51
|
Jafarnejad M, Zawieja DC, Brook BS, Nibbs RJB, Moore JE. A Novel Computational Model Predicts Key Regulators of Chemokine Gradient Formation in Lymph Nodes and Site-Specific Roles for CCL19 and ACKR4. THE JOURNAL OF IMMUNOLOGY 2017; 199:2291-2304. [PMID: 28807994 PMCID: PMC5602158 DOI: 10.4049/jimmunol.1700377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/11/2017] [Indexed: 01/24/2023]
Abstract
The chemokine receptor CCR7 drives leukocyte migration into and within lymph nodes (LNs). It is activated by chemokines CCL19 and CCL21, which are scavenged by the atypical chemokine receptor ACKR4. CCR7-dependent navigation is determined by the distribution of extracellular CCL19 and CCL21, which form concentration gradients at specific microanatomical locations. The mechanisms underpinning the establishment and regulation of these gradients are poorly understood. In this article, we have incorporated multiple biochemical processes describing the CCL19–CCL21–CCR7–ACKR4 network into our model of LN fluid flow to establish a computational model to investigate intranodal chemokine gradients. Importantly, the model recapitulates CCL21 gradients observed experimentally in B cell follicles and interfollicular regions, building confidence in its ability to accurately predict intranodal chemokine distribution. Parameter variation analysis indicates that the directionality of these gradients is robust, but their magnitude is sensitive to these key parameters: chemokine production, diffusivity, matrix binding site availability, and CCR7 abundance. The model indicates that lymph flow shapes intranodal CCL21 gradients, and that CCL19 is functionally important at the boundary between B cell follicles and the T cell area. It also predicts that ACKR4 in LNs prevents CCL19/CCL21 accumulation in efferent lymph, but does not control intranodal gradients. Instead, it attributes the disrupted interfollicular CCL21 gradients observed in Ackr4-deficient LNs to ACKR4 loss upstream. Our novel approach has therefore generated new testable hypotheses and alternative interpretations of experimental data. Moreover, it acts as a framework to investigate gradients at other locations, including those that cannot be visualized experimentally or involve other chemokines.
Collapse
Affiliation(s)
- Mohammad Jafarnejad
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - David C Zawieja
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, TX 76504
| | - Bindi S Brook
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom; and
| | - Robert J B Nibbs
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - James E Moore
- Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
52
|
del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit-Bremer G, Borrell V, Klein R. Regulation of Cerebral Cortex Folding by Controlling Neuronal Migration via FLRT Adhesion Molecules. Cell 2017; 169:621-635.e16. [DOI: 10.1016/j.cell.2017.04.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 02/09/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
53
|
Baratéla FJC, Higa OZ, dos Passos ED, de Queiroz AAA. Fabrication of electrospun HPGL scaffolds via glycidyl methacrylate cross-linker: Morphology, mechanical and biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:72-79. [DOI: 10.1016/j.msec.2016.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/30/2016] [Accepted: 12/07/2016] [Indexed: 01/17/2023]
|
54
|
Ahmadzadeh H, Webster MR, Behera R, Jimenez Valencia AM, Wirtz D, Weeraratna AT, Shenoy VB. Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion. Proc Natl Acad Sci U S A 2017; 114:E1617-E1626. [PMID: 28196892 PMCID: PMC5338523 DOI: 10.1073/pnas.1617037114] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy-based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion.
Collapse
Affiliation(s)
- Hossein Ahmadzadeh
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| | - Marie R Webster
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Reeti Behera
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218
- Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218
- Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21218
| | - Ashani T Weeraratna
- Tumor Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
55
|
Sun M, Zaman MH. Modeling, signaling and cytoskeleton dynamics: integrated modeling-experimental frameworks in cell migration. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2017; 9:10.1002/wsbm.1365. [PMID: 27863122 PMCID: PMC5338640 DOI: 10.1002/wsbm.1365] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
Abstract
Cell migration is a complex and multistep process involved in homeostasis maintenance, morphogenesis, and disease development, such as cancer metastasis. Modeling cell migration and the relevant cytoskeleton dynamics have profound implications for studying fundamental development and disease diagnosis. This review focuses on some recent models of both cell migration and migration-related cytoskeleton dynamics, addressing issues such as the difference between amoeboid and mesenchymal migration modes, and between single-cell migration and collective cell migration. The review also highlights the computational integration among variable external cues, especially the biochemical and mechanical signaling that affects cell migration. Finally, we aim to identify the gaps in our current knowledge and potential strategies to develop integrated modeling-experimental frameworks for multiscale behavior integrating gene expression, cell signaling, mechanics, and multicellular dynamics. WIREs Syst Biol Med 2017, 9:e1365. doi: 10.1002/wsbm.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Meng Sun
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Muhammad H. Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute
| |
Collapse
|
56
|
Ribeiro FO, Gómez-Benito MJ, Folgado J, Fernandes PR, García-Aznar JM. Computational model of mesenchymal migration in 3D under chemotaxis. Comput Methods Biomech Biomed Engin 2017; 20:59-74. [PMID: 27336322 PMCID: PMC5061084 DOI: 10.1080/10255842.2016.1198784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/03/2016] [Indexed: 11/10/2022]
Abstract
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL-1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Collapse
Affiliation(s)
- F. O. Ribeiro
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - M. J. Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| | - J. Folgado
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - P. R. Fernandes
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - J. M. García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
57
|
Kingsmore KM, Logsdon DK, Floyd DH, Peirce SM, Purow BW, Munson JM. Interstitial flow differentially increases patient-derived glioblastoma stem cell invasionviaCXCR4, CXCL12, and CD44-mediated mechanisms. Integr Biol (Camb) 2016; 8:1246-1260. [DOI: 10.1039/c6ib00167j] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kathryn M. Kingsmore
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel K. Logsdon
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Desiree H. Floyd
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, 22908 USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Benjamin W. Purow
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, 22908 USA
| | - Jennifer M. Munson
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
58
|
Zhu J, Mogilner A. Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study. Interface Focus 2016; 6:20160040. [PMID: 27708764 DOI: 10.1098/rsfs.2016.0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration on a two-dimensional flat surface has been extensively studied and is generally characterized by a front-protrusion-rear-contraction process. In a three-dimensional (3D) environment, on the other hand, cells adopt multiple migration strategies depending on the cell type and the properties of the extracellular matrix (ECM). By using computer simulations, we find that these migration strategies can be classified by various spatial-temporal dynamics of actin protrusion, actin-myosin contraction and actin-ECM adhesion. We demonstrate that if we include or exclude proteolysis of ECM, and vary adhesion dynamics and spatial distributions of protrusion, contraction and adhesion, our model can reproduce six experimentally observed motility modes: mesenchymal, chimneying, amoeboid, blebbing, finger-like protrusion and rear-squeezing cell locomotory behaviours. We further find that the mode of the cell motility evolves in response to the ECM density and adhesion detachment rate. The model makes non-trivial predictions about cell speed as a function of the adhesion strength, and ECM elasticity and mesh size.
Collapse
Affiliation(s)
- Jie Zhu
- Nanobiology Institute and Department of Cell Biology , Yale University , New Haven, CT, USA
| | - Alex Mogilner
- Courant Institute and Department of Biology , New York University , New York, NY, USA
| |
Collapse
|
59
|
González-Valverde I, Semino C, García-Aznar JM. Phenomenological modelling and simulation of cell clusters in 3D cultures. Comput Biol Med 2016; 77:249-60. [PMID: 27615191 DOI: 10.1016/j.compbiomed.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 02/04/2023]
Abstract
Cell clustering and aggregation are fundamental processes in the development of several tissues and the progression of many diseases. The formation of these aggregates also has a direct impact on the oxygen concentration in their surroundings due to cellular respiration and poor oxygen diffusion through clusters. In this work, we propose a mathematical model that is capable of simulating cell cluster formation in 3D cultures through combining a particle-based and a finite element approach to recreate complex experimental conditions. Cells are modelled considering cell proliferation, cell death and cell-cell mechanical interactions. Additionally, the oxygen concentration profile is calculated through finite element analysis using a reaction-diffusion model that considers cell oxygen consumption and diffusion through the extracellular matrix and the cell clusters. In our model, the local oxygen concentration in the medium determines both cell proliferation and cell death. Numerical predictions are also compared with experimental data from the literature. The simulation results indicate that our model can predict cell clustering, cluster growth and oxygen distribution in 3D cultures. We conclude that the initial cell distribution, cell death and cell proliferation dynamics determine the size and density of clusters. Moreover, these phenomena are directly affected by the oxygen transport in the 3D culture.
Collapse
Affiliation(s)
- I González-Valverde
- Universidad de Zaragoza, Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Campus Rio Ebro, 50018 Zaragoza, Spain; Instituto Químico Sarrià, Universidad Ramon Llul, Via Augusta, 390, 08017 Barcelona, Spain
| | - C Semino
- Instituto Químico Sarrià, Universidad Ramon Llul, Via Augusta, 390, 08017 Barcelona, Spain
| | - J M García-Aznar
- Universidad de Zaragoza, Aragón Institute of Engineering Research (I3A), Department of Mechanical Engineering, Campus Rio Ebro, 50018 Zaragoza, Spain.
| |
Collapse
|
60
|
Mousavi SJ, Doweidar MH. Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2016; 130:106-117. [PMID: 27208526 DOI: 10.1016/j.cmpb.2016.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell migration, differentiation, proliferation and apoptosis are the main processes in tissue regeneration. Mesenchymal Stem Cells have the potential to differentiate into many cell phenotypes such as tissue- or organ-specific cells to perform special functions. Experimental observations illustrate that differentiation and proliferation of these cells can be regulated according to internal forces induced within their Extracellular Matrix. The process of how exactly they interpret and transduce these signals is not well understood. METHODS A previously developed three-dimensional (3D) computational model is here extended and employed to study how force-free substrates and force-induced substrate control cell differentiation and/or proliferation during the mechanosensing process. Consistent with experimental observations, it is assumed that cell internal deformation (a mechanical signal) in correlation with the cell maturation state directly triggers cell differentiation and/or proliferation. The Extracellular Matrix is modeled as Neo-Hookean hyperelastic material assuming that cells are cultured within 3D nonlinear hydrogels. RESULTS In agreement with well-known experimental observations, the findings here indicate that within neurogenic (0.1-1kPa), chondrogenic (20-25kPa) and osteogenic (30-45kPa) substrates, Mesenchymal Stem Cells differentiation and proliferation can be precipitated by inducing the substrate with an internal force. Therefore, cells require a longer time to grow and maturate within force-free substrates than within force-induced substrates. In the instance of Mesenchymal Stem Cells differentiation into a compatible phenotype, the magnitude of the net traction force increases within chondrogenic and osteogenic substrates while it reduces within neurogenic substrates. This is consistent with experimental studies and numerical works recently published by the same authors. However, in all cases the magnitude of the net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. CONCLUSIONS The present model provides new perspectives to delineate the role of force-induced substrates in remotely controlling the cell fate during cell-matrix interaction, which open the door for new tissue regeneration methodologies.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
61
|
Simulation of extracellular matrix remodeling by fibroblast cells in soft three-dimensional bioresorbable scaffolds. Biomech Model Mechanobiol 2016; 15:1685-1698. [DOI: 10.1007/s10237-016-0791-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/18/2016] [Indexed: 12/21/2022]
|
62
|
Hielscher A, Ellis K, Qiu C, Porterfield J, Gerecht S. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis. PLoS One 2016; 11:e0147600. [PMID: 26811931 PMCID: PMC4728102 DOI: 10.1371/journal.pone.0147600] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022] Open
Abstract
The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis.
Collapse
Affiliation(s)
- Abigail Hielscher
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Department of Biomedical Sciences, Georgia Philadelphia College of Osteopathic Medicine, Suwanee, Georgia, 30024, United States of America
| | - Kim Ellis
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Connie Qiu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Josh Porterfield
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Johns Hopkins Physical Sciences-Oncology Center, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, 21218, United States of America
- * E-mail:
| |
Collapse
|
63
|
Stochastic model explains formation of cell arrays on H/O-diamond patterns. Biointerphases 2015; 10:041006. [PMID: 26559048 DOI: 10.1116/1.4934794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell migration plays an important role in many biological systems. A relatively simple stochastic model is developed and used to describe cell behavior on chemically patterned substrates. The model is based on three parameters: the speed of cell movement (own and external), the probability of cell adhesion, and the probability of cell division on the substrate. The model is calibrated and validated by experimental data obtained on hydrogen- and oxygen-terminated patterns on diamond. Thereby, the simulations reveal that: (1) the difference in the cell movement speed on these surfaces (about 1.5×) is the key factor behind the formation of cell arrays on the patterns, (2) this difference is provided by the presence of fetal bovine serum (validated by experiments), and (3) the directional cell flow promotes the array formation. The model also predicts that the array formation requires mean distance of cell travel at least 10% of intended stripe width. The model is generally applicable for biosensors using diverse cells, materials, and structures.
Collapse
|
64
|
Deegan DB, Zimmerman C, Skardal A, Atala A, Shupe TD. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology. J Mech Behav Biomed Mater 2015; 55:87-103. [PMID: 26569044 DOI: 10.1016/j.jmbbm.2015.10.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/22/2022]
Abstract
Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.
Collapse
Affiliation(s)
- Daniel B Deegan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Cynthia Zimmerman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Thomas D Shupe
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
65
|
Fraley SI, Wu PH, He L, Feng Y, Krisnamurthy R, Longmore GD, Wirtz D. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci Rep 2015; 5:14580. [PMID: 26423227 PMCID: PMC4589685 DOI: 10.1038/srep14580] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/03/2015] [Indexed: 12/30/2022] Open
Abstract
Multiple attributes of the three-dimensional (3D) extracellular matrix (ECM) have been independently implicated as regulators of cell motility, including pore size, crosslink density, structural organization, and stiffness. However, these parameters cannot be independently varied within a complex 3D ECM protein network. We present an integrated, quantitative study of these parameters across a broad range of complex matrix configurations using self-assembling 3D collagen and show how each parameter relates to the others and to cell motility. Increasing collagen density resulted in a decrease and then an increase in both pore size and fiber alignment, which both correlated significantly with cell motility but not bulk matrix stiffness within the range tested. However, using the crosslinking enzyme Transglutaminase II to alter microstructure independently of density revealed that motility is most significantly predicted by fiber alignment. Cellular protrusion rate, protrusion orientation, speed of migration, and invasion distance showed coupled biphasic responses to increasing collagen density not predicted by 2D models or by stiffness, but instead by fiber alignment. The requirement of matrix metalloproteinase (MMP) activity was also observed to depend on microstructure, and a threshold of MMP utility was identified. Our results suggest that fiber topography guides protrusions and thereby MMP activity and motility.
Collapse
Affiliation(s)
- Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Pei-hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yunfeng Feng
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Medicine and Cell Biology and Physiology and BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, USA
| | - Ranjini Krisnamurthy
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Gregory D. Longmore
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Departments of Medicine and Cell Biology and Physiology and BRIGHT Institute, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, USA
- Johns Hopkins Physical Sciences—Oncology Center, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
66
|
Maffei JS, Srivastava J, Fallica B, Zaman MH. Combinative in vitro studies and computational model to predict 3D cell migration response to drug insult. Integr Biol (Camb) 2015; 6:957-72. [PMID: 25174457 DOI: 10.1039/c4ib00167b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The development of drugs to counter diseases related to cell migration has resulted in a multi-billion dollar endeavor. Unfortunately, few drugs have emerged from this effort highlighting the need for new methods to enhance assays to study, analyze and control cell migration. In response to this complex process, computational models have emerged as potent tools to describe migration providing a high throughput and low cost method. However, most models are unable to predict migration response to drug with direct application to in vitro experiments. In addition to this, no model to date has attempted to describe migration in response to drugs while incorporating simultaneously protein signaling, proteolytic activity, and 3D culture. In this paper, we describe an integrated computational approach, in conjunction with in vitro observations, to serve as a platform to accurately predict migration in 3D matrices incorporating the function of matrix metalloproteinases (MMPs) and their interaction with the Extracellular signal-related kinase (ERK) signaling pathway. Our results provide biological insight into how matrix density, MMP activity, integrin adhesions, and p-ERK expression all affect speed and persistence in 3D. Predictions from the model provide insight toward improving drug combinations to more effectively reduce both speed and persistence during migration and the role of integrin adhesions in motility. In this way our integrated platform provides future potential to streamline and improve throughput toward the testing and development of migration targeting drugs with tangible application to current in vitro assays.
Collapse
Affiliation(s)
- Joseph S Maffei
- Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
67
|
Tozluoglu M, Mao Y, Bates PA, Sahai E. Cost-benefit analysis of the mechanisms that enable migrating cells to sustain motility upon changes in matrix environments. J R Soc Interface 2015; 12:20141355. [PMID: 25878128 PMCID: PMC4424668 DOI: 10.1098/rsif.2014.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 12/30/2022] Open
Abstract
Cells can move through extracellular environments with varying geometries and adhesive properties. Adaptation to these differences is achieved by switching between different modes of motility, including lamellipod-driven and blebbing motility. Further, cells can modulate their level of adhesion to the extracellular matrix (ECM) depending on both the level of force applied to the adhesions and cell intrinsic biochemical properties. We have constructed a computational model of cell motility to investigate how motile cells transition between extracellular environments with varying surface continuity, confinement and adhesion. Changes in migration strategy are an emergent property of cells as the ECM geometry and adhesion changes. The transition into confined environments with discontinuous ECM fibres is sufficient to induce shifts from lamellipod-based to blebbing motility, while changes in confinement alone within a continuous geometry are not. The geometry of the ECM facilitates plasticity, by inducing shifts where the cell has high marginal gain from a mode change, and conserving persistency where the cell can continue movement regardless of the motility mode. This regulation of cell motility is independent of global changes in cytoskeletal properties, but requires locally higher linkage between the actin network and the plasma membrane at the cell rear, and changes in internal cell pressure. In addition to matrix geometry, we consider how cells might transition between ECM of different adhesiveness. We find that this requires positive feedback between the forces cells apply on the adhesion points, and the strength of the cell-ECM adhesions on those sites. This positive feedback leads to the emergence of a small number of highly adhesive cores, similar to focal adhesions. While the range of ECM adhesion levels the cell can invade is expanded with this feedback mechanism; the velocities are lowered for conditions where the positive feedback is not vital. Thus, plasticity of cell motility sacrifices the benefits of specialization, for robustness.
Collapse
Affiliation(s)
- Melda Tozluoglu
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Yanlan Mao
- MRC/UCL Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul A Bates
- Biomolecular Modelling Laboratory, London Research Institute, Cancer Research UK, London, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, London Research Institute, Cancer Research UK, London, UK
| |
Collapse
|
68
|
Vo BN, Drovandi CC, Pettitt AN, Simpson MJ. Quantifying uncertainty in parameter estimates for stochastic models of collective cell spreading using approximate Bayesian computation. Math Biosci 2015; 263:133-42. [DOI: 10.1016/j.mbs.2015.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/09/2015] [Accepted: 02/25/2015] [Indexed: 02/02/2023]
|
69
|
Mousavi SJ, Hamdy Doweidar M. Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model. PLoS One 2015; 10:e0124529. [PMID: 25933372 PMCID: PMC4416758 DOI: 10.1371/journal.pone.0124529] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation, proliferation and migration are essential processes in tissue regeneration. Experimental evidence confirms that cell differentiation or proliferation can be regulated according to the extracellular matrix stiffness. For instance, mesenchymal stem cells (MSCs) can differentiate to neuroblast, chondrocyte or osteoblast within matrices mimicking the stiffness of their native substrate. However, the precise mechanisms by which the substrate stiffness governs cell differentiation or proliferation are not well known. Therefore, a mechano-sensing computational model is here developed to elucidate how substrate stiffness regulates cell differentiation and/or proliferation during cell migration. In agreement with experimental observations, it is assumed that internal deformation of the cell (a mechanical signal) together with the cell maturation state directly coordinates cell differentiation and/or proliferation. Our findings indicate that MSC differentiation to neurogenic, chondrogenic or osteogenic lineage specifications occurs within soft (0.1-1 kPa), intermediate (20-25 kPa) or hard (30-45 kPa) substrates, respectively. These results are consistent with well-known experimental observations. Remarkably, when a MSC differentiate to a compatible phenotype, the average net traction force depends on the substrate stiffness in such a way that it might increase in intermediate and hard substrates but it would reduce in a soft matrix. However, in all cases the average net traction force considerably increases at the instant of cell proliferation because of cell-cell interaction. Moreover cell differentiation and proliferation accelerate with increasing substrate stiffness due to the decrease in the cell maturation time. Thus, the model provides insights to explain the hypothesis that substrate stiffness plays a key role in regulating cell fate during mechanotaxis.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
- * E-mail:
| |
Collapse
|
70
|
Stonko DP, Manning L, Starz-Gaiano M, Peercy BE. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment. PLoS One 2015; 10:e0122799. [PMID: 25875645 PMCID: PMC4395426 DOI: 10.1371/journal.pone.0122799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.
Collapse
Affiliation(s)
- David P. Stonko
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
| | - Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, MD, USA
| | | | - Bradford E. Peercy
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
- * E-mail:
| |
Collapse
|
71
|
Mousavi SJ, Hamdy Doweidar M. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates. PLoS One 2015; 10:e0122094. [PMID: 25822332 PMCID: PMC4379188 DOI: 10.1371/journal.pone.0122094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/21/2015] [Indexed: 12/19/2022] Open
Abstract
Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the mechanotaxis effect. Besides, the stronger stimulus imposes a greater cell elongation and more cell membrane area. The present model not only provides new insights into cell morphology in a multi-signaling micro-environment but also enables us to investigate in more precise way the cell migration in the presence of different stimuli.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
72
|
Carey SP, Rahman A, Kraning-Rush CM, Romero B, Somasegar S, Torre OM, Williams RM, Reinhart-King CA. Comparative mechanisms of cancer cell migration through 3D matrix and physiological microtracks. Am J Physiol Cell Physiol 2015; 308:C436-47. [PMID: 25500742 PMCID: PMC4360026 DOI: 10.1152/ajpcell.00225.2014] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/04/2014] [Indexed: 12/12/2022]
Abstract
Tumor cell invasion through the stromal extracellular matrix (ECM) is a key feature of cancer metastasis, and understanding the cellular mechanisms of invasive migration is critical to the development of effective diagnostic and therapeutic strategies. Since cancer cell migration is highly adaptable to physiochemical properties of the ECM, it is critical to define these migration mechanisms in a context-specific manner. Although extensive work has characterized cancer cell migration in two- and three-dimensional (3D) matrix environments, the migration program employed by cells to move through native and cell-derived microtracks within the stromal ECM remains unclear. We previously reported the development of an in vitro model of patterned type I collagen microtracks that enable matrix metalloproteinase-independent microtrack migration. Here we show that collagen microtracks closely resemble channel-like gaps in native mammary stroma ECM and examine the extracellular and intracellular mechanisms underlying microtrack migration. Cell-matrix mechanocoupling, while critical for migration through 3D matrix, is not necessary for microtrack migration. Instead, cytoskeletal dynamics, including actin polymerization, cortical tension, and microtubule turnover, enable persistent, polarized migration through physiological microtracks. These results indicate that tumor cells employ context-specific mechanisms to migrate and suggest that selective targeting of cytoskeletal dynamics, but not adhesion, proteolysis, or cell traction forces, may effectively inhibit cancer cell migration through preformed matrix microtracks within the tumor stroma.
Collapse
Affiliation(s)
- Shawn P Carey
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Aniqua Rahman
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Bethsabe Romero
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Sahana Somasegar
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Olivia M Torre
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Rebecca M Williams
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | |
Collapse
|
73
|
Romano NH, Lampe KJ, Xu H, Ferreira MM, Heilshorn SC. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:722-30. [PMID: 25315156 PMCID: PMC4528974 DOI: 10.1002/smll.201401574] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/11/2014] [Indexed: 05/08/2023]
Abstract
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. A platform is presented here that combines gradient-generating microfluidic devices with 3D protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known trade-off between adhesive forces at the leading and trailing edges of a migrating cell, implying that a similar matrix-mediated balance of forces regulates neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels.
Collapse
Affiliation(s)
| | | | - Hui Xu
- 476 Lomita Mall, McCullough 246, Stanford, CA 94305
| | | | | |
Collapse
|
74
|
Charras G, Sahai E. Physical influences of the extracellular environment on cell migration. Nat Rev Mol Cell Biol 2014; 15:813-24. [PMID: 25355506 DOI: 10.1038/nrm3897] [Citation(s) in RCA: 490] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The way in which a cell migrates is influenced by the physical properties of its surroundings, in particular the properties of the extracellular matrix. How the physical aspects of the cell's environment affect cell migration poses a considerable challenge when trying to understand migration in complex tissue environments and hinders the extrapolation of in vitro analyses to in vivo situations. A comprehensive understanding of these problems requires an integrated biochemical and biophysical approach. In this Review, we outline the findings that have emerged from approaches that span these disciplines, with a focus on actin-based cell migration in environments with different stiffness, dimensionality and geometry.
Collapse
Affiliation(s)
- Guillaume Charras
- 1] London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH, UK. [2] Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Erik Sahai
- Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
75
|
Abstract
BACKGROUND Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical, chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and computational models have been rapidly growing over the past few years, permitting researches to run complex scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them only suitable to study restricted phenomena. METHODS Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions. RESULTS With this approach we are able to capture important outcomes of cell migration such as: velocities, trajectories, cell shape and aspect ratio, cell stress or ECM displacements. CONCLUSIONS The modular form of the model will allow us to constantly update and redefine it as advancements are made in clarifying how cellular events take place.
Collapse
|
76
|
S S S, Sthanam LK, Padinhateeri R, Inamdar MM, Sen S. Probing cellular mechanoadaptation using cell-substrate de-adhesion dynamics: experiments and model. PLoS One 2014; 9:e106915. [PMID: 25197799 PMCID: PMC4157833 DOI: 10.1371/journal.pone.0106915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/01/2014] [Indexed: 11/19/2022] Open
Abstract
Physical properties of the extracellular matrix (ECM) are known to regulate cellular processes ranging from spreading to differentiation, with alterations in cell phenotype closely associated with changes in physical properties of cells themselves. When plated on substrates of varying stiffness, fibroblasts have been shown to exhibit stiffness matching property, wherein cell cortical stiffness increases in proportion to substrate stiffness up to 5 kPa, and subsequently saturates. Similar mechanoadaptation responses have also been observed in other cell types. Trypsin de-adhesion represents a simple experimental framework for probing the contractile mechanics of adherent cells, with de-adhesion timescales shown to scale inversely with cortical stiffness values. In this study, we combine experiments and computation in deciphering the influence of substrate properties in regulating de-adhesion dynamics of adherent cells. We first show that NIH 3T3 fibroblasts cultured on collagen-coated polyacrylamide hydrogels de-adhere faster on stiffer substrates. Using a simple computational model, we qualitatively show how substrate stiffness and cell-substrate bond breakage rate collectively influence de-adhesion timescales, and also obtain analytical expressions of de-adhesion timescales in certain regimes of the parameter space. Finally, by comparing stiffness-dependent experimental and computational de-adhesion responses, we show that faster de-adhesion on stiffer substrates arises due to force-dependent breakage of cell-matrix adhesions. In addition to illustrating the utility of employing trypsin de-adhesion as a biophysical tool for probing mechanoadaptation, our computational results highlight the collective interplay of substrate properties and bond breakage rate in setting de-adhesion timescales.
Collapse
Affiliation(s)
- Soumya S S
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Lakshmi Kavitha Sthanam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Ranjith Padinhateeri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| | - Mandar M. Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| | - Shamik Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
- * E-mail: (RP); (MMI); (SS)
| |
Collapse
|
77
|
Abstract
Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | |
Collapse
|
78
|
Mierke CT. The fundamental role of mechanical properties in the progression of cancer disease and inflammation. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:076602. [PMID: 25006689 DOI: 10.1088/0034-4885/77/7/076602] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Institute of Experimental Physics I, Biological Physics Division, University of Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| |
Collapse
|
79
|
A computational mechanics approach to assess the link between cell morphology and forces during confined migration. Biomech Model Mechanobiol 2014; 14:143-57. [PMID: 24895016 DOI: 10.1007/s10237-014-0595-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 05/12/2014] [Indexed: 12/20/2022]
Abstract
Confined migration plays a fundamental role during several biological phenomena such as embryogenesis, immunity and tumorogenesis. Here, we propose a two-dimensional mechanical model to simulate the migration of a HeLa cell through a micro-channel. As in our previous works, the cell is modelled as a continuum and a standard Maxwell model is used to describe the mechanical behaviour of both the cytoplasm (including active strains) and the nucleus. The cell cyclically protrudes and contracts and develops viscous forces to adhere to the substrate. The micro-channel is represented by two rigid walls, and it exerts an additional viscous force on the cell boundaries. We test four channels whose dimensions in terms of width are i) larger than the cell diameter, ii) sub-cellular, ii) sub-nuclear and iv) much smaller than the nucleus diameter. The main objective of the work is to assess the necessary conditions for the cell to enter into the channel and migrate through it. Therefore, we evaluate both the evolution of the cell morphology and the cell-channel and cell-substrate surface forces, and we show that there exists a link between the two, which is the essential parameter determining whether the cell is permeative, invasive or penetrating.
Collapse
|
80
|
Tang X, Tofangchi A, Anand SV, Saif TA. A novel cell traction force microscopy to study multi-cellular system. PLoS Comput Biol 2014; 10:e1003631. [PMID: 24901766 PMCID: PMC4046928 DOI: 10.1371/journal.pcbi.1003631] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/03/2014] [Indexed: 11/19/2022] Open
Abstract
Traction forces exerted by adherent cells on their microenvironment can mediate many critical cellular functions. Accurate quantification of these forces is essential for mechanistic understanding of mechanotransduction. However, most existing methods of quantifying cellular forces are limited to single cells in isolation, whereas most physiological processes are inherently multi-cellular in nature where cell-cell and cell-microenvironment interactions determine the emergent properties of cell clusters. In the present study, a robust finite-element-method-based cell traction force microscopy technique is developed to estimate the traction forces produced by multiple isolated cells as well as cell clusters on soft substrates. The method accounts for the finite thickness of the substrate. Hence, cell cluster size can be larger than substrate thickness. The method allows computing the traction field from the substrate displacements within the cells' and clusters' boundaries. The displacement data outside these boundaries are not necessary. The utility of the method is demonstrated by computing the traction generated by multiple monkey kidney fibroblasts (MKF) and human colon cancerous (HCT-8) cells in close proximity, as well as by large clusters. It is found that cells act as individual contractile groups within clusters for generating traction. There may be multiple of such groups in the cluster, or the entire cluster may behave a single group. Individual cells do not form dipoles, but serve as a conduit of force (transmission lines) over long distances in the cluster. The cell-cell force can be either tensile or compressive depending on the cell-microenvironment interactions.
Collapse
Affiliation(s)
- Xin Tang
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Alireza Tofangchi
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Sandeep V. Anand
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| | - Taher A. Saif
- Department of Mechanical Science and Engineering (MechSE), College of Engineering, University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
- Micro and Nanotechnology Laboratory (MNTL), University of Illinois at Urbana-Champaign (UIUC), Urbana, Illinois, United States of America
| |
Collapse
|
81
|
Lepzelter D, Zaman MH. Modeling persistence in mesenchymal cell motility using explicit fibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:5506-5509. [PMID: 24800650 PMCID: PMC4334298 DOI: 10.1021/la404832t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Cell motility is central to a variety of fundamental processes ranging from cancer metastasis to immune responses, but it is still poorly understood in realistic native environments. Previous theoretical work has tended to focus on intracellular mechanisms or on small pieces of interaction with the environment. In this article, we present a simulation which accounts for mesenchymal movement in a 3D environment with explicit collagen fibers and show that this representation highlights the importance of both the concentration and alignment of fibers. We show good agreement with experimental results regarding cell motility and persistence in 3D environments and predict a specific effect on average instantaneous cell speed and persistence. Importantly, we show that a significant part of persistence in 3D is directly dependent on the physical environment, instead of indirectly dependent on the environment through the biochemical feedback that occurs in cell motility. Thus, new models of motility in three dimensions will need to account for the effects of explicit individual fibers on cells. This model can also be used to analyze cellular persistence in both mesenchymal and nonmesenchymal motility in complex three-dimensional environments to provide insights into mechanisms of cell motion seen in various cancer cell types in vivo.
Collapse
|
82
|
Liu X, Vargas DA, Lü D, Zhang Y, Zaman MH, Long M. Computational Modeling of Stem Cell Migration: A Mini Review. Cell Mol Bioeng 2014. [DOI: 10.1007/s12195-014-0330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
83
|
The synergetic effect of hydrogel stiffness and growth factor on osteogenic differentiation. Biomaterials 2014; 35:5294-5306. [PMID: 24703716 DOI: 10.1016/j.biomaterials.2014.02.040] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 02/21/2014] [Indexed: 12/13/2022]
Abstract
Cells respond to various chemical signals as well as environmental aspects of the extracellular matrix (ECM) that may alter cellular structures and functions. Hence, better understanding of the mechanical stimuli of the matrix is essential for creating an adjuvant material that mimics the physiological environment to support cell growth and differentiation, and control the release of the growth factor. In this study, we utilized the property of transglutaminase cross-linked gelatin (TG-Gel), where modification of the mechanical properties of TG-Gel can be easily achieved by tuning the concentration of gelatin. Modifying one or more of the material parameters will result in changes of the cellular responses, including different phenotype-specific gene expressions and functional differentiations. In this study, stiffer TG-Gels itself facilitated focal contact formation and osteogenic differentiation while soft TG-Gel promoted cell proliferation. We also evaluated the interactions between a stimulating factor (i.e. BMP-2) and matrix rigidity on osteogenesis both in vitro and in vivo. The results presented in this study suggest that the interactions of chemical and physical factors in ECM scaffolds may work synergistically to enhance bone regeneration.
Collapse
|
84
|
WU PEIJUNG, LIN CHOUCHINGK, JU MINGSHAUNG. ONE-DIMENSIONAL MODELING AND SIMULATIONS OF MIGRATION OF CULTURED FIBROBLASTS. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cell migration is crucial for many physiological functions such as wound healing, immuno-response and carcinogenesis. In this study an one-dimensional model of migration of fibroblasts was developed by modeling and integrating five subcellular processes, namely, actin protrusion, focal adhesion formation, stress fiber formation, polarization and retraction. The direction of migration was determined by polarization, which was related to direction of the stiffness gradient of the substrate. By controlling intensity of ultraviolet exposure on type-I collagen, a substrate with a stiffness gradient could be fabricated. Kinematic analyses of positions of the cell front, the nucleus and the cell rear, were utilized as inputs to the model. Simulation results of five live NIH 3T3 fibroblasts showed that the model was capable of simulating fast moving, slow moving and back-and-forth moving of the cells on the substrate.
Collapse
Affiliation(s)
- PEI-JUNG WU
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan
| | - CHOU-CHING K. LIN
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, Tainan, Taiwan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan 701, Taiwan
| | - MING-SHAUNG JU
- Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan 701, Taiwan
| |
Collapse
|
85
|
Mousavi SJ, Doblaré M, Doweidar MH. Computational modelling of multi-cell migration in a multi-signalling substrate. Phys Biol 2014; 11:026002. [PMID: 24632566 DOI: 10.1088/1478-3975/11/2/026002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell-cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell-cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell-cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | |
Collapse
|
86
|
Jiang Y, Lu S. Three-dimensional insights into dermal tissue as a cue for cellular behavior. Burns 2014; 40:191-9. [DOI: 10.1016/j.burns.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/22/2013] [Accepted: 09/29/2013] [Indexed: 01/23/2023]
|
87
|
Stumpf TR, Pértile RA, Rambo CR, Porto LM. Enriched glucose and dextrin mannitol-based media modulates fibroblast behavior on bacterial cellulose membranes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4739-45. [DOI: 10.1016/j.msec.2013.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/26/2022]
|
88
|
Li Z, Cui Z. Three-dimensional perfused cell culture. Biotechnol Adv 2013; 32:243-54. [PMID: 24184152 DOI: 10.1016/j.biotechadv.2013.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell-cell and cell-extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.
Collapse
Affiliation(s)
- Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK.
| |
Collapse
|
89
|
Welf ES, Johnson HE, Haugh JM. Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol Biol Cell 2013; 24:3945-55. [PMID: 24152734 PMCID: PMC3861089 DOI: 10.1091/mbc.e13-06-0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A physicochemical model is used to describe the coupling of adhesion, cytoskeletal, and signaling dynamics during cell migration. Analysis of stochastic simulations predicts relationships between measurable quantities that reflect partitioning of stress between F-actin–bound adhesions, which act as a molecular clutch, and retrograde F-actin flow. Animal cell migration is a complex process characterized by the coupling of adhesion, cytoskeletal, and signaling dynamics. Here we model local protrusion of the cell edge as a function of the load-bearing properties of integrin-based adhesions, actin polymerization fostered by adhesion-mediated signaling, and mechanosensitive activation of RhoA that promotes myosin II–generated stress on the lamellipodial F-actin network. Analysis of stochastic model simulations illustrates how these pleiotropic functions of nascent adhesions may be integrated to govern temporal persistence and frequency of protrusions. The simulations give mechanistic insight into the documented effects of extracellular matrix density and myosin abundance, and they show characteristic, nonnormal distributions of protrusion duration times that are similar to those extracted from live-cell imaging experiments. Analysis of the model further predicts relationships between measurable quantities that reflect the partitioning of stress between tension on F-actin–bound adhesions, which act as a molecular clutch, and dissipation by retrograde F-actin flow.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | | | | |
Collapse
|
90
|
In vitro myoblast motility models: investigating migration dynamics for the study of skeletal muscle repair. J Muscle Res Cell Motil 2013; 34:333-47. [DOI: 10.1007/s10974-013-9364-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
|
91
|
Timm DM, Chen J, Sing D, Gage JA, Haisler WL, Neeley SK, Raphael RM, Dehghani M, Rosenblatt KP, Killian TC, Tseng H, Souza GR. A high-throughput three-dimensional cell migration assay for toxicity screening with mobile device-based macroscopic image analysis. Sci Rep 2013; 3:3000. [PMID: 24141454 PMCID: PMC3801146 DOI: 10.1038/srep03000] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022] Open
Abstract
There is a growing demand for in vitro assays for toxicity screening in three-dimensional (3D) environments. In this study, 3D cell culture using magnetic levitation was used to create an assay in which cells were patterned into 3D rings that close over time. The rate of closure was determined from time-lapse images taken with a mobile device and related to drug concentration. Rings of human embryonic kidney cells (HEK293) and tracheal smooth muscle cells (SMCs) were tested with ibuprofen and sodium dodecyl sulfate (SDS). Ring closure correlated with the viability and migration of cells in two dimensions (2D). Images taken using a mobile device were similar in analysis to images taken with a microscope. Ring closure may serve as a promising label-free and quantitative assay for high-throughput in vivo toxicity in 3D cultures.
Collapse
Affiliation(s)
- David M Timm
- 1] Department of Physics, Rice University, Houston, TX 77005 USA [2] Nano3D Biosciences (n3D), Houston, TX 77030 USA [3]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Abstract
In the past decade, novel materials, probes and tools have enabled fundamental and applied cancer researchers to take a fresh look at the complex problem of tumour invasion and metastasis. These new tools, which include imaging modalities, controlled but complex in vitro culture conditions, and the ability to model and predict complex processes in vivo, represent an integration of traditional with novel engineering approaches; and their potential effect on quantitatively understanding tumour progression and invasion looks promising.
Collapse
Affiliation(s)
- Muhammad H Zaman
- The Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston MA 02215, USA.
| |
Collapse
|
93
|
Danuser G, Allard J, Mogilner A. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu Rev Cell Dev Biol 2013; 29:501-28. [PMID: 23909278 DOI: 10.1146/annurev-cellbio-101512-122308] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A migrating cell is a molecular machine made of tens of thousands of short-lived and interacting parts. Understanding migration means understanding the self-organization of these parts into a system of functional units. This task is one of tackling complexity: First, the system integrates numerous chemical and mechanical component processes. Second, these processes are connected in feedback interactions and over a large range of spatial and temporal scales. Third, many processes are stochastic, which leads to heterogeneous migration behaviors. Early on in the research of cell migration it became evident that this complexity exceeds human intuition. Thus, the cell migration community has led the charge to build mathematical models that could integrate the diverse experimental observations and measurements in consistent frameworks, first in conceptual and more recently in molecularly explicit models. The main goal of this review is to sift through a series of important conceptual and explicit mathematical models of cell migration and to evaluate their contribution to the field in their ability to integrate critical experimental data.
Collapse
Affiliation(s)
- Gaudenz Danuser
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
94
|
Tozluoğlu M, Tournier AL, Jenkins RP, Hooper S, Bates PA, Sahai E. Matrix geometry determines optimal cancer cell migration strategy and modulates response to interventions. Nat Cell Biol 2013; 15:751-62. [PMID: 23792690 DOI: 10.1038/ncb2775] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/01/2013] [Indexed: 12/15/2022]
Abstract
The molecular requirements and morphology of migrating cells can vary depending on matrix geometry; therefore, predicting the optimal migration strategy or the effect of experimental perturbation is difficult. We present a model of cell motility that encompasses actin-polymerization-based protrusions, actomyosin contractility, variable actin-plasma membrane linkage leading to membrane blebbing, cell-extracellular-matrix adhesion and varying extracellular matrix geometries. This is used to explore the theoretical requirements for rapid migration in different matrix geometries. Confined matrix geometries cause profound shifts in the relationship of adhesion and contractility to cell velocity; indeed, cell-matrix adhesion is dispensable for migration in discontinuous confined environments. The model is challenged to predict the effect of different combinations of kinase inhibitors and integrin depletion in vivo, and in confined matrices based on in vitro two-dimensional measurements. Intravital imaging is used to verify bleb-driven migration at tumour margins, and the predicted response to single and combinatorial manipulations.
Collapse
Affiliation(s)
- Melda Tozluoğlu
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
95
|
Vargas DA, Bates O, Zaman MH. Computational model to probe cellular mechanics during epithelial-mesenchymal transition. Cells Tissues Organs 2013; 197:435-44. [PMID: 23774741 DOI: 10.1159/000348415] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
During the epithelial to mesenchymal transition (EMT), polarized cells in the epithelium can undergo a transformation characterized by the loss of cell-cell junctions and increased migratory activity into nonpolarized invasive cells. These cells adopt a mesenchymal shape and migrate into the basal lamina. Such transitions have been observed in developmental processes and have been linked to cancer cell metastasis. Most experimental studies on EMT search for molecular markers indicating an epithelial or mesenchymal conformation, focussing on afferent signaling pathways received by cells undergoing this transformation; however, these approaches are unable to track mechanical changes in the cell and the possible role this plays in EMT. In order to address this gap in our understanding, we have used a quantitative approach to study population level effects of single cell changes typically occurring during EMT. We have developed a computational model making use of the advantages of both single cell migratory models and agent-based cell population models to study the effect of cellular molecular processes in EMT. The disruption of a cell sheet representing the epithelium over a dense extracellular matrix (ECM) is simulated using interaction forces between different cells and between cells and discrete fibers representing the ECM. In our study, two different parameters were varied: protrusion force magnitude and E-cadherin (cell-cell junction) concentration. The cell population was tracked for 3 days and the number of cells that leave the layer, the depth of invasion, and the percentage of initial number of cells that remain in the layer (a measure of epithelium disruption) were monitored. Our studies suggest that having a high protrusion force or a reduction in cell-cell attachments is enough to cause EMT. Our results also demonstrate that the morphological progression in membrane disruption has an effect on the number of cells becoming invasive, with epithelial layers broken into clusters hindering the further exodus of cells. The results reveal the quantitative interplay between two key parameters involved in EMT and suggest potential avenues for further exploration of a systems level understanding of EMT.
Collapse
Affiliation(s)
- Diego A Vargas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | |
Collapse
|
96
|
Mousavi SJ, Doweidar MH, Doblaré M. 3D computational modelling of cell migration: a mechano-chemo-thermo-electrotaxis approach. J Theor Biol 2013; 329:64-73. [PMID: 23571009 DOI: 10.1016/j.jtbi.2013.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/14/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
Single cell migration constitutes a fundamental phenomenon involved in many biological events such as wound healing, cancer development and tissue regeneration. Several experiments have demonstrated that, besides the mechanical driving force (mechanotaxis), cell migration may be also influenced by chemical, thermal and/or electrical cues. In this paper, we present an extension of a previous model of the same authors adding the effects of chemotaxis, thermotaxis and electrotaxis to the initial mechanotaxis model of cell migration, allowing us to predict cell migration behaviour under different conditions and substrate properties. The present model is based on the balance of effective forces during cell motility in the presence of the several guiding cues. This model has been applied to several numerical experiments to demonstrate the effect of the different drivers onto the cell path and final location within a certain three-dimensional substrate with heterogeneous properties. Our findings indicate that the presence of the chemotaxis, thermotaxis and/or electrotaxis reduce, in general, the random component of cell movement, being this reduction more important in the case of electrotaxis that can be considered a dominating signal during cell migration (besides the underlying mechanical effects). These results are qualitatively in agreement with well-known experimental ones.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
| | | | | |
Collapse
|
97
|
Frascoli F, Hughes BD, Zaman MH, Landman KA. A computational model for collective cellular motion in three dimensions: general framework and case study for cell pair dynamics. PLoS One 2013; 8:e59249. [PMID: 23527148 PMCID: PMC3602115 DOI: 10.1371/journal.pone.0059249] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Cell migration in healthy and diseased systems is a combination of single and collective cell motion. While single cell motion has received considerable attention, our understanding of collective cell motion remains elusive. A new computational framework for the migration of groups of cells in three dimensions is presented, which focuses on the forces acting at the microscopic scale and the interactions between cells and their extracellular matrix (ECM) environment. Cell-cell adhesion, resistance due to the ECM and the factors regulating the propulsion of each cell through the matrix are considered. In particular, our approach emphasizes the role of receptors that mediate cell-cell and cell-matrix interactions, and examines how variation in their properties induces changes in cellular motion. As an important case study, we analyze two interacting cells. Our results show that the dynamics of cell pairs depends on the magnitude and the stochastic nature of the forces. Stronger intercellular stability is generally promoted by surface receptors that move. We also demonstrate that matrix resistance, cellular stiffness and intensity of adhesion contribute to migration behaviors in different ways, with memory effects present that can alter pair motility. If adhesion weakens with time, our findings show that cell pair break-up depends strongly on the way cells interact with the matrix. Finally, the motility for cells in a larger cluster (size 50 cells) is examined to illustrate the full capabilities of the model and to stress the role of cellular pairs in complex cellular structures. Overall, our framework shows how properties of cells and their environment influence the stability and motility of cellular assemblies. This is an important step in the advancement of the understanding of collective motility, and can contribute to knowledge of complex biological processes involving migration, aggregation and detachment of cells in healthy and diseased systems.
Collapse
Affiliation(s)
- Federico Frascoli
- Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.
| | | | | | | |
Collapse
|
98
|
Pampaloni F, Ansari N, Stelzer EHK. High-resolution deep imaging of live cellular spheroids with light-sheet-based fluorescence microscopy. Cell Tissue Res 2013; 352:161-77. [DOI: 10.1007/s00441-013-1589-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 02/12/2013] [Indexed: 01/13/2023]
|
99
|
Schlüter DK, Ramis-Conde I, Chaplain MAJ. Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. Biophys J 2013; 103:1141-51. [PMID: 22995486 DOI: 10.1016/j.bpj.2012.07.048] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 01/18/2023] Open
Abstract
Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell's microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell's environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments.
Collapse
|
100
|
Allena R. Cell migration with multiple pseudopodia: temporal and spatial sensing models. Bull Math Biol 2013; 75:288-316. [PMID: 23319383 DOI: 10.1007/s11538-012-9806-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/20/2012] [Indexed: 01/15/2023]
Abstract
Cell migration triggered by pseudopodia (or "false feet") is the most used method of locomotion. A 3D finite element model of a cell migrating over a 2D substrate is proposed, with a particular focus on the mechanical aspects of the biological phenomenon. The decomposition of the deformation gradient is used to reproduce the cyclic phases of protrusion and contraction of the cell, which are tightly synchronized with the adhesion forces at the back and at the front of the cell, respectively. First, a steady active deformation is considered to show the ability of the cell to simultaneously initiate multiple pseudopodia. Here, randomness is considered as a key aspect, which controls both the direction and the amplitude of the false feet. Second, the migration process is described through two different strategies: the temporal and the spatial sensing models. In the temporal model, the cell "sniffs" the surroundings by extending several pseudopodia and only the one that receives a positive input will become the new leading edge, while the others retract. In the spatial model instead, the cell senses the external sources at different spots of the membrane and only protrudes one pseudopod in the direction of the most attractive one.
Collapse
Affiliation(s)
- Rachele Allena
- Arts et Metiers ParisTech, LBM, 151 bd de l'hopital, 75013 Paris, France.
| |
Collapse
|