure, multiple flagella and nuclei, and the presence of large numbers of vesicles. The cells have only a minor apparent defect in endocytosis but exocytosis of variant surface glycoprotein to the parasite surface is significantly delayed. RNA interference of ARL1 in procyclic cells has no effect on parasite growth or morphology. Our results suggest that there may be different pathways regulating Golgi structure and function in the two major life cycle stages of T. brucei.
Collapse
|
79
|
Wang T, Hong W. Assay and functional properties of Rab34 interaction with RILP in lysosome morphogenesis. Methods Enzymol 2005; 403:675-87. [PMID: 16473629 DOI: 10.1016/s0076-6879(05)03058-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have recently characterized Rab34 as a new member of the Rab GTPase family based on its ability to regulate lysosomal morphology. Rabbit polyclonal antibody raised against recombinant Rab34 reveals that Rab34 is a 29-kDa protein present both in the cytosol and in the Golgi apparatus. A GTP overlay assay shows that a wild-type and GTP-restricted mutant form of recombinant Rab34 bind GTP in vitro. Yeast two-hybrid interaction screens identify Rab7-interacting lysosomal protein (RILP) as a partner of Rab34. Both GST pull-down experiments and direct binding assays in vitro demonstrate that RILP interacts selectively with the wild-type and GTP-restricted but not GDP-restricted form of Rab34. A key residue (K82) of Rab34 is necessary for interaction with RILP. Expression of EGFP-tagged Rab34 wild-type or GTP-restricted forms in mammalian cells results in redistribution of clustered lysosomes to the peri-Golgi region and this property depends on K82, suggesting that Rab34 regulates lysosome distribution via interaction with RILP. These results suggest that RILP is a common effector shared by Rab7 and Rab34. We describe the methods used in our study.
Collapse
|
80
|
Lu L, Tai G, Hong W. Interaction of Arl1 GTPase with the GRIP domain of Golgin-245 as assessed by GST (glutathione-S-transferase) pull-down experiments. Methods Enzymol 2005; 404:432-41. [PMID: 16413289 DOI: 10.1016/s0076-6879(05)04038-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arl1 is a member of the Arf/Arl family of Ras-like GTPase superfamily. Arl1 is enriched in the trans-Golgi network (TGN). We have recently shown that Arl1 regulates TGN recruitment of GRIP domain-containing Golgin-97 and Golgin-245 by interacting with the conserved GRIP domain present in their carboxyl (C)-termini. We describe here methods for the analysis of the interaction between Arl1(GTP) and the GRIP domain of Golgin-245 using in vitro GST pull-down experiments. GST-Arl1(GTP) can recover endogenous Golgin-245 from HeLa cell cytosol. Furthermore, GST-GRIP domain of Golgin-245 can efficiently retain endogenous active Arl1. A pull-down assay is developed to quantify the relative level of active Arl1.
Collapse
Affiliation(s)
- Lei Lu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore
| | | | | |
Collapse
|
81
|
Tai G, Lu L, Johannes L, Hong W. Functional analysis of Arl1 and golgin-97 in endosome-to-TGN transport using recombinant Shiga toxin B fragment. Methods Enzymol 2005; 404:442-53. [PMID: 16413290 DOI: 10.1016/s0076-6879(05)04039-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A direct transport route from early/recycling endosome (EE/RE) to the trans-Golgi network (TGN) is exploited by Shiga toxin (Mallard et al., 1998) and TGN38 (Ghosh et al., 1998). To facilitate the study of this pathway, both in vivo and in vitro transport assays using recombinant Shiga toxin B fragments (STxB) as protein cargos have facilitated the analysis of this transport event (Johannes et al., 1997; Mallard et al., 1998, 2002; Tai et al., 2004). We describe here the application of these assays to study the role of a small GTPase Arl1 and its effector golgin-97 in this transport process.
Collapse
Affiliation(s)
- Guihua Tai
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore
| | | | | | | |
Collapse
|
82
|
Habermann B. The BAR-domain family of proteins: a case of bending and binding? EMBO Rep 2004; 5:250-5. [PMID: 14993925 PMCID: PMC1299016 DOI: 10.1038/sj.embor.7400105] [Citation(s) in RCA: 221] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Accepted: 01/27/2004] [Indexed: 11/09/2022] Open
Abstract
BAR-domains recently took centre stage in science through a report on the crystal structure of this domain in Drosophila Amphiphysin. Though only weakly conserved at the sequence level, the structure of the BAR domain shows striking similarity to the GTPase-binding domain of Arfaptin 2, an effector of Rho- and Arf- GTPases. On the basis of this sequence and structural similarity, these two proteins have been classified as belonging to the same family, the BAR-domain family, and they probably also have similar functional characteristics. Presented here are the results of a database search for the sequence of the BAR domain of Amphiphysin and Arfaptin 2. This search identified a variety of related proteins, most of which are involved in intracellular transport and especially in endocytosis. For example, the BAR-domain family includes Endophilins, GTPase-activating proteins of the Centaurinbeta family and Oligophrenins, the adaptor proteins APPL1 and APPL2 that were recently shown to interact with the small GTPase Rab5, as well as members of the Sorting nexin family. On the basis of the structures of Amphiphysin and Arfaptin 2 and the cellular role of Amphiphysins in the early steps of endocytosis, the functions of the BAR domain have been defined as a dimerization motif and as sensing and inducing membrane curvature. However, data on Arfaptin 2 and now also on the Adaptor proteins APPL1 and 2 suggest that another function of the BAR domain is to bind to small GTPases.
Collapse
Affiliation(s)
- Bianca Habermann
- Scionics Computer Innovation, GmbH, c/o Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| |
Collapse
|
83
|
Abstract
ADP-ribosylation factor (Arf) GTP-binding proteins are among the best-characterized members of the Ras superfamily of GTPases, with well-established functions in membrane-trafficking pathways. A recent watershed of genomic and structural information has identified a family of conserved related proteins: the Arf-like (Arl) GTPases. The best-characterized Arl protein, Arl2, regulates the folding of beta tubulin, and recent data suggest that Arl1 and Arf-related protein 1 (ARFRP1) are localized to the trans-Golgi network (TGN), where they function, in part, to regulate the tethering of endosome-derived transport vesicles. Other Arl proteins are localized to the cytosol, nucleus, cytoskeleton and mitochondria, which indicates that Arl proteins have diverse roles that are distinct from the known functions of traditional Arf GTPases.
Collapse
Affiliation(s)
- Christopher G Burd
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | | | |
Collapse
|
84
|
Hertel L, Mocarski ES. Global analysis of host cell gene expression late during cytomegalovirus infection reveals extensive dysregulation of cell cycle gene expression and induction of Pseudomitosis independent of US28 function. J Virol 2004; 78:11988-2011. [PMID: 15479839 PMCID: PMC523267 DOI: 10.1128/jvi.78.21.11988-12011.2004] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Replication of human cytomegalovirus (CMV) depends on host cell gene products working in conjunction with viral functions and leads to a dramatic dysregulation of cell cycle gene expression. Comprehensive transcriptional profiling was used to identify pathways most dramatically modulated by CMV at late times during infection and to determine the extent to which expression of the viral chemokine receptor US28 contributed to modulating cellular gene expression. Cells infected with the AD169 strain of virus or a fully replication competent US28-deficient derivative (RV101) were profiled throughout the late phase of infection (50, 72, and 98 h postinfection). Although sensitive statistical analysis showed striking global changes in transcript levels in infected cells compared to uninfected cells, the expression of US28 did not contribute to these alterations. CMV infection resulted in lower levels of transcripts encoding cytoskeletal, extracellular matrix, and adhesion proteins, together with small GTPases and apoptosis regulators, and in higher levels of transcripts encoding cell cycle, DNA replication, energy production, and inflammation-related gene products. Surprisingly, a large number of cellular transcripts encoding mitosis-related proteins were upmodulated at late times in infection, and these were associated with the formation of abnormal mitotic spindles and the appearance of pseudomitotic cells. These data extend our understanding of how broadly CMV alters the regulation of host cell cycle gene products and highlight the establishment of a mitosis-like environment in the absence of cellular DNA replication as important for viral replication and maturation.
Collapse
Affiliation(s)
- Laura Hertel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | | |
Collapse
|
85
|
Derby MC, van Vliet C, Brown D, Luke MR, Lu L, Hong W, Stow JL, Gleeson PA. Mammalian GRIP domain proteins differ in their membrane binding properties and are recruited to distinct domains of the TGN. J Cell Sci 2004; 117:5865-74. [PMID: 15522892 DOI: 10.1242/jcs.01497] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The four mammalian golgins, p230/golgin-245, golgin-97, GCC88 and GCC185 are targeted to trans-Golgi network (TGN) membranes by their C-terminal GRIP domain in a G-protein-dependent process. The Arf-like GTPase, Arl1, has been shown to mediate TGN recruitment of p230/golgin245 and golgin-97 by interaction with their GRIP domains; however, it is not known whether all the TGN golgins bind to Arl1 and whether they are all recruited to the same or different TGN domains. Here we demonstrate differences in membrane binding properties and TGN domain recruitment of the mammalian GRIP domain proteins. Overexpression of full-length GCC185 resulted in the appearance of small punctate structures dispersed in the cytoplasm of transfected cells that were identified as membrane tubular structures by immunoelectron microscopy. The cytoplasmic GCC185-labelled structures were enriched for membrane binding determinants of GCC185 GRIP, whereas the three other mammalian GRIP family members did not colocalize with the GCC185-labelled structures. These GCC185-labelled structures included the TGN resident protein α2,6 sialyltransferase and excluded the recycling TGN protein, TGN46. The Golgi stack was unaffected by overexpression of GCC185. Overexpression of both full-length GCC185 and GCC88 showed distinct and nonoverlapping structures. We also show that the GRIP domains of GCC185 and GCC88 differ in membrane binding properties from each other and, in contrast to p230/golgin-245 and golgin-97, do not interact with Arl1 in vivo. Collectively these results show that GCC88, GCC185 and p230/golgin245 are recruited to functionally distinct domains of the TGN and are likely to be important for the maintenance of TGN subdomain structure, a critical feature for mediating protein sorting and membrane transport.
Collapse
Affiliation(s)
- Merran C Derby
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Fan Y, Esmail MA, Ansley SJ, Blacque OE, Boroevich K, Ross AJ, Moore SJ, Badano JL, May-Simera H, Compton DS, Green JS, Lewis RA, van Haelst MM, Parfrey PS, Baillie DL, Beales PL, Katsanis N, Davidson WS, Leroux MR. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat Genet 2004; 36:989-93. [PMID: 15314642 DOI: 10.1038/ng1414] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Accepted: 07/19/2004] [Indexed: 11/09/2022]
Abstract
RAB, ADP-ribosylation factors (ARFs) and ARF-like (ARL) proteins belong to the Ras superfamily of small GTP-binding proteins and are essential for various membrane-associated intracellular trafficking processes. None of the approximately 50 known members of this family are linked to human disease. Using a bioinformatic screen for ciliary genes in combination with mutational analyses, we identified ARL6 as the gene underlying Bardet-Biedl syndrome type 3, a multisystemic disorder characterized by obesity, blindness, polydactyly, renal abnormalities and cognitive impairment. We uncovered four different homozygous substitutions in ARL6 in four unrelated families affected with Bardet-Biedl syndrome, two of which disrupt a threonine residue important for GTP binding and function of several related small GTP-binding proteins. Analysis of the Caenorhabditis elegans ARL6 homolog indicates that it is specifically expressed in ciliated cells, and that, in addition to the postulated cytoplasmic functions of ARL proteins, it undergoes intraflagellar transport. These findings implicate a small GTP-binding protein in ciliary transport and the pathogenesis of a pleiotropic disorder.
Collapse
Affiliation(s)
- Yanli Fan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, B.C. V5A 1S6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Lu L, Tai G, Hong W. Autoantigen Golgin-97, an effector of Arl1 GTPase, participates in traffic from the endosome to the trans-golgi network. Mol Biol Cell 2004; 15:4426-43. [PMID: 15269279 PMCID: PMC519138 DOI: 10.1091/mbc.e03-12-0872] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The precise cellular function of Arl1 and its effectors, the GRIP domain Golgins, is not resolved, despite our recent understanding that Arl1 regulates the membrane recruitment of these Golgins. In this report, we describe our functional study of Golgin-97. Using a Shiga toxin B fragment (STxB)-based in vitro transport assay, we demonstrated that Golgin-97 plays a role in transport from the endosome to the trans-Golgi network (TGN). The recombinant GRIP domain of Golgin-97 as well as antibodies against Golgin-97 inhibited the transport of STxB in vitro. Membrane-associated Golgin-97, but not its cytosolic pool, was required in the in vitro transport assay. The kinetic characterization of inhibition by anti-Golgin-97 antibody in comparison with anti-Syntaxin 16 antibody established that Golgin-97 acts before Syntaxin 16 in endosome-to-TGN transport. Knock down of Golgin-97 or Arl1 by their respective small interference RNAs (siRNAs) also significantly inhibited the transport of STxB to the Golgi in vivo. In siRNA-treated cells with reduced levels of Arl1, internalized STxB was instead distributed peripherally. Microinjection of Golgin-97 antibody led to the fragmentation of Golgi apparatus and the arrested transport to the Golgi of internalized Cholera toxin B fragment. We suggest that Golgin-97 may function as a tethering molecule in endosome-to-TGN retrograde traffic.
Collapse
Affiliation(s)
- Lei Lu
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | | |
Collapse
|
88
|
Engel T, Lueken A, Bode G, Hobohm U, Lorkowski S, Schlueter B, Rust S, Cullen P, Pech M, Assmann G, Seedorf U. ADP-ribosylation factor (ARF)-like 7 (ARL7) is induced by cholesterol loading and participates in apolipoprotein AI-dependent cholesterol export. FEBS Lett 2004; 566:241-6. [PMID: 15147902 DOI: 10.1016/j.febslet.2004.04.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 04/07/2004] [Accepted: 04/08/2004] [Indexed: 10/26/2022]
Abstract
Here, we identify ADP-ribosylation factor (ARF)-like 7 (ARL7) as the only ARF- and ARL-family member whose mRNA-expression is induced by liver X-receptor/retinoid X-receptor agonists or cholesterol loading in human macrophages. Moreover, subcellular distribution of mutant and wild type ARL7-enhanced green fluorescent protein (EGFP) supports that ARL7 may be involved in a vesicular transport step between a perinuclear compartment and the plasma membrane. Therefore, we investigated the effect of ARL7 over-expression on the cholesterol secretory pathway. We found that expression of wild type and dominant active ARL7-EGFP stimulated the rate of apolipoprotein AI-specific cholesterol efflux 1.7- and 2.8-fold. In contrast, expression of the dominant negative form of ARL7-EGFP led to approximately 50% inhibition of cholesterol efflux. This data is consistent with a model in which ARL7 is involved in transport between a perinuclear compartment and the plasma membrane apparently linked to the ABCA1-mediated cholesterol secretion pathway.
Collapse
Affiliation(s)
- Thomas Engel
- Institut für Arterioskleroseforschung, Westfälische Wilhelms-Universität, Domagkstr. 3, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Love SL, Manlandro CMA, Testa CJ, Thomas AE, Tryggestad KE, Rosenwald AG. The yeast genes, ARL1 and CCZ1, interact to control membrane traffic and ion homeostasis. Biochem Biophys Res Commun 2004; 319:840-6. [PMID: 15184059 DOI: 10.1016/j.bbrc.2004.05.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Indexed: 10/26/2022]
Abstract
The yeast ARL1 gene, encoding a guanine-nucleotide binding protein of the Arf-like family, exhibits a synthetic genetic interaction with CCZ1. An arl1 Delta ccz1 Delta double mutant was viable but grew slowly, was more sensitive to caffeine, Ca(2+), Zn(2+), and hygromycin B than either single mutant, and had a more severe vacuolar protein sorting phenotype. Overexpression of ARL1 did not suppress ccz1 Delta mutant phenotypes, nor did overexpression of CCZ1 suppress arl1 Delta mutant phenotypes. We conclude that ARL1 and CCZ1 independently contribute to both ion homeostasis and protein sorting.
Collapse
Affiliation(s)
- Sherie L Love
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | | | |
Collapse
|
90
|
Tai G, Lu L, Wang TL, Tang BL, Goud B, Johannes L, Hong W. Participation of the syntaxin 5/Ykt6/GS28/GS15 SNARE complex in transport from the early/recycling endosome to the trans-Golgi network. Mol Biol Cell 2004; 15:4011-22. [PMID: 15215310 PMCID: PMC515336 DOI: 10.1091/mbc.e03-12-0876] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An in vitro transport assay, established with a modified Shiga toxin B subunit (STxB) as a marker, has proved to be useful for the study of transport from the early/recycling endosome (EE/RE) to the trans-Golgi network (TGN). Here, we modified this assay to test antibodies to all known soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that have been shown to localize in the Golgi and found that syntaxin 5, GS28, Ykt6, and GS15 antibodies specifically inhibited STxB transport. Because syntaxin 5, GS28, Ykt6, and GS15 exist as a unique SNARE complex, our observation indicates that these four SNAREs function as a complex in EE/RE-TGN transport. The importance of GS15 in EE/RE-TGN transport was further demonstrated by a block in recombinant STxB transport in HeLa cells when GS15 expression was knocked down by its small interfering iRNA. Morphological analyses showed that some GS15 and Ykt6 were redistributed from the Golgi to the endosomes when the recycling endosome was perturbed by SNX3-overexpression, suggesting that GS15 and Ykt6 might cycle between the endosomes and the Golgi apparatus. Further studies indicated that syntaxin 5 and syntaxin 16 exerted their role in EE/RE-TGN transport in an additive manner. The kinetics of inhibition exhibited by syntaxin 16 and syntaxin 5 antibodies is similar.
Collapse
Affiliation(s)
- Guihua Tai
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Singapore 117609, Singapore
| | | | | | | | | | | | | |
Collapse
|
91
|
|
92
|
Abstract
Post-translational modification with myristoyl or prenyl groups is essential for membrane association of many small GTPases in the Ras superfamily. Two recent papers show that, rather than myristoylation, amino-terminal acetylation of the Arf-like protein Arl3p is required for Golgi targeting via an interaction with an integral membrane protein called Sys1.
Collapse
Affiliation(s)
- Todd R Graham
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235-1634, USA.
| |
Collapse
|
93
|
Abstract
The trans-Golgi network is the major sorting compartment of the secretory pathway for protein, lipid and membrane traffic. There is a constant flow of membrane and cargo to and from this compartment. Evidence is emerging that the trans-Golgi network has multiple biochemically and functionally distinct subdomains, each of which contributes to the combined sorting and transport requirements of this dynamic compartment. The recruitment of distinct arrays of protein complexes to trans-Golgi network membranes is likely to produce the diversity of structure and biochemistry observed amongst subdomains that serve to generate different carriers or maintain resident trans-Golgi network components. This review discusses how these subdomains may be formed and examines the molecular players involved, including G proteins, clathrin adaptors and golgin tethers. Diversity within these protein families is highlighted and shown to be critical for the functionality of the trans-Golgi network, as a mediator of protein sorting and membrane transport, and for the maintenance of Golgi structure.
Collapse
Affiliation(s)
- Paul A Gleeson
- The Russell Grimwade School of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | | | | | | |
Collapse
|
94
|
Behnia R, Panic B, Whyte JRC, Munro S. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol 2004; 6:405-13. [PMID: 15077113 DOI: 10.1038/ncb1120] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Accepted: 03/08/2004] [Indexed: 11/09/2022]
Abstract
The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex. Targeting of Arl3p also requires a Golgi membrane protein Sys1p. The human homologues of Arl3p (Arf-related protein 1 (ARFRP1)) and Sys1p (hSys1) can be isolated in a complex after chemical cross-linking. This suggests that the targeting of ARFRP1/Arl3p to the Golgi is mediated by a direct interaction between its acetylated N terminus and Sys1p/hSys1.
Collapse
Affiliation(s)
- Rudy Behnia
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
95
|
Munson AM, Love SL, Shu J, Palanivel VR, Rosenwald AG. ARL1 participates with ATC1/LIC4 to regulate responses of yeast cells to ions. Biochem Biophys Res Commun 2004; 315:617-23. [PMID: 14975746 DOI: 10.1016/j.bbrc.2004.01.099] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Indexed: 10/26/2022]
Abstract
ATC1/LIC4, previously identified as a suppressor of the Li(+)-sensitive phenotype of calcineurin mutants, was also identified as a suppressor of the hygromycin B-sensitive phenotype of strains lacking the G protein gene, ARL1. Although loss of ARL1 confers several phenotypes, including sensitivity to hygromycin B and Li(+), reduced influx of K(+), and increased secretion of carboxypeptidase Y (CPY), loss of ATC1 was without effect by these and other measures. However, loss of ATC1 in an arl1 background exacerbated ion sensitivities, although not the CPY phenotype. Moreover, overexpression of ATC1 in an arl1 background partially suppressed ion sensitivities, but not the CPY phenotype. Additionally, expression of ENA1, the Na(+)/Li(+) efflux ATPase, and activated calcineurin, but not normal calcineurin, suppressed the Li(+)-sensitive phenotype of the arl1 atc1 double mutant. These results show ARL1 and ATC1 interact to control intracellular ion levels, but ATC1 has little influence on other functions of ARL1.
Collapse
Affiliation(s)
- Amanda M Munson
- Department of Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
96
|
Wu M, Lu L, Hong W, Song H. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Nat Struct Mol Biol 2003; 11:86-94. [PMID: 14718928 DOI: 10.1038/nsmb714] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Accepted: 11/20/2003] [Indexed: 11/08/2022]
Abstract
Recruitment of the GRIP domain golgins to the trans-Golgi network is mediated by Arl1, a member of the ARF/Arl small GTPase family, through interaction between their GRIP domains and Arl1-GTP. The crystal structure of Arl1-GTP in complex with the GRIP domain of golgin-245 shows that Arl1-GTP interacts with the GRIP domain predominantly in a hydrophobic manner, with the switch II region conferring the main recognition surface. The involvement of the switch and interswitch regions in the interaction between Arl1-GTP and GRIP accounts for the specificity of GRIP domain for Arl1-GTP. Mutations that abolished the Arl1-mediated Golgi localization of GRIP domain golgins have been mapped on the interface between Arl1-GTP and GRIP. Notably, the GRIP domain forms a homodimer in which each subunit interacts separately with one Arl1-GTP. Mutations disrupting the GRIP domain dimerization also abrogated its Golgi targeting, suggesting that the dimeric form of GRIP domain is a functional unit.
Collapse
Affiliation(s)
- Mousheng Wu
- Laboratory of Macromolecular Structure, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609
| | | | | | | |
Collapse
|
97
|
Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Mol Cell 2003; 12:863-74. [PMID: 14580338 DOI: 10.1016/s1097-2765(03)00356-3] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Golgins are large coiled-coil proteins that play a role in Golgi structure and vesicle traffic. The Arf-like GTPase Arl1 regulates the translocation of GRIP domain-containing golgins to Golgi membranes. We report here the 1.7 A resolution structure of human Arl1-GTP in a complex with the GRIP domain of golgin-245. The structure reveals that the GRIP domain consists of an S-shaped arrangement of three helices. The domain forms a homodimer that binds two Arl1-GTPs using two helices from each monomer. The structure is consistent with golgin-245 forming parallel coiled-coils and suggests how Arl1-GTP/GRIP complexes interact with Golgi membranes via the N termini of Arl1-GTP and the C-terminal tails of the GRIP domains. In cells, bivalent association with Arl1-GTP would increase residence time of the golgins on Golgi membranes. Despite no conservation of sequence, topology, or even helical direction, several other effectors form similar interactions with small GTPases via a pair of alpha helices, suggesting a common structural basis for effector recognition.
Collapse
Affiliation(s)
- Bojana Panic
- MRC Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | |
Collapse
|
98
|
Yoshino A, Bieler BM, Harper DC, Cowan DA, Sutterwala S, Gay DM, Cole NB, McCaffery JM, Marks MS. A role for GRIP domain proteins and/or their ligands in structure and function of the trans Golgi network. J Cell Sci 2003; 116:4441-54. [PMID: 13130094 DOI: 10.1242/jcs.00746] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
tGolgin-1 (golgin-245, trans golgi p230) and golgin-97 are members of a family of peripheral membrane proteins of unknown function that localize to the trans Golgi network (TGN) through a conserved C-terminal GRIP domain. We have probed for GRIP protein function by assessing the consequences of overexpressing isolated GRIP domains. By semi-quantitative immunofluorescence microscopy we found that high level expression of epitope-tagged, GRIP domain-containing fragments of tGolgin-1 or golgin-97 specifically altered the characteristic pericentriolar distribution of TGN integral membrane and coat components. Concomitantly, vesicular transport from the TGN to the plasma membrane and furin-dependent cleavage of substrate proteins in the TGN were inhibited. Mutagenesis of a conserved tyrosine in the tGolgin-1 GRIP domain abolished these effects. GRIP domain overexpression had little effect on the distribution of most Golgi stack resident proteins and no effect on markers of other organelles. Electron microscopy analyses of GRIP domain-overexpressing cells revealed distended perinuclear vacuoles and a proliferation of multivesicular late endosomes to which the TGN resident protein TGN46 was largely mislocalized. These studies, the first to address the function of GRIP domain-containing proteins in higher eukaryotes, suggest that some or all of these proteins and/or their ligands function in maintaining the integrity of the TGN by regulating resident protein localization.
Collapse
Affiliation(s)
- Atsuko Yoshino
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Nantermet PV, Xu J, Yu Y, Hodor P, Holder D, Adamski S, Gentile MA, Kimmel DB, Harada SI, Gerhold D, Freedman LP, Ray WJ. Identification of genetic pathways activated by the androgen receptor during the induction of proliferation in the ventral prostate gland. J Biol Chem 2003; 279:1310-22. [PMID: 14576152 DOI: 10.1074/jbc.m310206200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The androgen receptor (AR), when complexed with 5alpha-dihydrotestosterone (DHT), supports the survival and proliferation of prostate cells, a process critical for normal development, benign prostatic hypertrophy, and tumorigenesis. However, the androgen-responsive genetic pathways that control prostate cell division and differentiation are largely unknown. To identify such pathways, we examined gene expression in the ventral prostate 6 and 24 h after DHT administration to androgen-depleted rats. 234 transcripts were expressed significantly differently from controls (p < 0.05) at both time points and were subjected to extensive data mining. Functional clustering of the data reveals that the majority of these genes can be classified as participating in induction of secretory activity, metabolic activation, and intracellular signaling/signal transduction, indicating that AR rapidly modulates the expression of genes involved in proliferation and differentiation in the prostate. Notably AR represses the expression of several key cell cycle inhibitors, while modulating members of the wnt and notch signaling pathways, multiple growth factors, and peptide hormone signaling systems, and genes involved in MAP kinase and calcium signaling. Analysis of these data also suggested that p53 activity is negatively regulated by AR activation even though p53 RNA was unchanged. Experiments in LNCaP prostate cancer cells reveal that AR inhibits p53 protein accumulation in the nucleus, providing a post-transcriptional mechanism by which androgens control prostate cell growth and survival. In summary these data provide a comprehensive view of the earliest events in AR-mediated prostate cell proliferation in vivo, and suggest that nuclear exclusion of p53 is a critical step in prostate growth.
Collapse
Affiliation(s)
- Pascale V Nantermet
- Department of Molecular Endocrinology and Bone Biology, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The origin of eukaryotes is one of the major challenges of evolutionary cell biology. Other than the endosymbiotic origin of mitochondria and chloroplasts, the steps leading to eukaryotic endomembranes and endoskeleton are poorly understood. Ras-family small GTPases are key regulators of cytoskeleton dynamics, vesicular trafficking and nuclear function. They are specific for eukaryotes and their expansion probably traces the evolution of core eukaryote features. The phylogeny of small GTPases suggests that the first endomembranes to evolve during eukaryote evolution had secretory, and not phagocytic, function. Based on the reconstruction of putative roles for ancestral small GTPases, a hypothetical scenario on the origins of the first endomembranes, the nucleus, and phagocytosis is presented.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Developmental Biology, Meyerhofstrasse 1., 69117 Heidelberg, Germany.
| |
Collapse
|