51
|
Thompson H, Barker D, Camand O, Erskine L. Slits contribute to the guidance of retinal ganglion cell axons in the mammalian optic tract. Dev Biol 2006; 296:476-84. [PMID: 16828733 DOI: 10.1016/j.ydbio.2006.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 06/08/2006] [Accepted: 06/10/2006] [Indexed: 02/05/2023]
Abstract
RGC axons extend in the optic tracts in a manner that correlates with the expression in the hypothalamus and epithalamus of a soluble factor inhibitory to RGC axon outgrowth. Additionally, although the RGC axons extend adjacent to the telencephalon, they do not normally grow into this tissue. Here, we show that slit1 and slit2, known chemorepellents for RGC axons expressed in specific regions of the diencephalon and telencephalon, help regulate optic tract development. In mice lacking slit1 and slit2, a subset of RGC axons extend into the telencephalon and grow along the pial surface but not more deeply into this tissue. Surprisingly, distinct guidance errors occur in the telencephalon of slit1 -/-; slit2 +/- and slit1/2 -/- embryos, suggesting that the precise level of Slits is critical for determining the path followed by individual axons. In mice lacking both slit1 and slit2, a subset of RGC axons also project aberrantly into the epithalamus, pineal and across the dorsal midline. However, many axons reach their primary target, the superior colliculus. This demonstrates that Slits play an important role in directing the guidance of post-crossing RGC axons within the optic tracts but are not required for target innervation.
Collapse
Affiliation(s)
- Hannah Thompson
- Divisions of Visual Science and Molecular Genetics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK
| | | | | | | |
Collapse
|
52
|
Carvalho RF, Beutler M, Marler KJM, Knöll B, Becker-Barroso E, Heintzmann R, Ng T, Drescher U. Silencing of EphA3 through a cis interaction with ephrinA5. Nat Neurosci 2006; 9:322-30. [PMID: 16491080 DOI: 10.1038/nn1655] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 01/27/2006] [Indexed: 11/09/2022]
Abstract
EphAs and ephrinAs are expressed in multiple areas of the developing brain in overlapping countergradients, notably in the retina and tectum. Here they are involved in targeting retinal axons to their correct topographic position in the tectum. We have used truncated versions of EphA3, single-amino acid point mutants of ephrinA5 and fluorescence resonance energy transfer technology to uncover a cis interaction between EphA3 and ephrinA5 that is independent of the established ligand-binding domain of EphA3. This cis interaction abolishes the induction of tyrosine phosphorylation of EphA3 and results in a loss of sensitivity of retinal axons to ephrinAs in trans. Our data suggest that formation of this complex transforms the uniform expression of EphAs in the nasal part of the retina into a gradient of functional EphAs and has a key role in controlling retinotectal mapping.
Collapse
Affiliation(s)
- Ricardo F Carvalho
- Medical Research Council, Centre for Developmental Neurobiology, London SE1 1UL, UK
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Piper M, Anderson R, Dwivedy A, Weinl C, van Horck F, Leung KM, Cogill E, Holt C. Signaling mechanisms underlying Slit2-induced collapse of Xenopus retinal growth cones. Neuron 2006; 49:215-28. [PMID: 16423696 PMCID: PMC3689199 DOI: 10.1016/j.neuron.2005.12.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2005] [Revised: 09/23/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Slits mediate multiple axon guidance decisions, but the mechanisms underlying the responses of growth cones to these cues remain poorly defined. We show here that collapse induced by Slit2-conditioned medium (Slit2-CM) in Xenopus retinal growth cones requires local protein synthesis (PS) and endocytosis. Slit2-CM elicits rapid activation of translation regulators and MAP kinases in growth cones, and inhibition of MAPKs or disruption of heparan sulfate blocks Slit2-CM-induced PS and repulsion. Interestingly, Slit2-CM causes a fast PS-dependent decrease in cytoskeletal F-actin concomitant with a PS-dependent increase in the actin-depolymerizing protein cofilin. Our findings reveal an unexpected link between Slit2 and cofilin in growth cones and suggest that local translation of actin regulatory proteins contributes to repulsion.
Collapse
Affiliation(s)
- Michael Piper
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Richard Anderson
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Asha Dwivedy
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Christine Weinl
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Francis van Horck
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Kin Mei Leung
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Emily Cogill
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| | - Christine Holt
- Department of Physiology, Development and Neuroscience University of Cambridge Downing Street Cambridge United Kingdom
| |
Collapse
|
54
|
Abstract
At the vertebrate optic chiasm there is major change in fibre order and, in many animals, a separation of fibres destined for different hemispheres of the brain. However, the structure of this region is not uniform among all species but rather shows marked variations both in terms of its gross architecture and the pathways taken by different fibres. There also are striking differences in the developmental mechanisms sculpting this region even between closely related animals. In spite of this, recent studies have provided strong evidence for a remarkable degree of conservation in the molecular nature of the guidance signals and regulatory genes driving chiasmatic development. Here differences and similarities in chiasmatic organisation and development between separate groups of animals will be reviewed. While it may not be possible to ascribe a single set of factors that are universal components of the vertebrate chiasm, there are both strikingly similar elements as well as diverse features to the development, organisation and architecture of this region. This review aims to highlight key issues in the organisation and development of the vertebrate optic chiasm with a focus on comparing and contrasting the data that has been gleaned to date from different vertebrate groups.
Collapse
Affiliation(s)
- Glen Jeffery
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK.
| | | |
Collapse
|
55
|
Inatani M. Molecular mechanisms of optic axon guidance. Naturwissenschaften 2005; 92:549-61. [PMID: 16220285 DOI: 10.1007/s00114-005-0042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Accepted: 08/03/2005] [Indexed: 01/17/2023]
Abstract
Axon guidance is one of the critical processes during vertebrate central nervous system (CNS) development. The optic nerve, which contains the axons of retinal ganglion cells, has been used as a powerful model to elucidate some of the mechanisms underlying axon guidance because it is easily manipulated experimentally, and its function is well understood. Recent molecular biology studies have revealed that numerous guidance molecules control the development of the visual pathway. This review introduces the molecular mechanisms involved in each critical step during optic axon guidance. Axonal projections to the optic disc are thought to depend on adhesion molecules and inhibitory extracellular matrices such as chondroitin sulfate. The formation of the head of the optic nerve and the optic chiasm require ligand-receptor interactions between netrin-1 and the deleted in colorectal cancer receptor, and Slit proteins and Robo receptors, respectively. The gradient distributions of ephrin ligands and Eph receptors are essential for correct ipsilateral projections at the optic chiasm and the topographic mapping of axons in the superior colliculus/optic tectum. The precise gradient is regulated by transcription factors determining the retinal dorso-ventral and nasal-temporal polarities. Moreover, the axon guidance activities by Slit and semaphorin 5A require the existence of heparan sulfate, which binds to numerous guidance molecules. Recent discoveries about the molecular mechanisms underlying optic nerve guidance will facilitate progress in CNS developmental biology and axon-regeneration therapy.
Collapse
Affiliation(s)
- Masaru Inatani
- Department of Ophthalmology and Visual Science, Kumamoto University Graduate School of Medical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|
56
|
Jia L, Cheng L, Raper J. Slit/Robo signaling is necessary to confine early neural crest cells to the ventral migratory pathway in the trunk. Dev Biol 2005; 282:411-21. [PMID: 15950606 DOI: 10.1016/j.ydbio.2005.03.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Revised: 03/09/2005] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
Neural crest cells migrate along two discrete pathways within the trunk of developing embryos. In the chick, early migrating crest cells are confined to a ventral pathway medial to the dermamyotome while later cells migrate on a dorsal pathway lateral to the dermamyotome. Here we show that Slits are expressed in the dermamyotome, that early migrating crest cells express the Slit receptors Robo 1 and Robo 2, that Slit2 repels migrating crest cells in an in vitro assay, and that the misexpression of a dominant-negative Robo1 receptor induces a significant fraction of early crest cells to migrate ectopically in the dorso-lateral pathway. These findings suggest that Slits, most likely those expressed in the dermamyotome, help to confine the migration of early crest cells to the ventral pathway.
Collapse
Affiliation(s)
- Li Jia
- Department of Neuroscience, University of Pennsylvania School of Medicine, 1115, BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
57
|
Mambetisaeva ET, Andrews W, Camurri L, Annan A, Sundaresan V. Robo family of proteins exhibit differential expression in mouse spinal cord and Robo-Slit interaction is required for midline crossing in vertebrate spinal cord. Dev Dyn 2005; 233:41-51. [PMID: 15768400 DOI: 10.1002/dvdy.20324] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ventral midline of the central nervous system is an important intermediate target where growing commissural axons either cross and project contralaterally or remain on the same side of the body. New studies on mice and humans show that this decision by commissural axons is largely dependent on Slits, extracellular matrix proteins that are widely expressed in the midline of the nervous system, and their receptors, Robos (Long et al. [2004] Neuron 42:213-223; Sabatier et al. [2004] Cell 117:157-169; Jen et al. [2004] Science 304:1509-1513). Here, we show that the Robo family proteins Robo1 and Rig-1 exhibit differential expression patterns on commissural axons as they approach, cross, and leave the midline of the developing mouse spinal cord and demonstrate that Robo1 and Robo2 bind Slit1 and Slit2, but Rig-1 does not. In addition, we show that cultured chick commissural axons are repelled by a source of Slit protein, and the soluble Robo-Fc proteins are capable of neutralizing this repulsion. Finally, we exploit the large size and accessibility of the early chick embryo to analyze the function of Slit/Robo signaling in midline commissural axon guidance, and we demonstrate that the in vivo perturbation of Robo-Slit interaction at the floor plate causes consistent guidance defects of commissural axons during midline crossing. These findings demonstrate the evolutionarily conserved role for Robo-Slit interaction in the control of midline crossing axons in vertebrates.
Collapse
Affiliation(s)
- Elvira T Mambetisaeva
- MRC Centre for Developmental Neurobiology, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
58
|
Masuda T, Shiga T. Chemorepulsion and cell adhesion molecules in patterning initial trajectories of sensory axons. Neurosci Res 2005; 51:337-47. [PMID: 15740797 DOI: 10.1016/j.neures.2005.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Revised: 01/06/2005] [Accepted: 01/07/2005] [Indexed: 02/02/2023]
Abstract
Research in the past decade has advanced our knowledge of the key role that diffusible cues play in axonal guidance during development. In higher vertebrates, dorsal root ganglion (DRG) neurons extend axons centrally to the spinal cord through the dorsal root entry zone and peripherally to muscle and skin targets. In this review, we focus on the role of proximate "non-target" tissues in the initial stages of DRG axonal growth. In the early stages of development, "non-target" tissues including the dermamyotome, the notochord, and the ventral spinal cord exert chemorepulsion for DRG axons. We describe how semaphorin 3A, chondroitin sulfate proteogrycans, and cell adhesion molecules participate in chemorepulsion and the way they provide spatio-temporal specificity to chemorepulsion. Axon chemorepulsion may act not only to shape DRG axonal trajectories but it also affects a variety of other axonal projections in the peripheral and central nervous system.
Collapse
Affiliation(s)
- Tomoyuki Masuda
- Department of Anatomy, Fukushima Medical University, School of Medicine, Fukushima 960-1295, Japan
| | | |
Collapse
|
59
|
Gaillard S, Nasarre C, Gonthier B, Bagnard D. Mécanismes cellulaires et moléculaires de la croissance axonale. Rev Neurol (Paris) 2005; 161:153-72. [PMID: 15798515 DOI: 10.1016/s0035-3787(05)85019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION During embryonic and post-natal development, numerous axonal connections are formed establishing a functional nervous system. Knowledge of the underlying molecular and cellular mechanisms controlling this phenomenon is improving. STATE OF THE ART In this review, we present the general principles of axon guidance together with the major families of guidance signals. This includes the tyrosine kinase receptors Eph and their ligands Ephrins, the netrins, the semaphorins, the slits and other major components of the extracellular matrix. These types of guidance signals share common functional properties leading to actin cytoskeleton remodelling. The direct or indirect interactions between the receptors of these guidance cues and actin modulators is the final step of the signalling cascade constituting the fundamental mechanism defining the orientation and extension of the axonal growth cone. These factors are involved in the formation of many, if not all, axonal projections for which they act as repulsive (inhibitory) or attractive (promoting) signals. PERSPECTIVES the knowledge of these mechanisms is particularly interesting since the inhibition of axonal outgrowth is considered to be one of the major obstacles to nerve regeneration in the central nervous system. Indeed, most of the guidance signals expressed during brain development are up-regulated in lesion sites where they contribute to the lack of nerve re-growth. Here, we present the nature of the mechanical barrier, the so called glial scar, and we describe the major inhibitory molecules preventing axonal extension. CONCLUSION the comprehension of the molecular mechanisms involved in axon growth and guidance represents a major advance towards the definition of novel therapeutic strategies improving nerve regeneration. The path to the clinical application of these molecular factors remains long. Nevertheless, the next decade will undoubtedly provide challenging data that will modify the current therapeutic approaches.
Collapse
Affiliation(s)
- S Gaillard
- INSERM U575, Physiopathologie du Système Nerveux, Groupe de Physiologie Moléculaire de la Régénération Nerveuse, 67084 Strasbourg
| | | | | | | |
Collapse
|
60
|
Abstract
The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems.
Collapse
Affiliation(s)
- Céline Plachez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
61
|
Lee JS, Chien CB. When sugars guide axons: insights from heparan sulphate proteoglycan mutants. Nat Rev Genet 2004; 5:923-35. [PMID: 15573124 DOI: 10.1038/nrg1490] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although there have previously been hints that heparan sulphate proteoglycans (HSPGs) are important for axon guidance, as they are for many other biological processes, there has been little in vivo evidence for interaction with known axon-guidance pathways. Genetic analyses of fly, mouse, nematode and zebrafish mutants now confirm the role of HSPGs in axon guidance and are beginning to show that they might have a key role in modulating the action of axon-guidance ligands and receptors.
Collapse
Affiliation(s)
- Jeong-Soo Lee
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, 20 North 1900 East, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
62
|
Liu J, Zhang L, Wang D, Shen H, Jiang M, Mei P, Hayden PS, Sedor JR, Hu H. Congenital diaphragmatic hernia, kidney agenesis and cardiac defects associated with Slit3-deficiency in mice. Mech Dev 2004; 120:1059-70. [PMID: 14550534 DOI: 10.1016/s0925-4773(03)00161-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slit3 along with Slit1 and Slit2 comprise the Slit family of proteins. The latter two proteins are known to be involved in axon guidance and cell migration during animal development. However, little is know about the functions of Slit3. We created a Slit3-deficient mouse model from an OmniBank ES cell line with a Slit3 allele trapped by insertional mutagenesis to analyze the in vivo functions of this protein. In this model, congenital diaphragmatic hernia is the most obvious phenotype. Herniation was found to be caused by a defective central tendon (CT) of the diaphragm that remained fused with the liver. Electron microscopic analyses of the defective CT revealed disorganized collagen fibrils that failed to form tight collagen bundles. The hearts of Slit3-deficient mice have an enlarged right ventricle. In addition, 20% of homozygous mice also showed a range of kidney defects that include unilateral or bilateral agenesis of the kidney and ureter, or varying degrees of renal hypoplasia. Thus, we concluded that Slit3 is involved in the development of multiple organ systems that include the diaphragm and the kidney. Slit3-deficient mice represent a genetic animal model for physiological and pathological studies of congenital diaphragmatic hernia.
Collapse
Affiliation(s)
- Jianmin Liu
- Rammelkamp Center for Education and Research, MetroHealth Medical Center, Cleveland, OH 44109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full-length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
64
|
Miyashita T, Yeo SY, Hirate Y, Segawa H, Wada H, Little MH, Yamada T, Takahashi N, Okamoto H. PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development 2004; 131:3705-15. [PMID: 15229183 DOI: 10.1242/dev.01228] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.
Collapse
Affiliation(s)
- Toshio Miyashita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Wong EV, Kerner JA, Jay DG. Convergent and divergent signaling mechanisms of growth cone collapse by ephrinA5 and slit2. ACTA ACUST UNITED AC 2004; 59:66-81. [PMID: 15007828 DOI: 10.1002/neu.10342] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
EphrinA5 and slit2 are important repulsive guidance cues in the developing retinotectal system. Both ephrinA5 and slit2 cause growth cone collapse of embryonic chick retinal ganglion growth cones cultured on EHS laminin. However, the signaling mechanism that these guidance cues initiate to cause collapse remains unclear. Here we provide evidence that while both ephrinA5 and slit2 cause collapse in morphologically similar ways, the intracellular signaling leading to the collapse involves shared as well as divergent paths. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or src family kinases prevented both ephrinA5-mediated and slit2-mediated growth cone collapse. In contrast, the inhibition of nonclassical protein kinase C (PKC) isoforms blocked ephrinA5-mediated collapse, but did not interfere with slit2-mediated collapse. PI3K was copurified by affinity chromatography with either the ephrinA5 receptors (ephAs) or the slit2 receptor (roundabout). Colocalization studies have also shown that src family kinase members are recruited to the ephA and roundabout receptors upon activation. In contrast, PKC members are recruited to the ephA receptors, but not to the roundabout receptors, upon activation. This demonstrates distinct points of convergence and divergence between the two signaling molecules, ephrinA5 and slit2, and their repulsive guidance in the chick retinotectal system.
Collapse
Affiliation(s)
- Eric V Wong
- Department of Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
66
|
Koeberle PD, Bähr M. Growth and guidance cues for regenerating axons: where have they gone? ACTA ACUST UNITED AC 2004; 59:162-80. [PMID: 15007834 DOI: 10.1002/neu.10345] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Both attractive and repellent cues are required to guide developing axons to their targets in the central nervous system. Critical guidance molecules in the developing brain include the semaphorins, netrins, slits, and ephrins. Current research indicates that many of these molecules and their receptors are expressed in the adult central nervous system (CNS), and that injury can alter the levels of these ligands/receptors. Recent studies have begun the process of elucidating the functions of these receptors in adult mammals, and the effects that they have on the regeneration of adult neurons. This review addresses our current knowledge with respect to the response of adult CNS neurons to axonal injury, interventions for enhancing the survival and regeneration of injured neurons, and the expression of developmental axon guidance cues in the injured mature CNS, with specific focus on the retino-tectal projection.
Collapse
Affiliation(s)
- Paulo D Koeberle
- Department of Neurology, Faculty of Medicine, University of Göttingen, Germany
| | | |
Collapse
|
67
|
Oster SF, Deiner M, Birgbauer E, Sretavan DW. Ganglion cell axon pathfinding in the retina and optic nerve. Semin Cell Dev Biol 2004; 15:125-36. [PMID: 15036215 DOI: 10.1016/j.semcdb.2003.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The eye is a highly specialized structure that gathers and converts light information into neuronal signals. These signals are relayed along axons of retinal ganglion cells (RGCs) to visual centers in the brain for processing. In this review, we discuss the pathfinding tasks RGC axons face during development and the molecular mechanisms known to be involved. The data at hand support the presence of multiple axon guidance mechanisms concentrically organized around the optic nerve head, each of which appears to involve both growth-promoting and growth-inhibitory guidance molecules. Together, these strategies ensure proper optic nerve formation and establish the anatomical pathway for faithful transmission of information between the retina and the brain.
Collapse
Affiliation(s)
- S F Oster
- Department of Ophthalmology, Program in Neuroscience, University of California San Francisco, K107, Beckman Vision Sciences Bldg, 10 Kirkham St, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
68
|
Abstract
The mouse optic chiasm is a model for axon guidance at the midline and for analyzing how binocular vision is patterned. Recent work has identified several molecular players that influence the binary decision that retinal ganglion cells make at the optic chiasm, to either cross or avoid the midline. An ephrin-B localized to the midline, together with an EphB receptor and a zinc-finger transcription factor expressed exclusively in the ventrotemporal retina where ipsilaterally projecting retinal ganglion cells are located, comprise a molecular program for the uncrossed pathway. In addition, the mechanisms for axon divergence in the optic chiasm are discussed in the context of other popular models for midline axon guidance.
Collapse
Affiliation(s)
- Scott E Williams
- Department of Pathology, Center for Neurobiology and Behavior, Columbia University, College of Physicians and Surgeons, 630 W. 168(th) Street, New York, NY 10032, USA
| | | | | |
Collapse
|
69
|
Sundaresan V, Mambetisaeva E, Andrews W, Annan A, Knöll B, Tear G, Bannister L. Dynamic expression patterns of Robo (Robo1 and Robo2) in the developing murine central nervous system. J Comp Neurol 2004; 468:467-81. [PMID: 14689480 DOI: 10.1002/cne.10984] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The Robo family of molecules is important for axon guidance across the midline during central nervous system (CNS) development in invertebrates and vertebrates. Here we describe the patterns of Robo protein expression in the developing mouse CNS from embryonic day (E) 9.5 to postnatal day (P) 4, as determined by immunohistochemical labeling with an antibody (S3) raised against a common epitope present in the Robo ectodomain of Robos 1 and 2. In the spinal cord, midline-crossing axons are initially (at E11) S3-positive. At later times, midline Robo expression disappears, but is strongly upregulated in longitudinally running postcrossing axons. It is also strongly expressed in noncrossing longitudinal axons. Differential expression of Robo along axons was also found in axons cultured from E14 spinal cord. These findings resemble those from the Drosophila ventral nerve cord and indicate that in vertebrates a low level of Robo expression occurs in the initial crossing of the midline, while a high level of expression in the postcrossing fibers prevents recrossing. Likewise, Robo-positive ipsilateral axons are prevented from crossing at all. However, in the brain different rules appear to apply. Most commissural axons including those of the corpus callosum are strongly S3-positive along their whole length from their time of formation to postnatal life, but some have more complex age-dependent expression patterns. S3 labeling of the optic pathway is also complex, being initially strong in the retinal ganglion cells, optic tract, and chiasma but thereafter being lost except in a proportion of postchiasmal axons. The corticospinal tract is strongly positive throughout its course at all stages examined, including its decussation, formed at about P2 in the central part of the medulla oblongata.
Collapse
Affiliation(s)
- Vasi Sundaresan
- Medical Research Council Centre for Developmental Neurobiology, Guys Hospital Campus, Kings College London, London Bridge, SE1 1UL, UK.
| | | | | | | | | | | | | |
Collapse
|
70
|
Cronin CA, Ryan AB, Talley EM, Scrable H. Tyrosinase expression during neuroblast divisions affects later pathfinding by retinal ganglion cells. J Neurosci 2003; 23:11692-7. [PMID: 14684871 PMCID: PMC6740940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Occulocutaneous albinism is caused by mutations in the gene encoding the enzyme tyrosinase. Individuals with this disorder are predisposed to visual system deficits. We determined the critical period during development when tyrosinase expression is essential for the appropriate pathfinding of ganglion cell axons from the retina to the dorsal lateral geniculate nucleus. We used a line of mice with a Tyrosinase transgene, the expression of which is regulatable with the lac operator-repressor system, to restrict tyrosinase activity to discrete periods of embryogenesis. When tyrosinase was expressed throughout the period of neuroblast divisions that produce the ipsilaterally projecting ganglion cells, axonal projections innervated the same volume of the ipsilateral dorsal lateral geniculate nucleus of the thalamus as in normal mice. If tyrosinase expression ceased before the end of neuroblast divisions, or was not initiated until after they had begun, the degree of ipsilateral innervation was smaller, as in albino mice. Tyrosinase expression was not required during the entire period of pathfinding itself or during final maturation of the retinogeniculate pathway. Thus, tyrosinase appears to set up a signal early in visual system development that determines the pathway taken later by ganglion cell axons.
Collapse
Affiliation(s)
- Carolyn A Cronin
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia 22908-1392, USA
| | | | | | | |
Collapse
|
71
|
Knöll B, Schmidt H, Andrews W, Guthrie S, Pini A, Sundaresan V, Drescher U. On the topographic targeting of basal vomeronasal axons through Slit-mediated chemorepulsion. Development 2003; 130:5073-82. [PMID: 12954717 DOI: 10.1242/dev.00726] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vomeronasal projection conveys information provided by pheromones and detected by neurones in the vomeronasal organ (VNO) to the accessory olfactory bulb (AOB) and thence to other regions of the brain such as the amygdala. The VNO-AOB projection is topographically organised such that axons from apical and basal parts of the VNO terminate in the anterior and posterior AOB respectively. We provide evidence that the Slit family of axon guidance molecules and their Robo receptors contribute to the topographic targeting of basal vomeronasal axons. Robo receptor expression is confined largely to basal VNO axons, while Slits are differentially expressed in the AOB with a higher concentration in the anterior part, which basal axons do not invade. Immunohistochemistry using a Robo-specific antibody reveals a zone-specific targeting of VNO axons in the AOB well before cell bodies of these neurones in the VNO acquire their final zonal position. In vitro assays show that Slit1-Slit3 chemorepel VNO axons, suggesting that basal axons are guided to the posterior AOB due to chemorepulsive activity of Slits in the anterior AOB. These data in combination with recently obtained other data suggest a model for the topographic targeting in the vomeronasal projection where ephrin-As and neuropilins guide apical VNO axons, while Robo/Slit interactions are important components in the targeting of basal VNO axons.
Collapse
Affiliation(s)
- Bernd Knöll
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Hospital Campus, London SE1 1UL, UK
| | | | | | | | | | | | | |
Collapse
|
72
|
Shu T, Puche AC, Richards LJ. Development of midline glial populations at the corticoseptal boundary. JOURNAL OF NEUROBIOLOGY 2003; 57:81-94. [PMID: 12973830 DOI: 10.1002/neu.10252] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Three midline glial populations are found at the corticoseptal boundary: the glial wedge (GW), glia within the indusium griseum (IGG), and the midline zipper glia (MG). Two of these glial populations are involved in axonal guidance at the cortical midline, specifically development of the corpus callosum. Here we investigate the phenotypic and molecular characteristics of each population and determine whether they are generated at the same developmental stage. We find that the GW is derived from the radial glial scaffold of the cortex. GW cells initially have long radial processes that extend from the ventricular surface to the pial surface, but by E15 loose their pial attachment and extend only part of the way to the pial surface. Later in development the radial morphology of cells within the GW is replaced by multipolar astrocytes, providing supportive evidence that radial glia can transform into astrocytes. IGG and MG do not have a radial morphology and do not label with the radial glial markers, Nestin and RC2. We conclude that the GW and IGG have different morphological and molecular characteristics and are born at different stages of development. IGG and MG have many phenotypic and molecular characteristics in common, indicating that they may represent a common population of glia that becomes spatially distinct by the formation of the corpus callosum.
Collapse
Affiliation(s)
- Tianzhi Shu
- Department of Anatomy and Neurobiology, and the Program in Neuroscience, School of Medicine, University of Maryland, Baltimore, 685 West Baltimore Street, Baltimore, Maryland 21201, USA
| | | | | |
Collapse
|
73
|
Abstract
At the optic chiasm, axons from either eye meet and decide whether to cross contralaterally or turn back ipsilaterally. Here, the guidance ligand Slit and its receptor Robo control not whether axons cross (as in other midline decisions), but where the chiasm forms. Whether axons cross is instead controlled by the transcription factor Zic2 and the guidance receptor EphB1, as shown by two papers in the current issues of Neuron and Cell (Herrera et al. and Williams et al.). Surprisingly, this mechanism is conserved evolutionarily from frogs to mammals.
Collapse
Affiliation(s)
- Kendall Rasband
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
74
|
Park KW, Morrison CM, Sorensen LK, Jones CA, Rao Y, Chien CB, Wu JY, Urness LD, Li DY. Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 2003; 261:251-67. [PMID: 12941633 DOI: 10.1016/s0012-1606(03)00258-6] [Citation(s) in RCA: 254] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.
Collapse
MESH Headings
- Activin Receptors, Type I/deficiency
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/physiology
- Activin Receptors, Type II
- Amino Acid Sequence
- Animals
- Cell Line
- Cell Movement
- Chromosome Mapping
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Humans
- In Situ Hybridization
- Intercellular Signaling Peptides and Proteins
- Ligands
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nerve Tissue Proteins/metabolism
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Sequence Homology, Amino Acid
- Signal Transduction
- Zebrafish
- Roundabout Proteins
Collapse
Affiliation(s)
- Kye Won Park
- School of Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
De Bellard ME, Rao Y, Bronner-Fraser M. Dual function of Slit2 in repulsion and enhanced migration of trunk, but not vagal, neural crest cells. J Cell Biol 2003; 162:269-79. [PMID: 12876276 PMCID: PMC2172792 DOI: 10.1083/jcb.200301041] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2003] [Revised: 06/11/2003] [Accepted: 06/16/2003] [Indexed: 01/07/2023] Open
Abstract
Neural crest precursors to the autonomic nervous system form different derivatives depending upon their axial level of origin; for example, vagal, but not trunk, neural crest cells form the enteric ganglia of the gut. Here, we show that Slit2 is expressed at the entrance of the gut, which is selectively invaded by vagal, but not trunk, neural crest. Accordingly, only trunk neural crest cells express Robo receptors. In vivo and in vitro experiments demonstrate that trunk, not vagal, crest cells avoid cells or cell membranes expressing Slit2, thereby contributing to the differential ability of neural crest populations to invade and innervate the gut. Conversely, exposure to soluble Slit2 significantly increases the distance traversed by trunk neural crest cells. These results suggest that Slit2 can act bifunctionally, both repulsing and stimulating the motility of trunk neural crest cells.
Collapse
|
76
|
Chalasani SH, Baribaud F, Coughlan CM, Sunshine MJ, Lee VMY, Doms RW, Littman DR, Raper JA. The chemokine stromal cell-derived factor-1 promotes the survival of embryonic retinal ganglion cells. J Neurosci 2003; 23:4601-12. [PMID: 12805300 PMCID: PMC6740796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The chemokine receptor CXCR4 is expressed in the embryonic and mature CNS, yet its normal physiological function in neurons remains obscure. Here, we show that its cognate chemokine, stromal cell-derived factor-1 (SDF-1), promotes the survival of cultured embryonic retinal ganglion cell neurons even in the absence of other neurotrophic factors. This survival effect is mediated primarily through a cAMP-dependent pathway that acts through protein kinase A and MAP kinase. Addition of SDF-1 to a human neuronal cell line induces phosphorylation of p44/p42 MAP kinase and GSK3beta. Mouse embryos lacking the CXCR4 receptor have a reduced number of retinal ganglion cells. The ligand of CXCR4, SDF-1, may therefore provide generalized trophic support to neurons during their development and maturation.
Collapse
Affiliation(s)
- Sreekanth H Chalasani
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Anderson CNG, Ohta K, Quick MM, Fleming A, Keynes R, Tannahill D. Molecular analysis of axon repulsion by the notochord. Development 2003; 130:1123-33. [PMID: 12571104 DOI: 10.1242/dev.00327] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During development of the amniote peripheral nervous system, the initial trajectory of primary sensory axons is determined largely by the action of axon repellents. We have shown previously that tissues flanking dorsal root ganglia, the notochord lying medially and the dermamyotomes lying laterally, are sources of secreted molecules that prevent axons from entering inappropriate territories. Although there is evidence suggesting that SEMA3A contributes to the repellent activity of the dermamyotome, the nature of the activity secreted by the notochord remains undetermined. We have employed an expression cloning strategy to search for axon repellents secreted by the notochord, and have identified SEMA3A as a candidate repellent. Moreover, using a spectrum of different axon populations to assay the notochord activity, together with neuropilin/Fc receptor reagents to block semaphorin activity in collagen gel assays, we show that SEMA3A probably contributes to notochord-mediated repulsion. Sympathetic axons that normally avoid the midline in vivo are also repelled, in part, by a semaphorin-based notochord activity. Although our results implicate semaphorin signalling in mediating repulsion by the notochord, repulsion of early dorsal root ganglion axons is only partially blocked when using neuropilin/Fc reagents. Moreover, retinal axons, which are insensitive to SEMA3A, are also repelled by the notochord. We conclude that multiple factors act in concert to guide axons in this system, and that further notochord repellents remain to be identified.
Collapse
|
78
|
Jin Z, Zhang J, Klar A, Chédotal A, Rao Y, Cepko CL, Bao ZZ. Irx4-mediated regulation of Slit1 expression contributes to the definition of early axonal paths inside the retina. Development 2003; 130:1037-48. [PMID: 12571096 DOI: 10.1242/dev.00326] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although multiple axon guidance cues have been discovered in recent years, little is known about the mechanism by which the spatiotemporal expression patterns of the axon guidance cues are regulated in vertebrates. We report that a homeobox gene Irx4 is expressed in a pattern similar to that of Slit1 in the chicken retina. Overexpression of Irx4 led to specific downregulation of Slit1 expression, whereas inhibition of Irx4 activity by a dominant negative mutant led to induction of Slit1 expression, indicating that Irx4 is a crucial regulator of Slit1 expression in the retina. In addition, by examining axonal behavior in the retinas with overexpression of Irx4 and using several in vivo assays to test the effect of Slit1, we found that Slit1 acts positively to guide the retinal axons inside the optic fiber layer (OFL). We further show that the regulation of Slit1 expression by Irx4 is important for providing intermediate targets for retinal axons during their growth within the retina.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Chalasani SH, Sabelko KA, Sunshine MJ, Littman DR, Raper JA. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J Neurosci 2003; 23:1360-71. [PMID: 12598624 PMCID: PMC6742262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Altering the concentrations of cyclic nucleotides within nerve cells can dramatically change their responses to axonal guidance cues, but the physiological signals that might induce such alterations are unknown. Here we show that the chemokine stromal cell-derived factor 1 (SDF-1) reduces the repellent activities of slit-2 on cultured retinal ganglion cell axons, of semaphorin 3A on dorsal root ganglion sensory axons, and of semaphorin 3C on sympathetic axons. This is a modulatory effect because SDF-1 has no detectable attractive or repellent effects on retinal or DRG axons by itself. This modulation is mediated through CXCR4, the receptor of SDF-1, and a pertussis toxin-sensitive G-protein-coupled signaling pathway that induces an elevation of cAMP. The spinal cords of CXCR4 mutant mice contain hyperfasciculated and aberrantly projecting axons. These results suggest that SDF-1 plays an essential role in modulating axonal responsiveness to various known guidance cues through a cyclic nucleotide-dependent signaling pathway.
Collapse
Affiliation(s)
- Sreekanth H Chalasani
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
80
|
Oster SF, Bodeker MO, He F, Sretavan DW. Invariant Sema5A inhibition serves an ensheathing function during optic nerve development. Development 2003; 130:775-84. [PMID: 12506007 DOI: 10.1242/dev.00299] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retinal axon pathfinding from the retina into the optic nerve involves the growth promoting axon guidance molecules L1, laminin and netrin 1, each of which governs axon behavior at specific regions along the retinal pathway. In identifying additional molecules regulating this process during embryonic mouse development, we found that transmembrane Semaphorin5A mRNA and protein was specifically expressed in neuroepithelial cells surrounding retinal axons at the optic disc and along the optic nerve. Given that growth cone responses to a specific guidance molecule can be altered by co-exposure to a second guidance cue, we examined whether retinal axon responses to Sema5A were modulated by other guidance signals axons encountered along the retinal pathway. In growth cone collapse, substratum choice and neurite outgrowth assays, Sema5A triggered an invariant inhibitory response in the context of L1, laminin, or netrin 1 signaling, suggesting that Sema5A inhibited retinal axons throughout their course at the optic disc and nerve. Antibody-perturbation studies in living embryo preparations showed that blocking of Sema5A function led to retinal axons straying out of the optic nerve bundle, indicating that Sema5A normally helped ensheath the retinal pathway. Thus, development of some CNS nerves requires inhibitory sheaths to maintain integrity. Furthermore, this function is accomplished using molecules such as Sema5A that exhibit conserved inhibitory responses in the presence of co-impinging signals from multiple families of guidance molecules.
Collapse
Affiliation(s)
- Stephen F Oster
- Department of Ophthalmology, Medical Scientist Training Program, University of California San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
81
|
Wichterle H, Alvarez-Dolado M, Erskine L, Alvarez-Buylla A. Permissive corridor and diffusible gradients direct medial ganglionic eminence cell migration to the neocortex. Proc Natl Acad Sci U S A 2003; 100:727-32. [PMID: 12515855 PMCID: PMC141064 DOI: 10.1073/pnas.242721899] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Young neurons born in the medial ganglionic eminence (MGE) migrate a long distance dorsally, giving rise to several types of interneurons in neocortex. The mechanisms that facilitate selective dorsal dispersion of MGE cells while restricting their movement ventrally into neighboring regions are not known. Using microtransplantation into fetal brain slices and onto dissociated substrate cells on floating filters (spot assay), we demonstrate that ventral forebrain regions neighboring the MGE are nonpermissive for MGE cell migration, whereas the dorsal regions leading to the neocortex are increasingly permissive. Spot assay experiments using filters with different pore sizes indicate that the permissive factors are not diffusible. We also show that MGE cells respond to chemoattractive and inhibitory factors diffusing from the neocortex and ventromedial forebrain, respectively. We propose that the final extent and regional specificity of MGE cell dispersion is largely dictated by contact guidance through a selectively permissive environment, flanked by nonpermissive tissues. In addition, we propose that chemotactic guidance cues superimposed over the permissive corridor facilitate efficient dorsal migration of MGE cells.
Collapse
|
82
|
Abstract
First isolated in the fly and now characterised in vertebrates, the Slit proteins have emerged as pivotal components controlling the guidance of axonal growth cones and the directional migration of neuronal precursors. As well as extensive expression during development of the central nervous system (CNS), the Slit proteins exhibit a striking array of expression sites in non-neuronal tissues, including the urogenital system, limb primordia and developing eye. Zebrafish Slit has been shown to mediate mesodermal migration during gastrulation, while Drosophila slit guides the migration of mesodermal cells during myogenesis. This suggests that the actions of these secreted molecules are not simply confined to the sphere of CNS development, but rather act in a more general fashion during development and throughout the lifetime of an organism. This review focuses on the non-neuronal activities of Slit proteins, highlighting a common role for the Slit family in cellular migration.
Collapse
Affiliation(s)
- Michael Piper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | |
Collapse
|
83
|
Abstract
Axons are guided along specific pathways by attractive and repulsive cues in the extracellular environment. Genetic and biochemical studies have led to the identification of highly conserved families of guidance molecules, including netrins, Slits, semaphorins, and ephrins. Guidance cues steer axons by regulating cytoskeletal dynamics in the growth cone through signaling pathways that are still only poorly understood. Elaborate regulatory mechanisms ensure that a given cue elicits the right response from the right axons at the right time but is otherwise ignored. With such regulatory mechanisms in place, a relatively small number of guidance factors can be used to generate intricate patterns of neuronal wiring.
Collapse
Affiliation(s)
- Barry J Dickson
- Research Institute of Molecular Pathology, Dr. Bohr-gasse 7, A-1030 Vienna, Austria.
| |
Collapse
|
84
|
Piper M, Nurcombe V, Reid K, Bartlett P, Little M. N-terminal Slit2 promotes survival and neurite extension in cultured peripheral neurons. Neuroreport 2002; 13:2375-8. [PMID: 12488830 DOI: 10.1097/00001756-200212030-00041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the effect of the N-terminal Slit2 protein on neuronal survival and development, recombinant human N-terminal Slit2 (N-Slit2) was assayed against isolated embryonic chick dorsal root ganglion sensory, ciliary ganglion and paravertebral sympathetic neurons. N-Slit2 promoted significant levels of neuronal survival and neurite extension in all of these populations. The protein was also assayed against postnatal mouse dorsal root ganglion neurons and found to promote neuronal survival in a similar manner. These findings suggest the Slit proteins may play an important role during development of the nervous system, mediating cellular survival in addition to the well documented role these proteins play in axonal and neuronal chemorepulsion.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Survival/drug effects
- Cell Survival/physiology
- Cells, Cultured
- Chick Embryo
- Dose-Response Relationship, Drug
- Ganglia, Autonomic/cytology
- Ganglia, Autonomic/embryology
- Ganglia, Autonomic/growth & development
- Ganglia, Parasympathetic/cytology
- Ganglia, Parasympathetic/embryology
- Ganglia, Parasympathetic/growth & development
- Ganglia, Spinal/cytology
- Ganglia, Spinal/embryology
- Ganglia, Spinal/growth & development
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/embryology
- Ganglia, Sympathetic/growth & development
- Intercellular Signaling Peptides and Proteins
- Mice
- Mice, Inbred C57BL
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nerve Tissue Proteins/pharmacology
- Neurites/drug effects
- Neurites/metabolism
- Neurites/ultrastructure
- Protein Structure, Tertiary/physiology
- Recombinant Fusion Proteins/pharmacology
Collapse
Affiliation(s)
- Michael Piper
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4067, Australia
| | | | | | | | | |
Collapse
|
85
|
Rao Y, Wong K, Ward M, Jurgensen C, Wu JY. Neuronal migration and molecular conservation with leukocyte chemotaxis. Genes Dev 2002; 16:2973-84. [PMID: 12464628 PMCID: PMC2064004 DOI: 10.1101/gad.1005802] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cell migration is essential in species ranging from bacteria to humans (for recent reviews, see Lauffenburger and Horwitz 1996; Mitchison and Cramer 1996; Montell 1999). In the amoebae Dictyostelium discoideum, cell migration is involved in chemotaxis toward food sources and in aggregation (for review, see Devreotes and Zigmond 1988; Parent and Devreotes 1999; Chung et al. 2001). In higher vertebrates, cell migration plays crucial roles in multiple physiological and pathological processes. During embryonic and neonatal development, cell migration is crucial in morphogenetic processes such as gastrulation, cardiogenesis, and the formation of the nervous system (for review, see Hatten and Mason 1990; Rakic 1990; Hatten and Heintz 1998; Bentivoglio and Mazzarello 1999). In adult animals, cell migration is required for leukocyte trafficking and inflammatory responses (for review, see McCutcheon 1946; Harris 1954; Devreotes and Zigmond 1988). In tumoriogenesis, tumor-induced angiogenesis and tumor metastasis both involve cell migration. Although it is well known that cell migration is necessary for all these processes, our understanding of mechanisms controlling cell migration is still limited. Here we briefly review the significance of neuronal migration and focus on recent studies on the directional guidance of neuronal migration, discussing the possibility that guidance mechanisms for neurons are conserved with those for other somatic cells.
Collapse
Affiliation(s)
- Yi Rao
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
86
|
Abstract
During development of the central nervous system, growth cones navigate along specific pathways, recognize their targets and then form synaptic connections by elaborating terminal arbors. To date, a number of developmental and in vitro studies have characterized the nature of the guidance cues that underlie various types of axonal behavior, from initial outgrowth to synapse formation, including pathway selection, polarized growth, orientated growth, termination and branching. New approaches in molecular biology have identified several types of guidance cues, most of which are likely to act as local cues. Moreover, recent studies have indicated that axonal responsiveness to guidance cues changes dynamically, which appears to be elicited by environmental factors encountered by the navigating growth cones. This article addresses what molecular cues are responsible for guidance mechanisms including axonal responsiveness, focusing on axonal behavior in the developmental stages.
Collapse
Affiliation(s)
- Nobuhiko Yamamoto
- Laboratory of Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | | | | |
Collapse
|
87
|
Walz A, Anderson RB, Irie A, Chien CB, Holt CE. Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics. JOURNAL OF NEUROBIOLOGY 2002; 53:330-42. [PMID: 12382261 DOI: 10.1002/neu.10113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Little is known about the cues that guide retinal axons across the diencephalon en route to their midbrain target, the optic tectum. Here we show that chondroitin sulfate proteoglycans are differentially expressed within the diencephalon at a time when retinal axons are growing within the optic tract. Using exposed brain preparations, we show that the addition of exogenous chondroitin sulfate results in retinal pathfinding errors. Retinal axons disperse widely from their normal trajectory within the optic tract and extend aberrantly into inappropriate regions of the forebrain. Time-lapse analysis of retinal growth cone dynamics in vivo shows that addition of exogenous chondroitin sulfate causes intermittent stalling and increases growth cone complexity. These results suggest that chondroitin sulfate may modulate the guidance of retinal axons as they grow through the diencephalon towards the optic tectum.
Collapse
Affiliation(s)
- Andreas Walz
- University of California San Diego, Department of Biology, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
88
|
Schmidt H, Werner M, Heppenstall PA, Henning M, Moré MI, Kühbandner S, Lewin GR, Hofmann F, Feil R, Rathjen FG. cGMP-mediated signaling via cGKIalpha is required for the guidance and connectivity of sensory axons. J Cell Biol 2002; 159:489-98. [PMID: 12417579 PMCID: PMC2173065 DOI: 10.1083/jcb.200207058] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2002] [Revised: 09/23/2002] [Accepted: 09/24/2002] [Indexed: 01/12/2023] Open
Abstract
Previous in vitro studies using cGMP or cAMP revealed a cross-talk between signaling mechanisms activated by axonal guidance receptors. However, the molecular elements modulated by cyclic nucleotides in growth cones are not well understood. cGMP is a second messenger with several distinct targets including cGMP-dependent protein kinase I (cGKI). Our studies indicated that the alpha isoform of cGKI is predominantly expressed by sensory axons during developmental stages, whereas most spinal cord neurons are negative for cGKI. Analysis of the trajectories of axons within the spinal cord showed a longitudinal guidance defect of sensory axons within the developing dorsal root entry zone in the absence of cGKI. Consequently, in cGKI-deficient mice, fewer axons grow within the dorsal funiculus of the spinal cord, and lamina-specific innervation, especially by nociceptive sensory neurons, is strongly reduced as deduced from anti-trkA staining. These axon guidance defects in cGKI-deficient mice lead to a substantial impairment in nociceptive flexion reflexes, shown using electrophysiology. In vitro studies revealed that activation of cGKI in embryonic dorsal root ganglia counteracts semaphorin 3A-induced growth cone collapse. Our studies therefore reveal that cGMP signaling is important for axonal growth in vivo and in vitro.
Collapse
Affiliation(s)
- Hannes Schmidt
- Developmental Neurobiology Group, Medical Research Council, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MFA. Activation of the repulsive receptor Roundabout inhibits N-cadherin-mediated cell adhesion. Nat Cell Biol 2002; 4:798-805. [PMID: 12360290 DOI: 10.1038/ncb858] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 07/16/2002] [Accepted: 08/21/2002] [Indexed: 11/08/2022]
Abstract
The formation of axon trajectories requires integration of local adhesive interactions with directional information from attractive and repulsive cues. Here, we show that these two types of information are functionally integrated; activation of the transmembrane receptor Roundabout (Robo) by its ligand, the secreted repulsive guidance cue Slit, inactivates N-cadherin-mediated adhesion. Loss of N-cadherin-mediated adhesion is accompanied by tyrosine phosphorylation of beta-catenin and its loss from the N-cadherin complex, concomitant with the formation of a supramolecular complex containing Robo, Abelson (Abl) kinase and N-cadherin. Local formation of such a receptor complex is an ideal mechanism to steer the growth cone while still allowing adhesion and growth in other directions.
Collapse
Affiliation(s)
- Jinseol Rhee
- Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
90
|
Runko E, Kaprielian Z. Expression of Vema in the developing mouse spinal cord and optic chiasm. J Comp Neurol 2002; 451:289-99. [PMID: 12210140 DOI: 10.1002/cne.10356] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A critical phase of nervous system development is the formation of connections between axons and their synaptic targets. Intermediate targets play important roles in axon pathfinding by supplying growing axons with long- and short- range guidance cues at decision points along their trajectory. We recently identified Vema as a novel membrane-associated protein that is expressed at the ventral midline of the developing vertebrate central nervous system (CNS). We report that Vema is expressed in the floor plate, an intermediate target for pathfinding commissural axons located at the ventral midline of the developing mouse spinal cord. Interestingly, Vema expression overlaps with the position of an unique population of neurons situated at the midline of the ventral diencephalon and that function as intermediate targets for pathfinding retinal ganglion cell axons. The distribution of Vema in the developing spinal cord and optic chiasm resembles the expression patterns of a variety of molecules known to play important roles in axon guidance, including Robo2, Neuropilin2, and SSEA. The expression of Vema at two key choice points for pathfinding axons suggests an important role for this protein in regulating axon guidance at the midline of the developing mouse central nervous system.
Collapse
Affiliation(s)
- Erik Runko
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
91
|
Clark K, Hammond E, Rabbitts P. Temporal and spatial expression of two isoforms of the Dutt1/Robo1 gene in mouse development. FEBS Lett 2002; 523:12-6. [PMID: 12123796 DOI: 10.1016/s0014-5793(02)02904-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The mammalian homologue of the Drosophila axonal guidance receptor roundabout is expressed in a wide range of tissues. Here we show that alternative splicing of the Dutt1/Robo1 gene results in two mRNA transcripts with different signal peptides, which are differentially expressed throughout mouse embryogenesis. Since mice with a targeted deletion in the Dutt1/Robo1 gene have abnormal lung pathology, immunohistochemistry was used to identify the cellular expression pattern of Dutt1/Robo1 during lung development. Dutt1/Robo1 expression was widespread and diffuse in the lung at embryonic day 17.5 but became increasingly localised to the bronchial epithelium in newborn and adult mice.
Collapse
Affiliation(s)
- Katherine Clark
- Department of Oncology, University of Cambridge, MRC Centre, Hills Road, CB2 2QH, Cambridge, UK.
| | | | | |
Collapse
|
92
|
Nguyen-Ba-Charvet KT, Plump AS, Tessier-Lavigne M, Chedotal A. Slit1 and slit2 proteins control the development of the lateral olfactory tract. J Neurosci 2002; 22:5473-80. [PMID: 12097499 PMCID: PMC6758232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The development of olfactory bulb projections that form the lateral olfactory tract (LOT) is still poorly understood. The septum and the olfactory cortex have been shown to secrete diffusible factors repelling olfactory axons in vitro and are likely to cause the axons to avoid the septum region in vivo. Slit2, a member of the Slit gene family, has been proposed to be this septal factor based on its expression in the embryonic septum and its ability to repel and collapse olfactory axons. However, this issue is still controversial, and recent in vitro studies have questioned the role of the septum and Slit proteins in organizing LOT projections. We therefore decided to examine directly the role of Slit proteins in mediating olfactory axon guidance in vivo using mice with targeted deletions in the Slit1 and Slit2 genes. When olfactory bulb explants are cocultured with septum from Slit1- and/or Slit2-deficient mice, the septum repulsive activity for olfactory bulb axons is progressively abolished in a gene dose-dependent manner. Anterograde tracing of olfactory bulb axons showed that the LOT develops normally in Slit1 or Slit2 single-deficient mice but is completely disorganized in Slit1/Slit2 double-deficient embryos, with many axons reaching the midline and entering the septum region. Therefore, our study showed that the septum chemorepellent is a combination of Slit1 and Slit2 and that these molecules play a significant role in olfactory bulb axon guidance in vivo.
Collapse
Affiliation(s)
- Kim T Nguyen-Ba-Charvet
- Institut National de la Santé et de la Recherche Médicale U106, Bâtiment de Pédiatrie, Hôpital de la Salpêtrière, 75013 Paris, France
| | | | | | | |
Collapse
|
93
|
Abstract
Many zebrafish mutants have specific defects in axon guidance or synaptogenesis, particularly in the retinotectal and motor systems. Several mutants have now been characterized in detail and/or cloned. A combination of genetic studies, in vivo imaging and new techniques for misexpressing genes or blocking their function promises to reveal the molecules and principles that govern wiring of the vertebrate nervous system.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, Room 401 Medical Research and Engineering Building, 20 North 1900 East, University of Utah Medical Center, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
94
|
Abstract
To address how the highly stereotyped retinotectal pathway develops in zebrafish, we used fixed-tissue and time-lapse imaging to analyze morphology and behavior of wild-type and mutant retinal growth cones. Wild-type growth cones increase in complexity and pause at the midline. Intriguingly, they make occasional ipsilateral projections and other pathfinding errors, which are always eventually corrected. In the astray/robo2 mutant, growth cones are larger and more complex than wild-type. astray axons make midline errors not seen in wild-type, as well as errors both before and after the midline. astray errors are rarely corrected. The presumed Robo ligands Slit2 and Slit3 are expressed near the pathway in patterns consistent with their mediating pathfinding through Robo2. Thus, Robo2 does not control midline crossing of retinal axons, but rather shapes their pathway, by both preventing and correcting pathfinding errors.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, University of Utah Medical Center, 20 North 1900 East, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
95
|
Abstract
In Drosophila, Slit acts as a barrier preventing roundabout expressing axons from entering the midline and sorting contralaterally from ipsilaterally projecting axons. Hutson and Chien, Plump et al., and Bagri et al. (all in this issue of Neuron) use Slit knockout mice and zebrafish astray/Robo2 mutants to show that in vertebrates, Robo/Slit function to channel axons into specific pathways and determine where decussation points occur. Ipsilaterally and contralaterally projected axons are equally affected.
Collapse
Affiliation(s)
- Linda J Richards
- Department of Anatomy and Neurobiology and The Program in Neuroscience, University of Maryland Baltimore, School of Medicine, 685 W. Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
96
|
Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 2002; 33:219-32. [PMID: 11804570 DOI: 10.1016/s0896-6273(01)00586-4] [Citation(s) in RCA: 341] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
During development, retinal ganglion cell (RGC) axons either cross or avoid the midline at the optic chiasm. In Drosophila, the Slit protein regulates midline axon crossing through repulsion. To determine the role of Slit proteins in RGC axon guidance, we disrupted Slit1 and Slit2, two of three known mouse Slit genes. Mice defective in either gene alone exhibited few RGC axon guidance defects, but in double mutant mice a large additional chiasm developed anterior to the true chiasm, many retinal axons projected into the contralateral optic nerve, and some extended ectopically-dorsal and lateral to the chiasm. Our results indicate that Slit proteins repel retinal axons in vivo and cooperate to establish a corridor through which the axons are channeled, thereby helping define the site in the ventral diencephalon where the optic chiasm forms.
Collapse
Affiliation(s)
- Andrew S Plump
- Department of Anatomy, Howard Hughes Medical Institute, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C, Chédotal A. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J Comp Neurol 2002; 442:130-55. [PMID: 11754167 DOI: 10.1002/cne.10068] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a repulsive guidance system that prevents inappropriate axons from crossing the central nervous system midline; this repulsive system is mediated by the secreted extracellular matrix protein Slit and its receptors Roundabout (Robo). Three distinct slit genes (slit1, slit2, and slit3) and three distinct robo genes (robo1, robo2, rig-1) have been cloned in mammals. However, to date, only Robo1 and Robo2 have been shown to be receptors for Slits. In rodents, Slits have been shown to function as chemorepellents for several classes of axons and migrating neurons. In addition, Slit can also stimulate the formation of axonal branches by some sensory axons. To identify Slit-responsive neurons and to help analyze Slit function, we have studied, by in situ hybridization, the expression pattern of slits and their receptors robo1 and robo2, in the rat central nervous system from embryonic stages to adult age. We found that their expression patterns are very dynamic: in most regions, slit and robo are expressed in a complementary pattern, and their expression is up-regulated postnatally. Our study confirms the potential role of these molecules in axonal pathfinding and neuronal migration. However, the persistence of robo and slit expression suggests that the couple slit/robo may also have an important function in the adult brain.
Collapse
Affiliation(s)
- Valérie Marillat
- INSERM U106, Bâtiment de Pédiatrie, Hôpital de la Salpêtrière, 75013 Paris, France
| | | | | | | | | | | |
Collapse
|
98
|
Whitford KL, Marillat V, Stein E, Goodman CS, Tessier-Lavigne M, Chédotal A, Ghosh A. Regulation of cortical dendrite development by Slit-Robo interactions. Neuron 2002; 33:47-61. [PMID: 11779479 DOI: 10.1016/s0896-6273(01)00566-9] [Citation(s) in RCA: 211] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Slit proteins have previously been shown to regulate axon guidance, branching, and neural migration. Here we report that, in addition to acting as a chemorepellant for cortical axons, Slit1 regulates dendritic development. Slit1 is expressed in the developing cortex, and exposure to Slit1 leads to increased dendritic growth and branching. Conversely, inhibition of Slit-Robo interactions by Robo-Fc fusion proteins or by a dominant-negative Robo attenuates dendritic branching. Stimulation of neurons transfected with a Met-Robo chimeric receptor with Hepatocyte growth factor leads to a robust induction of dendritic growth and branching, suggesting that Robo-mediated signaling is sufficient to induce dendritic remodeling. These experiments indicate that Slit-Robo interactions may exert a significant influence over the specification of cortical neuron morphology by regulating both axon guidance and dendritic patterning.
Collapse
Affiliation(s)
- Kristin L Whitford
- Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
99
|
Nguyen-Ba-Charvet KT, Chédotal A. Role of Slit proteins in the vertebrate brain. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:91-8. [PMID: 11755787 DOI: 10.1016/s0928-4257(01)00084-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Diffusible chemorepellents play a major role in guiding developing axons towards their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptors and their secreted ligand Slits. Three distinct slit genes (slit1, slit2 and slit3) and three distinct robo genes (robo1, robo2 and rig-1) have been cloned in mammals. In collagen gel co-cultures, Slit1 and Slit2 can repel and collapse olfactory axons. However, there is also some positive effect associated with Slits, as Slit2 stimulates the formation of axon collateral branches by NGF-responsive neurons of the dorsal root ganglia (DRG). Slit2 is a large ECM glycoproteins of about 200 kD, which is proteolytically processed into 140 kD N-terminal and 55-60 kD C-terminal fragments. Slit2 cleavage fragments appear to have different cell association characteristics, with the smaller C-terminal fragment being more diffusible and the larger N-terminal and uncleaved fragments being more tightly cell associated. This suggested that the different fragments might have different functional activities in vivo. We have begun to explore these questions by engineering mutant and truncated versions of hSlit2 representing the two cleavage fragments, N- and C-, and the uncleavable molecule and examining the activities of these mutants in binding and functional assays. We found that an axon's response to Slit2 is not absolute, but rather is reflective of the context in which the protein is encountered.
Collapse
Affiliation(s)
- Kim T Nguyen-Ba-Charvet
- INSERM U106, Bâtiment de Pédiatrie, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013 Paris, France
| | | |
Collapse
|
100
|
Ichijo H, Kawabata I. Roles of the telencephalic cells and their chondroitin sulfate proteoglycans in delimiting an anterior border of the retinal pathway. J Neurosci 2001; 21:9304-14. [PMID: 11717364 PMCID: PMC6763928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The axons of the retinal ganglion cells run on the diencephalotelencephalic boundary on their way to the tectum; however, they do not invade the telencephalon anteriorly. To investigate the mechanisms that prevent the retinal axons from entering the telencephalic territory, the effects of the telencephalic cells were examined on the outgrowth of the retinal axons in vitro; the retinal outgrowth was selectively inhibited by the cellular substrate derived from the telencephalon. The responsible factor for the selective inhibition was, furthermore, found in the telencephalic membranes and the fraction of peripheral membrane molecules from the telencephalon. Because the inhibitory effect was destroyed by chondroitinase ABC but not by heat, this inhibition was attributable to the carbohydrate chains of chondroitin sulfate proteoglycans (CSPGs) adhering to the membranes of the telencephalic cells. To understand the function of the telencephalic CSPGs on the retinal pathfinding in vivo, their carbohydrate chains [chondroitin sulfate glycosaminoglycan (CS-GAG)] were removed from the embryonic brains by intraventricular injection of chondroitinase ABC; the removal of CS-GAG resulted in an anterior enlargement of the optic tract. The results indicate that the telencephalic cells delimit the anterior border of the optic tract with their CSPGs and prevent the retinal axons from aberrantly entering the anterior territory.
Collapse
Affiliation(s)
- H Ichijo
- Department of Anatomy, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | |
Collapse
|