51
|
Crepaldi F, de Toledo JS, do Carmo AO, Ferreira Marques Machado L, de Brito DDV, Serufo AV, Almeida APM, de Oliveira LG, Ricotta TQN, Moreira DDS, Murta SMF, Diniz AB, Menezes GB, López-Gonzálvez Á, Barbas C, Fernandes AP. Mapping Alterations Induced by Long-Term Axenic Cultivation of Leishmania amazonensis Promastigotes With a Multiplatform Metabolomic Fingerprint Approach. Front Cell Infect Microbiol 2019; 9:403. [PMID: 31867285 PMCID: PMC6904349 DOI: 10.3389/fcimb.2019.00403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniases are widespread neglected diseases with an incidence of 1.6 million new cases and 40 thousand deaths per year. Leishmania parasites may show distinct, species-specific patterns of virulence that lead to different clinical manifestations. It is well known that successive in vitro passages (SIVP) lead to the attenuation of virulence, but neither the metabolism nor the pathways involved in these processes are well understood. Herein, promastigotes of a virulent L. amazonensis strain recently isolated from mice was compared to SIVP derived and attenuated promastigotes, submitted to 10, 40, and 60 axenic passages and named R10, R40, and R60, respectively. In vitro assays and in vivo tests were performed to characterize and confirmed the attenuation profiles. A metabolomic fingerprint comparison of R0, R10, and R60 was performed by means of capillary electrophoresis, liquid and gas chromatography coupled to mass spectrometry. To validate the metabolomic data, qPCR for selected loci, flow cytometry to measure aPS exposure, sensitivity to antimony tartrate and ROS production assays were conducted. The 65 identified metabolites were clustered in biochemical categories and mapped in eight metabolic pathways: ABC transporters; fatty acid biosynthesis; glycine, serine and threonine metabolism; β-alanine metabolism; glutathione metabolism; oxidative phosphorylation; glycerophospholipid metabolism and lysine degradation. The obtained metabolomic data correlated with previous proteomic findings of the SVIP parasites and the gene expression of 13 selected targets. Late SIVP cultures were more sensitive to SbIII produced more ROS and exposed less phosphatidylserine in their surface. The correspondent pathways were connected to build a biochemical map of the most significant alterations involved with the process of attenuation of L. amazonensis. Overall, the reported data pointed out to a very dynamic and continuous metabolic reprogramming process, accompanied by changes in energetic, lipid and redox metabolisms, membrane remodeling and reshaping of parasite-host cells interactions, causing impacts in chemotaxis, host inflammatory responses and infectivity at the early stages of infection.
Collapse
Affiliation(s)
- Frederico Crepaldi
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Juliano Simões de Toledo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Anderson Oliveira do Carmo
- Laboratory of Biotechnology and Molecular Markers, General Biology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniela Diniz Viana de Brito
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Angela Vieira Serufo
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Paula Martins Almeida
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Gonzaga de Oliveira
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Tiago Queiroga Nery Ricotta
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Ariane Barros Diniz
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo Batista Menezes
- Morphology Department, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ángeles López-Gonzálvez
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis, Unidad Metabolómica, Interacciones y Bioanálisis (UMIB), Universidad CEU San Pablo, Boadilla del Monte, Spain
| | - Ana Paula Fernandes
- Clinical and Toxicological Analysis Department, School of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
52
|
Tracking of quiescence in Leishmania by quantifying the expression of GFP in the ribosomal DNA locus. Sci Rep 2019; 9:18951. [PMID: 31831818 PMCID: PMC6908629 DOI: 10.1038/s41598-019-55486-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
Under stressful conditions some microorganisms adopt a quiescent stage characterized by a reversible non or slow proliferative condition that allows their survival. This adaptation was only recently discovered in Leishmania. We developed an in vitro model and a biosensor to track quiescence at population and single cell levels. The biosensor is a GFP reporter gene integrated within the 18S rDNA locus, which allows monitoring the expression of 18S rRNA (rGFP expression). We showed that rGFP expression decreased significantly and rapidly during the transition from extracellular promastigotes to intracellular amastigotes and that it was coupled in vitro with a decrease in replication as measured by BrdU incorporation. rGFP expression was useful to track the reversibility of quiescence in live cells and showed for the first time the heterogeneity of physiological stages among the population of amastigotes in which shallow and deep quiescent stages may coexist. We also validated the use of rGFP expression as a biosensor in animal models of latent infection. Our models and biosensor should allow further characterization of quiescence at metabolic and molecular level.
Collapse
|
53
|
Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Molecular Hybridization as a Tool for Designing Multitarget Drug Candidates for Complex Diseases. Curr Top Med Chem 2019; 19:1694-1711. [DOI: 10.2174/1568026619666190619115735] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/14/2022]
Abstract
Molecular hybridization is a well-exploited medicinal chemistry strategy that aims to combine
two molecules (or parts of them) in a new, single chemical entity. Recently, it has been recognized
as an effective approach to design ligands able to modulate multiple targets of interest. Hybrid compounds
can be obtained by linking (presence of a linker) or framework integration (merging or fusing)
strategies. Although very promising to combat the multifactorial nature of complex diseases, the development
of molecular hybrids faces the critical issues of selecting the right target combination and the
achievement of a balanced activity towards them, while maintaining drug-like-properties. In this review,
we present recent case histories from our own research group that demonstrate why and how molecular
hybridization can be carried out to address the challenges of multitarget drug discovery in two therapeutic
areas that are Alzheimer’s and parasitic diseases. Selected examples spanning from linker- to fragment-
based hybrids will allow to discuss issues and consequences relevant to drug design.
Collapse
Affiliation(s)
- Viktoriya Ivasiv
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Claudia Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Ana E. Gonçalves
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Michele Rossi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| | - Maria L. Bolognesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum − University of Bologna, I-40126, Bologna, Italy
| |
Collapse
|
54
|
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol 2019; 17:607-620. [PMID: 31444481 PMCID: PMC7024564 DOI: 10.1038/s41579-019-0238-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
Antimicrobial treatment failure threatens our ability to control infections. In addition to antimicrobial resistance, treatment failures are increasingly understood to derive from cells that survive drug treatment without selection of genetically heritable mutations. Parasitic protozoa, such as Plasmodium species that cause malaria, Toxoplasma gondii and kinetoplastid protozoa, including Trypanosoma cruzi and Leishmania spp., cause millions of deaths globally. These organisms can evolve drug resistance and they also exhibit phenotypic diversity, including the formation of quiescent or dormant forms that contribute to the establishment of long-term infections that are refractory to drug treatment, which we refer to as 'persister-like cells'. In this Review, we discuss protozoan persister-like cells that have been linked to persistent infections and discuss their impact on therapeutic outcomes following drug treatment.
Collapse
Affiliation(s)
- Michael P Barrett
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Radke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
55
|
A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell Host Microbe 2019; 26:385-399.e9. [DOI: 10.1016/j.chom.2019.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/24/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
|
56
|
Dagley MJ, McConville MJ. DExSI: a new tool for the rapid quantitation of 13C-labelled metabolites detected by GC-MS. Bioinformatics 2019; 34:1957-1958. [PMID: 29360933 PMCID: PMC5972663 DOI: 10.1093/bioinformatics/bty025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/16/2018] [Indexed: 01/10/2023] Open
Abstract
Summary Stable isotope directed metabolomics is increasingly being used to measure metabolic fluxes in microbial, plant and animal cells. Incorporation of 13C/15N isotopes into a wide range of metabolites is typically determined using gas chromatography-mass spectrometry (GC/MS) or other hyphenated mass spectrometry approaches. The DExSI (Data Extraction for Stable Isotope-labelled metabolites) pipeline is an interactive graphical software package which can be used to rapidly quantitate isotopologues for a wide variety of metabolites detected by GC/MS. DExSI performs automated metabolite annotation, mass and positional isotopomer abundance determination and natural isotope abundance correction. It provides a range of output options and is suitable for high throughput analyses. Availability and implementation DExSI is available for non-commercial use from: https://github.com/DExSI/DExSI/. For Microsoft Windows 7 or higher (64-bit). Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael J Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
57
|
Kim J, Kang D, Lee SK, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification: Application to Lipidomics. Anal Chem 2019; 91:8853-8863. [PMID: 31246424 DOI: 10.1021/acs.analchem.9b00086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel quantitative mass spectrometric method based on partial metabolic deuterium oxide (D2O) labeling, named "Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ)", was developed for relative quantification of lipids on a global scale. To assess the precision and robustness of DOLGOReQ, labeled and unlabeled lipids from HeLa cells were mixed in various ratios based on their cell numbers. Using in-house software developed for automated high-throughput data analysis of DOLGOReQ, the number of detectable mass isotopomers and the degree of deuterium labeling were exploited to filter out low quality quantification results. Quantification of an equimolar mixture of HeLa cell lipids exhibited high reproducibility and accuracy across multiple biological and technical replicates. Two orders of magnitude of effective dynamic range for reasonable relative quantification could be established with HeLa cells mixed from 10:1 to 1:10 ratios between labeled and unlabeled samples. The quantification precision of DOLGOReQ was also illustrated with lipids commonly detected in both positive and negative ion modes. Finally, quantification performance of DOLGOReQ was demonstrated in a biological sample by measuring the relative change in the lipidome of HeLa cells under normal and hypoxia conditions.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| | - Dukjin Kang
- Center for Bioanalysis, Division of Chemical and Medical Metrology , Korea Research Institute of Standards and Science , Daejeon 34113 , Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology , College of Medicine, Konyang University , Daejeon 35365 , Republic of Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology , Gwangju 61005 , Republic of Korea
| |
Collapse
|
58
|
Álvarez-Velilla R, Gutiérrez-Corbo MDC, Punzón C, Pérez-Pertejo MY, Balaña-Fouce R, Fresno M, Reguera RM. A chronic bioluminescent model of experimental visceral leishmaniasis for accelerating drug discovery. PLoS Negl Trop Dis 2019; 13:e0007133. [PMID: 30763330 PMCID: PMC6392311 DOI: 10.1371/journal.pntd.0007133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/27/2019] [Accepted: 01/06/2019] [Indexed: 12/20/2022] Open
Abstract
Background Visceral leishmaniasis is a neglected parasitic disease with no vaccine available and its pharmacological treatment is reduced to a limited number of unsafe drugs. The scarce readiness of new antileishmanial drugs is even more alarming when relapses appear or the occurrence of hard-to-treat resistant strains is detected. In addition, there is a gap between the initial and late stages of drug development, which greatly delays the selection of leads for subsequent studies. Methodology/Principal findings In order to address these issues, we have generated a red-shifted luminescent Leishmania infantum strain that enables long-term monitoring of parasite burden in individual animals with an in vivo limit of detection of 106 intracellular amastigotes 48 h postinfection. For this purpose, we have injected intravenously different infective doses (104—5x108) of metacyclic parasites in susceptible mouse models and the disease was monitored from initial times to 21 weeks postinfection. The emission of light from the target organs demonstrated the sequential parasite colonization of liver, spleen and bone marrow. When miltefosine was used as proof-of-concept, spleen weight parasite burden and bioluminescence values decreased significantly. Conclusions In vivo bioimaging using a red-shifted modified Leishmania infantum strain allows the appraisal of acute and chronic stage of infection, being a powerful tool for accelerating drug development against visceral leishmaniasis during both stages and helping to bridge the gap between early discovery process and subsequent drug development. Visceral leishmaniasis is a neglected disease that poses a significant threat to impoverished human populations of low-income countries. Due to the unavailability of vaccines, pharmacological treatment is the only approach to control the disease that otherwise can be lethal. To date, drug management in endemic regions is based on combinations of a handful of mostly unsafe drugs, where the emergence of resistant strains is an additional problem. To accelerate the discovery of new drug entities, several gaps from the early discovery of a compound to its public use, should be filled. One of these gaps is the need of a rapid go/no-go testing system for compounds based on robust preclinical models. Here, we propose a new long-term model of murine visceral leishmaniasis using in vivo bioluminescent imaging. For this purpose, a red-shifted bioluminescent Leishmania infantum strain was engineered. This strain has allowed the appraisal of the disease in individual animals and the monitoring of parasite colonization in liver, spleen and bone marrow. As proof of concept of this platform, mice were infected with the transgenic L. infantum strain treated with a standard schedule of miltefosine, the only oral drug available against Leishmania parasites. Bioluminescence and parasite load in the target organs were compared showing a good correlation. Our findings provide a robust and reproducible tool for drug discovery in a chronic model of murine visceral leishmaniasis.
Collapse
Affiliation(s)
- Raquel Álvarez-Velilla
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Carmen Punzón
- Diomune S.L Parque Científico de Madrid, Madrid, Spain
| | | | | | - Manuel Fresno
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- Diomune S.L Parque Científico de Madrid, Madrid, Spain
| | - Rosa María Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
- * E-mail:
| |
Collapse
|
59
|
Rao SPS, Barrett MP, Dranoff G, Faraday CJ, Gimpelewicz CR, Hailu A, Jones CL, Kelly JM, Lazdins-Helds JK, Mäser P, Mengel J, Mottram JC, Mowbray CE, Sacks DL, Scott P, Späth GF, Tarleton RL, Spector JM, Diagana TT. Drug Discovery for Kinetoplastid Diseases: Future Directions. ACS Infect Dis 2019; 5:152-157. [PMID: 30543391 DOI: 10.1021/acsinfecdis.8b00298] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites have caused human disease for millennia. Significant achievements have been made toward developing new treatments for leishmaniasis (particularly on the Indian subcontinent) and for human African trypanosomiasis (HAT). Moreover, the sustained decrease in the incidence of HAT has made the prospect of elimination a tantalizing reality. Despite the gains, no new chemical or biological entities to treat kinetoplastid diseases have been registered in more than three decades, and more work is needed to discover safe and effective therapies for patients with Chagas disease and leishmaniasis. Advances in tools for drug discovery and novel insights into the biology of the host-parasite interaction may provide opportunities for accelerated progress. Here, we summarize the output from a gathering of scientists and physicians who met to discuss the current status and future directions in drug discovery for kinetoplastid diseases.
Collapse
Affiliation(s)
- Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases (NITD), 5300 Chiron Way, Emeryville, California 94608, United States
| | - Michael P. Barrett
- University of Glasgow, University Place, Glasgow G12 8TA, United Kingdom
| | - Glenn Dranoff
- Immuno-oncology, Novartis Institutes for Biomedical Research (NIBR), 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Christopher J. Faraday
- Autoimmunity, Transplantation and Inflammation, NIBR, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | | | - Asrat Hailu
- School of Medicine, Addis Ababa University, P.O. Box 28017 code 1000, Addis Ababa, Ethiopia
| | - Catherine L. Jones
- Novartis Institute for Tropical Diseases (NITD), 5300 Chiron Way, Emeryville, California 94608, United States
| | - John M. Kelly
- London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4501 Basel, Switzerland; University of Basel, CH 4000 Basel, Switzerland
| | - Jose Mengel
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ-RJ, Av. Brasil 4365, Cep: 21040-900, Rio de Janeiro-RJ, Brazil
- Faculty of Medicine of Petropolis, University in Petròpolis, Av. Barao do Rio Branco 1003, Cep: 25680-120, Petropolis-RJ, Brazil
| | - Jeremy C. Mottram
- University of York, Wentworth Way Heslington, York YO10 5DD, United Kingdom
| | - Charles E. Mowbray
- Drugs for Neglected
Diseases initiative, 15 Chemin Louis-Dunant, 1202 Geneva, Switzerland
| | - David L. Sacks
- National Institute of Allergy and Infectious Diseases, 4 Memorial Drive, Bethesda, Maryland 20892, United States
| | - Phillip Scott
- University of Pennsylvania, 380 South University Avenue, Philadelphia, Pennsylvania 19104, United States
| | - Gerald F. Späth
- Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Rick L. Tarleton
- University of Georgia, Coverdell Center, 500 DW Brooks Dr, Athens, Georgia 30602, United States
| | - Jonathan M. Spector
- Novartis Institute for Tropical Diseases (NITD), 5300 Chiron Way, Emeryville, California 94608, United States
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases (NITD), 5300 Chiron Way, Emeryville, California 94608, United States
| |
Collapse
|
60
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018; 14:152. [PMID: 30830421 DOI: 10.1007/s11306-018-1449-2] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific & Industrial Research Organization (CSIRO), P.O. Box 2583, Brisbane, QLD, 4001, Australia.
| | - Farhana R Pinu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, 3134, Australia
| | - Mahesha M Poojary
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, 3083, Australia.
| |
Collapse
|
61
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
62
|
Heyde S, Philipsen L, Formaglio P, Fu Y, Baars I, Höbbel G, Kleinholz CL, Seiß EA, Stettin J, Gintschel P, Dudeck A, Bousso P, Schraven B, Müller AJ. CD11c-expressing Ly6C+CCR2+ monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission. PLoS Pathog 2018; 14:e1007374. [PMID: 30346994 PMCID: PMC6211768 DOI: 10.1371/journal.ppat.1007374] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/01/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022] Open
Abstract
The virulence of intracellular pathogens such as Leishmania major (L. major) relies largely on their ability to undergo cycles of replication within phagocytes, release, and uptake into new host cells. While all these steps are critical for successful establishment of infection, neither the cellular niche of efficient proliferation, nor the spread to new host cells have been characterized in vivo. Here, using a biosensor for measuring pathogen proliferation in the living tissue, we found that monocyte-derived Ly6C+CCR2+ phagocytes expressing CD11c constituted the main cell type harboring rapidly proliferating L. major in the ongoing infection. Synchronization of host cell recruitment and intravital 2-photon imaging showed that these high proliferating parasites preferentially underwent cell-to-cell spread. However, newly recruited host cells were infected irrespectively of their cell type or maturation state. We propose that among these cells, CD11c-expressing monocytes are most permissive for pathogen proliferation, and thus mainly fuel the cycle of intracellular proliferation and cell-to-cell transfer during the acute infection. Thus, besides the well-described function for priming and activating T cell effector functions against L. major, CD11c-expressing monocyte-derived cells provide a reservoir for rapidly proliferating parasites that disseminate at the site of infection. Infection with Leishmania parasites can result in chronic disease of several months duration, often accompanied with disfiguring and disabling pathologies. Central to Leishmania virulence is the capability to survive and multiply within professional phagocytes. While it is assumed that the parasites at some point have to exit the infected cell and infect new cells, the cycle of intracellular multiplication, release, and uptake into new host cells has never been studied in the ongoing infection. Therefore, it is unclear whether efficient growth of the pathogen takes place in a specific host cell type, or in a specific phase during the residency within, or during transfer to new cells. Here, we used a pathogen-encoded biosensor for measuring Leishmania proliferation in the ongoing infection, and in combination with a detailed analysis of the infected host cells involved. We could show that a monocyte-derived dendritic cell-like phagocyte subset, which is known for its role in inducing adaptive immune responses against Leishmania, represents a reservoir for efficient intracellular multiplication and spread to new host cells. These findings are important for our understanding of how the residency within a specific the cellular niche enables Leishmania parasites to efficiently multiply and persist at the site of infection.
Collapse
Affiliation(s)
- Sandrina Heyde
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Pauline Formaglio
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Yan Fu
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Iris Baars
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Guido Höbbel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Corinna L. Kleinholz
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Elena A. Seiß
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Juliane Stettin
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Patricia Gintschel
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Department of Immunology, Institut Pasteur, Paris, France
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
- Department of Immune Control, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, Germany
| | - Andreas J. Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I), Otto-von-Guericke-University, Magdeburg, Germany
- Research Group Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
63
|
Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B. Antimicrob Agents Chemother 2018; 62:AAC.00631-18. [PMID: 30082295 PMCID: PMC6153808 DOI: 10.1128/aac.00631-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/03/2018] [Indexed: 11/21/2022] Open
Abstract
Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Disfiguring skin lesions caused by several species of the Leishmania parasite characterize cutaneous leishmaniasis (CL). Successful treatment of CL with intravenous (i.v.) liposomal amphotericin B (LAmB) relies on the presence of adequate antibiotic concentrations at the dermal site of infection within the inflamed skin. Here, we have investigated the impact of the local skin inflammation on the pharmacokinetics (PK) and efficacy of LAmB in two murine models of localized CL (Leishmania major and Leishmania mexicana) at three different stages of disease (papule, initial nodule, and established nodule). Twenty-four hours after the administration of one 25 mg/kg of body weight LAmB (i.v.) dose to infected BALB/c mice (n = 5), drug accumulation in the skin was found to be dependent on the causative parasite species (L. major > L. mexicana) and the disease stage (papule > initial nodule > established nodule > healthy skin). Elevated tissue drug levels were associated with increased vascular permeability (Evans blue assay) and macrophage infiltration (histomorphometry) in the infected skin, two pathophysiological parameters linked to tissue inflammation. After identical treatment of CL in the two models with 5 × 25 mg/kg LAmB (i.v.), intralesional drug concentrations and reductions in lesion size and parasite load (quantitative PCR [qPCR]) were all ≥2-fold higher for L. major than for L. mexicana. In conclusion, drug penetration of LAmB into CL skin lesions could depend on the disease stage and the causative Leishmania species due to the influence of local tissue inflammation.
Collapse
|
64
|
Best I, Privat-Maldonado A, Cruz M, Zimic M, Bras-Gonçalves R, Lemesre JL, Arévalo J. IFN-γ Response Is Associated to Time Exposure Among Asymptomatic Immune Responders That Visited American Tegumentary Leishmaniasis Endemic Areas in Peru. Front Cell Infect Microbiol 2018; 8:289. [PMID: 30186774 PMCID: PMC6111704 DOI: 10.3389/fcimb.2018.00289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Clinical manifestations of American Tegumentary Leishmaniasis (ATL) include cutaneous (CL) and mucous forms (ML); however, there are asymptomatic individuals who despite being infected do not present any clinical manifestations. This study characterized the cell-mediated immunity of travelers who lived in the Andean highlands of Cusco, free of leishmaniasis transmission, which eventually visited leishmaniasis endemic in the Amazonian basin and returned home without any clinical signs of the disease. Their immune response was compared with CL and ML patients who acquired the disease during their stage in the same region. Fifty-four human subjects from the highlands of Cusco (Peru), who have visited an endemic area, were enrolled: 28 of them did not show any symptoms, 12 showed CL and 14 showed ML. Ten healthy subjects from a non-endemic area (HS) were included as controls. T-cell proliferation was evaluated using peripheral blood mononuclear cells (PBMC) stimulated for 5 days with a total soluble leishmanial antigen (TSLA) of L. (V.) braziliensis. Th1/Th2/Th17 cytokines were also quantified in the supernatants by a flow cytometry multiplex assay. T-cell proliferation was expressed as stimulation index (SI) and the cut off was fixed at SI >2.47. Fifteen out of 28 subjects did not show any signs of disease (54%); subjects with an SI above the cut off. They were defined as asymptomatic immune responders (AIR). CL and ML patients presented a higher SI than HS and AIR. Among the latter group, the exposure time to Leishmania was clearly associated with the IFN-γ response. Increased levels of this cytokine were observed in individuals who remained <90 days in an endemic area of leishmaniasis. Our results evidenced two sub-populations among asymptomatic individuals, one AIR who did not develop clinical disease manifestations when they were exposed to Leishmania in endemic areas. Exposure time to Leishmania in the wild was associated with the IFN-γ response.
Collapse
Affiliation(s)
- Ivan Best
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Angela Privat-Maldonado
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - María Cruz
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mirko Zimic
- Laboratorios de Investigación y Desarrollo, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Rachel Bras-Gonçalves
- Institut de Recherche pour le Développement (IRD), UMR177-INTERTRYP, Montpellier, France
| | - Jean-Loup Lemesre
- Institut de Recherche pour le Développement (IRD), UMR177-INTERTRYP, Montpellier, France
| | - Jorge Arévalo
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.,Laboratorios de Investigación y Desarrollo, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
65
|
Shi L, Zheng C, Shen Y, Chen Z, Silveira ES, Zhang L, Wei M, Liu C, de Sena-Tomas C, Targoff K, Min W. Optical imaging of metabolic dynamics in animals. Nat Commun 2018; 9:2995. [PMID: 30082908 PMCID: PMC6079036 DOI: 10.1038/s41467-018-05401-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022] Open
Abstract
Direct visualization of metabolic dynamics in living animals with high spatial and temporal resolution is essential to understanding many biological processes. Here we introduce a platform that combines deuterium oxide (D2O) probing with stimulated Raman scattering (DO-SRS) microscopy to image in situ metabolic activities. Enzymatic incorporation of D2O-derived deuterium into macromolecules generates carbon-deuterium (C-D) bonds, which track biosynthesis in tissues and can be imaged by SRS in situ. Within the broad vibrational spectra of C-D bonds, we discover lipid-, protein-, and DNA-specific Raman shifts and develop spectral unmixing methods to obtain C-D signals with macromolecular selectivity. DO-SRS microscopy enables us to probe de novo lipogenesis in animals, image protein biosynthesis without tissue bias, and simultaneously visualize lipid and protein metabolism and reveal their different dynamics. DO-SRS microscopy, being noninvasive, universally applicable, and cost-effective, can be adapted to a broad range of biological systems to study development, tissue homeostasis, aging, and tumor heterogeneity.
Collapse
Affiliation(s)
- Lingyan Shi
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chaogu Zheng
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Yihui Shen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Zhixing Chen
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Luyuan Zhang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Chang Liu
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | | | - Kimara Targoff
- Department of Pediatrics, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
66
|
Sunter J, Gull K. Shape, form, function and Leishmania pathogenicity: from textbook descriptions to biological understanding. Open Biol 2018; 7:rsob.170165. [PMID: 28903998 PMCID: PMC5627057 DOI: 10.1098/rsob.170165] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
The shape and form of protozoan parasites are inextricably linked to their pathogenicity. The evolutionary pressure associated with establishing and maintaining an infection and transmission to vector or host has shaped parasite morphology. However, there is not a 'one size fits all' morphological solution to these different pressures, and parasites exhibit a range of different morphologies, reflecting the diversity of their complex life cycles. In this review, we will focus on the shape and form of Leishmania spp., a group of very successful protozoan parasites that cause a range of diseases from self-healing cutaneous leishmaniasis to visceral leishmaniasis, which is fatal if left untreated.
Collapse
Affiliation(s)
- Jack Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington Campus, Oxford OX3 0BP, UK
| | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
67
|
Goh B, Kim J, Seo S, Kim TY. High-Throughput Measurement of Lipid Turnover Rates Using Partial Metabolic Heavy Water Labeling. Anal Chem 2018; 90:6509-6518. [DOI: 10.1021/acs.analchem.7b05428] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
68
|
Newsom SN, McCall LI. Metabolomics: Eavesdropping on silent conversations between hosts and their unwelcome guests. PLoS Pathog 2018; 14:e1006926. [PMID: 29621358 PMCID: PMC5886577 DOI: 10.1371/journal.ppat.1006926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Sydney N. Newsom
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
69
|
Sánchez-Valdéz FJ, Padilla A, Wang W, Orr D, Tarleton RL. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. eLife 2018; 7:34039. [PMID: 29578409 PMCID: PMC5906098 DOI: 10.7554/elife.34039] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 03/25/2018] [Indexed: 12/19/2022] Open
Abstract
The ability of the Chagas disease agent Trypanosoma cruzi to resist extended in vivo exposure to highly effective trypanocidal compounds prompted us to explore the potential for dormancy and its contribution to failed drug treatments in this infection. We document the development of non-proliferating intracellular amastigotes in vivo and in vitro in the absence of drug treatment. Non-proliferative amastigotes ultimately converted to trypomastigotes and established infections in new host cells. Most significantly, dormant amastigotes were uniquely resistant to extended drug treatment in vivo and in vitro and could re-establish a flourishing infection after as many as 30 days of drug exposure. These results demonstrate a dormancy state in T. cruzi that accounts for the failure of highly cytotoxic compounds to completely resolve the infection. The ability of T. cruzi to establish dormancy throws into question current methods for identifying curative drugs but also suggests alternative therapeutic approaches. Chagas disease is one of the most harmful tropical diseases in the Americas. It affects millions of people, predominantly in Latin America. It is usually spread by kissing bugs infected with Trypanosoma cruzi parasites. It is considered a neglected tropical disease because few effective treatments and preventive methods are routinely used. Several drugs can kill T. cruzi parasites, but they often fail to cure the infection. Many people with Chagas disease go on to have life-long infections and eventually develop heart failure. The reason for the high rate of treatment failure is not known. It does not appear to be the result of the parasites developing resistance to the drugs. One possibility is that the parasites can hide in a dormant state in the body, dodging the toxic drugs and living to reproduce another day. Now, Sánchez-Valdéz et al. identify a dormant form of the T. cruzi parasite that allows the infection to persist after treatment. In the experiments, a non-reproducing form of the so-called amastigote stage of the T. cruzi parasite inside the host cells was observed in infected mice and human cells. While some of the amastigote parasites continue multiplying, a few stop even without drug treatment – but can resume multiplication at a later time. They may also be able to change into the trypomastigote form of the parasite, which can infect new cells. These non-multiplying amastigotes can survive drug treatment for as long as 30 days, whereas the multiplying amastigotes are killed by such drugs. However, the surviving amastigotes then reestablish active infections after treatment has stopped. The experiments explain why treatment so often fails to cure Chagas disease. This suggests new treatment strategies are needed, including using existing drugs for a longer time perhaps with less frequent doses. New therapies that kill the dormant amastigotes may also help. Treatments that overcome the parasite’s ability to hide, could stop the progression of the disease and prevent heart-related deaths in those with persistent T. cruzi infections.
Collapse
Affiliation(s)
| | - Angel Padilla
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States.,Department of Cellular Biology, University of Georgia, Athens, United States
| | - Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
| | - Dylan Orr
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
| | - Rick L Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States.,Department of Cellular Biology, University of Georgia, Athens, United States
| |
Collapse
|
70
|
Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana. PLoS Pathog 2018; 14:e1006953. [PMID: 29554142 PMCID: PMC5882173 DOI: 10.1371/journal.ppat.1006953] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/03/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not virulent in mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both. Leishmania parasites endanger over 1 billion people worldwide, infecting 300,000 people and causing 20,000 deaths annually. In this study, we scrutinized metabolism in Leishmania mexicana after deletion of the gene encoding transketolase (TKT), an enzyme involved in sugar metabolism via the pentose phosphate pathway which plays key roles in creating ribose 5-phosphate for nucleotide synthesis and also defence against oxidative stress. The insect stage of the parasite, grown in culture medium, did not suffer from any obvious growth defect after the gene was deleted. However, its metabolism changed dramatically, with metabolomics indicating profound changes to flux through the pentose phosphate pathway: decreased glucose consumption, and generally enhanced efficiency in using metabolic substrates with reduced secretion of partially oxidised end products of metabolism. This ‘stringent’ metabolism is reminiscent of the mammalian stage parasites. The cells were also more sensitive to oxidative stress inducing agents and leishmanicidal drugs. Crucially, mice inoculated with the TKT knock-out parasites did not develop an infection pointing to the enzyme playing a key role in allowing the parasites to remain viable in the host, indicating that TKT may be considered a useful target for development of new drugs against leishmaniasis.
Collapse
|
71
|
Saunders EC, Naderer T, Chambers J, Landfear SM, McConville MJ. Leishmania mexicana can utilize amino acids as major carbon sources in macrophages but not in animal models. Mol Microbiol 2018; 108:143-158. [PMID: 29411460 DOI: 10.1111/mmi.13923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Leishmania parasites target macrophages in their mammalian hosts and proliferate within the mature phagolysosome compartment of these cells. Intracellular amastigote stages are dependent on sugars as a major carbon source in vivo, but retain the capacity to utilize other carbon sources. To investigate whether amastigotes can switch to using other carbon sources, we have screened for suppressor strains of the L. mexicana Δlmxgt1-3 mutant which lacks the major glucose transporters LmxGT1-3. We identified a novel suppressor line (Δlmxgt1-3s2 ) that has restored growth in rich culture medium and virulence in ex vivo infected macrophages, but failed to induce lesions in mice. Δlmxgt1-3s2 amastigotes had lower rates of glucose utilization than the parental line and primarily catabolized non-essential amino acids. The increased mitochondrial metabolism of this line was associated with elevated levels of intracellular reactive oxygen species, as well as increased sensitivity to inhibitors of the tricarboxylic acid (TCA) cycle, including nitric oxide. These results suggest that hardwired sugar addiction of Leishmania amastigotes contributes to the intrinsic resistance of this stage to macrophage microbicidal processes in vivo, and that these stages have limited capacity to switch to using other carbon sources.
Collapse
Affiliation(s)
- Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Thomas Naderer
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, 3800, Australia
| | - Jenny Chambers
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| | - Scott M Landfear
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR 97239, USA
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, Victoria 3010, Australia
| |
Collapse
|
72
|
Eberhardt E, Van den Kerkhof M, Bulté D, Mabille D, Van Bockstal L, Monnerat S, Alves F, Mbui J, Delputte P, Cos P, Hendrickx S, Maes L, Caljon G. Evaluation of a Pan-Leishmania Spliced-Leader RNA Detection Method in Human Blood and Experimentally Infected Syrian Golden Hamsters. J Mol Diagn 2018; 20:253-263. [PMID: 29355825 DOI: 10.1016/j.jmoldx.2017.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 11/24/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022] Open
Abstract
Several methods have been developed for the detection of Leishmania, mostly targeting the minicircle kinetoplast DNA (kDNA). A new RNA real-time quantitative PCR (qPCR) assay was developed targeting the conserved and highly expressed spliced-leader (SL) mini-exon sequence. This study compared the limits of detection of various real-time PCR assays in hamsters infected with Leishmania infantum, in spiked human blood, and in clinical blood samples from visceral leishmaniasis patients. The SL-RNA assay showed an excellent analytical sensitivity in tissues (0.005 and 0.002 parasites per mg liver and spleen, respectively) and was not prone to false-positive reactions. Evaluation of the SL-RNA assay on clinical samples demonstrated lower threshold cycle values than the kDNA qPCR, an excellent interrun stability of 97%, a 93% agreement with the kDNA assay, and an estimated sensitivity, specificity, and accuracy of 93.2%, 94.3%, and 93.8%, respectively. The SL-RNA qPCR assay was equally efficient for detecting Leishmania major, Leishmania tropica, Leishmania mexicana, Leishmania guayensis, Leishmania panamensis, Leishmania braziliensis, L. infantum, and Leishmania donovani and revealed similar SL-RNA levels in the different species and the occurrence of polycistronic SL-containing transcripts in Viannia species. Collectively, this single SL-RNA qPCR assay enables universal Leishmania detection and represents a particularly useful addition to the widely used kDNA assay in clinical studies in which the detection of viable parasites is pivotal to assess parasitological cure.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Dimitri Bulté
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | | | - Fabiana Alves
- Drugs for Neglected Disease Initiative, Geneva, Switzerland
| | - Jane Mbui
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
73
|
Regli IB, Passelli K, Hurrell BP, Tacchini-Cottier F. Survival Mechanisms Used by Some Leishmania Species to Escape Neutrophil Killing. Front Immunol 2017; 8:1558. [PMID: 29250059 PMCID: PMC5715327 DOI: 10.3389/fimmu.2017.01558] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/31/2017] [Indexed: 12/27/2022] Open
Abstract
Neutrophils are the most abundant leukocytes in human blood. Upon microbial infection, they are massively and rapidly recruited from the circulation to sites of infection where they efficiently kill pathogens. To this end, neutrophils possess a variety of weapons that can be mobilized and become effective within hours following infection. However, several microbes including some Leishmania spp. have evolved a variety of mechanisms to escape neutrophil killing using these cells as a basis to better invade the host. In addition, neutrophils are also present in unhealing cutaneous lesions where their role remains to be defined. Here, we will review recent progress in the field and discuss the different strategies applied by some Leishmania parasites to escape from being killed by neutrophils and as recently described for Leishmania mexicana, even replicate within these cells. Subversion of neutrophil killing functions by Leishmania is a strategy that allows parasite spreading in the host with a consequent deleterious impact, transforming the primary protective role of neutrophils into a deleterious one.
Collapse
Affiliation(s)
- Ivo B Regli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Katiuska Passelli
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Benjamin P Hurrell
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, WHO Immunology Research and Training Collaborative Center, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
74
|
Abstract
New drugs and treatments for diseases caused by intracellular pathogens, such as leishmaniasis and the Leishmania species, have proved to be some of the most difficult to discover and develop. The focus of discovery research has been on the identification of potent and selective compounds that inhibit target enzymes (or other essential molecules) or are active against the causative pathogen in phenotypic in vitro assays. Although these discovery paradigms remain an essential part of the early stages of the drug R & D pathway, over the past two decades additional emphasis has been given to the challenges needed to ensure that the potential anti-infective drugs distribute to infected tissues, reach the target pathogen within the host cell and exert the appropriate pharmacodynamic effect at these sites. This review will focus on how these challenges are being met in relation to Leishmania and the leishmaniases with lessons learned from drug R & D for other intracellular pathogens.
Collapse
|
75
|
|
76
|
Melo GD, Goyard S, Fiette L, Boissonnas A, Combadiere C, Machado GF, Minoprio P, Lang T. Unveiling Cerebral Leishmaniasis: parasites and brain inflammation in Leishmania donovani infected mice. Sci Rep 2017; 7:8454. [PMID: 28814754 PMCID: PMC5559479 DOI: 10.1038/s41598-017-09085-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/21/2017] [Indexed: 11/09/2022] Open
Abstract
Visceral leishmaniasis (VL) is a systemic disease with multifaceted clinical manifestations, including neurological signs, however, the involvement of the nervous system during VL is underestimated. Accordingly, we investigated both brain infection and inflammation in a mouse model of VL. Using bioluminescent Leishmania donovani and real-time 2D-3D imaging tools, we strikingly detected live parasites in the brain, where we observed a compartmentalized dual-phased inflammation pattern: an early phase during the first two weeks post-infection, with the prompt arrival of neutrophils and Ly6Chigh macrophages in an environment presenting a variety of pro-inflammatory mediators (IFN-γ, IL-1β, CXCL-10/CXCR-3, CCL-7/CCR-2), but with an intense anti-inflammatory response, led by IL-10; and a re-inflammation phase three months later, extremely pro-inflammatory, with novel upregulation of mediators, including IL-1β, TNF-α and MMP-9. These new data give support and corroborate previous studies connecting human and canine VL with neuroinflammation and blood-brain barrier disruption, and conclusively place the brain among the organs affected by this parasite. Altogether, our results provide convincing evidences that Leishmania donovani indeed infects and inflames the brain.
Collapse
Affiliation(s)
- Guilherme D Melo
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, 25-28 rue du Dr Roux, 75724, Cedex 15, Paris, France
- UNESP - Univ Estadual Paulista, Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), Rua Clóvis Pestana 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Sophie Goyard
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, 25-28 rue du Dr Roux, 75724, Cedex 15, Paris, France
- Institut Pasteur, Centre d'Innovation et Recherche Technologique, Paris, France
| | - Laurence Fiette
- Institut Pasteur, Unité d'Histopathologie Humaine et Modèles Animaux, Département Infection et Epidémiologie, 25-28 rue du Dr Roux, 75724, CEDEX 15, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMR 1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Christophe Combadiere
- Sorbonne Universités, UPMC Univ Paris 06, Inserm, UMR 1135, CNRS, ERL 8255, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 91 Boulevard de l'Hôpital, 75013, Paris, France
| | - Gisele F Machado
- UNESP - Univ Estadual Paulista, Faculdade de Medicina Veterinária, Laboratório de Patologia Aplicada (LApap), Rua Clóvis Pestana 793, 16050-680, Araçatuba, São Paulo, Brazil
| | - Paola Minoprio
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, 25-28 rue du Dr Roux, 75724, Cedex 15, Paris, France
| | - Thierry Lang
- Institut Pasteur, Laboratoire des Processus Infectieux à Trypanosomatidés, Département Infection et Epidémiologie, 25-28 rue du Dr Roux, 75724, Cedex 15, Paris, France.
| |
Collapse
|
77
|
Bumann D, Schothorst J. Intracellular Salmonella metabolism. Cell Microbiol 2017; 19. [PMID: 28672057 DOI: 10.1111/cmi.12766] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 06/30/2017] [Indexed: 12/28/2022]
Abstract
Growth of Salmonella inside infected host cells is a key aspect of their ability to cause local enteritis or systemic disease. This growth depends on exploitation of host nutrients through a large Salmonella metabolism network with hundreds of metabolites and enzymes. Studies in cell culture infection models are unravelling more and more of the underlying molecular and cellular mechanisms but also show striking Salmonella metabolic plasticity depending on host cell line and experimental conditions. In vivo studies have revealed a qualitatively diverse, but quantitatively poor, host-Salmonella nutritional interface, which on one side makes Salmonella fitness largely resilient against metabolic perturbations, but on the other side severely limits Salmonella biomass generation and growth rates. This review discusses goals and techniques for studying Salmonella intracellular metabolism, summarises main results and implications, and proposes key issues that could be addressed in future studies.
Collapse
Affiliation(s)
- Dirk Bumann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Joep Schothorst
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
78
|
Jara M, Berg M, Caljon G, de Muylder G, Cuypers B, Castillo D, Maes I, Orozco MDC, Vanaerschot M, Dujardin JC, Arevalo J. Macromolecular biosynthetic parameters and metabolic profile in different life stages of Leishmania braziliensis: Amastigotes as a functionally less active stage. PLoS One 2017; 12:e0180532. [PMID: 28742826 PMCID: PMC5526552 DOI: 10.1371/journal.pone.0180532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/26/2017] [Indexed: 12/04/2022] Open
Abstract
It was recently hypothesized that Leishmania amastigotes could constitute a semi-quiescent stage characterized by low replication and reduced metabolic activity. This concept developed with Leishmania (Leishmania) mexicana and Leishmania (Leishmania) major models might explain numerous clinical and sub-clinical features of Leishmania (Viannia) braziliensis infections, like reactivation of the disease, non-response to chemotherapy or asymptomatic infections. We compared here in vitro the proliferative capability of L. (V.) braziliensis amastigotes and promastigotes, assessed the expression of key molecular parameters and performed metabolomic analysis. We found that contrary to the highly proliferative promastigotes, amastigotes (axenic and intracellular) do not show evidence of extensive proliferation. In parallel, amastigotes showed a significant decrease of (i) the kDNA mini-circle abundance, (ii) the intracellular ATP level, (iii) the ribosomal components: rRNA subunits 18S and 28S α and ribosomal proteins RPS15 and RPL19, (iv) total RNA and protein levels. An untargeted metabolomic study identified clear differences between the different life stages: in comparison to logarithmic promastigotes, axenic amastigotes showed (a) a strong decrease of 14 essential and non-essential amino acids and eight metabolites involved in polyamine synthesis, (b) extensive changes in the phospholipids composition and (c) increased levels of several endogenous and exogenous sterols. Altogether, our results show that L. (V.) braziliensis amastigotes can show a phenotype with negligible rate of proliferation, a lower capacity of biosynthesis, a reduced bio-energetic level and a strongly altered metabolism. Our results pave the way for further exploration of quiescence among amastigotes of this species.
Collapse
Affiliation(s)
- Marlene Jara
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Perú
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Maya Berg
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Guy Caljon
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Geraldine de Muylder
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Bart Cuypers
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Denis Castillo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Ilse Maes
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - María del Carmen Orozco
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Manu Vanaerschot
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- University of Antwerp, Antwerp, Belgium
| | - Jorge Arevalo
- Instituto de Medicina Tropical “Alexander von Humboldt”, Universidad Peruana Cayetano Heredia, Lima, Perú
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú
| |
Collapse
|
79
|
Gutierrez-Corbo C, Dominguez-Asenjo B, Vossen LI, Pérez-Pertejo Y, Muñoz-Fenández MA, Balaña-Fouce R, Calderón M, Reguera RM. PEGylated Dendritic Polyglycerol Conjugate Delivers Doxorubicin to the Parasitophorous Vacuole in Leishmania infantum
Infections. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/04/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Camino Gutierrez-Corbo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
- Laboratorio de InmunoBiologia Molecular; Hospital General Universitario Gregorio Marañon; Spanish HIV HGM BioBank; IiSGM and CIBER-BBN; 28007 Madrid Spain
| | - Barbara Dominguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Laura I. Vossen
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Maria A. Muñoz-Fenández
- Laboratorio de InmunoBiologia Molecular; Hospital General Universitario Gregorio Marañon; Spanish HIV HGM BioBank; IiSGM and CIBER-BBN; 28007 Madrid Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| | - Marcelo Calderón
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria; Universidad de León; 24071 León Spain
| |
Collapse
|
80
|
Cuypers B, Domagalska MA, Meysman P, Muylder GD, Vanaerschot M, Imamura H, Dumetz F, Verdonckt TW, Myler PJ, Ramasamy G, Laukens K, Dujardin JC. Multiplexed Spliced-Leader Sequencing: A high-throughput, selective method for RNA-seq in Trypanosomatids. Sci Rep 2017. [PMID: 28623350 PMCID: PMC5473914 DOI: 10.1038/s41598-017-03987-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
High throughput sequencing techniques are poorly adapted for in vivo studies of parasites, which require prior in vitro culturing and purification. Trypanosomatids, a group of kinetoplastid protozoans, possess a distinctive feature in their transcriptional mechanism whereby a specific Spliced Leader (SL) sequence is added to the 5'end of each mRNA by trans-splicing. This allows to discriminate Trypansomatid RNA from mammalian RNA and forms the basis of our new multiplexed protocol for high-throughput, selective RNA-sequencing called SL-seq. We provided a proof-of-concept of SL-seq in Leishmania donovani, the main causative agent of visceral leishmaniasis in humans, and successfully applied the method to sequence Leishmania mRNA directly from infected macrophages and from highly diluted mixes with human RNA. mRNA profiles obtained with SL-seq corresponded largely to those obtained from conventional poly-A tail purification methods, indicating both enumerate the same mRNA pool. However, SL-seq offers additional advantages, including lower sequencing depth requirements, fast and simple library prep and high resolution splice site detection. SL-seq is therefore ideal for fast and massive parallel sequencing of parasite transcriptomes directly from host tissues. Since SLs are also present in Nematodes, Cnidaria and primitive chordates, this method could also have high potential for transcriptomics studies in other organisms.
Collapse
Affiliation(s)
- Bart Cuypers
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Advanced Database Research and Modeling group (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Malgorzata A Domagalska
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Pieter Meysman
- Advanced Database Research and Modeling group (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Géraldine de Muylder
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Manu Vanaerschot
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Fidock Lab, Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, USA
| | - Hideo Imamura
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Franck Dumetz
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thomas Wolf Verdonckt
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Peter J Myler
- Center for Infectious Disease Research, Seattle, Washington, United States of America.,Department of Global Health and Department of Biomedical Informatics & Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Gowthaman Ramasamy
- Center for Infectious Disease Research, Seattle, Washington, United States of America
| | - Kris Laukens
- Advanced Database Research and Modeling group (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
81
|
Dumetz F, Imamura H, Sanders M, Seblova V, Myskova J, Pescher P, Vanaerschot M, Meehan CJ, Cuypers B, De Muylder G, Späth GF, Bussotti G, Vermeesch JR, Berriman M, Cotton JA, Volf P, Dujardin JC, Domagalska MA. Modulation of Aneuploidy in Leishmania donovani during Adaptation to Different In Vitro and In Vivo Environments and Its Impact on Gene Expression. mBio 2017; 8:e00599-17. [PMID: 28536289 PMCID: PMC5442457 DOI: 10.1128/mbio.00599-17] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/01/2017] [Indexed: 12/23/2022] Open
Abstract
Aneuploidy is usually deleterious in multicellular organisms but appears to be tolerated and potentially beneficial in unicellular organisms, including pathogens. Leishmania, a major protozoan parasite, is emerging as a new model for aneuploidy, since in vitro-cultivated strains are highly aneuploid, with interstrain diversity and intrastrain mosaicism. The alternation of two life stages in different environments (extracellular promastigotes and intracellular amastigotes) offers a unique opportunity to study the impact of environment on aneuploidy and gene expression. We sequenced the whole genomes and transcriptomes of Leishmania donovani strains throughout their adaptation to in vivo conditions mimicking natural vertebrate and invertebrate host environments. The nucleotide sequences were almost unchanged within a strain, in contrast to highly variable aneuploidy. Although high in promastigotes in vitro, aneuploidy dropped significantly in hamster amastigotes, in a progressive and strain-specific manner, accompanied by the emergence of new polysomies. After a passage through a sand fly, smaller yet consistent karyotype changes were detected. Changes in chromosome copy numbers were correlated with the corresponding transcript levels, but additional aneuploidy-independent regulation of gene expression was observed. This affected stage-specific gene expression, downregulation of the entire chromosome 31, and upregulation of gene arrays on chromosomes 5 and 8. Aneuploidy changes in Leishmania are probably adaptive and exploited to modulate the dosage and expression of specific genes; they are well tolerated, but additional mechanisms may exist to regulate the transcript levels of other genes located on aneuploid chromosomes. Our model should allow studies of the impact of aneuploidy on molecular adaptations and cellular fitness.IMPORTANCE Aneuploidy is usually detrimental in multicellular organisms, but in several microorganisms, it can be tolerated and even beneficial. Leishmania-a protozoan parasite that kills more than 30,000 people each year-is emerging as a new model for aneuploidy studies, as unexpectedly high levels of aneuploidy are found in clinical isolates. Leishmania lacks classical regulation of transcription at initiation through promoters, so aneuploidy could represent a major adaptive strategy of this parasite to modulate gene dosage in response to stressful environments. For the first time, we document the dynamics of aneuploidy throughout the life cycle of the parasite, in vitro and in vivo We show its adaptive impact on transcription and its interaction with regulation. Besides offering a new model for aneuploidy studies, we show that further genomic studies should be done directly in clinical samples without parasite isolation and that adequate methods should be developed for this.
Collapse
Affiliation(s)
- F Dumetz
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - H Imamura
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - M Sanders
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - V Seblova
- Charles University, Prague, Czech Republic
| | - J Myskova
- Charles University, Prague, Czech Republic
| | - P Pescher
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - M Vanaerschot
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - C J Meehan
- Mycobacteriology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - B Cuypers
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
- Advanced Database Research and Modelling (ADReM), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - G De Muylder
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| | - G F Späth
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - G Bussotti
- Unité de Parasitologie Moléculaire et Signalisation, INSERM U1201, Institut Pasteur, Paris, France
| | - J R Vermeesch
- Molecular Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - M Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - J A Cotton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - P Volf
- Charles University, Prague, Czech Republic
| | - J C Dujardin
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - M A Domagalska
- Molecular Parasitology, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
82
|
Continual renewal and replication of persistent Leishmania major parasites in concomitantly immune hosts. Proc Natl Acad Sci U S A 2017; 114:E801-E810. [PMID: 28096392 DOI: 10.1073/pnas.1619265114] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In most natural infections or after recovery, small numbers of Leishmania parasites remain indefinitely in the host. Persistent parasites play a vital role in protective immunity against disease pathology upon reinfection through the process of concomitant immunity, as well as in transmission and reactivation, yet are poorly understood. A key question is whether persistent parasites undergo replication, and we devised several approaches to probe the small numbers in persistent infections. We find two populations of persistent Leishmania major: one rapidly replicating, similar to parasites in acute infections, and another showing little evidence of replication. Persistent Leishmania were not found in "safe" immunoprivileged cell types, instead residing in macrophages and DCs, ∼60% of which expressed inducible nitric oxide synthase (iNOS). Remarkably, parasites within iNOS+ cells showed normal morphology and genome integrity and labeled comparably with BrdU to parasites within iNOS- cells, suggesting that these parasites may be unexpectedly resistant to NO. Nonetheless, because persistent parasite numbers remain roughly constant over time, their replication implies that ongoing destruction likewise occurs. Similar results were obtained with the attenuated lpg2- mutant, a convenient model that rapidly enters a persistent state without inducing pathology due to loss of the Golgi GDP mannose transporter. These data shed light on Leishmania persistence and concomitant immunity, suggesting a model wherein a parasite reservoir repopulates itself indefinitely, whereas some progeny are terminated in antigen-presenting cells, thereby stimulating immunity. This model may be relevant to understanding immunity to other persistent pathogen infections.
Collapse
|
83
|
Hefnawy A, Berg M, Dujardin JC, De Muylder G. Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends Parasitol 2016; 33:162-174. [PMID: 27993477 DOI: 10.1016/j.pt.2016.11.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/20/2022]
Abstract
New drugs are needed to control leishmaniasis and efforts are currently on-going to counter the neglect of this disease. We discuss here the utility and the impact of associating drug resistance (DR) studies to drug discovery pipelines. We use as paradigm currently used drugs, antimonials and miltefosine, and complement our reflection by interviewing three experts in the field. We suggest DR studies to be involved at two different stages of drug development: (i) the efficiency of novel compounds should be confirmed on sets of strains including recent clinical isolates with DR; (ii) experimental DR should be generated to promising compounds at an early stage of their development, to further optimize them and monitor clinical trials.
Collapse
Affiliation(s)
- Aya Hefnawy
- Institute of Tropical Medicine, Antwerp, Belgium
| | - Maya Berg
- Institute of Tropical Medicine, Antwerp, Belgium
| | | | | |
Collapse
|
84
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
85
|
Lewis MD, Kelly JM. Putting Infection Dynamics at the Heart of Chagas Disease. Trends Parasitol 2016; 32:899-911. [PMID: 27612651 PMCID: PMC5086431 DOI: 10.1016/j.pt.2016.08.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
In chronic Trypanosoma cruzi infections, parasite burden is controlled by effective, but nonsterilising immune responses. Infected cells are difficult to detect because they are scarce and focally distributed in multiple sites. However, advances in detection technologies have established a link between parasite persistence and the pathogenesis of Chagas heart disease. Long-term persistence likely involves episodic reinvasion as well as continuous infection, to an extent that varies between tissues. The primary reservoir sites in humans are not definitively known, but analysis of murine models has identified the gastrointestinal tract. Here, we highlight that quantitative, spatial, and temporal aspects of T. cruzi infection are central to a fuller understanding of the association between persistence, pathogenesis, and immunity, and for optimising treatment.
Collapse
Affiliation(s)
- Michael D Lewis
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK; Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - John M Kelly
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
86
|
Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. Metabolites 2016; 6:metabo6040034. [PMID: 27754354 PMCID: PMC5192440 DOI: 10.3390/metabo6040034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.
Collapse
|
87
|
Srivastava A, Kowalski GM, Callahan DL, Meikle PJ, Creek DJ. Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics. Metabolites 2016; 6:metabo6040032. [PMID: 27706078 PMCID: PMC5192438 DOI: 10.3390/metabo6040032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022] Open
Abstract
This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.
Collapse
Affiliation(s)
- Anubhav Srivastava
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Melbourne, Victoria, Australia.
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood 3125, Victoria, Australia.
| | - Damien L Callahan
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Burwood 3125, Victoria, Australia.
| | - Peter J Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia.
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Melbourne, Victoria, Australia.
| |
Collapse
|
88
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
89
|
Using metabolomics to dissect host–parasite interactions. Curr Opin Microbiol 2016; 32:59-65. [DOI: 10.1016/j.mib.2016.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
90
|
Eberhardt E, Mondelaers A, Hendrickx S, Van den Kerkhof M, Maes L, Caljon G. Molecular detection of infection homogeneity and impact of miltefosine treatment in a Syrian golden hamster model of Leishmania donovani and L. infantum visceral leishmaniasis. Parasitol Res 2016; 115:4061-70. [PMID: 27412759 DOI: 10.1007/s00436-016-5179-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/20/2016] [Indexed: 02/07/2023]
Abstract
Control of visceral leishmaniasis caused by Leishmania infantum and Leishmania donovani primarily relies on chemotherapy using an increasingly compromised repertoire of antileishmanial compounds. For evaluation of novel drugs, the Syrian golden hamster is considered as a clinically relevant laboratory model. In this study, two molecular parasite detection assays were developed targeting cathepsin-like cysteine protease B (CPB) DNA and 18S rRNA to achieve absolute amastigote quantification in the major target organs liver and spleen. Both quantitative PCR (qPCR) techniques showed excellent agreement with a strong correlation with the conventional microscopic reading of Giemsa-stained tissue smears. Using multiple single tissue pieces and all three detection methods, we confirmed homogeneity of infection in liver and spleen and the robustness of extrapolating whole organ burdens from a small single tissue piece. Comparison of pre- and post-treatment burdens in infected hamsters using the three detection methods consistently revealed a stronger parasite reduction in the spleen compared to the liver, indicating an organ-dependent clearance efficacy for miltefosine. In conclusion, this study in the hamster demonstrated high homogeneity of infection in liver and spleen and advocates the use of molecular detection methods for assessment of low (post-treatment) tissue burdens.
Collapse
Affiliation(s)
- Eline Eberhardt
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Annelies Mondelaers
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Room S7.24, Campus Drie Eiken, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
91
|
A Replicative In Vitro Assay for Drug Discovery against Leishmania donovani. Antimicrob Agents Chemother 2016; 60:3524-32. [PMID: 27021313 DOI: 10.1128/aac.01781-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania donovani is the causative agent of visceral leishmaniasis, a disease potentially fatal if not treated. Current available treatments have major limitations, and new and safer drugs are urgently needed. In recent years, advances in high-throughput screening technologies have enabled the screening of millions of compounds to identify new antileishmanial agents. However, most of the compounds identified in vitro did not translate their activities when tested in in vivo models, highlighting the need to develop more predictive in vitro assays. In the present work, we describe the development of a robust replicative, high-content, in vitro intracellular L. donovani assay. Horse serum was included in the assay media to replace standard fetal bovine serum, to completely eliminate the extracellular parasites derived from the infection process. A novel phenotypic in vitro infection model has been developed, complemented with the identification of the proliferation of intracellular amastigotes measured by EdU incorporation. In vitro and in vivo results for miltefosine, amphotericin B, and the selected compound 1 have been included to validate the assay.
Collapse
|
92
|
Wallace MA, Della Gatta PA, Ahmad Mir B, Kowalski GM, Kloehn J, McConville MJ, Russell AP, Lamon S. Overexpression of Striated Muscle Activator of Rho Signaling (STARS) Increases C2C12 Skeletal Muscle Cell Differentiation. Front Physiol 2016; 7:7. [PMID: 26903873 PMCID: PMC4745265 DOI: 10.3389/fphys.2016.00007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/11/2016] [Indexed: 01/10/2023] Open
Abstract
Background: Skeletal muscle growth and regeneration depend on the activation of satellite cells, which leads to myocyte proliferation, differentiation and fusion with existing muscle fibers. Skeletal muscle cell proliferation and differentiation are tightly coordinated by a continuum of molecular signaling pathways. The striated muscle activator of Rho signaling (STARS) is an actin binding protein that regulates the transcription of genes involved in muscle cell growth, structure and function via the stimulation of actin polymerization and activation of serum-response factor (SRF) signaling. STARS mediates cell proliferation in smooth and cardiac muscle models; however, whether STARS overexpression enhances cell proliferation and differentiation has not been investigated in skeletal muscle cells. Results: We demonstrate for the first time that STARS overexpression enhances differentiation but not proliferation in C2C12 mouse skeletal muscle cells. Increased differentiation was associated with an increase in the gene levels of the myogenic differentiation markers Ckm, Ckmt2 and Myh4, the differentiation factor Igf2 and the myogenic regulatory factors (MRFs) Myf5 and Myf6. Exposing C2C12 cells to CCG-1423, a pharmacological inhibitor of SRF preventing the nuclear translocation of its co-factor MRTF-A, had no effect on myotube differentiation rate, suggesting that STARS regulates differentiation via a MRTF-A independent mechanism. Conclusion: These findings position STARS as an important regulator of skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- Marita A Wallace
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Paul A Della Gatta
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Bilal Ahmad Mir
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne Parkville, VIC, Australia
| | - Malcom J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne Parkville, VIC, Australia
| | - Aaron P Russell
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| | - Séverine Lamon
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University Burwood, VIC, Australia
| |
Collapse
|
93
|
Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog 2016; 12:e1005340. [PMID: 26741360 PMCID: PMC4704735 DOI: 10.1371/journal.ppat.1005340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. Leishmaniasis is a serious parasitic disease that affects 12 million people worldwide, with clinical manifestations ranging from self-healing cutaneous lesions to deadly visceralizing disease. A vaccine is not available, and new and less toxic drugs against this protozoan parasite are urgently needed. Following introduction into vertebrate hosts during a sand fly blood meal, Leishmania parasites undergo extensive changes in morphology and metabolism that are critical for adaptation to life inside host macrophages and replication as amastigotes. Earlier studies identified major events that occur during amastigote differentiation, but the signaling mechanism initiating this process remained poorly understood. Previously we demonstrated a novel role for the reactive oxygen species (ROS) H2O2 in initiating amastigote differentiation, a process proposed to be dependent on iron availability inside the parasite’s mitochondria. In this study we identify LMIT1, a Leishmania transmembrane protein that functions as a mitochondrial iron transporter and is conserved in other trypanosomatid protozoan parasites. Reduced LMIT1 expression impairs mitochondrial function in the infective amastigote stage, abolishing parasite virulence. Our findings identify LMIT1 as a promising new drug target, and support the conclusion that iron-dependent ROS signals generated in the mitochondria regulate differentiation of virulent Leishmania amastigotes.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | | | - Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Candeal, Salvador, Bahia, Brazil
| | - Jennifer Jensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
94
|
Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum. Proc Natl Acad Sci U S A 2015; 113:E110-6. [PMID: 26715741 DOI: 10.1073/pnas.1512057112] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.
Collapse
|
95
|
Sheel M, Beattie L, Frame TCM, de Labastida Rivera F, Faleiro RJ, Bunn PT, Montes de Oca M, Edwards CL, Ng SS, Kumar R, Amante FH, Best SE, McColl SR, Varelias A, Kuns RD, MacDonald KPA, Smyth MJ, Haque A, Hill GR, Engwerda CR. IL-17A-Producing γδ T Cells Suppress Early Control of Parasite Growth by Monocytes in the Liver. THE JOURNAL OF IMMUNOLOGY 2015; 195:5707-17. [PMID: 26538396 DOI: 10.4049/jimmunol.1501046] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/06/2015] [Indexed: 12/24/2022]
Abstract
Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17-producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2(+) inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.
Collapse
Affiliation(s)
- Meru Sheel
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Teija C M Frame
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Biomedical Sciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, Queensland 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Natural Sciences, Griffith University, Nathan, Queensland 4111, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; Netaji Subhas Institute of Technology, New Delhi 110078, India; and
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Shaun R McColl
- Centre for Molecular Pathology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Antiopi Varelias
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Rachel D Kuns
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelli P A MacDonald
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Geoff R Hill
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia;
| |
Collapse
|
96
|
Jara M, Valencia BM, Adaui V, Alba M, Lau R, Arevalo J, Llanos-Cuentas A, Boggild AK. Quantitative Kinetoplast DNA Assessment During Treatment of Mucosal Leishmaniasis as a Potential Biomarker of Outcome: A Pilot Study. Am J Trop Med Hyg 2015; 94:107-13. [PMID: 26483122 DOI: 10.4269/ajtmh.15-0514] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 08/31/2015] [Indexed: 11/07/2022] Open
Abstract
Mucosal leishmaniasis (ML) is a disfiguring manifestation of Leishmania (Viannia) infection. We evaluated parasite load (PL) over time as a potential biomarker of treatment outcome in ML. PL was assessed with kinetoplast DNA quantitative real-time polymerase chain reaction (kDNA-qPCR) at enrollment, days 14 and 21-28 of therapy and 3, 6, 12-18, and 18-24 months after treatment of ML and correlated to demographic, clinical, and parasitologic factors. Forty-four patients were enrolled: 30 men and 14 women. Enrollment PL differed significantly by causative species (P < 0.001), and was higher in patients with severe ML (nasal and laryngeal involvement) compared with those with only isolated nasal involvement (median = 1,285 versus 51.5 parasites/μg tissue DNA; P = 0.005). Two patterns of PL emerged: pattern 1 (N = 23) was characterized by a sequential decline in PL during and after therapy until kDNA was undetectable. Pattern 2 (N = 18) was characterized by clearance of detectable kDNA during treatment, followed by an increased PL thereafter. All patients who failed treatment (N = 4) demonstrated pattern 1. Leishmania (Viannia) braziliensis was overrepresented among those with pattern 2 (P = 0.019). PL can be quantified by cytology brush qPCR during and after treatment in ML. We demonstrate that treatment failure was associated with undetectable PL, and L. (V.) braziliensis infection was overrepresented in those with rebounding PL.
Collapse
Affiliation(s)
- Marlene Jara
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Braulio Mark Valencia
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Vanessa Adaui
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Milena Alba
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Rachel Lau
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Jorge Arevalo
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| | - Andrea K Boggild
- Instituto de Medicina Tropical "Alexander von Humboldt," Universidad Peruana Cayetano Heredia, Lima, Peru; Public Health Ontario Laboratories, Public Health Ontario, Toronto, Canada; Department of Medicine, University of Toronto, Canada; Tropical Disease Unit, University Health Network Toronto General Hospital, Toronto, Canada
| |
Collapse
|
97
|
McConville MJ, Saunders EC, Kloehn J, Dagley MJ. Leishmania carbon metabolism in the macrophage phagolysosome- feast or famine? F1000Res 2015; 4:938. [PMID: 26594352 PMCID: PMC4648189 DOI: 10.12688/f1000research.6724.1] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
A number of medically important microbial pathogens target and proliferate within macrophages and other phagocytic cells in their mammalian hosts. While the majority of these pathogens replicate within the host cell cytosol or non-hydrolytic vacuolar compartments, a few, including protists belonging to the genus
Leishmania, proliferate long-term within mature lysosome compartments. How these parasites achieve this feat remains poorly defined. In this review, we highlight recent studies that suggest that
Leishmania virulence is intimately linked to programmed changes in the growth rate and carbon metabolism of the obligate intra-macrophage stages. We propose that activation of a slow growth and a stringent metabolic response confers resistance to multiple stresses (oxidative, temperature, pH), as well as both nutrient limitation and nutrient excess within this niche. These studies highlight the importance of metabolic processes as key virulence determinants in
Leishmania.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Eleanor C Saunders
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Joachim Kloehn
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| | - Michael J Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Flemington Rd, Parkville, 3010, Australia
| |
Collapse
|
98
|
Westrop GD, Williams RAM, Wang L, Zhang T, Watson DG, Silva AM, Coombs GH. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism. PLoS One 2015; 10:e0136891. [PMID: 26368322 PMCID: PMC4569581 DOI: 10.1371/journal.pone.0136891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/09/2015] [Indexed: 01/09/2023] Open
Abstract
Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.
Collapse
Affiliation(s)
- Gareth D. Westrop
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Roderick A. M. Williams
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Institute of Biomedical and Environmental Health Research, University of the West of Scotland, Paisley, United Kingdom
| | - Lijie Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Tong Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - David G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Ana Marta Silva
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Graham H. Coombs
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
99
|
Naderer T, Heng J, Saunders EC, Kloehn J, Rupasinghe TW, Brown TJ, McConville MJ. Intracellular Survival of Leishmania major Depends on Uptake and Degradation of Extracellular Matrix Glycosaminoglycans by Macrophages. PLoS Pathog 2015; 11:e1005136. [PMID: 26334531 PMCID: PMC4559419 DOI: 10.1371/journal.ppat.1005136] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023] Open
Abstract
Leishmania parasites replicate within the phagolysosome compartment of mammalian macrophages. Although Leishmania depend on sugars as a major carbon source during infections, the nutrient composition of the phagolysosome remains poorly described. To determine the origin of the sugar carbon source in macrophage phagolysosomes, we have generated a N-acetylglucosamine acetyltransferase (GNAT) deficient Leishmania major mutant (∆gnat) that is auxotrophic for the amino sugar, N-acetylglucosamine (GlcNAc). This mutant was unable to grow or survive in ex vivo infected macrophages even when macrophages were cultivated in presence of exogenous GlcNAc. In contrast, the L. major ∆gnat mutant induced normal skin lesions in mice, suggesting that these parasites have access to GlcNAc in tissue macrophages. Intracellular growth of the mutant in ex vivo infected macrophages was restored by supplementation of the macrophage medium with hyaluronan, a GlcNAc-rich extracellular matrix glycosaminoglycan. Hyaluronan is present and constitutively turned-over in Leishmania-induced skin lesions and is efficiently internalized into Leishmania containing phagolysosomes. These findings suggest that the constitutive internalization and degradation of host glycosaminoglycans by macrophages provides Leishmania with essential carbon sources, creating a uniquely favorable niche for these parasites.
Collapse
Affiliation(s)
- Thomas Naderer
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Joanne Heng
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Eleanor C. Saunders
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Joachim Kloehn
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| | - Tracey J. Brown
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Malcolm J. McConville
- The Department of Biochemistry and Molecular Biology and the Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
100
|
Dagley MJ, Saunders EC, Simpson KJ, McConville MJ. High-content assay for measuring intracellular growth of Leishmania in human macrophages. Assay Drug Dev Technol 2015; 13:389-401. [PMID: 26247370 DOI: 10.1089/adt.2015.652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leishmania species are sandfly-transmitted protozoan parasites that cause a spectrum of diseases, ranging from localized skin lesions to fatal visceral disease, in more than 12 million people worldwide. These parasites primarily target macrophages in their mammalian hosts and proliferate as non-motile amastigotes in the phagolysosomal compartment of these cells. High-throughput screens for measuring Leishmania growth within this intracellular niche are needed to identify host and parasite factors that are required for virulence and to identify new drug candidates. Here we describe the development of a new high-content imaging method for quantifying the intracellular growth of Leishmania mexicana parasites in THP-1 macrophages. Wild-type parasites were pre-stained with the fluorescent dye CellTracker(™) Orange CMRA and used to infect THP-1 macrophages in 384-well plates. Infected and uninfected macrophages were subsequently stained with CellTracker Green CMFDA, allowing accurate quantitation of the number of parasites per macrophage using separate detector channels. We validated this method for use in high-content drug screening by examining the dose dependence of known anti-leishmanial drugs on intracellular growth. Unlike previous protocols, this method does not require the generation of transgenic fluorescent or bioluminescent parasite lines and can be readily adapted for screening different Leishmania species, strains, or mutant lines in a wide range of phagocytic host cell types.
Collapse
Affiliation(s)
- Michael J Dagley
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| | - Eleanor C Saunders
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| | - Kaylene J Simpson
- 2 Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre , East Melbourne, Australia .,3 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia
| | - Malcolm J McConville
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| |
Collapse
|