51
|
Hepojoki J, Vaheri A, Strandin T. The fundamental role of endothelial cells in hantavirus pathogenesis. Front Microbiol 2014; 5:727. [PMID: 25566236 PMCID: PMC4273638 DOI: 10.3389/fmicb.2014.00727] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023] Open
Abstract
Hantavirus, a genus of rodent- and insectivore-borne viruses in the family Bunyaviridae, is a group of emerging zoonotic pathogens. Hantaviruses cause hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome in man, often with severe consequences. Vascular leakage is evident in severe hantavirus infections, and increased permeability contributes to the pathogenesis. This review summarizes the current knowledge on hantavirus interactions with hematopoietic and endothelial cells, and their effects on the increased vascular permeability.
Collapse
Affiliation(s)
- Jussi Hepojoki
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Antti Vaheri
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Haartman Institute, University of Helsinki Helsinki, Finland
| |
Collapse
|
52
|
Mandl JN, Ahmed R, Barreiro LB, Daszak P, Epstein JH, Virgin HW, Feinberg MB. Reservoir host immune responses to emerging zoonotic viruses. Cell 2014; 160:20-35. [PMID: 25533784 PMCID: PMC4390999 DOI: 10.1016/j.cell.2014.12.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 12/26/2022]
Abstract
Zoonotic viruses, such as HIV, Ebola virus, coronaviruses, influenza A viruses, hantaviruses, or henipaviruses, can result in profound pathology in humans. In contrast, populations of the reservoir hosts of zoonotic pathogens often appear to tolerate these infections with little evidence of disease. Why are viruses more dangerous in one species than another? Immunological studies investigating quantitative and qualitative differences in the host-virus equilibrium in animal reservoirs will be key to answering this question, informing new approaches for treating and preventing zoonotic diseases. Integrating an understanding of host immune responses with epidemiological, ecological, and evolutionary insights into viral emergence will shed light on mechanisms that minimize fitness costs associated with viral infection, facilitate transmission to other hosts, and underlie the association of specific reservoir hosts with multiple emerging viruses. Reservoir host studies provide a rich opportunity for elucidating fundamental immunological processes and their underlying genetic basis, in the context of distinct physiological and metabolic constraints that contribute to host resistance and disease tolerance.
Collapse
Affiliation(s)
- Judith N Mandl
- Lymphocyte Biology Section, Laboratory of Systems Biology, NIAID, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Luis B Barreiro
- Sainte-Justine Hospital Research Centre, Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
| | | | | | - Herbert W Virgin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
53
|
Shin OS, Song GS, Kumar M, Yanagihara R, Lee HW, Song JW. Hantaviruses induce antiviral and pro-inflammatory innate immune responses in astrocytic cells and the brain. Viral Immunol 2014; 27:256-66. [PMID: 24937036 DOI: 10.1089/vim.2014.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although hantaviruses are not generally considered neurotropic, neurological complications have been reported occasionally in patients with hemorrhagic fever renal syndrome (HFRS). In this study, we analyzed innate immune responses to hantavirus infection in vitro in human astrocytic cells (A172) and in vivo in suckling ICR mice. Infection of A172 cells with pathogenic Hantaan virus (HTNV) or a novel shrew-borne hantavirus, known as Imjin virus (MJNV), induced activation of antiviral genes and pro-inflammatory cytokines/chemokines. MicroRNA expression profiles of HTNV- and MJNV-infected A172 cells showed distinct changes in a set of miRNAs. Following intraperitoneal inoculation with HTNV or MJNV, suckling ICR mice developed rapidly progressive, fatal central nervous system-associated disease. Immunohistochemical staining of virus-infected mouse brains confirmed the detection of viral antigens within astrocytes. Taken together, these findings suggest that the neurological findings in HFRS patients may be associated with hantavirus-directed modulation of innate immune responses in the brain.
Collapse
Affiliation(s)
- Ok Sarah Shin
- 1 Department of Biomedical Sciences, College of Medicine, Korea University , Gurodong, Gurogu, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
54
|
Differential lymphocyte and antibody responses in deer mice infected with Sin Nombre hantavirus or Andes hantavirus. J Virol 2014; 88:8319-31. [PMID: 24829335 DOI: 10.1128/jvi.00004-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Hantavirus cardiopulmonary syndrome (HCPS) is a rodent-borne disease with a high case-fatality rate that is caused by several New World hantaviruses. Each pathogenic hantavirus is naturally hosted by a principal rodent species without conspicuous disease and infection is persistent, perhaps for life. Deer mice (Peromyscus maniculatus) are the natural reservoirs of Sin Nombre virus (SNV), the etiologic agent of most HCPS cases in North America. Deer mice remain infected despite a helper T cell response that leads to high-titer neutralizing antibodies. Deer mice are also susceptible to Andes hantavirus (ANDV), which causes most HCPS cases in South America; however, deer mice clear ANDV. We infected deer mice with SNV or ANDV to identify differences in host responses that might account for this differential outcome. SNV RNA levels were higher in the lungs but not different in the heart, spleen, or kidneys. Most ANDV-infected deer mice had seroconverted 14 days after inoculation, but none of the SNV-infected deer mice had. Examination of lymph node cell antigen recall responses identified elevated immune gene expression in deer mice infected with ANDV and suggested maturation toward a Th2 or T follicular helper phenotype in some ANDV-infected deer mice, including activation of the interleukin 4 (IL-4) pathway in T cells and B cells. These data suggest that the rate of maturation of the immune response is substantially higher and of greater magnitude during ANDV infection, and these differences may account for clearance of ANDV and persistence of SNV. IMPORTANCE Hantaviruses persistently infect their reservoir rodent hosts without pathology. It is unknown how these viruses evade sterilizing immune responses in the reservoirs. We have determined that infection of the deer mouse with its homologous hantavirus, Sin Nombre virus, results in low levels of immune gene expression in antigen-stimulated lymph node cells and a poor antibody response. However, infection of deer mice with a heterologous hantavirus, Andes virus, results in a robust lymph node cell response, signatures of T and B cell maturation, and production of antibodies. These findings suggest that an early and aggressive immune response to hantaviruses may lead to clearance in a reservoir host and suggest that a modest immune response may be a component of hantavirus ecology.
Collapse
|
55
|
Mlera L, Melik W, Bloom ME. The role of viral persistence in flavivirus biology. Pathog Dis 2014; 71:137-63. [PMID: 24737600 PMCID: PMC4154581 DOI: 10.1111/2049-632x.12178] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/30/2022] Open
Abstract
In nature, vector borne flaviviruses are persistently cycled between either the tick or mosquito vector and small mammals such as rodents, skunks, and swine. These viruses account for considerable human morbidity and mortality worldwide. Increasing and substantial evidence of viral persistence in humans, which includes the isolation of RNA by RT PCR and infectious virus by culture, continues to be reported. Viral persistence can also be established in vitro in various human, animal, arachnid, and insect cell lines in culture. Although some research has focused on the potential roles of defective virus particles, evasion of the immune response through the manipulation of autophagy and/or apoptosis, the precise mechanism of flavivirus persistence is still not well understood. We propose additional research for further understanding of how viral persistence is established in different systems. Avenues for additional studies include determining whether the multifunctional flavivirus protein NS5 has a role in viral persistence, the development of relevant animal models of viral persistence, and investigating the host responses that allow vector borne flavivirus replication without detrimental effects on infected cells. Such studies might shed more light on the viral–host relationships and could be used to unravel the mechanisms for establishment of persistence. Persistent infections by vector borne flaviviruses are an important, but inadequately studied topic.
Collapse
Affiliation(s)
- Luwanika Mlera
- Rocky Mountain Laboratories, Laboratory of Virology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | |
Collapse
|
56
|
Hantavirus reservoirs: current status with an emphasis on data from Brazil. Viruses 2014; 6:1929-73. [PMID: 24784571 PMCID: PMC4036540 DOI: 10.3390/v6051929] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/03/2014] [Accepted: 02/07/2014] [Indexed: 12/31/2022] Open
Abstract
Since the recognition of hantavirus as the agent responsible for haemorrhagic fever in Eurasia in the 1970s and, 20 years later, the descovery of hantavirus pulmonary syndrome in the Americas, the genus Hantavirus has been continually described throughout the World in a variety of wild animals. The diversity of wild animals infected with hantaviruses has only recently come into focus as a result of expanded wildlife studies. The known reservoirs are more than 80, belonging to 51 species of rodents, 7 bats (order Chiroptera) and 20 shrews and moles (order Soricomorpha). More than 80genetically related viruses have been classified within Hantavirus genus; 25 recognized as human pathogens responsible for a large spectrum of diseases in the Old and New World. In Brazil, where the diversity of mammals and especially rodents is considered one of the largest in the world, 9 hantavirus genotypes have been identified in 12 rodent species belonging to the genus Akodon, Calomys, Holochilus, Oligoryzomys, Oxymycterus, Necromys and Rattus. Considering the increasing number of animals that have been implicated as reservoirs of different hantaviruses, the understanding of this diversity is important for evaluating the risk of distinct hantavirus species as human pathogens.
Collapse
|
57
|
Forbes KM, Voutilainen L, Jääskeläinen A, Sironen T, Kinnunen PM, Stuart P, Vapalahti O, Henttonen H, Huitu O. Serological survey of rodent-borne viruses in Finnish field voles. Vector Borne Zoonotic Dis 2014; 14:278-83. [PMID: 24689532 DOI: 10.1089/vbz.2013.1526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In northern Europe, rodent populations display cyclic density fluctuations that can be correlated with the human incidence of zoonotic diseases they spread. During density peaks, field voles (Microtus agrestis) become one of the most abundant rodent species in northern Europe, yet little is known of the viruses they host. We screened 709 field voles, trapped from 14 sites over 3 years, for antibodies against four rodent-borne, potentially zoonotic viruses or virus groups-hantaviruses, lymphocytic choriomeningitis virus (LCMV), Ljungan virus (LV), and orthopoxviruses (OPV). Antibodies against all four viruses were detected. However, seroprevalence of hantaviruses, LV, and LCMV was low. OPV antibodies (most likely cowpox) were more common but restricted geographically to southeastern Finland. Within these sites, antibody prevalence showed delayed density dependence in spring and direct density dependence in fall. Higher seroprevalence was found in spring than fall. These results substantially increase knowledge of the presence and distribution of viruses of field voles in Finland, as well as CPXV infection dynamics.
Collapse
Affiliation(s)
- Kristian M Forbes
- 1 Suonenjoki Research Unit, Finnish Forest Research Institute , Suonenjoki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Hantavirus immunology of rodent reservoirs: current status and future directions. Viruses 2014; 6:1317-35. [PMID: 24638205 PMCID: PMC3970152 DOI: 10.3390/v6031317] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Hantaviruses are hosted by rodents, insectivores and bats. Several rodent-borne hantaviruses cause two diseases that share many features in humans, hemorrhagic fever with renal syndrome in Eurasia or hantavirus cardiopulmonary syndrome in the Americas. It is thought that the immune response plays a significant contributory role in these diseases. However, in reservoir hosts that have been closely examined, little or no pathology occurs and infection is persistent despite evidence of adaptive immune responses. Because most hantavirus reservoirs are not model organisms, it is difficult to conduct meaningful experiments that might shed light on how the viruses evade sterilizing immune responses and why immunopathology does not occur. Despite these limitations, recent advances in instrumentation and bioinformatics will have a dramatic impact on understanding reservoir host responses to hantaviruses by employing a systems biology approach to identify important pathways that mediate virus/reservoir relationships.
Collapse
|
59
|
Oldal M, Németh V, Madai M, Kemenesi G, Dallos B, Péterfi Z, Sebők J, Wittmann I, Bányai K, Jakab F. Identification of hantavirus infection by Western blot assay and TaqMan PCR in patients hospitalized with acute kidney injury. Diagn Microbiol Infect Dis 2014; 79:166-70. [PMID: 24703877 DOI: 10.1016/j.diagmicrobio.2014.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/17/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
Abstract
Hantaviruses, one of the causative agents of viral hemorrhagic fevers, represent a considerable healthcare threat. In Hungary, Dobrava-Belgrade virus (DOBV) and Puumala virus (PUUV) are the main circulating hantavirus species, responsible for the clinical picture known as hemorrhagic fever with renal syndrome, a disease that may be accompanied by acute kidney injury (AKI), requiring hospitalization with occasionally prolonged recovery phase. A total of 20 patient sera were collected over a 2-year period from persons hospitalized with AKI, displaying clinical signs and laboratory findings directly suggestive for hantavirus infection. Samples were tested using an immunoblot assay, based on complete viral nucleocapsid proteins to detect patients' IgM and IgG antibodies against DOBV and PUUV. In parallel, all specimens were also tested by 1-step real-time TaqMan reverse-transcriptase polymerase chain reaction to confirm infection and to determine the causative hantavirus genotype. We present here the first Hungarian clinical study spanning across 2 years and dedicated specifically to assess acute kidney injuries, in the context of hantavirus prevalence.
Collapse
Affiliation(s)
- Miklós Oldal
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Viktória Németh
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Mónika Madai
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Gábor Kemenesi
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Bianka Dallos
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Zoltán Péterfi
- 1st Department of Internal Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Judit Sebők
- 2nd Department of Internal Medicine and Nephrology Center, Medical School, University of Pécs, Pécs, Hungary
| | - István Wittmann
- 2nd Department of Internal Medicine and Nephrology Center, Medical School, University of Pécs, Pécs, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Ferenc Jakab
- Virological Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary; Institute of Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| |
Collapse
|
60
|
Oliveira RC, Gentile R, Guterres A, Fernandes J, Teixeira BR, Vaz V, Valdez FP, Vicente LHB, da Costa-Neto SF, Bonvicino C, D’Andrea PS, Lemos ER. Ecological study of hantavirus infection in wild rodents in an endemic area in Brazil. Acta Trop 2014; 131:1-10. [PMID: 24291677 DOI: 10.1016/j.actatropica.2013.11.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/13/2013] [Accepted: 11/21/2013] [Indexed: 10/26/2022]
Abstract
A 3-year ecological study of small mammals was carried out in an endemic area for hantavirus pulmonary syndrome in the state of Santa Catarina in Southern Brazil. A total of 994 rodents of 14 different species corresponding to the subfamilies of Sigmodontinae, Murinae, Eumysopinae, and Caviinae were captured during 2004-2006. Oligoryzomys nigripes and Akodon montensis were the most abundant species and showed a clear seasonal pattern with higher population sizes during the winter. Rodent population outbreaks, associated within bamboo mast seeding events, were detected predominantly in areas where hantavirus pulmonary syndrome cases were notified in the state. Antibody reactivity to Hantavirus was detected in five sigmodontine species: O. nigripes (39/435), A. montensis (15/318), Akodon paranaensis (4/37), Thaptomys nigrita (1/86) and Sooretamys angouya (1/12). The highest hantavirus antibody prevalence occurred during the period of highest population size in A. montensis. For O. nigripes, hantavirus prevalence was higher in late spring, when reproduction was more frequent. Co-circulation of Juquitiba (JUQV) and Jabora (JABV) viruses was observed - JABV in A. paranaensis and A. montensis; JUQV in O. nigripes and T. nigrita. JABV occurrence was associated to gender and population size of the rodent while JUQV was related to gender, season, temperature, and locality.
Collapse
|
61
|
Eckerle I, Lenk M, Ulrich RG. More novel hantaviruses and diversifying reservoir hosts--time for development of reservoir-derived cell culture models? Viruses 2014; 6:951-67. [PMID: 24576845 PMCID: PMC3970132 DOI: 10.3390/v6030951] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/11/2014] [Accepted: 02/15/2014] [Indexed: 12/21/2022] Open
Abstract
Due to novel, improved and high-throughput detection methods, there is a plethora of newly identified viruses within the genus Hantavirus. Furthermore, reservoir host species are increasingly recognized besides representatives of the order Rodentia, now including members of the mammalian orders Soricomorpha/Eulipotyphla and Chiroptera. Despite the great interest created by emerging zoonotic viruses, there is still a gross lack of in vitro models, which reflect the exclusive host adaptation of most zoonotic viruses. The usually narrow host range and genetic diversity of hantaviruses make them an exciting candidate for studying virus-host interactions on a cellular level. To do so, well-characterized reservoir cell lines covering a wide range of bat, insectivore and rodent species are essential. Most currently available cell culture models display a heterologous virus-host relationship and are therefore only of limited value. Here, we review the recently established approaches to generate reservoir-derived cell culture models for the in vitro study of virus-host interactions. These successfully used model systems almost exclusively originate from bats and bat-borne viruses other than hantaviruses. Therefore we propose a parallel approach for research on rodent- and insectivore-borne hantaviruses, taking the generation of novel rodent and insectivore cell lines from wildlife species into account. These cell lines would be also valuable for studies on further rodent-borne viruses, such as orthopox- and arenaviruses.
Collapse
Affiliation(s)
- Isabella Eckerle
- Institute of Virology, University of Bonn Medical Centre, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany.
| | - Matthias Lenk
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Rainer G Ulrich
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
62
|
Abstract
ABSTRACT: Hantaviruses productively infect endothelial cells in their rodent reservoirs and humans, but the infection only causes disease in humans – hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. Despite the enormous progress that has been made in understanding the pathogenesis and immune responses of hantavirus infection, there is a large gap in our molecular-based knowledge of hantaviral proteins in their structures, functions and the mechanisms that facilitate their entry, replication and assembly. Importantly, we know little about the specific viral determinants and viral protein–host interactions that drive differences noted in immune responses between the reservoir and humans. This review discusses our current understanding and future work needed for unraveling the biology of these viruses in their reservoirs and in humans.
Collapse
Affiliation(s)
- Ryan C McAllister
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
| | - Colleen B Jonsson
- Department of Pharmacology & Toxicology, University of Louisville, KY 40202, USA
- Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, KY, USA
- Department of Microbiology and Immunology, University of Louisville, KY 40202, USA
- Departments of Microbiology & Immunology & Pharmacology & Toxicology, Center for Predictive Medicine for Biodefense & Emerging Infectious Diseases, University of Louisville, Clinical & Translational Research Building, 505 South Hancock Avenue, Louisville, KY 40202, USA
| |
Collapse
|
63
|
Bean AGD, Baker ML, Stewart CR, Cowled C, Deffrasnes C, Wang LF, Lowenthal JW. Studying immunity to zoonotic diseases in the natural host - keeping it real. Nat Rev Immunol 2013; 13:851-61. [PMID: 24157573 PMCID: PMC7098194 DOI: 10.1038/nri3551] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zoonotic viruses that emerge from wildlife and domesticated animals pose a serious threat to human and animal health. In many instances, mouse models have improved our understanding of the human immune response to infection; however, when dealing with emerging zoonotic diseases, they may be of limited use. This is particularly the case when the model fails to reproduce the disease status that is seen in the natural reservoir, transmission species or human host. In this Review, we discuss how researchers are placing more emphasis on the study of the immune response to zoonotic infections in the natural reservoir hosts and spillover species. Such studies will not only lead to a greater understanding of how these infections induce variable disease and immune responses in distinct species but also offer important insights into the evolution of mammalian immune systems.
Collapse
Affiliation(s)
- Andrew G. D. Bean
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
| | - Michelle L. Baker
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
| | - Cameron R. Stewart
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
| | - Christopher Cowled
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
| | - Celine Deffrasnes
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
| | - Lin-Fa Wang
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
- Program in Emerging Infectious Diseases, Duke-NUS Graduate Medical School, Singapore, 169857 Singapore
| | - John W. Lowenthal
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, 3220 Victoria Australia
- School of Medicine, Deakin University, Waurn Ponds, 3216 Victoria Australia
| |
Collapse
|
64
|
Abstract
Hantaviruses are negative-sense single-stranded RNA viruses that infect many species of rodents, shrews, moles and bats. Infection in these reservoir hosts is almost asymptomatic, but some rodent-borne hantaviruses also infect humans, causing either haemorrhagic fever with renal syndrome (HFRS) or hantavirus cardiopulmonary syndrome (HCPS). In this Review, we discuss the basic molecular properties and cell biology of hantaviruses and offer an overview of virus-induced pathology, in particular vascular leakage and immunopathology.
Collapse
|
65
|
Shin OS, Kumar M, Yanagihara R, Song JW. Hantaviruses induce cell type- and viral species-specific host microRNA expression signatures. Virology 2013; 446:217-24. [PMID: 24074584 DOI: 10.1016/j.virol.2013.07.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/19/2013] [Accepted: 07/26/2013] [Indexed: 01/01/2023]
Abstract
The mechanisms of hantavirus-induced modulation of host cellular immunity remain poorly understood. Recently, microRNAs (miRNAs) have emerged as a class of essential regulators of host immune response genes. To ascertain if differential host miRNA expression toward representative hantavirus species correlated with immune response genes, miRNA expression profiles were analyzed in human endothelial cells, macrophages and epithelial cells infected with pathogenic and nonpathogenic rodent- and shrew-borne hantaviruses. Distinct miRNA expression profiles were observed in a cell type- and viral species-specific pattern. A subset of miRNAs, including miR-151-5p and miR-1973, were differentially expressed between Hantaan virus and Prospect Hill virus. Pathway analyses confirmed that the targets of selected miRNAs were associated with inflammatory responses and innate immune receptor-mediated signaling pathways. Our data suggest that differential immune responses following hantavirus infection may be regulated in part by cellular miRNA through dysregulation of genes critical to the inflammatory process.
Collapse
Affiliation(s)
- Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Department of Microbiology, College of Medicine, Korea University, 5-ga, Anam-dong, Seoul 136-705, Republic of Korea
| | | | | | | |
Collapse
|
66
|
Shin OS, Yanagihara R, Song JW. Distinct innate immune responses in human macrophages and endothelial cells infected with shrew-borne hantaviruses. Virology 2012; 434:43-9. [PMID: 22944108 DOI: 10.1016/j.virol.2012.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 01/09/2023]
Abstract
Although hantaviruses have been previously considered as rodent-borne pathogens, recent studies demonstrate genetically distinct hantaviruses in evolutionarily distant non-rodent reservoirs, including shrews, moles and bats. The immunological responses to these newfound hantaviruses in humans are unknown. We compared the innate immune responses to Imjin virus (MJNV) and Thottapalayam virus (TPMV), two shrew-borne hantaviruses, with that toward two rodent-borne hantaviruses, pathogenic Hantann virus (HTNV) and nonpathogenic Prospect Hill virus (PHV). Infection of human macrophages and endothelial cells with either HTNV or MJNV triggered productive viral replication and up-regulation of anti-viral responsive gene expression from day 1 to day 3 postinfection, compared with PHV and TPMV. Furthermore, HTNV, MJNV and TPMV infection led to prolonged increased production of pro-inflammatory cytokines from days 3 to 7 postinfection. By contrast, PHV infection failed to induce pro-inflammatory responses. Distinct patterns of innate immune activation caused by MJNV suggest that it might be pathogenic to humans.
Collapse
Affiliation(s)
- Ok Sarah Shin
- Institute of Biomedical Science & Food Safety, Korea University, Seoul 136-713, Republic of Korea
| | | | | |
Collapse
|
67
|
Seoul virus-infected rat lung endothelial cells and alveolar macrophages differ in their ability to support virus replication and induce regulatory T cell phenotypes. J Virol 2012; 86:11845-55. [PMID: 22915818 DOI: 10.1128/jvi.01233-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hantaviruses cause a persistent infection in reservoir hosts that is attributed to the upregulation of regulatory responses and downregulation of proinflammatory responses. To determine whether rat alveolar macrophages (AMs) and lung microvascular endothelial cells (LMVECs) support Seoul virus (SEOV) replication and contribute to the induction of an environment that polarizes CD4(+) T cell differentiation toward a regulatory T (Treg) cell phenotype, cultured primary rat AMs and LMVECs were mock infected or infected with SEOV and analyzed for viral replication, cytokine and chemokine responses, and expression of cell surface markers that are related to T cell activation. Allogeneic CD4(+) T cells were cocultured with SEOV-infected or mock-infected AMs or LMVECs and analyzed for helper T cell (i.e., Treg, Th17, Th1, and Th2) marker expression and Treg cell frequency. SEOV RNA and infectious particles in culture media were detected in both cell types, but at higher levels in LMVECs than in AMs postinfection. Expression of Ifnβ, Ccl5, and Cxcl10 and surface major histocompatibility complex class II (MHC-II) and MHC-I was not altered by SEOV infection in either cell type. SEOV infection significantly increased Tgfβ mRNA in AMs and the amount of programmed cell death 1 ligand 1 (PD-L1) in LMVECs. SEOV-infected LMVECs, but not AMs, induced a significant increase in Foxp3 expression and Treg cell frequency in allogeneic CD4(+) T cells, which was virus replication and cell contact dependent. These data suggest that in addition to supporting viral replication, AMs and LMVECs play distinct roles in hantavirus persistence by creating a regulatory environment through increased Tgfβ, PD-L1, and Treg cell activity.
Collapse
|
68
|
Papa A. Dobrava-Belgrade virus: Phylogeny, epidemiology, disease. Antiviral Res 2012; 95:104-17. [DOI: 10.1016/j.antiviral.2012.05.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 05/08/2012] [Accepted: 05/21/2012] [Indexed: 11/26/2022]
|
69
|
Ma C, Yu P, Nawaz M, Zuo S, Jin T, Li Y, Li J, Li H, Xu J. Hantaviruses in rodents and humans, Xi'an, PR China. J Gen Virol 2012; 93:2227-2236. [PMID: 22837422 DOI: 10.1099/vir.0.043364-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Xi'an, the capital of Shaanxi province, located in north-west China, is one of the major endemic areas for haemorrhagic fever with renal syndrome (HFRS). In this study, the epidemiological data of HFRS in Xi'an from 1959 to 2010, especially in the past ten years (2001-2010), were surveyed. The features of hantavirus (HV) host carriers, the molecular characteristics of the HV S gene from hosts and patients, and the genome of the viral isolate were also investigated. Data showed that there might be a ten-year cycle of HFRS in Xi'an. Although the main population group infected over the past ten years was still the 16-59-year-old male farmers, the composition of the population and geographical distribution of HFRS cases have changed slowly, accompanied by the development of environmental and socio-economic situations. Apodemus agrarius remains the dominant host of HV. The HV strains from host rodents and patients in Xi'an belonged to the Hantaan virus (HTNV); no Seoul virus strains were found. Phylogenetic analysis of the small segments of strains taken from hosts and patients, and the whole genome of a viral isolate showed that the virus circulating in Xi'an had high similarity to Guizhou strains. The study also indicated that the vaccine candidate strain A16 isolated during the past century in Xi'an might be a recombinant strain of HTNV and the Amur virus, thus it may not be an optimal vaccine strain.
Collapse
Affiliation(s)
- Chaofeng Ma
- Xi'an Centers for Disease Control and Prevention, Xi'an, Shaanxi, PR China
| | - Pengbo Yu
- Department of Immunology and Pathogenic Biology, Key Laboratory of Environment and Genes Related to Diseases, Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Muhammad Nawaz
- Department of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Shuqing Zuo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Tiezhi Jin
- Shaanxi Animal Research Institute, Xi'an, Shaanxi, PR China
| | - Yanli Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, PR China
| | - Jinsong Li
- Xi'an Centers for Disease Control and Prevention, Xi'an, Shaanxi, PR China
| | - Hengxin Li
- Xi'an Centers for Disease Control and Prevention, Xi'an, Shaanxi, PR China
| | - Jiru Xu
- Department of Immunology and Pathogenic Biology, Key Laboratory of Environment and Genes Related to Diseases, Chinese Ministry of Education, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| |
Collapse
|
70
|
Hussein ITM, Cheng E, Ganaie SS, Werle MJ, Sheema S, Haque A, Mir MA. Autophagic clearance of Sin Nombre hantavirus glycoprotein Gn promotes virus replication in cells. J Virol 2012; 86:7520-9. [PMID: 22553339 PMCID: PMC3416297 DOI: 10.1128/jvi.07204-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/24/2012] [Indexed: 11/20/2022] Open
Abstract
Hantavirus glycoprotein precursor (GPC) is posttranslationally cleaved into two glycoproteins, Gn and Gc. Cells transfected with plasmids expressing either GPC or both Gn and Gc revealed that Gn is posttranslationally degraded. Treatment of cells with the autophagy inhibitors 3-methyladenine, LY-294002, or Wortmanin rescued Gn degradation, suggesting that Gn is degraded by the host autophagy machinery. Confocal microscopic imaging showed that Gn is targeted to autophagosomes for degradation by an unknown mechanism. Examination of autophagy markers LC3-I and LC3-II demonstrated that both Gn expression and Sin Nombre hantavirus (SNV) infection induce autophagy in cells. To delineate whether induction of autophagy and clearance of Gn play a role in the virus replication cycle, we downregulated autophagy genes BCLN-1 and ATG7 using small interfering RNA (siRNA) and monitored virus replication over time. These studies revealed that inhibition of host autophagy machinery inhibits Sin Nombre virus replication in cells, suggesting that autophagic clearance of Gn is required for efficient virus replication. Our studies provide mechanistic insights into viral pathogenesis and reveal that SNV exploits the host autophagy machinery to decrease the intrinsic steady-state levels of an important viral component for efficient replication in host cells.
Collapse
Affiliation(s)
- Islam T M Hussein
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Genetic characterization of a new subtype of Hantaan virus isolated from a hemorrhagic fever with renal syndrome (HFRS) epidemic area in Hubei Province, China. Arch Virol 2012; 157:1981-7. [DOI: 10.1007/s00705-012-1382-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 05/11/2012] [Indexed: 11/26/2022]
|
72
|
Sin Nombre hantavirus decreases survival of male deer mice. Oecologia 2012; 169:431-9. [PMID: 22218940 DOI: 10.1007/s00442-011-2219-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 11/26/2011] [Indexed: 10/14/2022]
Abstract
How pathogens affect their hosts is a key question in infectious disease ecology, and it can have important influences on the spread and persistence of the pathogen. Sin Nombre virus (SNV) is the etiological agent of hantavirus pulmonary syndrome (HPS) in humans. A better understanding of SNV in its reservoir host, the deer mouse, could lead to improved predictions of the circulation and persistence of the virus in the mouse reservoir, and could help identify the factors that lead to increased human risk of HPS. Using mark-recapture statistical modeling on longitudinal data collected over 15 years, we found a 13.4% decrease in the survival of male deer mice with antibodies to SNV compared to uninfected mice (both male and female). There was also an additive effect of breeding condition, with a 21.3% decrease in survival for infected mice in breeding condition compared to uninfected, non-breeding mice. The data identified that transmission was consistent with density-dependent transmission, implying that there may be a critical host density below which SNV cannot persist. The notion of a critical host density coupled with the previously overlooked disease-induced mortality reported here contribute to a better understanding of why SNV often goes extinct locally and only seems to persist at the metapopulation scale, and why human spillover is episodic and hard to predict.
Collapse
|
73
|
Stoltz M, Sundström KB, Hidmark Å, Tolf C, Vene S, Ahlm C, Lindberg AM, Lundkvist Å, Klingström J. A model system for in vitro studies of bank vole borne viruses. PLoS One 2011; 6:e28992. [PMID: 22194969 PMCID: PMC3241689 DOI: 10.1371/journal.pone.0028992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 11/17/2011] [Indexed: 12/24/2022] Open
Abstract
The bank vole (Myodes glareolus) is a common small mammal in Europe and a natural host for several important emerging zoonotic viruses, e.g. Puumala hantavirus (PUUV) that causes hemorrhagic fever with renal syndrome (HFRS). Hantaviruses are known to interfere with several signaling pathways in infected human cells, and HFRS is considered an immune-mediated disease. There is no in vitro-model available for infectious experiments in bank vole cells, nor tools for analyses of bank vole immune activation and responses. Consequently, it is not known if there are any differences in the regulation of virus induced responses in humans compared to natural hosts during infection. We here present an in vitro-model for studies of bank vole borne viruses and their interactions with natural host cell innate immune responses. Bank vole embryonic fibroblasts (VEFs) were isolated and shown to be susceptible for PUUV-infection, including a wild-type PUUV strain (only passaged in bank voles). The significance of VEFs as a model system for bank vole associated viruses was further established by infection studies showing that these cells are also susceptible to tick borne encephalitis, cowpox and Ljungan virus. The genes encoding bank vole IFN-β and Mx2 were partially sequenced and protocols for semi-quantitative RT-PCR were developed. Interestingly, PUUV did not induce an increased IFN-β or Mx2 mRNA expression. Corresponding infections with CPXV and LV induced IFN-β but not Mx2, while TBEV induced both IFN-β and Mx2. In conclusion, VEFs together with protocols developed for detection of bank vole innate immune activation provide valuable tools for future studies of how PUUV and other zoonotic viruses affect cells derived from bank voles compared to human cells. Notably, wild-type PUUV which has been difficult to cultivate in vitro readily infected VEFs, suggesting that embryonic fibroblasts from natural hosts might be valuable for isolation of wild-type hantaviruses.
Collapse
Affiliation(s)
- Malin Stoltz
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Safronetz D, Zivcec M, LaCasse R, Feldmann F, Rosenke R, Long D, Haddock E, Brining D, Gardner D, Feldmann H, Ebihara H. Pathogenesis and host response in Syrian hamsters following intranasal infection with Andes virus. PLoS Pathog 2011; 7:e1002426. [PMID: 22194683 PMCID: PMC3240607 DOI: 10.1371/journal.ppat.1002426] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/22/2011] [Indexed: 12/31/2022] Open
Abstract
Hantavirus pulmonary syndrome (HPS), also referred to as hantavirus cardiopulmonary syndrome (HCPS), is a rare but frequently fatal disease caused by New World hantaviruses. In humans HPS is associated with severe pulmonary edema and cardiogenic shock; however, the pathogenesis of this disease remains unclear largely due to a lack of suitable animal models for the study of disease progression. In this study we monitored clinical, virological, pathophysiological parameters and host immunological responses to decipher pathological factors and events in the lethal Syrian hamster model of HPS following intranasal inoculation of Andes virus. Transcriptional profiling of the host gene responses demonstrated a suppression of innate immune responses in most organs analyzed during the early stage of infection, except for in the lung which had low level activation of several pro-inflammatory genes. During this phase Andes virus established a systemic infection in hamsters, with viral antigen readily detectable in the endothelium of the majority of tissues analyzed by 7-8 days post-inoculation. Despite wide-spread infection, histological analysis confirmed pathological abnormalities were almost exclusively found in the lungs. Immediately preceding clinical signs of disease, intense activation of pro-inflammatory and Th1/Th2 responses were observed in the lungs as well as the heart, but not in peripheral organs, suggesting that localized immune-modulations by infection is paramount to pathogenesis. Throughout the course of infection a strong suppression of regulatory T-cell responses was noted and is hypothesized to be the basis of the aberrant immune activations. The unique and comprehensive monitoring of host immune responses to hantavirus infection increases our understanding of the immuno-pathogenesis of HPS and will facilitate the development of treatment strategies targeting deleterious host immunological responses.
Collapse
Affiliation(s)
- David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Marko Zivcec
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Office of Operations and Management, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Dan Long
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Douglas Brining
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Donald Gardner
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- Department of Medical Microbiology and Infectious Disease, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail: (HF); (HE)
| | - Hideki Ebihara
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, Montana, United States of America
- * E-mail: (HF); (HE)
| |
Collapse
|
75
|
Bordes F, Guégan JF, Morand S. Microparasite species richness in rodents is higher at lower latitudes and is associated with reduced litter size. OIKOS 2011. [DOI: 10.1111/j.1600-0706.2011.19314.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
76
|
T cells are not required for pathogenesis in the Syrian hamster model of hantavirus pulmonary syndrome. J Virol 2011; 85:9929-44. [PMID: 21775442 DOI: 10.1128/jvi.05356-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Andes virus (ANDV) is associated with a lethal vascular leak syndrome in humans termed hantavirus pulmonary syndrome (HPS). In hamsters, ANDV causes a respiratory distress syndrome closely resembling human HPS. The mechanism for the massive vascular leakage associated with HPS is poorly understood; however, T cell immunopathology has been implicated on the basis of circumstantial and corollary evidence. Here, we show that following ANDV challenge, hamster T cell activation corresponds with the onset of disease. However, treatment with cyclophosphamide or specific T cell depletion does not impact the course of disease or alter the number of surviving animals, despite significant reductions in T cell number. These data demonstrate, for the first time, that T cells are not required for hantavirus pathogenesis in the hamster model of human HPS. Depletion of T cells from Syrian hamsters did not significantly influence early events in disease progression. Moreover, these data argue for a mechanism of hantavirus-induced vascular permeability that does not involve T cell immunopathology.
Collapse
|
77
|
Terajima M, Ennis FA. T cells and pathogenesis of hantavirus cardiopulmonary syndrome and hemorrhagic fever with renal syndrome. Viruses 2011; 3:1059-73. [PMID: 21994770 PMCID: PMC3185782 DOI: 10.3390/v3071059] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 12/17/2022] Open
Abstract
We previously hypothesized that increased capillary permeability observed in both hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) may be caused by hantavirus-specific cytotoxic T cells attacking endothelial cells presenting viral antigens on their surface based on clinical observations and in vitro experiments. In HCPS, hantavirus-specific T cell responses positively correlated with disease severity. In HFRS, in one report, contrary to HCPS, T cell responses negatively correlated with disease severity, but in another report the number of regulatory T cells, which are thought to suppress T cell responses, negatively correlated with disease severity. In rat experiments, in which hantavirus causes persistent infection, depletion of regulatory T cells helped infected rats clear virus without inducing immunopathology. These seemingly contradictory findings may suggest delicate balance in T cell responses between protection and immunopathogenesis. Both too strong and too weak T cell responses may lead to severe disease. It is important to clarify the role of T cells in these diseases for better treatment (whether to suppress T cell functions) and protection (vaccine design) which may need to take into account viral factors and the influence of HLA on T cell responses.
Collapse
Affiliation(s)
- Masanori Terajima
- Center for Infectious Disease and Vaccine Research, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | |
Collapse
|
78
|
Németh V, Madai M, Maráczi A, Bérczi B, Horváth G, Oldal M, Kisfali P, Bányai K, Jakab F. Detection of Dobrava-Belgrade hantavirus using recombinant-nucleocapsid-based enzyme-linked immunosorbent assay and SYBR Green-based real-time reverse transcriptase-polymerase chain reaction. Arch Virol 2011; 156:1655-60. [PMID: 21573689 DOI: 10.1007/s00705-011-1013-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
Dobrava (DOBV) hantaviruses belong to the genus Hantavirus, family Bunyaviridae, and are carried by yellow-necked and striped field mice. The goal of this study was to detect DOBV using serological and genetic methods in Apodemus rodents in Hungary and in northern Croatia. During the study period, a total of 125 Apodemus sp. (67 A. agrarius, 58 A. flavicollis) were tested for the presence of hantaviruses, and 21 rodents (17%) were positive by rRT-PCR and/or ELISA. We conclude that the prevalence of DOBV is much higher than previously anticipated. The simultaneous use of molecular and serological techniques provides a highly reliable way to detect hantavirus infections.
Collapse
Affiliation(s)
- Viktória Németh
- Virological Research Group, Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság út 6, 7624 Pecs, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Souza WMD, Machado AM, Figueiredo LTM, Boff E. Serosurvey of hantavirus infection in humans in the border region between Brazil and Argentina. Rev Soc Bras Med Trop 2011; 44:131-5. [PMID: 21468477 DOI: 10.1590/s0037-86822011005000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 11/16/2010] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION According to reports by the Ministry of Health, in the far western region of the State of Santa Catarina, there have been no reports of hantavirus pulmonary syndrome, a zoonotic disease transmitted by feces of infected rodents. A seroepidemiological study of residents of this region, was conducted, with the aim of determining the presence of hantavirus infections. A total of 340 volunteers of both genus, from the towns of Belmonte and Paraíso, were studied. METHODS The serum of these patients was collected and used to detect IgG antibodies against recombinant N protein of Araraquara hantavirus, by ELISA assay. The positive samples were then titrated and confirmed by immunofluorescence assay. RESULTS This study demonstrated the presence of IgG antibodies against hantavirus N protein in 3.5% of the population. The most frequent occupation was farm worker, 81% had direct and indirect contact with rodents, 91.7% of positive cases were farm workers, indicating that the probable cause of infection occurred during barn cleaning. These antibodies are noteworthy, given that the levels of antibodies were verified in individuals whose contact with hantavirus may have occurred many years ago. CONCLUSIONS This study shows the circulation of hantavirus in the region, a fact that until now, had not reported. All the serum reagents had contact with the pathogen, but did not develop pulmonary and cardiovascular syndrome. It is important to remain alert, because hantavirus is a serious and emerging disease of some relevance.
Collapse
Affiliation(s)
- William Marciel de Souza
- Centro de Pesquisa em Virologia, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | |
Collapse
|
80
|
Klingström J, Ahlm C. Hantavirus protein interactions regulate cellular functions and signaling responses. Expert Rev Anti Infect Ther 2011; 9:33-47. [PMID: 21171876 DOI: 10.1586/eri.10.157] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rodent-borne pathogenic hantaviruses cause two severe and often lethal zoonotic diseases: hemorrhagic fever with renal syndrome (HFRS) in Eurasia and hantavirus cardiopulmonary syndrome (HCPS) in the Americas. Currently, no US FDA-approved therapeutics or vaccines are available for HFRS/HCPS. Infections with hantaviruses are not lytic, and it is currently not known exactly why infections in humans cause disease. A better understanding of how hantaviruses interfere with normal cell functions and activation of innate and adaptive immune responses might provide clues to future development of specific treatment and/or vaccines against hantavirus infection. In this article, the current knowledge regarding immune responses observed in patients, hantavirus interference with cellular proteins and signaling pathways, and possible approaches in the development of therapeutics are discussed.
Collapse
Affiliation(s)
- Jonas Klingström
- Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
81
|
Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain. J Virol 2010; 85:1747-56. [PMID: 21106742 DOI: 10.1128/jvi.01428-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.
Collapse
|
82
|
Abstract
Hantaviruses affect people worldwide, yet they remain poorly understood. This article explores the known history of hantaviruses. It describes diagnostic methods and potential options for treatment and prevention.
Collapse
Affiliation(s)
- Mohammed A Mir
- Department of Microbiology, Molecular Genetics and Immunology, Kansas University Medical Center, Kansas City, 66103, USA.
| |
Collapse
|
83
|
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is a serious public health problem in the People's Republic of China. Although 7 sero/genotypes of hantaviruses have been found in rodents, only Hantaan virus (carried by Apodemus agrarius mice) and Seoul virus (carried by Rattus norvegicus rats) reportedly cause disease in humans. During 1950-2007, a total of 1,557,622 cases of HFRS in humans and 46,427 deaths (3%) were reported in China. HFRS has been reported in 29 of 31 provinces in China. After implementation of comprehensive preventive measures, including vaccination, in the past decade in China, incidence of HFRS has dramatically decreased; only 11,248 HFRS cases were reported in 2007. Mortality rates also declined from the highest level of 14.2% in 1969 to ?1% during 1995-2007. However, the numbers of HFRS cases and deaths in China remain the highest in the world.
Collapse
Affiliation(s)
- Yong-Zhen Zhang
- State Key Laboratory for Infectious Disease Control and Prevention, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
84
|
Au RY, Jedlicka AE, Li W, Pekosz A, Klein SL. Seoul virus suppresses NF-kappaB-mediated inflammatory responses of antigen presenting cells from Norway rats. Virology 2010; 400:115-27. [PMID: 20170933 DOI: 10.1016/j.virol.2010.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/05/2010] [Accepted: 01/21/2010] [Indexed: 10/19/2022]
Abstract
Hantavirus infection reduces antiviral defenses, increases regulatory responses, and causes persistent infection in rodent hosts. To address whether hantaviruses alter the maturation and functional activity of antigen presenting cells (APCs), rat bone marrow-derived dendritic cells (BMDCs) and macrophages (BMDMs) were generated and infected with Seoul virus (SEOV) or stimulated with TLR ligands. SEOV infected both DCs and macrophages, but copies of viral RNA, viral antigen, and infectious virus titers were higher in macrophages. The expression of MHCII and CD80, production of IL-6, IL-10, and TNF-alpha, and expression of Ifnbeta were attenuated in SEOV-infected APCs. Stimulation of APCs with poly I:C prior to SEOV infection increased the expression of activation markers and production of inflammatory cytokines and suppressed SEOV replication. Infection of APCs with SEOV suppressed LPS-induced activation and innate immune responses. Hantaviruses reduce the innate immune response potential of APCs derived from a natural host, which may influence persistence of these zoonotic viruses in the environment.
Collapse
Affiliation(s)
- Rebecca Y Au
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
85
|
Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009; 5:e1000536. [PMID: 19649327 PMCID: PMC2713404 DOI: 10.1371/journal.ppat.1000536] [Citation(s) in RCA: 474] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 07/09/2009] [Indexed: 11/20/2022] Open
Abstract
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans. Marburg virus, similar to its close cousin Ebola virus, can cause large outbreaks of hemorrhagic fever (HF) in rural Africa with case fatalities approaching 90%. For decades, a long-standing enigma has been the identity of the natural reservoir of this deadly virus. In this report, we identify the cave-dwelling Egyptian fruit bat (Rousettus aegyptiacus) as a natural host of Marburg virus based on multiple lines of evidence which include, for the first time ever, the isolation of virus directly from wild-caught and apparently healthy bats. The species R. aegyptiacus is common throughout Africa with distribution into the eastern Mediterranean and Middle East. Our finding of active virus infection in approximately 5% of R. aegyptiacus bats and their population exceeding 100,000 in Kitaka cave in Uganda suggests there are likely over 5,000 Marburg virus–infected bats in this cave, which is only one of many such cave populations throughout Africa. Clearly, these bats could serve as a major source of virus with potential to initiate human epidemics, and the implications for public health are striking. Additionally, we found highly divergent (21%) genome sequences among viruses circulating in these bat populations, a level of diversity that would result from a long-term association with a suitable reservoir host of large population size.
Collapse
|
86
|
Kang HJ, Bennett SN, Sumibcay L, Arai S, Hope AG, Mocz G, Song JW, Cook JA, Yanagihara R. Evolutionary insights from a genetically divergent hantavirus harbored by the European common mole (Talpa europaea). PLoS One 2009; 4:e6149. [PMID: 19582155 PMCID: PMC2702001 DOI: 10.1371/journal.pone.0006149] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 06/04/2009] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. METHODOLOGY/PRINCIPAL FINDINGS Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54-65% and 46-63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. CONCLUSIONS Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts.
Collapse
Affiliation(s)
- Hae Ji Kang
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Shannon N. Bennett
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Laarni Sumibcay
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Andrew G. Hope
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Institute for Viral Diseases and Bank for Pathogenic Viruses, Korea University, Seoul, Korea
| | - Joseph A. Cook
- Department of Biology and Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Richard Yanagihara
- Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
87
|
Towner JS, Amman BR, Sealy TK, Carroll SAR, Comer JA, Kemp A, Swanepoel R, Paddock CD, Balinandi S, Khristova ML, Formenty PBH, Albarino CG, Miller DM, Reed ZD, Kayiwa JT, Mills JN, Cannon DL, Greer PW, Byaruhanga E, Farnon EC, Atimnedi P, Okware S, Katongole-Mbidde E, Downing R, Tappero JW, Zaki SR, Ksiazek TG, Nichol ST, Rollin PE. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats. PLoS Pathog 2009. [PMID: 19649327 DOI: 10.1371/journal.ppat.100050356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus) based on detection of Marburg virus RNA in 31/611 (5.1%) bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.
Collapse
Affiliation(s)
- Jonathan S Towner
- Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Calisher CH, Peters CJ, Douglass RJ, Kuenzi AJ. Hantaviral infections of rodents: possible scenarios. Arch Virol 2009; 154:1195-7. [PMID: 19568690 DOI: 10.1007/s00705-009-0434-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 06/12/2009] [Indexed: 11/29/2022]
Affiliation(s)
- Charles H Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
89
|
Characterization of Imjin virus, a newly isolated hantavirus from the Ussuri white-toothed shrew (Crocidura lasiura). J Virol 2009; 83:6184-91. [PMID: 19357167 DOI: 10.1128/jvi.00371-09] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Until recently, the single known exception to the rodent-hantavirus association was Thottapalayam virus (TPMV), a long-unclassified virus isolated from the Asian house shrew (Suncus murinus). Robust gene amplification techniques have now uncovered several genetically distinct hantaviruses from shrews in widely separated geographic regions. Here, we report the characterization of a newly identified hantavirus, designated Imjin virus (MJNV), isolated from the lung tissues of Ussuri white-toothed shrews of the species Crocidura lasiura (order Soricomorpha, family Soricidae, subfamily Crocidurinae) captured near the demilitarized zone in the Republic of Korea during 2004 and 2005. Seasonal trapping revealed the highest prevalence of MJNV infection during the autumn, with evidence of infected shrews' clustering in distinct foci. Also, marked male predominance among anti-MJNV immunoglobulin G antibody-positive Ussuri shrews was found, whereas the male-to-female ratio among seronegative Ussuri shrews was near 1. Plaque reduction neutralization tests showed no cross neutralization for MJNV and rodent-borne hantaviruses but one-way cross neutralization for MJNV and TPMV. The nucleotide and deduced amino acid sequences for the different MJNV genomic segments revealed nearly the same calculated distances from hantaviruses harbored by rodents in the subfamilies Murinae, Arvicolinae, Neotominae, and Sigmodontinae. Phylogenetic analyses of full-length S, M, and L segment sequences demonstrated that MJNV shared a common ancestry with TPMV and remained in a distinct out-group, suggesting early evolutionary divergence. Studies are in progress to determine if MJNV is pathogenic for humans.
Collapse
|
90
|
Abstract
Zoonoses in wildlife not only play an important ecological role, but pose significant threats to the health of humans, domestic animals and some endangered species. More than two-thirds of emerging, or re-emerging, infectious diseases are thought to originate in wildlife. Despite this, co-ordinated surveillance schemes are rare, and most efforts at disease control operate at the level of crisis management. This review examines the pathways linking zoonoses in wildlife with infection in other hosts, using examples from a range of key zoonoses, including European bat lyssaviruses and bovine tuberculosis. Ecologically based control, including the management of conditions leading to spill-overs into target host populations, is likely to be more effective and sustainable than simple reductions in wildlife populations alone.
Collapse
Affiliation(s)
- Fiona Mathews
- University of Exeter, Hatherly Laboratories, Exeter, United Kingdom
| |
Collapse
|