51
|
Moreiras H, Seabra MC, Barral DC. Melanin Transfer in the Epidermis: The Pursuit of Skin Pigmentation Control Mechanisms. Int J Mol Sci 2021; 22:4466. [PMID: 33923362 PMCID: PMC8123122 DOI: 10.3390/ijms22094466] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/27/2022] Open
Abstract
The mechanisms by which the pigment melanin is transferred from melanocytes and processed within keratinocytes to achieve skin pigmentation remain ill-characterized. Nevertheless, several models have emerged in the past decades to explain the transfer process. Here, we review the proposed models for melanin transfer in the skin epidermis, the available evidence supporting each one, and the recent observations in favor of the exo/phagocytosis and shed vesicles models. In order to reconcile the transfer models, we propose that different mechanisms could co-exist to sustain skin pigmentation under different conditions. We also discuss the limited knowledge about melanin processing within keratinocytes. Finally, we pinpoint new questions that ought to be addressed to solve the long-lasting quest for the understanding of how basal skin pigmentation is controlled. This knowledge will allow the emergence of new strategies to treat pigmentary disorders that cause a significant socio-economic burden to patients and healthcare systems worldwide and could also have relevant cosmetic applications.
Collapse
Affiliation(s)
| | | | - Duarte C. Barral
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (H.M.); (M.C.S.)
| |
Collapse
|
52
|
Brillada C, Teh OK, Ditengou FA, Lee CW, Klecker T, Saeed B, Furlan G, Zietz M, Hause G, Eschen-Lippold L, Hoehenwarter W, Lee J, Ott T, Trujillo M. Exocyst subunit Exo70B2 is linked to immune signaling and autophagy. THE PLANT CELL 2021; 33:404-419. [PMID: 33630076 PMCID: PMC8136888 DOI: 10.1093/plcell/koaa022] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/18/2020] [Indexed: 05/08/2023]
Abstract
During the immune response, activation of the secretory pathway is key to mounting an effective response, while gauging its output is important to maintain cellular homeostasis. The Exo70 subunit of the exocyst functions as a spatiotemporal regulator by mediating numerous interactions with proteins and lipids. However, a molecular understanding of the exocyst regulation remains challenging. We show that, in Arabidopsis thaliana, Exo70B2 behaves as a bona fide exocyst subunit. Conversely, treatment with the salicylic acid (SA) defence hormone analog benzothiadiazole (BTH), or the immunogenic peptide flg22, induced Exo70B2 transport into the vacuole. We reveal that Exo70B2 interacts with AUTOPHAGY-RELATED PROTEIN 8 (ATG8) via two ATG8-interacting motives (AIMs) and its transport into the vacuole is dependent on autophagy. In line with its role in immunity, we discovered that Exo70B2 interacted with and was phosphorylated by the kinase MPK3. Mimicking phosphorylation had a dual impact on Exo70B2: first, by inhibiting localization at sites of active secretion, and second, it increased the interaction with ATG8. Phosphonull variants displayed higher effector-triggered immunity (ETI) and were hypersensitive to BTH, which induce secretion and autophagy. Our results suggest a molecular mechanism by which phosphorylation diverts Exo70B2 from the secretory into the autophagy pathway for its degradation, to dampen secretory activity.
Collapse
Affiliation(s)
- Carla Brillada
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ooi-Kock Teh
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Department of Biological Science, School of Science, Hokkaido University, 060-0810 Sapporo, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, 060-0815 Sapporo, Japan
| | | | - Chil-Woo Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Till Klecker
- Institute of Cell Biology, University of Bayreuth, 95440 Bayreuth, Germany
| | - Bushra Saeed
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Giulia Furlan
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Marco Zietz
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Gerd Hause
- Biozentrum, Martin-Luther-University Halle-Wittenberg, Halle 06120 (Saale), Germany
| | | | | | - Justin Lee
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
| | - Thomas Ott
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, 79085 Freiburg, Germany
| | - Marco Trujillo
- Faculty of Biology, Cell Biology, University of Freiburg, 79104 Freiburg, Germany
- Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany
- Author for communication:
| |
Collapse
|
53
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
54
|
Boukhalfa A, Roccio F, Dupont N, Codogno P, Morel E. The autophagy protein ATG16L1 cooperates with IFT20 and INPP5E to regulate the turnover of phosphoinositides at the primary cilium. Cell Rep 2021; 35:109045. [PMID: 33910006 DOI: 10.1016/j.celrep.2021.109045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The primary cilium (PC) regulates signalization linked to external stress sensing. Previous works established a functional interplay between the PC and the autophagic machinery. When ciliogenesis is promoted by serum deprivation, the autophagy protein ATG16L1 and the ciliary protein IFT20 are co-transported to the PC. Here, we demonstrate that IFT20 and ATG16L1 are part of the same complex requiring the WD40 domain of ATG16L1 and a Y-E-F-I motif in IFT20. We show that ATG16L1-deficient cells exhibit aberrant ciliary structures, which accumulate PI4,5P2, whereas PI4P, a lipid normally concentrated in the PC, is absent. Finally, we demonstrate that INPP5E, a phosphoinositide-associated phosphatase responsible for PI4P generation, interacts with ATG16L1 and that a perturbation of the ATG16L1/IFT20 complex alters its trafficking to the PC. Altogether, our results reveal a function of ATG16L1 in ciliary lipid and protein trafficking, thus directly contributing to proper PC dynamics and functions.
Collapse
Affiliation(s)
- Asma Boukhalfa
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Federica Roccio
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Nicolas Dupont
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France.
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France.
| |
Collapse
|
55
|
Abrams J, Nance J. A polarity pathway for exocyst-dependent intracellular tube extension. eLife 2021; 10:65169. [PMID: 33687331 PMCID: PMC8021397 DOI: 10.7554/elife.65169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 12/25/2022] Open
Abstract
Lumen extension in intracellular tubes can occur when vesicles fuse with an invading apical membrane. Within the Caenorhabditis elegans excretory cell, which forms an intracellular tube, the exocyst vesicle-tethering complex is enriched at the lumenal membrane and is required for its outgrowth, suggesting that exocyst-targeted vesicles extend the lumen. Here, we identify a pathway that promotes intracellular tube extension by enriching the exocyst at the lumenal membrane. We show that PAR-6 and PKC-3/aPKC concentrate at the lumenal membrane and promote lumen extension. Using acute protein depletion, we find that PAR-6 is required for exocyst membrane recruitment, whereas PAR-3, which can recruit the exocyst in mammals, appears dispensable for exocyst localization and lumen extension. Finally, we show that CDC-42 and RhoGEF EXC-5/FGD regulate lumen extension by recruiting PAR-6 and PKC-3 to the lumenal membrane. Our findings reveal a pathway that connects CDC-42, PAR proteins, and the exocyst to extend intracellular tubes.
Collapse
Affiliation(s)
- Joshua Abrams
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States
| | - Jeremy Nance
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, United States.,Department of Cell Biology, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
56
|
Martin AP, Aushev VN, Zalcman G, Camonis JH. The STK38-XPO1 axis, a new actor in physiology and cancer. Cell Mol Life Sci 2021; 78:1943-1955. [PMID: 33145612 PMCID: PMC11072208 DOI: 10.1007/s00018-020-03690-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
Abstract
The Hippo signal transduction pathway is an essential regulator of organ size during developmental growth by controlling multiple cellular processes such as cell proliferation, cell death, differentiation, and stemness. Dysfunctional Hippo signaling pathway leads to dramatic tissue overgrowth. Here, we will briefly introduce the Hippo tumor suppressor pathway before focusing on one of its members and the unexpected twists that followed our quest of its functions in its multifarious actions beside the Hippo pathway: the STK38 kinase. In this review, we will precisely discuss the newly identified role of STK38 on regulating the nuclear export machinery by phosphorylating and activating, the major nuclear export receptor XPO1. Finally, we will phrase STK38's role on regulating the subcellular distribution of crucial cellular regulators such as Beclin1 and YAP1 with its implication in cancer.
Collapse
Affiliation(s)
- Alexandre Pj Martin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, USA.
| | - Vasily N Aushev
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Gérard Zalcman
- Thoracic Oncology Department, CIC1425/CLIP2 Paris-Nord, Hopital Bichat-Claude-Bernard, Paris, France
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| | - Jacques H Camonis
- Inserm U830, Institut Curie, Centre de Recherche, Paris Sciences Et Lettres Research University, Paris, France
| |
Collapse
|
57
|
Xing Y, Wang N, Zhang T, Zhang Q, Du D, Chen X, Lu X, Zhang Y, Zhu M, Liu M, Sang X, Li Y, Ling Y, He G. SHORT-ROOT 1 is critical to cell division and tracheary element development in rice roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:1179-1191. [PMID: 33231904 DOI: 10.1111/tpj.15095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
The exocyst is a key factor in vesicle transport and is involved in cell secretion, cell growth, cell division and other cytological processes in eukaryotes. EXO70 is the key exocyst subunit. We obtained a gene, SHORT-ROOT 1 (SR1), through map-based cloning and genetic complementation. SR1 is a conserved protein with an EXO70 domain in plants. SR1 mutation affected the whole root-development process: producing shorter radicles, adventitious roots and lateral roots, and demonstrating abnormal xylem development, resulting in dwarfing and reduced water potential and moisture content. SR1 was largely expressed in the roots, but only in developing root meristems and tracheary elements. The shortness of the sr1 mutant roots was caused by the presence of fewer meristem cells. The in situ histone H4 expression patterns confirmed that cell proliferation during root development was impaired. Tracheary element dysplasia was caused by marked decreases in the inner diameters of and distances between the perforations of adjacent tracheary elements. The membrane transport of sr1 mutants was blocked, affecting cell division in the root apical region and the development of root tracheary elements. The study of SR1 will deepen our understanding of the function of EXO70 genes in Oryza sativa (rice) and guide future studies on the molecular mechanisms involved in plant root development.
Collapse
Affiliation(s)
- Yadi Xing
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Agricultural College, Zhengzhou University, Zhengzhou, 450001, China
| | - Nan Wang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Tianquan Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Qiuli Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Dan Du
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xinlong Chen
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xin Lu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yingying Zhang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Maodi Zhu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Mingming Liu
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Xianchun Sang
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yunfeng Li
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yinghua Ling
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guanghua He
- Rice Research Institute, Key Laboratory of Application and Safety Control of Genetically Modified Crops, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
58
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
59
|
Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res 2021; 54:5. [PMID: 33593425 PMCID: PMC7885507 DOI: 10.1186/s40659-021-00329-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Exo70 is a subunit of the greater exocyst complex, a collection of proteins that oversees cellular membrane addition and polarized exocytosis by acting as a tethering intermediate between the plasma membrane and newly synthesized secretory vesicles. Although Exo70 function has been implicated in several developmental events including cytokinesis and the establishment of cell polarity, its role in neuropathologies is poorly understood. On the other hand, traumatic brain injury is the result of mechanical external force including contusion, fast acceleration, and expansive waves that produce temporal or permanent cognitive damage and triggers physical and psychosocial alterations including headache, memory problems, attention deficits, difficulty thinking, mood swings, and frustration. Traumatic brain injury is a critical health problem on a global scale, constituting a major cause of deaths and disability among young adults. Trauma-related cellular damage includes redistribution of N-methyl-D-aspartate receptors outside of the synaptic compartment triggering detrimental effects to neurons. The exocyst has been related to glutamate receptor constitutive trafficking/delivery towards synapse as well. This work examines whether the exocyst complex subunit Exo70 participates in traumatic brain injury and if it is redistributed among subcellular compartments RESULTS: Our analysis shows that Exo70 expression is not altered upon injury induction. By using subcellular fractionation, we determined that Exo70 is redistributed from microsomes fraction into the synaptic compartment after brain trauma. In the synaptic compartment, we also show that the exocyst complex assembly and its interaction with GluN2B are increased. Finally, we show that the Exo70 pool that is redistributed comes from the plasma membrane. CONCLUSIONS The present findings position Exo70 in the group of proteins that could modulate GluN2B synaptic availability in acute neuropathology like a traumatic brain injury. By acting as a nucleator factor, Exo70 is capable of redirecting the ensembled complex into the synapse. We suggest that this redistribution is part of a compensatory mechanism by which Exo70 is able to maintain GluN2B partially on synapses. Hence, reducing the detrimental effects associated with TBI pathophysiology.
Collapse
Affiliation(s)
- Matías Lira
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile
| | - Pedro Zamorano
- Departamento Biomédico, Universidad de Antofagasta, Antofagasta, Chile.,Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Waldo Cerpa
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O´Higgins 340, Santiago, Chile. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
60
|
Menon S, Goldfarb D, Ho CT, Cloer EW, Boyer NP, Hardie C, Bock AJ, Johnson EC, Anil J, Major MB, Gupton SL. The TRIM9/TRIM67 neuronal interactome reveals novel activators of morphogenesis. Mol Biol Cell 2021; 32:314-330. [PMID: 33378226 PMCID: PMC8098814 DOI: 10.1091/mbc.e20-10-0622] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
TRIM9 and TRIM67 are neuronally enriched E3 ubiquitin ligases essential for appropriate morphogenesis of cortical and hippocampal neurons and fidelitous responses to the axon guidance cue netrin-1. Deletion of murine Trim9 or Trim67 results in neuroanatomical defects and striking behavioral deficits, particularly in spatial learning and memory. TRIM9 and TRIM67 interact with cytoskeletal and exocytic proteins, but the full interactome is not known. Here we performed the unbiased proximity-dependent biotin identification (BioID) approach to define TRIM9 and TRIM67 protein-protein proximity network in developing cortical neurons and identified putative neuronal TRIM interaction partners. Candidates included cytoskeletal regulators, cytosolic protein transporters, exocytosis and endocytosis regulators, and proteins necessary for synaptic regulation. A subset of high-priority candidates was validated, including Myo16, Coro1A, MAP1B, ExoC1, GRIP1, PRG-1, and KIF1A. For a subset of validated candidates, we utilized total internal reflection fluorescence microscopy to demonstrate dynamic colocalization with TRIM proteins at the axonal periphery, including at the tips of filopodia. Further analysis demonstrated that the RNA interference-based knockdown of the unconventional myosin Myo16 in cortical neurons altered growth cone filopodia density and axonal branching patterns in a TRIM9- and netrin-1-dependent manner. Future analysis of other validated candidates will likely identify novel proteins and mechanisms by which TRIM9 and TRIM67 regulate neuronal form and function. [Media: see text].
Collapse
Affiliation(s)
- Shalini Menon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Dennis Goldfarb
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Chris T. Ho
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Erica W. Cloer
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Nicholas P. Boyer
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christopher Hardie
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew J. Bock
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Emma C. Johnson
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Joel Anil
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - M. Ben Major
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
61
|
Fais M, Sanna G, Galioto M, Nguyen TTD, Trần MUT, Sini P, Carta F, Turrini F, Xiong Y, Dawson TM, Dawson VL, Crosio C, Iaccarino C. LRRK2 Modulates the Exocyst Complex Assembly by Interacting with Sec8. Cells 2021; 10:203. [PMID: 33498474 PMCID: PMC7909581 DOI: 10.3390/cells10020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/17/2022] Open
Abstract
Mutations in LRRK2 play a critical role in both familial and sporadic Parkinson's disease (PD). Up to date, the role of LRRK2 in PD onset and progression remains largely unknown. However, experimental evidence highlights a critical role of LRRK2 in the control of vesicle trafficking, likely by Rab phosphorylation, that in turn may regulate different aspects of neuronal physiology. Here we show that LRRK2 interacts with Sec8, one of eight subunits of the exocyst complex. The exocyst complex is an evolutionarily conserved multisubunit protein complex mainly involved in tethering secretory vesicles to the plasma membrane and implicated in the regulation of multiple biological processes modulated by vesicle trafficking. Interestingly, Rabs and exocyst complex belong to the same protein network. Our experimental evidence indicates that LRRK2 kinase activity or the presence of the LRRK2 kinase domain regulate the assembly of exocyst subunits and that the over-expression of Sec8 significantly rescues the LRRK2 G2019S mutant pathological effect. Our findings strongly suggest an interesting molecular mechanism by which LRRK2 could modulate vesicle trafficking and may have important implications to decode the complex role that LRRK2 plays in neuronal physiology.
Collapse
Affiliation(s)
- Milena Fais
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Giovanna Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Manuela Galioto
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Thi Thanh Duyen Nguyen
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Mai Uyên Thi Trần
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Paola Sini
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | | | - Franco Turrini
- Nurex Srl, 07100 Sassari, Italy; (F.C.); (F.T.)
- Department of Oncology, University of Turin, 10126 Turin, Italy
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.X.); (T.M.D.); (V.L.D.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (M.F.); (G.S.); (M.G.); (T.T.D.N.); (M.U.T.T.); (P.S.); (C.C.)
| |
Collapse
|
62
|
Emmer BT, Sherman EJ, Lascuna PJ, Graham SE, Willer CJ, Ginsburg D. Genome-scale CRISPR screening for modifiers of cellular LDL uptake. PLoS Genet 2021; 17:e1009285. [PMID: 33513160 PMCID: PMC7875399 DOI: 10.1371/journal.pgen.1009285] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/10/2021] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Hypercholesterolemia is a causal and modifiable risk factor for atherosclerotic cardiovascular disease. A critical pathway regulating cholesterol homeostasis involves the receptor-mediated endocytosis of low-density lipoproteins into hepatocytes, mediated by the LDL receptor. We applied genome-scale CRISPR screening to query the genetic determinants of cellular LDL uptake in HuH7 cells cultured under either lipoprotein-rich or lipoprotein-starved conditions. Candidate LDL uptake regulators were validated through the synthesis and secondary screening of a customized library of gRNA at greater depth of coverage. This secondary screen yielded significantly improved performance relative to the primary genome-wide screen, with better discrimination of internal positive controls, no identification of negative controls, and improved concordance between screen hits at both the gene and gRNA level. We then applied our customized gRNA library to orthogonal screens that tested for the specificity of each candidate regulator for LDL versus transferrin endocytosis, the presence or absence of genetic epistasis with LDLR deletion, the impact of each perturbation on LDLR expression and trafficking, and the generalizability of LDL uptake modifiers across multiple cell types. These findings identified several previously unrecognized genes with putative roles in LDL uptake and suggest mechanisms for their functional interaction with LDLR.
Collapse
Affiliation(s)
- Brian T. Emmer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Emily J. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Chemical Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Paul J. Lascuna
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sarah E. Graham
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David Ginsburg
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
63
|
Cuollo L, Antonangeli F, Santoni A, Soriani A. The Senescence-Associated Secretory Phenotype (SASP) in the Challenging Future of Cancer Therapy and Age-Related Diseases. BIOLOGY 2020; 9:biology9120485. [PMID: 33371508 PMCID: PMC7767554 DOI: 10.3390/biology9120485] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary A fundamental feature of cellular senescence is the emergence of the Senescence-Associated Secretory Phenotype (SASP), which represents a considerable source of inflammatory and tissue-remodeling cues. The pathophysiological relevance of senescence and SASP has generated a fertile area of research aimed at manipulating the SASP to fight cancer and age-related conditions. This review enlightens the most important mechanisms that regulate the SASP and summarizes the current evidence on the feasibility of intervening on its composition, providing a reading frame of the general potentialities of SASP modulation. Abstract Cellular senescence represents a robust tumor-protecting mechanism that halts the proliferation of stressed or premalignant cells. However, this state of stable proliferative arrest is accompanied by the Senescence-Associated Secretory Phenotype (SASP), which entails the copious secretion of proinflammatory signals in the tissue microenvironment and contributes to age-related conditions, including, paradoxically, cancer. Novel therapeutic strategies aim at eliminating senescent cells with the use of senolytics or abolishing the SASP without killing the senescent cell with the use of the so-called “senomorphics”. In addition, recent works demonstrate the possibility of modifying the composition of the secretome by genetic or pharmacological intervention. The purpose is not to renounce the potent immunostimulatory nature of SASP, but rather learning to modulate it for combating cancer and other age-related diseases. This review describes the main molecular mechanisms regulating the SASP and reports the evidence of the feasibility of abrogating or modulating the SASP, discussing the possible implications of both strategies.
Collapse
Affiliation(s)
- Lorenzo Cuollo
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Center for Life Nano Science, Sapienza, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Fabrizio Antonangeli
- Institute of Molecular Biology and Pathology, National Research Council (CNR), 00185 Rome, Italy;
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (L.C.); (A.S.)
- Correspondence:
| |
Collapse
|
64
|
Sharda AV, Barr AM, Harrison JA, Wilkie AR, Fang C, Mendez LM, Ghiran IC, Italiano JE, Flaumenhaft R. VWF maturation and release are controlled by 2 regulators of Weibel-Palade body biogenesis: exocyst and BLOC-2. Blood 2020; 136:2824-2837. [PMID: 32614949 PMCID: PMC7731791 DOI: 10.1182/blood.2020005300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized in endothelial cells and stored in Weibel-Palade bodies (WPBs). Understanding the mechanisms underlying WPB biogenesis and exocytosis could enable therapeutic modulation of endogenous VWF, yet optimal targets for modulating VWF release have not been established. Because biogenesis of lysosomal related organelle-2 (BLOC-2) functions in the biogenesis of platelet dense granules and melanosomes, which like WPBs are lysosome-related organelles, we hypothesized that BLOC-2-dependent endolysosomal trafficking is essential for WPB biogenesis and sought to identify BLOC-2-interacting proteins. Depletion of BLOC-2 caused misdirection of cargo-carrying transport tubules from endosomes, resulting in immature WPBs that lack endosomal input. Immunoprecipitation of BLOC-2 identified the exocyst complex as a binding partner. Depletion of the exocyst complex phenocopied BLOC-2 depletion, resulting in immature WPBs. Furthermore, releasates of immature WPBs from either BLOC-2 or exocyst-depleted endothelial cells lacked high-molecular weight (HMW) forms of VWF, demonstrating the importance of BLOC-2/exocyst-mediated endosomal input during VWF maturation. However, BLOC-2 and exocyst showed very different effects on VWF release. Although BLOC-2 depletion impaired exocytosis, exocyst depletion augmented WPB exocytosis, indicating that it acts as a clamp. Exposure of endothelial cells to a small molecule inhibitor of exocyst, Endosidin2, reversibly augmented secretion of mature WPBs containing HMW forms of VWF. These studies show that, although BLOC-2 and exocyst cooperate in WPB formation, only exocyst serves to clamp WPB release. Exocyst function in VWF maturation and release are separable, a feature that can be exploited to enhance VWF release.
Collapse
Affiliation(s)
- Anish V Sharda
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Alexandra M Barr
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | - Joshua A Harrison
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Chao Fang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| | | | - Ionita C Ghiran
- Division of Allergy and Inflammation, Beth Israel Deaconess Medical Center, and
| | - Joseph E Italiano
- Division of Hematology, Brigham and Women's Hospital
- Vascular Biology Program, Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center
| |
Collapse
|
65
|
Schneider WM, Luna JM, Hoffmann HH, Sánchez-Rivera FJ, Leal AA, Ashbrook AW, Le Pen J, Ricardo-Lax I, Michailidis E, Peace A, Stenzel AF, Lowe SW, MacDonald MR, Rice CM, Poirier JT. Genome-Scale Identification of SARS-CoV-2 and Pan-coronavirus Host Factor Networks. Cell 2020; 184:120-132.e14. [PMID: 33382968 PMCID: PMC7796900 DOI: 10.1016/j.cell.2020.12.006] [Citation(s) in RCA: 303] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/26/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has claimed the lives of over one million people worldwide. The causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a member of the Coronaviridae family of viruses that can cause respiratory infections of varying severity. The cellular host factors and pathways co-opted during SARS-CoV-2 and related coronavirus life cycles remain ill defined. To address this gap, we performed genome-scale CRISPR knockout screens during infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E). These screens uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, sterol regulatory element-binding protein (SREBP) signaling, bone morphogenetic protein (BMP) signaling, and glycosylphosphatidylinositol biosynthesis, as well as a requirement for several poorly characterized proteins. We identified an absolute requirement for the VMP1, TMEM41, and TMEM64 (VTT) domain-containing protein transmembrane protein 41B (TMEM41B) for infection by SARS-CoV-2 and three seasonal coronaviruses. This human coronavirus host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus pandemics.
Collapse
Affiliation(s)
- William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Andrew A Leal
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Scott W Lowe
- Cancer Biology and Genetics, MSKCC, New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA.
| |
Collapse
|
66
|
Li S, Ghosh C, Xing Y, Sun Y. Phosphatidylinositol 4,5-bisphosphate in the Control of Membrane Trafficking. Int J Biol Sci 2020; 16:2761-2774. [PMID: 33061794 PMCID: PMC7545710 DOI: 10.7150/ijbs.49665] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositides are membrane lipids generated by phosphorylation on the inositol head group of phosphatidylinositol. By specifically distributed to distinct subcellular membrane locations, different phosphoinositide species play diverse roles in modulating membrane trafficking. Among the seven known phosphoinositide species, phosphatidylinositol 4,5-bisphosphate (PI4,5P2) is the one species most abundant at the plasma membrane. Thus, the PI4,5P2 function in membrane trafficking is first identified in controlling plasma membrane dynamic-related events including endocytosis and exocytosis. However, recent studies indicate that PI4,5P2 is also critical in many other membrane trafficking events such as endosomal trafficking, hydrolases sorting to lysosomes, autophagy initiation, and autophagic lysosome reformation. These findings suggest that the role of PI4,5P2 in membrane trafficking is far beyond just plasma membrane. This review will provide a concise synopsis of how PI4,5P2 functions in multiple membrane trafficking events. PI4,5P2, the enzymes responsible for PI4,5P2 production at specific subcellular locations, and distinct PI4,5P2 effector proteins compose a regulation network to control the specific membrane trafficking events.
Collapse
Affiliation(s)
- Suhua Li
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Chinmoy Ghosh
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Yanli Xing
- Department of Otolaryngology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yue Sun
- Philips Institute for Oral Health Research, School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
67
|
Schneider WM, Luna JM, Hoffmann HH, Sánchez-Rivera FJ, Leal AA, Ashbrook AW, Le Pen J, Michailidis E, Ricardo-Lax I, Peace A, Stenzel AF, Lowe SW, MacDonald MR, Rice CM, Poirier JT. Genome-scale identification of SARS-CoV-2 and pan-coronavirus host factor networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33052332 DOI: 10.1101/2020.10.07.326462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTS Genome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors.Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles.Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others.TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.
Collapse
|
68
|
Zhu J, Jia ZW, Xia CY, Gao XD. The Sur7/PalI family transmembrane protein Tos7 (Yol019w) plays a role in secretion in budding yeast. Fungal Genet Biol 2020; 144:103467. [PMID: 33002606 DOI: 10.1016/j.fgb.2020.103467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 08/04/2020] [Accepted: 08/27/2020] [Indexed: 11/24/2022]
Abstract
Tos7 (Yol019w) is a Sur7/PalI family transmembrane protein in the budding yeast Saccharomyces cerevisiae. Since the deletion of TOS7 did not affect growth or cell morphology, the cellular roles of Tos7 have not been established previously. Here, we show that high-copy TOS7 expression suppressed the growth defect of the secretion-defective RGA1-C term-overexpressing mutant and sec15-1 mutant. Moreover, Tos7 physically interacted with Boi2 and the Rho GTPase Rho3, two key regulators of exocyst assembly, suggesting that Tos7 plays a role in secretion. We also show that the deletion of TOS7 rendered the cells more sensitive to the cell wall-disrupting agents Congo red and calcofluor white while high-copy TOS7 expression had an opposite effect, suggesting that Tos7 affects cell wall organization. Finally, we show that Tos7 localized to punctate patches on the plasma membrane that were largely co-localized with the plasma membrane microdomains named MCC (membrane compartment of Can1). Together, these results suggest that Tos7 contributes to cell surface-related functions. Tos7 is likely an auxiliary component of MCC/eisosome that specifically interacts with the secretory pathway.
Collapse
Affiliation(s)
- Jing Zhu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi-Wen Jia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen-Yang Xia
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiang-Dong Gao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China; Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Wuhan, China.
| |
Collapse
|
69
|
Chang YY, Stévenin V, Duchateau M, Giai Gianetto Q, Hourdel V, Rodrigues CD, Matondo M, Reiling N, Enninga J. Shigella hijacks the exocyst to cluster macropinosomes for efficient vacuolar escape. PLoS Pathog 2020; 16:e1008822. [PMID: 32866204 PMCID: PMC7485983 DOI: 10.1371/journal.ppat.1008822] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
Shigella flexneri invades host cells by entering within a bacteria-containing vacuole (BCV). In order to establish its niche in the host cytosol, the bacterium ruptures its BCV. Contacts between S. flexneri BCV and infection-associated macropinosomes (IAMs) formed in situ have been reported to enhance BCV disintegration. The mechanism underlying S. flexneri vacuolar escape remains however obscure. To decipher the molecular mechanism priming the communication between the IAMs and S. flexneri BCV, we performed mass spectrometry-based analysis of the magnetically purified IAMs from S. flexneri-infected cells. While proteins involved in host recycling and exocytic pathways were significantly enriched at the IAMs, we demonstrate more precisely that the S. flexneri type III effector protein IpgD mediates the recruitment of the exocyst to the IAMs through the Rab8/Rab11 pathway. This recruitment results in IAM clustering around S. flexneri BCV. More importantly, we reveal that IAM clustering subsequently facilitates an IAM-mediated unwrapping of the ruptured vacuole membranes from S. flexneri, enabling the naked bacterium to be ready for intercellular spread via actin-based motility. Taken together, our work untangles the molecular cascade of S. flexneri-driven host trafficking subversion at IAMs to develop its cytosolic lifestyle, a crucial step en route for infection progression at cellular and tissue level.
Collapse
Affiliation(s)
- Yuen-Yan Chang
- Dynamics of Host-Pathogen Interactions Unit and CNRS UMR3691, Institut Pasteur, Paris, France
| | - Virginie Stévenin
- Dynamics of Host-Pathogen Interactions Unit and CNRS UMR3691, Institut Pasteur, Paris, France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS, Paris, France
| | - Quentin Giai Gianetto
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS, Paris, France
- Hub Bioinformatics et Biostatistics, Computational Biology Department, USR CNRS, Institut Pasteur, Paris, France
| | - Veronique Hourdel
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS, Paris, France
| | - Cristina Dias Rodrigues
- Dynamics of Host-Pathogen Interactions Unit and CNRS UMR3691, Institut Pasteur, Paris, France
| | - Mariette Matondo
- Mass Spectrometry for Biology Unit, Proteomics Platform, Institut Pasteur, USR CNRS, Paris, France
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel, Borstel, Germany
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and CNRS UMR3691, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
70
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
71
|
Guo Q, Duan Y, Meng N, Liu Y, Luo G. The N-terminus of Sec3 is required for cell wall integrity in yeast. Biochimie 2020; 177:30-39. [PMID: 32800898 DOI: 10.1016/j.biochi.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The cell wall is essential for cell viability and pathogenesis of fungi. It was previously shown that the exocytosis landmark Sec3 is an effector of the cell wall integrity (CWI) master regulator Rho1 GTPase. However, disruption of the interaction between Sec3 and Rho1 did not inhibit exocytic secretion and cell growth. The physiological role of Sec3 in fungi is unclear. We have examined the growth, cell wall sensitivity, exocyst localization, and exocytic secretion of Sec3-binding deficient rho1 mutants and Rho1-binding deficient sec3 mutants. We found that the Sec3 N-terminal deletion mutant was defective in cell wall integrity. The cells harboring binding mutation between Rho1 and Sec3 N-terminus were sensitive to cell wall antagonists. We also found that the polarized localization of exocyst subunits was disrupted in these mutants. Our study demonstrates that the N-terminus of Sec3 mediates cell wall integrity in yeast. Pathogenic fungi may use similar regulatory mechanisms because components of the exocytic signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China; Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Na Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
72
|
Endosidin 2 accelerates PIN2 endocytosis and disturbs intracellular trafficking of PIN2, PIN3, and PIN4 but not of SYT1. PLoS One 2020; 15:e0237448. [PMID: 32790800 PMCID: PMC7425933 DOI: 10.1371/journal.pone.0237448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
We established that Endosidin2 (ES2) affected the trafficking routes of both newly synthesized and endocytic pools of PIN-FORMED2 (PIN2) in Arabidopsis root epidermal cells. PIN2 populations accumulated in separated patches, which gradually merged into large and compact ES2 aggregates (ES2As). FM4-64 endocytic tracer labeled ES2As as well. Both PIN2 pools also appeared in vacuoles. Accelerated endocytosis of PIN2, its aggregation in the cytoplasm, and redirection of PIN2 flows to vacuoles led to a substantial reduction of the abundance of this protein in the plasma membrane. Whereas PIN-FORMED3 and PIN-FORMED4 also aggregated in the cytoplasm, SYT1 was not sensitive to ES2 treatment and did not appear either in the cytoplasmic aggregates or vacuoles. Ultrastructural analysis revealed that ES2 affects the Golgi apparatus so that stacks acquired cup-shape and even circular shape surrounded by several vesicles. Abnormally shaped Golgi stacks, stack remnants, multi-lamellar structures, separated Golgi cisterna rings, tubular structures, and vesicles formed discrete clusters.
Collapse
|
73
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
74
|
Rohena C, Rajapakse N, Lo IC, Novick P, Sahoo D, Ghosh P. GIV/Girdin and Exo70 Collaboratively Regulate the Mammalian Polarized Exocytic Machinery. iScience 2020; 23:101246. [PMID: 32590327 PMCID: PMC7322189 DOI: 10.1016/j.isci.2020.101246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022] Open
Abstract
Polarized exocytosis is a fundamental process by which membranes and cargo proteins are delivered to the cell surface with precise spatial control. Although the need for the octameric exocyst complex is conserved from yeast to humans, what imparts spatial control is known only in yeast, i.e., a polarity scaffold called Bem1p. We demonstrate here that the mammalian scaffold protein, GIV/Girdin, fulfills the key criteria and functions of its yeast counterpart Bem1p; both bind Exo70 proteins via similar short-linear interaction motifs, and each prefers its evolutionary counterpart. Selective disruption of the GIV⋅Exo-70 interaction derails the delivery of the metalloprotease MT1-MMP to invadosomes and impairs collagen degradation and haptotaxis through basement membrane matrix. GIV's interacting partners reveal other components of polarized exocytosis in mammals. Findings expose how the exocytic functions aid GIV's pro-metastatic functions and how signal integration via GIV may represent an evolutionary advancement of the exocytic process in mammals.
Collapse
Affiliation(s)
- Cristina Rohena
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA
| | - Navin Rajapakse
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - I-Chung Lo
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Peter Novick
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Debashis Sahoo
- Department of Pediatrics, University of California San Diego, San Diego, CA 92093, USA; Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California San Diego, 9500 Gilman Drive (MC 0651), George E. Palade Bldg, Rm 232, 239, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA 92093, USA; Rebecca and John Moore Comprehensive Cancer Center, University of California San Diego, San Diego, CA 92093, USA; Veterans Affairs Medical Center, 3350 La Jolla Village Dr, San Diego, CA 92161, USA.
| |
Collapse
|
75
|
Mathew R, Rios-Barrera LD, Machado P, Schwab Y, Leptin M. Transcytosis via the late endocytic pathway as a cell morphogenetic mechanism. EMBO J 2020; 39:e105332. [PMID: 32657472 PMCID: PMC7429744 DOI: 10.15252/embj.2020105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Plasma membranes fulfil many physiological functions. In polarized cells, different membrane compartments take on specialized roles, each being allocated correct amounts of membrane. The Drosophila tracheal system, an established tubulogenesis model, contains branched terminal cells with subcellular tubes formed by apical plasma membrane invagination. We show that apical endocytosis and late endosome‐mediated trafficking are required for membrane allocation to the apical and basal membrane domains. Basal plasma membrane growth stops if endocytosis is blocked, whereas the apical membrane grows excessively. Plasma membrane is initially delivered apically and then continuously endocytosed, together with apical and basal cargo. We describe an organelle carrying markers of late endosomes and multivesicular bodies (MVBs) that is abolished by inhibiting endocytosis and which we suggest acts as transit station for membrane destined to be redistributed both apically and basally. This is based on the observation that disrupting MVB formation prevents growth of both compartments.
Collapse
Affiliation(s)
- Renjith Mathew
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - L Daniel Rios-Barrera
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Yannick Schwab
- Electron Microscopy Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors' Research Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Institute of Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
76
|
Sanchez-Garrido J, Shenoy AR. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 2020; 17:1571-1591. [PMID: 32627660 PMCID: PMC8354595 DOI: 10.1080/15548627.2020.1783119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nutrients not only act as building blocks but also as signaling molecules. Nutrient-availability promotes cell growth and proliferation and suppresses catabolic processes, such as macroautophagy/autophagy. These effects are mediated by checkpoint kinases such as MTOR (mechanistic target of rapamycin kinase), which is activated by amino acids and growth factors, and AMP-activated protein kinase (AMPK), which is activated by low levels of glucose or ATP. These kinases have wide-ranging activities that can be co-opted by immune cells upon exposure to danger signals, cytokines or pathogens. Here, we discuss recent insight into the regulation and repurposing of nutrient-sensing responses by the innate immune system during infection. Moreover, we examine how natural mutations and pathogen-mediated interventions can alter the balance between anabolic and autophagic pathways leading to a breakdown in tissue homeostasis and/or host defense.Abbreviations: AKT1/PKB: AKT serine/threonine kinase 1; ATG: autophagy related; BECN1: beclin 1; CGAS: cyclic GMP-AMP synthase; EIF2AK4/GCN2: eukaryotic translation initiation factor 2 alpha kinase 4; ER: endoplasmic reticulum; FFAR: free fatty acid receptor; GABARAP: GABA type A receptor-associated protein; IFN: interferon; IL: interleukin; LAP: LC3-associated phagocytosis; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAP3K7/TAK1: mitogen-activated protein kinase kinase kinase 7; MAPK: mitogen-activated protein kinase; MTOR: mechanistic target of rapamycin kinase; NLR: NOD (nucleotide-binding oligomerization domain) and leucine-rich repeat containing proteins; PI3K, phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PtdIns3K: phosphatidylinositol 3-kinase; RALB: RAS like proto-oncogene B; RHEB: Ras homolog, MTORC1 binding; RIPK1: receptor interacting serine/threonine kinase 1; RRAG: Ras related GTP binding; SQSTM1/p62: sequestosome 1; STING1/TMEM173: stimulator of interferon response cGAMP interactor 1; STK11/LKB1: serine/threonine kinase 11; TBK1: TANK binding kinase 1; TLR: toll like receptor; TNF: tumor necrosis factor; TRAF6: TNF receptor associated factor 6; TRIM: tripartite motif protein; ULK1: unc-51 like autophagy activating kinase 1; V-ATPase: vacuolar-type H+-proton-translocating ATPase.
Collapse
Affiliation(s)
- Julia Sanchez-Garrido
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,Satellite Group Leader, The Francis Crick Institute, London, UK
| |
Collapse
|
77
|
Arraf AA, Yelin R, Reshef I, Jadon J, Abboud M, Zaher M, Schneider J, Vladimirov FK, Schultheiss TM. Hedgehog Signaling Regulates Epithelial Morphogenesis to Position the Ventral Embryonic Midline. Dev Cell 2020; 53:589-602.e6. [PMID: 32437643 DOI: 10.1016/j.devcel.2020.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/20/2023]
Abstract
Despite much progress toward understanding how epithelial morphogenesis is shaped by intra-epithelial processes including contractility, polarity, and adhesion, much less is known regarding how such cellular processes are coordinated by extra-epithelial signaling. During embryogenesis, the coelomic epithelia on the two sides of the chick embryo undergo symmetrical lengthening and thinning, converging medially to generate and position the dorsal mesentery (DM) in the embryonic midline. We find that Hedgehog signaling, acting through downstream effectors Sec5 (ExoC2), an exocyst complex component, and RhoU (Wrch-1), a small GTPase, regulates coelomic epithelium morphogenesis to guide DM midline positioning. These effects are accompanied by changes in epithelial cell-cell alignment and N-cadherin and laminin distribution, suggesting Hedgehog regulation of cell organization within the coelomic epithelium. These results indicate a role for Hedgehog signaling in regulating epithelial morphology and provide an example of how transcellular signaling can modulate specific cellular processes to shape tissue morphogenesis.
Collapse
Affiliation(s)
- Alaa A Arraf
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ronit Yelin
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Inbar Reshef
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Julian Jadon
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Manar Abboud
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Mira Zaher
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Jenny Schneider
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Fanny K Vladimirov
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Thomas M Schultheiss
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
78
|
Ganesan SJ, Feyder MJ, Chemmama IE, Fang F, Rout MP, Chait BT, Shi Y, Munson M, Sali A. Integrative structure and function of the yeast exocyst complex. Protein Sci 2020; 29:1486-1501. [PMID: 32239688 DOI: 10.1002/pro.3863] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Exocyst is an evolutionarily conserved hetero-octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative-stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride cross-links from chemical-crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo-EM structure, cross-links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo-EM structure, except for Sec5. While not observed in the cryo-EM map, the integrative model localizes the N-terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low-resolution structural data can inform biologically relevant hypotheses, even in the absence of high-resolution data.
Collapse
Affiliation(s)
- Sai J Ganesan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Michael J Feyder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
79
|
Anderson CT, Kieber JJ. Dynamic Construction, Perception, and Remodeling of Plant Cell Walls. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:39-69. [PMID: 32084323 DOI: 10.1146/annurev-arplant-081519-035846] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plant cell walls are dynamic structures that are synthesized by plants to provide durable coverings for the delicate cells they encase. They are made of polysaccharides, proteins, and other biomolecules and have evolved to withstand large amounts of physical force and to resist external attack by herbivores and pathogens but can in many cases expand, contract, and undergo controlled degradation and reconstruction to facilitate developmental transitions and regulate plant physiology and reproduction. Recent advances in genetics, microscopy, biochemistry, structural biology, and physical characterization methods have revealed a diverse set of mechanisms by which plant cells dynamically monitor and regulate the composition and architecture of their cell walls, but much remains to be discovered about how the nanoscale assembly of these remarkable structures underpins the majestic forms and vital ecological functions achieved by plants.
Collapse
Affiliation(s)
- Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA;
| |
Collapse
|
80
|
Guo Q, Zhang T, Meng N, Duan Y, Meng Y, Sun D, Liu Y, Luo G. Sphingolipids are required for exocyst polarity and exocytic secretion in Saccharomyces cerevisiae. Cell Biosci 2020; 10:53. [PMID: 32257111 PMCID: PMC7106735 DOI: 10.1186/s13578-020-00406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background Exocytosis is a process by which vesicles are transported to and fused with specific areas of the plasma membrane. Although several studies have shown that sphingolipids are the main components of exocytic compartments, whether they control exocytosis process is unclear. Results Here, we have investigated the role of sphingolipids in exocytosis by reducing the activity of the serine palmitoyl-transferase (SPT), which catalyzes the first step in sphingolipid synthesis in endoplasmic reticulum. We found that the exocyst polarity and exocytic secretion were impaired in lcb1-100 mutant cells and in wild type cells treated with myriocin, a chemical which can specifically inhibit SPT enzyme activity, suggesting that sphingolipids controls exocytic secretion. This speculation was further confirmed by immuno-fluorescence and electron microscopy results that small secretory vesicles were accumulated in lcb1-100 mutant cells. Conclusions Taken together, our results suggest that sphingolipids are required for exocytosis. Mammals may use similar regulatory mechanisms because components of the exocytic secretion apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China.,2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Tianrui Zhang
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Na Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuran Duan
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuan Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Dong Sun
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| | - Ying Liu
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Guangzuo Luo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| |
Collapse
|
81
|
Feyder MJ, Munson M. Characterization of phospholipid binding by the exocyst complex using lipid nanodiscs. FASEB J 2020. [DOI: 10.1096/fasebj.2020.34.s1.04375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
82
|
Abstract
Transcytosis of macromolecules through lung endothelial cells is the primary route of transport from the vascular compartment into the interstitial space. Endothelial transcytosis is mostly a caveolae-dependent process that combines receptor-mediated endocytosis, vesicle trafficking via actin-cytoskeletal remodeling, and SNARE protein directed vesicle fusion and exocytosis. Herein, we review the current literature on caveolae-mediated endocytosis, the role of actin cytoskeleton in caveolae stabilization at the plasma membrane, actin remodeling during vesicle trafficking, and exocytosis of caveolar vesicles. Next, we provide a concise summary of experimental methods employed to assess transcytosis. Finally, we review evidence that transcytosis contributes to the pathogenesis of acute lung injury. © 2020 American Physiological Society. Compr Physiol 10:491-508, 2020.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Richard D. Minshall
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Department of Anesthesiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA,Correspondence to
| |
Collapse
|
83
|
Listeria monocytogenes exploits host exocytosis to promote cell-to-cell spread. Proc Natl Acad Sci U S A 2020; 117:3789-3796. [PMID: 32015134 DOI: 10.1073/pnas.1916676117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The facultative intracellular pathogen Listeria monocytogenes uses an actin-based motility process to spread within human tissues. Filamentous actin from the human cell forms a tail behind bacteria, propelling microbes through the cytoplasm. Motile bacteria remodel the host plasma membrane into protrusions that are internalized by neighboring cells. A critical unresolved question is whether generation of protrusions by Listeria involves stimulation of host processes apart from actin polymerization. Here we demonstrate that efficient protrusion formation in polarized epithelial cells involves bacterial subversion of host exocytosis. Confocal microscopy imaging indicated that exocytosis is up-regulated in protrusions of Listeria in a manner that depends on the host exocyst complex. Depletion of components of the exocyst complex by RNA interference inhibited the formation of Listeria protrusions and subsequent cell-to-cell spread of bacteria. Additional genetic studies indicated important roles for the exocyst regulators Rab8 and Rab11 in bacterial protrusion formation and spread. The secreted Listeria virulence factor InlC associated with the exocyst component Exo70 and mediated the recruitment of Exo70 to bacterial protrusions. Depletion of exocyst proteins reduced the length of Listeria protrusions, suggesting that the exocyst complex promotes protrusion elongation. Collectively, these results demonstrate that Listeria exploits host exocytosis to stimulate intercellular spread of bacteria.
Collapse
|
84
|
The Host GTPase Arf1 and Its Effectors AP1 and PICK1 Stimulate Actin Polymerization and Exocytosis To Promote Entry of Listeria monocytogenes. Infect Immun 2020; 88:IAI.00578-19. [PMID: 31740529 DOI: 10.1128/iai.00578-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/10/2019] [Indexed: 12/20/2022] Open
Abstract
Listeria monocytogenes is a foodborne bacterium that causes gastroenteritis, meningitis, or abortion. Listeria induces its internalization (entry) into some human cells through interaction of the bacterial surface protein InlB with its host receptor, the Met tyrosine kinase. InlB and Met promote entry through stimulation of localized actin polymerization and exocytosis. How actin cytoskeletal changes and exocytosis are controlled during entry is not well understood. Here, we demonstrate important roles for the host GTPase Arf1 and its effectors AP1 and PICK1 in actin polymerization and exocytosis during InlB-dependent uptake. Depletion of Arf1 by RNA interference (RNAi) or inhibition of Arf1 activity using a dominant-negative allele impaired InlB-dependent internalization, indicating an important role for Arf1 in this process. InlB stimulated an increase in the GTP-bound form of Arf1, demonstrating that this bacterial protein activates Arf1. RNAi and immunolocalization studies indicated that Arf1 controls exocytosis and actin polymerization during entry by recruiting the effectors AP1 and PICK1 to the plasma membrane. In turn, AP1 and PICK1 promoted plasma membrane translocation of both Filamin A (FlnA) and Exo70, two host proteins previously found to mediate exocytosis during InlB-dependent internalization (M. Bhalla, H. Van Ngo, G. C. Gyanwali, and K. Ireton, Infect Immun 87:e00689-18, 2018, https://doi.org/10.1128/IAI.00689-18). PICK1 mediated recruitment of Exo70 but not FlnA. Collectively, these results indicate that Arf1, AP1, and PICK1 stimulate exocytosis by redistributing FlnA and Exo70 to the plasma membrane. We propose that Arf1, AP1, and PICK1 are key coordinators of actin polymerization and exocytosis during infection of host cells by Listeria.
Collapse
|
85
|
ULK1 phosphorylates Exo70 to suppress breast cancer metastasis. Nat Commun 2020; 11:117. [PMID: 31913283 PMCID: PMC6949295 DOI: 10.1038/s41467-019-13923-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/02/2019] [Indexed: 01/17/2023] Open
Abstract
Increased expression of protein kinase ULK1 was reported to negatively correlate with breast cancer metastasis. Here we report that ULK1 suppresses the migration and invasion of human breast cancer cells. The suppressive effect is mediated through direct phosphorylation of Exo70, a key component of the exocyst complex. ULK1 phosphorylation inhibits Exo70 homo-oligomerization as well as its assembly to the exocyst complex, which are needed for cell protrusion formation and matrix metalloproteinases secretion during cell invasion. Reversely, upon growth factor stimulation, Exo70 is phosphorylated by ERK1/2, which in turn suppresses its phosphorylation by ULK1. Together, our study identifies Exo70 as a substrate of ULK1 that inhibits cancer metastasis, and demonstrates that two counteractive regulatory mechanisms are well orchestrated during tumor cell invasion. Elevated expression of ULK1 is known to be inversely correlated with breast cancer metastasis. Here, the authors report Exo70 as a substrate of ULK1 that suppresses cancer metastasis, and show that ERK1/2 mediated phosphorylation of Exo70 leads to opposing effects on tumour cell invasion.
Collapse
|
86
|
Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:49-62. [PMID: 31647563 DOI: 10.1093/jxb/erz423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 05/27/2023]
Abstract
Localized delivery of plasma membrane and cell wall components is an essential process in all plant cells. The vesicle-tethering complex, the exocyst, an ancient eukaryotic hetero-octameric protein cellular module, assists in targeted delivery of exocytosis vesicles to specific plasma membrane domains. Analyses of Arabidopsis and later other land plant genomes led to the surprising prediction of multiple putative EXO70 exocyst subunit paralogues. All land plant EXO70 exocyst subunits (including those of Bryophytes) form three distinct subfamilies-EXO70.1, EXO70.2, and EXO70.3. Interestingly, while the basal well-conserved EXO70.1 subfamily consists of multiexon genes, the remaining two subfamilies contain mostly single exon genes. Published analyses as well as public transcriptomic and proteomic data clearly indicate that most cell types in plants express and also use several different EXO70 isoforms. Here we sum up recent advances in the characterization of the members of the family of plant EXO70 exocyst subunits and present evidence that members of the EXO70.2 subfamily are often recruited to non-canonical functions in plant membrane trafficking pathways. Engagement of the most evolutionarily dynamic EXO70.2 subfamily of EXO70s in biotic interactions and defence correlates well with massive proliferation and conservation of new protein variants in this subfamily.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Tamara Pečenková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| |
Collapse
|
87
|
Wang S, Crisman L, Miller J, Datta I, Gulbranson DR, Tian Y, Yin Q, Yu H, Shen J. Inducible Exoc7/Exo70 knockout reveals a critical role of the exocyst in insulin-regulated GLUT4 exocytosis. J Biol Chem 2019; 294:19988-19996. [PMID: 31740584 PMCID: PMC6937574 DOI: 10.1074/jbc.ra119.010821] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Insulin promotes glucose uptake by triggering the translocation of glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane through exocytosis. GLUT4 exocytosis is a vesicle fusion event involving fusion of GLUT4-containing vesicles with the plasma membrane. For GLUT4 vesicle fusion to occur, GLUT4 vesicles must first be tethered to the plasma membrane. A key tethering factor in exocytosis is a heterooctameric protein complex called the exocyst. The role of the exocyst in GLUT4 exocytosis, however, remains incompletely understood. Here we first systematically analyzed data from a genome-scale CRISPR screen in HeLa cells that targeted virtually all known genes in the human genome, including 12 exocyst genes. The screen recovered only a subset of the exocyst genes, including exocyst complex component 7 (Exoc7/Exo70). Other exocyst genes, however, were not isolated in the screen, likely because of functional redundancy. Our findings suggest that selection of an appropriate exocyst gene is critical for genetic studies of exocyst functions. Next we developed an inducible adipocyte genome editing system that enabled Exoc7 gene deletion in adipocytes without interfering with adipocyte differentiation. We observed that insulin-stimulated GLUT4 exocytosis was markedly inhibited in Exoc7 KO adipocytes. Insulin signaling, however, remained intact in these KO cells. These results indicate that the exocyst plays a critical role in insulin-stimulated GLUT4 exocytosis in adipocytes. We propose that the strategy outlined in this work could be instrumental in genetically dissecting other membrane-trafficking pathways in adipocytes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lauren Crisman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Jessica Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Ishara Datta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Daniel R Gulbranson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Yuan Tian
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Qian Yin
- Department of Biological Sciences and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Haijia Yu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingshi Shen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
88
|
Mahmoudi E, Kiltschewskij D, Fitzsimmons C, Cairns MJ. Depolarization-Associated CircRNA Regulate Neural Gene Expression and in Some Cases May Function as Templates for Translation. Cells 2019; 9:cells9010025. [PMID: 31861825 PMCID: PMC7017197 DOI: 10.3390/cells9010025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/16/2022] Open
Abstract
Circular RNAs (circRNAs) are a relatively new class of RNA transcript with high abundance in the mammalian brain. Here, we show that circRNAs expression in differentiated neuroblastoma cells were significantly altered after depolarization with 107 upregulated and 47 downregulated circRNAs. This coincided with a global alteration in the expression of microRNA (miRNA) (n = 269) and mRNA (n = 1511) in depolarized cells, suggesting a regulatory axis of circRNA–miRNA–mRNA is involved in the cellular response to neural activity. In support of this, our in silico analysis revealed that the circular transcripts had the capacity to influence mRNA expression through interaction with common miRNAs. Loss-of-function of a highly expressed circRNA, circ-EXOC6B, resulted in altered expression of numerous mRNAs enriched in processes related to the EXOC6B function, suggesting that circRNAs may specifically regulate the genes acting in relation to their host genes. We also found that a subset of circRNAs, particularly in depolarized cells, were associated with ribosomes, suggesting they may be translated into protein. Overall, these data support a role for circRNAs in the modification of gene regulation associated with neuronal activity.
Collapse
Affiliation(s)
- Ebrahim Mahmoudi
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Dylan Kiltschewskij
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Chantel Fitzsimmons
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
| | - Murray J. Cairns
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia; (E.M.); (D.K.); (C.F.)
- Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute (HMRI), New Lambton, NSW 2305, Australia
- Correspondence: ; Tel.: +61-02-4921-8670; Fax: +61-02-4921-7903
| |
Collapse
|
89
|
Cao S, Chen H, Liang X, Fu J, Wang S, Zheng J, Zhang Z, Pang Y, Wang J, Shen B, Jia H. The Sec1/Munc18-like proteins TgSec1 and TgVps45 play pivotal roles in assembly of the pellicle and sub-pellicle network in Toxoplasma gondii. Mol Microbiol 2019; 113:208-221. [PMID: 31670849 DOI: 10.1111/mmi.14411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2019] [Indexed: 12/28/2022]
Abstract
Post-Golgi vesicle trafficking is indispensable for precise movement of proteins to the pellicle, the sub-pellicle network and apical secretory organelles in Apicomplexa. However, only a small number of molecular complexes involved in trafficking, tethering and fusion of vesicles have been identified in Toxoplasma gondii. Consequently, it is unclear how complicated vesicle trafficking is accomplished in this parasite. Sec1/Munc18-like (SM) proteins are essential components of protein complexes involved in vesicle fusion. Here, we found that depletion of the SM protein TgSec1 using an auxin-inducible degron-based conditional knockout strategy led to mislocalization of plasma membrane proteins. By contrast, conditional depletion of the SM protein TgVps45 led to morphological changes, asymmetrical loss of the inner membrane complex and defects in nucleation of sub-pellicular microtubules, polarization and symmetrical assembly of daughter parasites during repeated endodyogeny. TgVps45 interacts with the SNARE protein TgStx16 and TgVAMP4-1. Conditional ablation of TgStx16 causes the similar growth defect like TgVps45 deficiency suggested they work together for the vesicle fusion at TGN. These findings indicate that these two SM proteins are crucial for assembly of pellicle and sub-pellicle network in T. gondii respectively.
Collapse
Affiliation(s)
- Shinuo Cao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Heming Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaohan Liang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Jiawen Fu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Shida Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jun Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhaoxia Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yu Pang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jingfei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Bang Shen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei Province, People's Republic of China
| | - Honglin Jia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
90
|
Moreiras H, Pereira FJC, Neto MV, Bento-Lopes L, Festas TC, Seabra MC, Barral DC. The exocyst is required for melanin exocytosis from melanocytes and transfer to keratinocytes. Pigment Cell Melanoma Res 2019; 33:366-371. [PMID: 31665827 DOI: 10.1111/pcmr.12840] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 11/30/2022]
Abstract
Skin pigmentation involves the production of the pigment melanin by melanocytes, in melanosomes and subsequent transfer to keratinocytes. Within keratinocytes, melanin polarizes to the apical perinuclear region to form a protective cap, shielding the DNA from ultraviolet radiation-induced damage. Previously, we found evidence to support the exocytosis by melanocytes of the melanin core, termed melanocore, followed by endo/phagocytosis by keratinocytes as a main form of transfer, with Rab11b playing a key role in the process. Here, we report the requirement for the exocyst tethering complex in melanocore exocytosis and transfer to keratinocytes. We observed that the silencing of the exocyst subunits Sec8 or Exo70 impairs melanocore exocytosis from melanocytes, without affecting melanin synthesis. Moreover, we confirmed by immunoprecipitation that Rab11b interacts with Sec8 in melanocytes. Furthermore, we found that the silencing of Sec8 or Exo70 in melanocytes impairs melanin transfer to keratinocytes. These results support our model as melanocore exocytosis from melanocytes is essential for melanin transfer to keratinocytes and skin pigmentation and suggest that the role of Rab11b in melanocore exocytosis is mediated by the exocyst.
Collapse
Affiliation(s)
- Hugo Moreiras
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Francisco J C Pereira
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Matilde V Neto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Liliana Bento-Lopes
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Tiago C Festas
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Miguel C Seabra
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Duarte C Barral
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
91
|
Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Proc Natl Acad Sci U S A 2019; 116:24006-24011. [PMID: 31712437 DOI: 10.1073/pnas.1906171116] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highland native Andeans have resided at altitude for millennia. They display high aerobic capacity (VO2max) at altitude, which may be a reflection of genetic adaptation to hypoxia. Previous genomewide (GW) scans for natural selection have nominated Egl-9 homolog 1 gene (EGLN1) as a candidate gene. The encoded protein, EGLN1/PHD2, is an O2 sensor that controls levels of the Hypoxia Inducible Factor-α (HIF-α), which regulates the cellular response to hypoxia. From GW association and analysis of covariance performed on a total sample of 429 Peruvian Quechua and 94 US lowland referents, we identified 5 EGLN1 SNPs associated with higher VO2max (L⋅min-1 and mL⋅min-1⋅kg-1) in hypoxia (rs1769793, rs2064766, rs2437150, rs2491403, rs479200). For 4 of these SNPs, Quechua had the highest frequency of the advantageous (high VO2max) allele compared with 25 diverse lowland comparison populations from the 1000 Genomes Project. Genotype effects were substantial, with high versus low VO2max genotype categories differing by ∼11% (e.g., for rs1769793 SNP genotype TT = 34.2 mL⋅min-1⋅kg-1 vs. CC = 30.5 mL⋅min-1⋅kg-1). To guard against spurious association, we controlled for population stratification. Findings were replicated for EGLN1 SNP rs1769793 in an independent Andean sample collected in 2002. These findings contextualize previous reports of natural selection at EGLN1 in Andeans, and support the hypothesis that natural selection has increased the frequency of an EGLN1 causal variant that enhances O2 delivery or use during exercise at altitude in Peruvian Quechua.
Collapse
|
92
|
Kumar H, Pushpa K, Kumari A, Verma K, Pergu R, Mylavarapu SVS. The exocyst complex and Rab5 are required for abscission by localizing ESCRT III subunits to the cytokinetic bridge. J Cell Sci 2019; 132:jcs226001. [PMID: 31221728 PMCID: PMC6679584 DOI: 10.1242/jcs.226001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/14/2019] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.
Collapse
Affiliation(s)
- Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kuldeep Verma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
93
|
Huang L, Li X, Li Y, Yin X, Li Y, Wu B, Mo H, Liao CJ, Mengiste T, Guo W, Dai M, Zhang C. Endosidin2-14 Targets the Exocyst Complex in Plants and Fungal Pathogens to Inhibit Exocytosis. PLANT PHYSIOLOGY 2019; 180:1756-1770. [PMID: 31072814 PMCID: PMC6752926 DOI: 10.1104/pp.18.01457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/29/2019] [Indexed: 05/29/2023]
Abstract
The evolutionarily conserved octameric exocyst complex tethers secretory vesicles to the site of membrane fusion during exocytosis. The plant exocyst complex functions in cell wall biosynthesis, polarized growth, stress responses, and hormone signaling. In fungal pathogens, the exocyst complex is required for growth, development, and pathogenesis. Endosidin2 (ES2) is known to inhibit exocytosis in plant and mammalian cells by targeting the EXO70 subunit of the exocyst complex. Here we show that an analog of ES2, ES2-14, targets plant and two fungal EXO70s. A lower dosage of ES2-14 than of ES2 is required to inhibit plant growth, plant exocytic trafficking, and fungal growth. ES2-14 treatments inhibit appressorium formation and reduce lesion sizes caused by Magnaporthe oryzae Inhibition of EXO70 by ES2-14 in Botrytis cinerea also reduces its virulence in Arabidopsis (Arabidopsis thaliana). Interestingly, ES2-14 did not affect EXO70 localization or transferrin recycling in mammalian cells. Overall, our results indicate that a minor change in ES2 affects its specificity in targeting EXO70s in different organisms and they demonstrate the potential of using ES2-14 to study the mechanisms of plant and fungal exocytosis and the roles of exocytosis in fungus-plant interactions.
Collapse
Affiliation(s)
- Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| | - Yang Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Xianglin Yin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Yong Li
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Huaping Mo
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mingji Dai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
94
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
95
|
Mao Y, Tu R, Huang Y, Mao D, Yang Z, Lau PK, Wang J, Ni J, Guo Y, Xie T. The exocyst functions in niche cells to promote germline stem cell differentiation by directly controlling EGFR membrane trafficking. Development 2019; 146:dev.174615. [PMID: 31142545 DOI: 10.1242/dev.174615] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 12/31/2022]
Abstract
The niche controls stem cell self-renewal and differentiation in animal tissues. Although the exocyst is known to be important for protein membrane trafficking and secretion, its role in stem cells and niches has never been reported. Here, this study shows that the exocyst functions in the niche to promote germline stem cell (GSC) progeny differentiation in the Drosophila ovary by directly regulating EGFR membrane trafficking and signaling. Inactivation of exocyst components in inner germarial sheath cells, which form the differentiation niche, causes a severe GSC differentiation defect. The exocyst is required for maintaining niche cells and preventing BMP signaling in GSC progeny by promoting EGFR membrane targeting and signaling through direct association with EGFR. Finally, it is also required for EGFR membrane targeting, recycling and signaling in human cells. Therefore, this study reveals a novel function of the exocyst in niche cells to promote stem cell progeny differentiation by directly controlling EGFR membrane trafficking and signaling in vivo, and also provides important insight into how the niche controls stem cell progeny differentiation at the molecular level.
Collapse
Affiliation(s)
- Ying Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Renjun Tu
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Yan Huang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Decai Mao
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Pik Ki Lau
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jinhui Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jianquan Ni
- PKU-THU Joint Center for Life Sciences, College of Life Sciences, School of Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yusong Guo
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ting Xie
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| |
Collapse
|
96
|
Sáez JJ, Diaz J, Ibañez J, Bozo JP, Cabrera Reyes F, Alamo M, Gobert FX, Obino D, Bono MR, Lennon-Duménil AM, Yeaman C, Yuseff MI. The exocyst controls lysosome secretion and antigen extraction at the immune synapse of B cells. J Cell Biol 2019; 218:2247-2264. [PMID: 31197029 PMCID: PMC6605794 DOI: 10.1083/jcb.201811131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BCR engagement enhances microtubule stability, which triggers the mobilization of Exo70 from the centrosome to the immune synapse. BCR engagement activates GEF-H1, which promotes exocyst assembly required for the docking and secretion of lysosomes, facilitating the extraction of surface-tethered antigens. B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.
Collapse
Affiliation(s)
- Juan José Sáez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Jheimmy Diaz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Ibañez
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Pablo Bozo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Cabrera Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Martina Alamo
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - François-Xavier Gobert
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Dorian Obino
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - María Rosa Bono
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Ana-María Lennon-Duménil
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, Île-de-France, France
| | - Charles Yeaman
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA
| | - María-Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
97
|
Duan Y, Guo Q, Zhang T, Meng Y, Sun D, Luo G, Liu Y. Cyclin-dependent kinase-mediated phosphorylation of the exocyst subunit Exo84 in late G 1 phase suppresses exocytic secretion and cell growth in yeast. J Biol Chem 2019; 294:11323-11332. [PMID: 31171719 DOI: 10.1074/jbc.ra119.008591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, the growth rate is strictly regulated for proper progression of the cell cycle. In the budding yeast Saccharomyces cerevisiae, it was previously shown that cell growth dramatically slows down when the cells start budding at the G1/S transition. However, the molecular mechanism for this G1/S-associated growth arrest is unclear. In this study, using exocytic secretion, cyclin-dependent kinase (CDK) assay, immunoprecipitation, and microscopy, we demonstrate that the exocyst subunit Exo84, which is known to be phosphorylated in mitosis, can also be phosphorylated directly by Cdk1 in the late G1 phase. Of note, we found that the Cdk1-mediated Exo84 phosphorylation impairs exocytic secretion in the late G1 phase. Using conditional cdc mutants and phosphodeficient and phosphomimetic exo84 mutants, we further observed that Cdk1-phosphoryated Exo84 inhibits the exocyst complex assembly, exocytic secretion, and cell growth, which may be important for proper execution of the G1/S-phase transition before commitment to a complete cell cycle. Our results suggest that the direct Cdk1-mediated regulation of the exocyst complex critically contributes to the coordination of cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| |
Collapse
|
98
|
Nakada-Tsukui K, Watanabe N, Maehama T, Nozaki T. Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Front Cell Infect Microbiol 2019; 9:150. [PMID: 31245297 PMCID: PMC6563779 DOI: 10.3389/fcimb.2019.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol (PtdIns) metabolism is indispensable in eukaryotes. Phosphoinositides (PIs) are phosphorylated derivatives of PtdIns and consist of seven species generated by reversible phosphorylation of the inositol moieties at the positions 3, 4, and 5. Each of the seven PIs has a unique subcellular and membrane domain distribution. In the enteric protozoan parasite Entamoeba histolytica, it has been previously shown that the PIs phosphatidylinositol 3-phosphate (PtdIns3P), PtdIns(4,5)P2, and PtdIns(3,4,5)P3 are localized to phagosomes/phagocytic cups, plasma membrane, and phagocytic cups, respectively. The localization of these PIs in E. histolytica is similar to that in mammalian cells, suggesting that PIs have orthologous functions in E. histolytica. In contrast, the conservation of the enzymes that metabolize PIs in this organism has not been well-documented. In this review, we summarized the full repertoire of the PI kinases and PI phosphatases found in E. histolytica via a genome-wide survey of the current genomic information. E. histolytica appears to have 10 PI kinases and 23 PI phosphatases. It has a panel of evolutionarily conserved enzymes that generate all the seven PI species. However, class II PI 3-kinases, type II PI 4-kinases, type III PI 5-phosphatases, and PI 4P-specific phosphatases are not present. Additionally, regulatory subunits of class I PI 3-kinases and type III PI 4-kinases have not been identified. Instead, homologs of class I PI 3-kinases and PTEN, a PI 3-phosphatase, exist as multiple isoforms, which likely reflects that elaborate signaling cascades mediated by PtdIns(3,4,5)P3 are present in this organism. There are several enzymes that have the nuclear localization signal: one phosphatidylinositol phosphate (PIP) kinase, two PI 3-phosphatases, and one PI 5-phosphatase; this suggests that PI metabolism also has conserved roles related to nuclear functions in E. histolytica, as it does in model organisms.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Natsuki Watanabe
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Maehama
- Division of Molecular and Cellular Biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
99
|
Zhang T, Sun D, Luo G, Liu Y. Spatial and Translational Regulation of Exocyst Subunits by Cell Cycle in Budding Yeast. Med Sci Monit 2019; 25:4059-4067. [PMID: 31150370 PMCID: PMC6559343 DOI: 10.12659/msm.914194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Previous studies have shown that exocyst complex is located at polarized growth sites at different cell cycle stages in budding yeast. But how cell cycle and the cyclin-dependent kinase, Cdk1, regulate the distribution of exocyst complex on the plasma membrane and the protein level of each exocyst subunit is not clear. MATERIAL AND METHODS Using budding yeast as a research material, regulation of cell cycle and Cdk1 on exocyst localization on the plasma membrane and on level of each exocyst subunit were examined by methods of cell biology and molecular biology. RESULTS Exocyst complex is located at growth sites on the plasma membrane in both budding and non-budding stages. Cdk1 activity is required for polarized distribution of exocyst complex in late G1, S and M phases, but not in cytokinesis stage. Cdk1 is not required for the assembly and localization of exocyst complex on plasma membrane. The protein level of Sec3 but not other exocyst subunits is regulated by the cell cycle. CONCLUSIONS Cdk1 activity is required for exocyst polarization before cytokinesis during the cell cycle progression, but not for its assembly and localization on the plasma membrane. Dynamic localization and protein level of the complex subunits are regulated by the cell cycle.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Dong Sun
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guangzuo Luo
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
100
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|