51
|
Zhu Y, Shen R, Hao R, Wang S, Ho M. Highlights of Antibody Engineering and Therapeutics 2019 in San Diego, USA: Bispecific Antibody Design and Clinical Applications. Antib Ther 2020; 3:146-154. [PMID: 32671329 PMCID: PMC7363406 DOI: 10.1093/abt/tbaa012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Although there are only two bispecific antibody (bsAb) drugs in the market, around 100 bsAb drug candidates are in clinical development. BsAbs have gained fast growing investment and attractions from the biopharmaceutical industry and academia in recent years. Antibody Engineering & Therapeutics 2019 (AET 2019) was held in San Diego, USA, from December 9th to 13th, 2019. This year's AET certainly reflected the trend. In this report, we selected eleven presentations from AET 2019 to highlight bsAbs' design and their potentials in cancer therapy. These presentations have discussed emerging strategies to improve bispecific antibody drugs in efficacy, safety, and production. As compared to CAR-Ts, some T cell-redirecting bsAbs may potentially achieve comparable efficacies with less side effects and toxicities, as evidenced with both preclinical and clinical data reviewed at the conference. Several approaches to reduce T cell engagers' toxicities including conditionally active bsAbs and IgM-based bsAbs were also presented and discussed at the conference. For the first time, The Antibody Society and the Chinese Antibody Society jointly held a special session at the AET.
Collapse
Affiliation(s)
- Yong Zhu
- Chinese Antibody Society, Cambridge, MA 02139, USA,To whom correspondence should be addressed. Yong Zhu or Mitchell Ho. or
| | - Run Shen
- Sorrento Therapeutics, San Diego, CA 92121, USA
| | - Rui Hao
- Pfizer, San Diego, CA 92121, USA
| | - Shouye Wang
- Chinese Antibody Society, Cambridge, MA 02139, USA
| | - Mitchell Ho
- NCI Antibody Engineering Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA,To whom correspondence should be addressed. Yong Zhu or Mitchell Ho. or
| |
Collapse
|
52
|
Wenskowsky L, Wagner M, Reusch J, Schreuder H, Matter H, Opatz T, Petry SM. Resolving Binding Events on the Multifunctional Human Serum Albumin. ChemMedChem 2020; 15:738-743. [PMID: 32162429 PMCID: PMC7318646 DOI: 10.1002/cmdc.202000069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Indexed: 12/29/2022]
Abstract
Physiological processes rely on initial recognition events between cellular components and other molecules or modalities. Biomolecules can have multiple sites or mode of interaction with other molecular entities, so that a resolution of the individual binding events in terms of spatial localization as well as association and dissociation kinetics is required for a meaningful description. Here we describe a trichromatic fluorescent binding- and displacement assay for simultaneous monitoring of three individual binding sites in the important transporter and binding protein human serum albumin. Independent investigations of binding events by X-ray crystallography and time-resolved dynamics measurements (switchSENSE technology) confirm the validity of the assay, the localization of binding sites and furthermore reveal conformational changes associated with ligand binding. The described assay system allows for the detailed characterization of albumin-binding drugs and is therefore well-suited for prediction of drug-drug and drug-food interactions. Moreover, conformational changes, usually associated with binding events, can also be analyzed.
Collapse
Affiliation(s)
- Lea Wenskowsky
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | - Michael Wagner
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Johannes Reusch
- Dynamic Biosensors GmbHLochhamer Straße 1582152Martinsried/PlaneggGermany
| | - Herman Schreuder
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Hans Matter
- Sanofi-Aventis Deutschland GmbHIndustriepark Höchst65926Frankfurt am MainGermany
| | - Till Opatz
- Institute of Organic ChemistryJohannes Gutenberg-UniversityDuesbergweg 10–1455128MainzGermany
| | | |
Collapse
|
53
|
Cho J, Park J, Kim S, Kim JC, Tae G, Jin MS, Kwon I. Intramolecular distance in the conjugate of urate oxidase and fatty acid governs FcRn binding and serum half-life in vivo. J Control Release 2020; 321:49-58. [DOI: 10.1016/j.jconrel.2020.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/17/2022]
|
54
|
The Minimal Effect of Linker Length for Fatty Acid Conjugation to a Small Protein on the Serum Half-Life Extension. Biomedicines 2020; 8:biomedicines8050096. [PMID: 32357510 PMCID: PMC7277390 DOI: 10.3390/biomedicines8050096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 01/20/2023] Open
Abstract
Conjugation of serum albumin or one of its ligands (such as fatty acid) has been an effective strategy to prolong the serum half-lives of drugs via neonatal Fc receptor (FcRn)–mediated recycling of albumin. So far, fatty acid (FA) has been effective in prolonging the serum half-lives for therapeutic peptides and small proteins, but not for large therapeutic proteins. Very recently, it was reported a large protein conjugated to FA competes with the binding of FcRn with serum albumin, leading to limited serum half-life extension, because primary FA binding sites in serum albumin partially overlap with FcRn binding sites. In order to prevent such competition, longer linkers between FA and the large proteins were required. Herein, we hypothesized that small proteins do not cause substantial competition for FcRn binding to albumin, resulting in the extended serum half-life. Using a small protein (28 kDa), we investigated whether the intramolecular distance in FA-protein conjugate affects the FcRn binding with albumin and serum half-life using linkers with varying lengths. Unlike with the FA-conjugated large protein, all FA-conjugated small proteins with different linkers exhibited comparable the FcRn binding to albumin and extended serum half-life.
Collapse
|
55
|
Hooft van Huijsduijnen R, Kojima S, Carter D, Okabe H, Sato A, Akahata W, Wells TNC, Katsuno K. Reassessing therapeutic antibodies for neglected and tropical diseases. PLoS Negl Trop Dis 2020; 14:e0007860. [PMID: 31999695 PMCID: PMC6991954 DOI: 10.1371/journal.pntd.0007860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In the past two decades there has been a significant expansion in the number of new therapeutic monoclonal antibodies (mAbs) that are approved by regulators. The discovery of these new medicines has been driven primarily by new approaches in inflammatory diseases and oncology, especially in immuno-oncology. Other recent successes have included new antibodies for use in viral diseases, including HIV. The perception of very high costs associated with mAbs has led to the assumption that they play no role in prophylaxis for diseases of poverty. However, improvements in antibody-expression yields and manufacturing processes indicate this is a cost-effective option for providing protection from many types of infection that should be revisited. Recent technology developments also indicate that several months of protection could be achieved with a single dose. Moreover, new methods in B cell sorting now enable the systematic identification of high-quality antibodies from humanized mice, or patients. This Review discusses the potential for passive immunization against schistosomiasis, fungal infections, dengue, and other neglected diseases.
Collapse
Affiliation(s)
| | | | - Dee Carter
- School of Life and Environmental Sciences and The Marie Bashir Institute, University of Sydney, NSW, Australia
| | | | | | - Wataru Akahata
- VLP Therapeutics, Gaithersburg, Maryland, United States of America
| | | | - Kei Katsuno
- Global Health Innovative Technology Fund, Tokyo, Japan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
- Nagasaki University School of Tropical Medicine and Global Health, Nagasaki, Japan
| |
Collapse
|
56
|
GSK3732394: a Multi-specific Inhibitor of HIV Entry. J Virol 2019; 93:JVI.00907-19. [PMID: 31375580 DOI: 10.1128/jvi.00907-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Long-acting antiretrovirals could provide a useful alternative to daily oral therapy for HIV-1-infected individuals. Building on a bi-specific molecule with adnectins targeting CD4 and gp41, a potential long-acting biologic, GSK3732394, was developed with three independent and synergistic modes of HIV entry inhibition that potentially could be self-administered as a long-acting subcutaneous injection. Starting with the bi-specific inhibitor, an α-helical peptide inhibitor was optimized as a linked molecule to the anti-gp41 adnectin, with each separate inhibitor exhibiting at least single-digit nanomolar (or lower) potency and a broad spectrum. Combination of the two adnectins and peptide activities into a single molecule was shown to have synergistic advantages in potency, the resistance barrier, and the ability to inhibit HIV-1 infections at low levels of CD4 receptor occupancy, showing that GSK3732394 can work in trans on a CD4+ T cell. Addition of a human serum albumin molecule prolongs the half-life in a human CD4 transgenic mouse, suggesting that it may have potential as a long-acting agent. GSK3732394 was shown to be highly effective in a humanized mouse model of infection. GSK3732394 is currently in clinical trials.IMPORTANCE There continue to be significant unmet medical needs for patients with HIV-1 infection. One way to improve adherence and decrease the likelihood of drug-drug interactions in HIV-1-infected patients is through the development of long-acting biologic inhibitors. Building on a bi-specific inhibitor approach targeting CD4 and gp41, a tri-specific molecule was generated with three distinct antiviral activities. The linkage of these three biologic inhibitors creates synergy that offers a series of advantages to the molecule. The addition of human serum albumin to the tri-specific inhibitor could allow it to function as a long-acting self-administered treatment for patients with HIV infection. This molecule is currently in early clinical trials.
Collapse
|
57
|
Iyengar ARS, Gupta S, Jawalekar S, Pande AH. Protein Chimerization: A New Frontier for Engineering Protein Therapeutics with Improved Pharmacokinetics. J Pharmacol Exp Ther 2019; 370:703-714. [PMID: 31010843 DOI: 10.1124/jpet.119.257063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/16/2019] [Indexed: 03/08/2025] Open
Abstract
With the advancement of medicine, the utility of protein therapeutics is increasing exponentially. However, a significant number of protein therapeutics suffer from grave limitations, which include their subpar pharmacokinetics. In this study, we have reviewed the emerging field of protein chimerization for improving the short circulatory half-life of protein therapeutics. We have discussed various aspects of protein therapeutics aiming at their mechanism of clearance and various approaches used to increase their short circulatory half-life with principal focus on the concept of chimerization. Furthermore, we have comprehensively reviewed various components of chimera, such as half-life extension partners and linkers, their shortcomings, and prospective work to be undertaken for developing effective chimeric protein therapeutics.
Collapse
Affiliation(s)
- A R Satvik Iyengar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Shreya Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Snehal Jawalekar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Punjab, India
| |
Collapse
|
58
|
Sousa AA. Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation. RSC Adv 2019; 9:26927-26941. [PMID: 35528561 PMCID: PMC9070572 DOI: 10.1039/c9ra04718b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
Ultrasmall metal nanoparticles (NPs) are next-generation nano-based platforms for in vivo disease diagnosis and treatment. Due to their small size below the kidney filtration threshold and marked resistance to nonspecific serum protein adsorption, ultrasmall NPs can be rapidly excreted through the kidneys and escape liver uptake. However, although ultrasmall particles may be deemed highly resistant to protein adsorption, the real extent of this resistance is not known. Here, a simple compartmental model simulation was therefore implemented to understand how NP behavior in vivo could be modulated by soft, transient NP-plasma protein interactions characterized by dissociation constants in the millimolar range. In Model 1, ultrasmall NPs functionalized with a targeting probe, plasma proteins and target receptors were assumed to co-exist within a single compartment. Simulations were performed to understand the synergistic effect of soft interactions, systemic clearance and NP size on receptor occupancy in the single compartment. The results revealed the existence of a narrow range of ultraweak affinities and optimal particle sizes leading to greater target occupancy. In Model 2, simulations were performed to understand the impact of soft interactions on NP accumulation into a peripheral (tumor) compartment. The results revealed that soft interactions - but not active targeting - enhanced tumor uptake levels when tumor accumulation was limited by 'fast' plasma clearance and 'slow' vascular extravasation. The simple model presented here provides a basic framework to quantitatively understand the blood and tumor pharmacokinetics of ultrasmall NPs under the influence of transient protein interactions.
Collapse
Affiliation(s)
- Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo São Paulo SP Brazil
| |
Collapse
|
59
|
Schardt JS, Noonan-Shueh M, Oubaid JM, Pottash AE, Williams SC, Hussain A, Lapidus RG, Lipkowitz S, Jay SM. HER3-Targeted Affibodies with Optimized Formats Reduce Ovarian Cancer Progression in a Mouse Xenograft Model. AAPS JOURNAL 2019; 21:48. [PMID: 30949858 DOI: 10.1208/s12248-019-0318-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/08/2019] [Indexed: 01/16/2023]
Abstract
Expression of the receptor tyrosine kinase HER3 is negatively correlated with survival in ovarian cancer, and HER3 overexpression is associated with cancer progression and therapeutic resistance. Thus, improvements in HER3-targeted therapy could lead to significant clinical impact for ovarian cancer patients. Previous work from our group established multivalency as a potential strategy to improve the therapeutic efficacy of HER3-targeted ligands, including affibodies. Others have established HER3 affibodies as viable and potentially superior alternatives to monoclonal antibodies for cancer therapy. Here, bivalent HER3 affibodies were engineered for optimized production, specificity, and function as evaluated in an ovarian cancer xenograft model. Enhanced inhibition of HER3-mediated signaling and increased HER3 downregulation associated with multivalency could be achieved with a simplified construct, potentially increasing translational potential. Additionally, functional effects of affibodies due to multivalency were found to be specific to HER3 targeting, suggesting a unique molecular mechanism. Further, HER3 affibodies demonstrated efficacy in ovarian cancer xenograft mouse models, both as single agents and in combination with carboplatin. Overall, these results reinforce the potential of HER3-targeted affibodies for cancer therapy and establish treatment of ovarian cancer as an application where multivalent HER3 ligands may be useful. Further, this work introduces the potential of HER3 affibodies to be utilized as part of clinically relevant combination therapies (e.g., with carboplatin).
Collapse
Affiliation(s)
- John S Schardt
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Madeleine Noonan-Shueh
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Jinan M Oubaid
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Alex Eli Pottash
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Sonya C Williams
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA
| | - Arif Hussain
- Baltimore VA Medical Center, Baltimore, Maryland, United States of America.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America.,Translational Laboratory Shared Service, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stanley Lipkowitz
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, 3116 A. James Clark Hall, College Park, Maryland, 20742, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America. .,Program in Molecular and Cellular Biology, University of Maryland, College Park, Maryland, United States of America.
| |
Collapse
|
60
|
Li Q, Barrett A, Vijayakrishnan B, Tiberghien A, Beard R, Rickert KW, Allen KL, Christie RJ, Marelli M, Harper J, Howard P, Wu H, Dall'Acqua WF, Tsui P, Gao C, Borrok MJ. Improved Inhibition of Tumor Growth by Diabody-Drug Conjugates via Half-Life Extension. Bioconjug Chem 2019; 30:1232-1243. [PMID: 30912649 DOI: 10.1021/acs.bioconjchem.9b00170] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Despite some clinical success with antibody-drug conjugates (ADCs) in patients with solid tumors and hematological malignancies, improvements in ADC design are still desirable due to the narrow therapeutic window of these compounds. Tumor-targeting antibody fragments have distinct advantages over monoclonal antibodies, including more rapid tumor accumulation and enhanced penetration, but are subject to rapid clearance. Half-life extension technologies such as PEGylation and albumin-binding domains (ABDs) have been widely used to improve the pharmacokinetics of many different types of biologics. PEGylation improves pharmacokinetics by increasing hydrodynamic size to reduce renal clearance, whereas ABDs extend half-life via FcRn-mediated recycling. In this study, we used an anti-oncofetal antigen 5T4 diabody conjugated with a highly potent cytotoxic pyrrolobenzodiazepine (PBD) warhead to assess and compare the effects of PEGylation and albumin binding on the in vivo efficacy of antibody fragment drug conjugates. Conjugation of 2× PEG20K to a diabody improved half-life from 40 min to 33 h, and an ABD-diabody fusion protein exhibited a half-life of 45 h in mice. In a xenograft model of breast cancer MDA-MB-436, the ABD-diabody-PBD showed greater tumor growth suppression and better tolerability than either PEG-diabody-PBD or diabody-PBD. These results suggest that the mechanism of half-life extension is an important consideration for designing cytotoxic antitumor agents.
Collapse
Affiliation(s)
| | | | | | | | - Rhiannon Beard
- Spirogen , 42 New Road , E1 2AX , London , United Kingdom
| | | | | | | | | | | | - Philip Howard
- Spirogen , 42 New Road , E1 2AX , London , United Kingdom
| | | | | | | | | | | |
Collapse
|
61
|
Kholodenko RV, Kalinovsky DV, Doronin II, Ponomarev ED, Kholodenko IV. Antibody Fragments as Potential Biopharmaceuticals for Cancer Therapy: Success and Limitations. Curr Med Chem 2019; 26:396-426. [DOI: 10.2174/0929867324666170817152554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) are an important class of therapeutic agents approved for the therapy of many types of malignancies. However, in certain cases applications of conventional mAbs have several limitations in anticancer immunotherapy. These limitations include insufficient efficacy and adverse effects. The antigen-binding fragments of antibodies have a considerable potential to overcome the disadvantages of conventional mAbs, such as poor penetration into solid tumors and Fc-mediated bystander activation of the immune system. Fragments of antibodies retain antigen specificity and part of functional properties of conventional mAbs and at the same time have much better penetration into the tumors and a greatly reduced level of adverse effects. Recent advantages in antibody engineering allowed to produce different types of antibody fragments with improved structure and properties for efficient elimination of tumor cells. These molecules opened up new perspectives for anticancer therapy. Here, we will overview the structural features of the various types of antibody fragments and their applications for anticancer therapy as separate molecules and as part of complex conjugates or structures. Mechanisms of antitumor action of antibody fragments as well as their advantages and disadvantages for clinical application will be discussed in this review.
Collapse
Affiliation(s)
- Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| | - Eugene D. Ponomarev
- School of Biomedical Sciences, Faculty of Medicine and Brain, The Chinese University of Hong Kong, Shatin NT, Hong Kong
| | - Irina V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho- Maklaya St., 16/10, Moscow 117997, Russian Federation
| |
Collapse
|
62
|
Fab Fragment of VHH-Based Antibody Netakimab: Crystal Structure and Modeling Interaction with Cytokine IL-17A. CRYSTALS 2019. [DOI: 10.3390/cryst9030177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Interleukin 17A (IL-17A) is a proinflammatory cytokine produced by Th17 cells. Antibody BCD-085 (netakimab) against human IL-17A is one of the new inhibitors of this cytokine. In netakimab, the VH domain is replaced by the VHH domain of Lama glama possessing a long complementarity determining region (CDR-H3) in its heavy chain. Here we demonstrate the high affinity of IL-17A to the Fab fragment of netakimab and to its integral part, the VHH domain. We have determined the crystal structure of the Fab fragment of netakimab at 1.9 Å resolution. High variability in the orientation of light and heavy chains of the Fab fragment of netakimab was shown, which is determined by the peculiarity of the structural organization of the CDR-H3. As the high conformational plasticity of the molecule hampers modeling the Fab fragment of netakimab complexed to IL-17A, we have carried out modeling the complex between the antigen and the integral part of the Fab fragment, the VHH domain. We explain the high netakimab Fab fragment affinity for IL-17A by a large number of protein–protein contacts due to additional interactions between CDR-H3 and the cytokine dimer.
Collapse
|
63
|
Wang M, Wang T, Guan Y, Wang F, Zhu J. The preparation and therapeutic roles of scFv-Fc antibody against Staphylococcus aureus infection to control bovine mastitis. Appl Microbiol Biotechnol 2019; 103:1703-1712. [PMID: 30607490 DOI: 10.1007/s00253-018-9548-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023]
Abstract
Staphylococcus aureus-induced bovine mastitis causes significant losses to the dairy industry and available vaccines do not confer adequate protection. As a more attractive alternative, we propose the use of antibody (Ab) therapy. In our previous study, we constructed a bovine single-chain variable fragment (scFv) Ab phage display and successfully obtained scFvs that bound to S. aureus antigens with high affinity. Here, we describe a novel Ab against S. aureus (scFv-Fc Ab). To construct the scFv-Fc Ab, the scFv Ab was genetically fused to the Fc fragment of a bovine IgG1 Ab. Western blot analysis showed that the bovine scFvs-Fc Abs were successfully expressed with horseradish peroxidase-conjugated goat-anti-bovine IgG (Fc) Ab in Escherichia coli cells. The purified bovine scFvs-Fc Abs had good binding activity to S. aureus and effectively inhibited the bacterial growth in culture medium and bovine scFvs-Fc Abs enhanced phagocytosis of S. aureus by neutrophils isolated from peripheral blood in a dose-dependent manner. In the experiment of bovine scFvs-Fc Abs for the treatment of S. aureus-induced bovine mastitis, the total effective percentage reached 82% (9/11). These novel bovine scFvs-Fc Abs may be useful as therapeutic candidates for the prevention and treatment of S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Guan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
64
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
65
|
dos Santos R, Figueiredo C, Viecinski AC, Pina AS, Barbosa AJ, Roque ACA. Designed affinity ligands to capture human serum albumin. J Chromatogr A 2019; 1583:88-97. [DOI: 10.1016/j.chroma.2018.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
|
66
|
Smith WJ, Wang G, Gaikwad H, Vu VP, Groman E, Bourne DWA, Simberg D. Accelerated Blood Clearance of Antibodies by Nanosized Click Antidotes. ACS NANO 2018; 12:12523-12532. [PMID: 30516974 PMCID: PMC6472973 DOI: 10.1021/acsnano.8b07003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Long blood half-life is one of the advantages of antibodies over small molecule drugs. At the same time, prolonged half-life is a problem for imaging applications or in the case of antibody-induced toxicities. There is a substantial need for antidotes that can quickly clear antibodies from systemic circulation and peripheral tissues. Engineered nanoparticles exhibit intrinsic affinity for clearance organs (mainly liver and spleen). trans-Cyclooctene (TCO) and methyltetrazine (MTZ) are versatile copper-free click chemistry components that are extensively being used for in vivo bioorthogonal couplings. To test the ability of nanoparticles to eliminate antibodies, we prepared a set of click-modified, clinically relevant antidotes based on several classes of drug carriers: phospholipid-PEG micelles, bovine serum albumin (BSA), and cross-linked dextran iron oxide (CLIO) nanoparticles. Mice were injected with IRDye 800CW-labeled, click-modified IgG followed by a click-modified antidote or PBS (control), and the levels of the IgG were monitored up to 72 h postinjection. Long-circulating lipid micelles produced a spike in IgG levels at 1 h, decreased IgG levels at 24 h, and did not decrease the area under the curve (AUC) and IgG accumulation in main organs. Long-circulating BSA decreased IgG levels at 1 and 24 h, decreased the AUC, but did not significantly decrease organ accumulation. Long-circulating CLIO nanoworms increased IgG levels at 1 h, decreased IgG levels at 24 h, did not decrease the AUC, and did not decrease the organ accumulation. On the other hand, short-circulating CLIO nanoparticles decreased IgG levels at 1 and 24 h, significantly decreasing the AUC and accumulation in the main organs. Multiple doses of CLIO and BSA were not able to completely eliminate the antibody from blood, despite the click reactivity of the residual IgG, likely due to exchange of IgG between blood and tissue compartments. Pharmacokinetic modeling suggests that short antidote half-life and fast click reaction rate should result in higher IgG depletion efficiency. Short-circulating click-modified nanocarriers are the most effective antidotes for elimination of antibodies from blood. This study sets a stage for future development of antidotes based on nanomedicine.
Collapse
Affiliation(s)
- Weston J. Smith
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Guankui Wang
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Hanmant Gaikwad
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Vivian P. Vu
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Ernest Groman
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - David W. A. Bourne
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Center for Translational Pharmacokinetics and Pharmacogenomics, The Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory
- Department of Pharmaceutical Sciences, The Skaggs School of Pharmacy and Pharmaceutical Sciences
- Colorado Center for Nanomedicine and Nanosafety, and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
- Corresponding Author: .
| |
Collapse
|
67
|
Yin Y, Boesteanu AC, Binder ZA, Xu C, Reid RA, Rodriguez JL, Cook DR, Thokala R, Blouch K, McGettigan-Croce B, Zhang L, Konradt C, Cogdill AP, Panjwani MK, Jiang S, Migliorini D, Dahmane N, Posey AD, June CH, Mason NJ, Lin Z, O’Rourke DM, Johnson LA. Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Mol Ther Oncolytics 2018; 11:20-38. [PMID: 30306125 PMCID: PMC6174845 DOI: 10.1016/j.omto.2018.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
We generated two humanized interleukin-13 receptor α2 (IL-13Rα2) chimeric antigen receptors (CARs), Hu07BBz and Hu08BBz, that recognized human IL-13Rα2, but not IL-13Rα1. Hu08BBz also recognized canine IL-13Rα2. Both of these CAR T cell constructs demonstrated superior tumor inhibitory effects in a subcutaneous xenograft model of human glioma compared with a humanized EGFRvIII CAR T construct used in a recent phase 1 clinical trial (ClinicalTrials.gov: NCT02209376). The Hu08BBz demonstrated a 75% reduction in orthotopic tumor growth using low-dose CAR T cell infusion. Using combination therapy with immune checkpoint blockade, humanized IL-13Rα2 CAR T cells performed significantly better when combined with CTLA-4 blockade, and humanized EGFRvIII CAR T cells' efficacy was improved by PD-1 and TIM-3 blockade in the same mouse model, which was correlated with the levels of checkpoint molecule expression in co-cultures with the same tumor in vitro. Humanized IL-13Rα2 CAR T cells also demonstrated benefit from a self-secreted anti-CTLA-4 minibody in the same mouse model. In addition to a canine glioma cell line (J3T), canine osteosarcoma lung cancer and leukemia cell lines also express IL-13Rα2 and were recognized by Hu08BBz. Canine IL-13Rα2 CAR T cell was also generated and tested in vitro by co-culture with canine tumor cells and in vivo in an orthotopic model of canine glioma. Based on these results, we are designing a pre-clinical trial to evaluate the safety of canine IL-13Rα2 CAR T cells in dog with spontaneous IL-13Rα2-positive glioma, which will help to inform a human clinical trial design for glioblastoma using humanized scFv-based IL-13Rα2 targeting CAR T cells.
Collapse
Affiliation(s)
- Yibo Yin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina C. Boesteanu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A. Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Reiss A. Reid
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse L. Rodriguez
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle R. Cook
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Radhika Thokala
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristin Blouch
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bevin McGettigan-Croce
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexandria P. Cogdill
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M. Kazim Panjwani
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Shuguang Jiang
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Denis Migliorini
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Avery D. Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Carl H. June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Nicola J. Mason
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, Philadelphia, PA 19104, USA
| | - Zhiguo Lin
- The Fourth Section of Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Donald M. O’Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A. Johnson
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
68
|
Single-Domain Antibodies and Their Formatting to Combat Viral Infections. Antibodies (Basel) 2018; 8:antib8010001. [PMID: 31544807 PMCID: PMC6640686 DOI: 10.3390/antib8010001] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022] Open
Abstract
Since their discovery in the 1990s, single-domain antibodies (VHHs), also known as Nanobodies®, have changed the landscape of affinity reagents. The outstanding solubility, stability, and specificity of VHHs, as well as their small size, ease of production and formatting flexibility favor VHHs over conventional antibody formats for many applications. The exceptional ease by which it is possible to fuse VHHs with different molecular modules has been particularly explored in the context of viral infections. In this review, we focus on VHH formats that have been developed to combat viruses including influenza viruses, human immunodeficiency virus-1 (HIV-1), and human respiratory syncytial virus (RSV). Such formats may significantly increase the affinity, half-life, breadth of protection of an antiviral VHH and reduce the risk of viral escape. In addition, VHHs can be equipped with effector functions, for example to guide components of the immune system with high precision to sites of viral infection.
Collapse
|
69
|
Macintyre F, Ramachandruni H, Burrows JN, Holm R, Thomas A, Möhrle JJ, Duparc S, Hooft van Huijsduijnen R, Greenwood B, Gutteridge WE, Wells TNC, Kaszubska W. Injectable anti-malarials revisited: discovery and development of new agents to protect against malaria. Malar J 2018; 17:402. [PMID: 30384848 PMCID: PMC6211409 DOI: 10.1186/s12936-018-2549-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Over the last 15 years, the majority of malaria drug discovery and development efforts have focused on new molecules and regimens to treat patients with uncomplicated or severe disease. In addition, a number of new molecular scaffolds have been discovered which block the replication of the parasite in the liver, offering the possibility of new tools for oral prophylaxis or chemoprotection, potentially with once-weekly dosing. However, an intervention which requires less frequent administration than this would be a key tool for the control and elimination of malaria. Recent progress in HIV drug discovery has shown that small molecules can be formulated for injections as native molecules or pro-drugs which provide protection for at least 2 months. Advances in antibody engineering offer an alternative approach whereby a single injection could potentially provide protection for several months. Building on earlier profiles for uncomplicated and severe malaria, a target product profile is proposed here for an injectable medicine providing long-term protection from this disease. As with all of such profiles, factors such as efficacy, cost, safety and tolerability are key, but with the changing disease landscape in Africa, new clinical and regulatory approaches are required to develop prophylactic/chemoprotective medicines. An overall framework for these approaches is suggested here.
Collapse
Affiliation(s)
- Fiona Macintyre
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Hanu Ramachandruni
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jeremy N Burrows
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - René Holm
- Drug Product Development, Janssen R&D, Johnson & Johnson, Turnhoutseweg 30, 2340, Beerse, Belgium.,Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anna Thomas
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Jörg J Möhrle
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | - Stephan Duparc
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| | | | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Timothy N C Wells
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland.
| | - Wiweka Kaszubska
- Medicines for Malaria Venture, Route de Pré Bois 20, 1215, Geneva, Switzerland
| |
Collapse
|
70
|
Mahlangu JN. Updates in clinical trial data of extended half-life recombinant factor IX products for the treatment of haemophilia B. Ther Adv Hematol 2018; 9:335-346. [PMID: 30364483 PMCID: PMC6196631 DOI: 10.1177/2040620718802606] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022] Open
Abstract
Whilst the global prevalence of haemophilia B is less than that of haemophilia A, rapid and remarkable innovations have been made in the development of haemophilia B therapies in the last decade. The most recent developments are the evolution of extended half-life haemophilia B replacement therapies which are designed to reduce the treatment burden associated with prophylactic infusion of factor IX (FIX) to prevent bleeding in haemophilia B participants. Clinical development programmes have culminated in the completion of three phase III studies on extended half-life (EHL) recombinant FIX (rFIX) products and subsequent approval and registration of these in many countries around the world. Current data from the three EHL rFIX clinical studies indicate that these products have acceptable safety profiles with no allergic reactions, thromboembolic phenomena or neutralizing antibodies when given to previously treated adolescent and adults for the prevention of bleeds, for the treatment of bleeds and in the perisurgical haemostasis use. Studies in previously untreated paediatric participants are currently ongoing. The EHL rFIX products have the potential impact to reduce the treatment burden associated with prophylactic infusion of replacement FIX, to treat and prevent bleeds in participants with haemophilia B and to improve the participant's health-related quality of life. The impact of EHL rFIX is likely to be modified by current development of other haemophilia B therapy such as antitissue factor pathway inhibitors and haemophilia B gene therapy. In this review, we aim to provide an update on the safety and efficacy data from the three EHL rFIX clinical studies and to consider their roles in the face of novel haemophilia B therapy currently evolving.
Collapse
Affiliation(s)
- Johnny N. Mahlangu
- Haemophilia Comprehensive Care Centre, Charlotte Maxeke Johannesburg Academic Hospital, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and National Health Laboratory Service, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
71
|
Next-generation flexible formats of VNAR domains expand the drug platform's utility and developability. Biochem Soc Trans 2018; 46:1559-1565. [PMID: 30381336 DOI: 10.1042/bst20180177] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/22/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Therapeutic mAbs have delivered several blockbuster drugs in oncology and autoimmune inflammatory disease. Revenue for mAbs continues to rise, even in the face of competition from a growing portfolio of biosimilars. Despite this success, there are still limitations associated with the use of mAbs as therapeutic molecules. With a molecular mass of 150 kDa, a two-chain structure and complex glycosylation these challenges include a high cost of goods, limited delivery options, and poor solid tumour penetration. There remains an urgency to create alternatives to antibody scaffolds in a bid to circumvent these limitations, while maintaining or improving the therapeutic success of conventional mAb formats. Smaller, less complex binders, with increased domain valency, multi-specific/paratopic targeting, tuneable serum half-life and low inherent immunogenicity are a few of the characteristics being explored by the next generation of biologic molecules. One novel 'antibody-like' binder that has naturally evolved over 450 million years is the variable new antigen receptor (VNAR) identified as a key component of the adaptive immune system of sharks. At only 11 kDa, these single-domain structures are the smallest IgG-like proteins in the animal kingdom and provide an excellent platform for molecular engineering and biologics drug discovery. VNAR attributes include high affinity for target, ease of expression, stability, solubility, multi-specificity, and increased potential for solid tissue penetration. This review article documents the recent drug developmental milestones achieved for therapeutic VNARs and highlights the first reported evidence of the efficacy of these domains in clinically relevant models of disease.
Collapse
|
72
|
Fabozzi G, Pegu A, Koup RA, Petrovas C. Bispecific antibodies: Potential immunotherapies for HIV treatment. Methods 2018; 154:118-124. [PMID: 30352254 DOI: 10.1016/j.ymeth.2018.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
Bispecific (bs) antibodies (Abs, bsAbs) are engineered immunoglobulins that contain two different antigen-binding sites in one molecule. bsAbs can be divided in two molecular formats; the IgG-like and non-IgG like. The structural elements of each format have implications for engaging the immune system. Elimination of HIV will need sophisticated approaches with immunotherapies being one of the strategies under investigation. Furthermore, HIV genetic variability and functional compromise of the adaptive CTL response complicate the potential usefulness of some immunotherapeutic strategies. Inclusion of novel HIV neutralizing Abs with high potency and breadth as components of bsAbs could represent alternative strategies for virus elimination by harnessing the adaptive immune response in vivo.
Collapse
|
73
|
Vanmarsenille C, Elseviers J, Yvanoff C, Hassanzadeh-Ghassabeh G, Garcia Rodriguez G, Martens E, Depicker A, Martel A, Haesebrouck F, Pasmans F, Hernalsteens JP, De Greve H. In planta expression of nanobody-based designer chicken antibodies targeting Campylobacter. PLoS One 2018; 13:e0204222. [PMID: 30260981 PMCID: PMC6160005 DOI: 10.1371/journal.pone.0204222] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/05/2018] [Indexed: 12/28/2022] Open
Abstract
Campylobacteriosis is a widespread infectious disease, leading to a major health and economic burden. Chickens are considered as the most common infection source for humans. Campylobacter mainly multiplies in the mucus layer of their caeca. No effective control measures are currently available, but passive immunisation of chickens with pathogen-specific maternal IgY antibodies, present in egg yolk of immunised chickens, reduces Campylobacter colonisation. To explore this strategy further, anti-Campylobacter nanobodies, directed against the flagella and major outer membrane proteins, were fused to the constant domains of chicken IgA and IgY, combining the benefits of nanobodies and the effector functions of the Fc-domains. The designer chimeric antibodies were effectively produced in leaves of Nicotiana benthamiana and seeds of Arabidopsis thaliana. Stable expression of the chimeric antibodies in seeds resulted in production levels between 1% and 8% of the total soluble protein. These in planta produced antibodies do not only bind to their purified antigens but also to Campylobacter bacterial cells. In addition, the anti-flagellin chimeric antibodies are reducing the motility of Campylobacter bacteria. These antibody-containing Arabidopsis seeds can be tested for oral passive immunisation of chickens and, if effective, the chimeric antibodies can be produced in crop seeds.
Collapse
Affiliation(s)
- Charlotte Vanmarsenille
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Viral Genetics, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jelle Elseviers
- VIB Nanobody Core, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Yvanoff
- ARG VUB-UGent NanoMicrobiology, IJRG VUB-EPFL BioNanotechnology & NanoMedicine, Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Gabriela Garcia Rodriguez
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Edo Martens
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Depicker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Henri De Greve
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
74
|
Thom SR, Bhopale VM, Yu K, Yang M. Provocative decompression causes diffuse vascular injury in mice mediated by microparticles containing interleukin-1β. J Appl Physiol (1985) 2018; 125:1339-1348. [PMID: 30113270 DOI: 10.1152/japplphysiol.00620.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inflammatory mediators are known to be elevated in association with decompression from elevated ambient pressure, but their role in tissue damage or overt decompression sickness is unclear. Circulating microparticles (MPs) are also know to increase and because interleukin (IL)-1β is packaged within these particles, we hypothesized that IL-1β was responsible for tissue injuries. Here, we demonstrate that elevations of circulating MPs containing up to 9-fold higher concentrations of IL-1β occur while mice are exposed to high air pressure (790 kPa), whereas smaller particles carrying proteins specific to exosomes are not elevated. MPs number and intra-particle IL-1β concentration increase further over 13 hours post-decompression. MPs also exhibit intra-particle elevations of tumor necrosis factor-α, caspase-1, inhibitor of κB kinase -β and -γ, and elevated IL-6 is adsorbed to the surface of MPs. Contrary to lymphocytes, neutrophil NLRP3 inflammasome oligomerization and cell activation parameters occur during high pressure exposure, and additional evidence for activation are manifested post-decompression. Diffuse vascular damage, while not apparent immediately post-decompression, was present 2 hours later and remained elevated for at least 13 hours. Prophylactic administration of an IL-1β receptor inhibitor or neutralizing antibody to IL-1β inhibited MPs elevations, increases of all MPs-associated pro-inflammatory agents, and vascular damage. We conclude that an auto-activation process triggered by high pressure stimulates MPs production and concurrent inflammasome activation, and IL-1β is a proximal factor responsible for further cytokine production and decompression-associated vascular injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Veena M Bhopale
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Kevin Yu
- Emergency Medicine, University of Maryland School of Medicine, United States
| | - Ming Yang
- Emergency Medicine, University of Maryland School of Medicine, United States
| |
Collapse
|
75
|
Discovery of a novel IL-15 based protein with improved developability and efficacy for cancer immunotherapy. Sci Rep 2018; 8:7675. [PMID: 29769573 PMCID: PMC5955975 DOI: 10.1038/s41598-018-25987-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/30/2018] [Indexed: 12/22/2022] Open
Abstract
Interleukin-15 (IL-15) can promote both innate and adaptive immune reactions by stimulating CD8+/CD4+ T cells and natural killer cells (NK) while showing no effect in activating T-regulatory (Treg) cells or inducing activation-associated death among effector T cells and NK cells. Thus, IL-15 is considered as one of the most promising molecules for antitumor immune therapy. To improve the drug-like properties of natural IL-15, we create an IL-15-based molecule, named P22339, with the following characteristics: 1) building a complex of IL-15 and the Sushi domain of IL-15 receptor α chain to enhance the agonist activity of IL-15 via transpresentation; 2) through a rational structure-based design, creating a disulfide bond linking the IL-15/Sushi domain complex with an IgG1 Fc to augment its half-life. P22339 demonstrates excellent developability, pharmacokinetic and pharmacodynamic properties as well as antitumor efficacy in both in vitro assessments and in vivo studies. It significantly suppresses tumor growth and metastasis in rodent models, and activates T effector cells and NK cells in cynomolgus monkey. Overall, these data suggest that P22339 has a great potential for cancer immunotherapy.
Collapse
|
76
|
Yang H, Feng Y, Cai H, Jia D, Li H, Tao Z, Zhong Y, Li Z, Shi Q, Wan L, Li L, Lu X. Endogenous IgG-based affinity-controlled release of TRAIL exerts superior antitumor effects. Am J Cancer Res 2018; 8:2459-2476. [PMID: 29721092 PMCID: PMC5928902 DOI: 10.7150/thno.23880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 02/05/2023] Open
Abstract
The inefficiency of recombinant tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based clinical regimens has been dominantly attributed to the short half-life of TRAIL. Affinity-controlled release using endogenous long-acting proteins, such as IgG and albumin, as carriers is extremely attractive for improving the pharmacokinetics of TRAIL. Up to now, it is unclear whether IgG-binding is efficient for affinity-controlled release of TRAIL. Methods: An IgG-binding affibody, IgBD, was genetically fused to the N-terminus of TRAIL to produce IgBD-TRAIL.The IgG-binding ability, cytotoxicity, serum half-life, and in vivo antitumor effect of IgBD-TRAIL were compared with that of TRAIL. In addition, an albumin-binding affibody, ABD, was fused to TRAIL to produce ABD-TRAIL. The cytototoxicity, serum half-life, and antitumor effect of IgBD-TRAIL and ABD-TRAIL were compared. Results: IgBD fusion endowed TRAIL with high affinity (nM) for IgG without interference with its cytotoxicity. The serum half-life of IgBD-TRAIL is 50-60 times longer than that of TRAIL and the tumor uptake of IgBD-TRAIL at 8-24 h post-injection was 4-7-fold that of TRAIL. In vivo antitumor effect of IgBD-TRAIL was at least 10 times greater than that of TRAIL. Owing to the high affinity (nM) for albumin, the serum half-life of ABD-TRAIL was 80-90 times greater than that of TRAIL. However, after binding to albumin, the cytotoxicity of ABD-TRAIL was reduced more than 10 times. In contrast, binding to IgG had little impact on the cytotoxicity of IgBD-TRAIL. Consequently, intravenously injected IgBD-TRAIL showed antitumor effects superior to those of ABD-TRAIL. Conclusions: Endogenous long-acting proteins, particularly IgG-based affinity-controlled release, prolonged the serum half-life as well as significantly enhanced the antitumor effect of TRAIL. IgBD-mediated endogenous IgG binding might be a novel approach for the affinity-controlled release of other protein drugs.
Collapse
|
77
|
Frutos S, Jordan JB, Bio MM, Muir TW, Thiel OR, Vila-Perelló M. Access to site-specific Fc-cRGD peptide conjugates through streamlined expressed protein ligation. Org Biomol Chem 2018; 14:9549-9553. [PMID: 27722696 DOI: 10.1039/c6ob01833e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ideal drug should be highly effective, non-toxic and be delivered by a convenient and painless single dose. We are still far from such optimal treatment but peptides, with their high target selectivity and low toxicity profiles, provide a very attractive platform from which to strive towards it. One of the major limitations of peptide drugs is their high clearance rates, which limit dosage regimen options. Conjugation to antibody Fc domains is a viable strategy to improve peptide stability by increasing their hydrodynamic radius and hijacking the Fc recycling pathway. We report the use of a split-intein based semi-synthetic approach to site-specifically conjugate a synthetic integrin binding peptide to an Fc domain. The strategy described here allows conjugating synthetic peptides to Fc domains, which is not possible via genetic methods, fully maintaining the ability of both the Fc domain and the bioactive peptide to interact with their binding partners.
Collapse
Affiliation(s)
- S Frutos
- ProteoDesign S.L., Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - J B Jordan
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - M M Bio
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - T W Muir
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - O R Thiel
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA.
| | - M Vila-Perelló
- ProteoDesign S.L., Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
78
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
79
|
|
80
|
Zhang HM, Li C, Lei M, Lundin V, Lee HY, Ninonuevo M, Lin K, Han G, Sandoval W, Lei D, Ren G, Zhang J, Liu H. Structural and Functional Characterization of a Hole-Hole Homodimer Variant in a "Knob-Into-Hole" Bispecific Antibody. Anal Chem 2017; 89:13494-13501. [PMID: 29129068 DOI: 10.1021/acs.analchem.7b03830] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bispecific antibodies have great potential to be the next-generation biotherapeutics due to their ability to simultaneously recognize two different targets. Compared to conventional monoclonal antibodies, knob-into-hole bispecific antibodies face unique challenges in production and characterization due to the increase in variant possibilities, such as homodimerization in covalent and noncovalent forms. In this study, a storage- and pH-sensitive hydrophobic interaction chromatography (HIC) profile change was observed for the hole-hole homodimer, and the multiple HIC peaks were explored and shown to be conformational isomers. We combined traditional analytical methods with hydrogen/deuterium exchange mass spectrometry (HDX MS), native mass spectrometry, and negative-staining electron microscopy to comprehensively characterize the hole-hole homodimer. HDX MS revealed conformational changes at the resolution of a few amino acids overlapping the CH2-CH3 domain interface. Conformational heterogeneity was also assessed by HDX MS isotopic distribution. The hole-hole homodimer was demonstrated to adopt a more homogeneous conformational distribution during storage. This conformational change is likely caused by a lack of CH3 domain dimerization (due to the three "hole" point mutations), resulting in a unique storage- and pH-dependent conformational destabilization and refolding of the hole-hole homodimer Fc. Compared with the hole-hole homodimer under different storage conditions, the bispecific heterodimer, guided by the knob-into-hole assembly, proved to be a stable conformation with homogeneous distribution, confirming its high quality as a desired therapeutic. Functional studies by antigen binding and neonatal Fc receptor (FcRn) binding correlated very well with the structural characterization. Comprehensive interpretation of the results has provided a better understanding of both the homodimer variant and the bispecific molecule.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dongsheng Lei
- The Molecular Foundry, Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley, California 94720, United States
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory , One Cyclotron Road, Berkeley, California 94720, United States
| | | | | |
Collapse
|
81
|
In silico methods for design of biological therapeutics. Methods 2017; 131:33-65. [PMID: 28958951 DOI: 10.1016/j.ymeth.2017.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 12/18/2022] Open
Abstract
It has been twenty years since the first rationally designed small molecule drug was introduced into the market. Since then, we have progressed from designing small molecules to designing biotherapeutics. This class of therapeutics includes designed proteins, peptides and nucleic acids that could more effectively combat drug resistance and even act in cases where the disease is caused because of a molecular deficiency. Computational methods are crucial in this design exercise and this review discusses the various elements of designing biotherapeutic proteins and peptides. Many of the techniques discussed here, such as the deterministic and stochastic design methods, are generally used in protein design. We have devoted special attention to the design of antibodies and vaccines. In addition to the methods for designing these molecules, we have included a comprehensive list of all biotherapeutics approved for clinical use. Also included is an overview of methods that predict the binding affinity, cell penetration ability, half-life, solubility, immunogenicity and toxicity of the designed therapeutics. Biotherapeutics are only going to grow in clinical importance and are set to herald a new generation of disease management and cure.
Collapse
|
82
|
Hutt M, Marquardt L, Seifert O, Siegemund M, Müller I, Kulms D, Pfizenmaier K, Kontermann RE. Superior Properties of Fc-comprising scTRAIL Fusion Proteins. Mol Cancer Ther 2017; 16:2792-2802. [PMID: 28904131 DOI: 10.1158/1535-7163.mct-17-0551] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 09/05/2017] [Indexed: 11/16/2022]
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising molecule for cancer treatment. However, clinical studies with soluble TRAIL failed to show therapeutic activity, which resulted in subsequent development of more potent TRAIL-based therapeutics. In this study, we applied defined oligomerization and tumor targeting as strategies to further improve the activity of a single-chain version of TRAIL (scTRAIL). We compared three different formats of EGF receptor (EGFR)-targeting dimeric scTRAIL fusion proteins [Diabody (Db)-scTRAIL, scFv-IgE heavy chain domain 2 (EHD2)-scTRAIL, scFv-Fc-scTRAIL] as well as two nontargeted dimeric scTRAIL molecules (EHD2-scTRAIL, Fc-scTRAIL) to reveal the influence of targeting and protein format on antitumor activity. All EGFR-targeted dimeric scTRAIL molecules showed similar binding properties and comparable cell death induction in vitro, exceeding the activity of the respective nontargeted dimeric format and monomeric scTRAIL. Superior properties were observed for the Fc fusion proteins with respect to production and in vivo half-life. In vivo studies using a Colo205 xenograft model revealed potent antitumor activity of all EGFR-targeting formats and Fc-scTRAIL and furthermore highlighted the higher efficacy of fusion proteins comprising an Fc part. Despite enhanced in vitro cell death induction of targeted scTRAIL molecules, however, comparable antitumor activities were found for the EGFR-targeting scFv-Fc-scTRAIL and the nontargeting Fc-scTRAIL in vivoMol Cancer Ther; 16(12); 2792-802. ©2017 AACR.
Collapse
Affiliation(s)
- Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lisa Marquardt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Ines Müller
- Experimental Dermatology, Department of Dermatology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Technische Universität Dresden, Dresden, Germany
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Technische Universität Dresden, Dresden, Germany
| | - Klaus Pfizenmaier
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
83
|
Xu L, Zhang C, Liu L, Zhang Y, Wang Q, Wang J, Liu Y, Su Z. Purification and characterization of a long-acting ciliary neurotrophic factor via genetically fused with an albumin-binding domain. Protein Expr Purif 2017; 139:14-20. [PMID: 28711730 DOI: 10.1016/j.pep.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a promising candidate for the treatment of neurodegenerative or metabolic diseases, but suffers rapid clearance in body. Herein we constructed a new long-acting recombinant human CNTF (rhCNTF) by genetic fusion with an albumin-binding domain (ABD) through a flexible peptide linker, hoping to endow the new molecule prolonged serum circulation time by binding with endogenous human serum albumin (HSA) and then utilizing the naturally long-half-life property of HSA. This fused protein rhCNTF-ABD was expressed in Escherichia coli mainly in the soluble form and purified through a two-step chromatography, with purity of 95% and a high yield of 90-100 mg/L culture. The in vitro binding ability of rhCNTF-ABD with HSA was firstly verified by incubation of the two components together followed by HP-SEC analysis. ABD-fused rhCNTF showed similar secondary and tertiary structure as the parent protein. It retained approximately 94.1% of the native bioactivity as demonstrated via CCK-8 cell viability assay analysis. In vivo studies in SD rats were performed and the terminal half-life of 483.89 min for rhCNTF-ABD was determined, which is about 14 folds longer than that of rhCNTF (34.28 min) and comparable with 20 k-40 kDa PEGylated rhCNTFs. The new constructed rhCNTF-ABD represents a potential therapeutic modality, and the proposed strategy may also have useful applications for other long-lasting biopharmaceutics' design.
Collapse
Affiliation(s)
- Longfu Xu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Liping Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Yao Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian Wang
- National Vaccine and Serum Institute, Beijing 100024, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| |
Collapse
|
84
|
Donnenberg VS, Mandic M, Rhee JC, Burns TF, Meibohm B, Korth-Bradley JM. Core Entrustable Professional Activities in Clinical Pharmacology for Entering Residency: Biologics. J Clin Pharmacol 2017; 57:947-955. [DOI: 10.1002/jcph.938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Vera S. Donnenberg
- Department of Cardiothoracic Surgery; University of Pittsburgh School of Medicine; Pittsburgh PA USA
- University of Pittsburgh Cancer Institute; Pittsburgh PA USA
- McGowan Institute of Regenerative Medicine; Pittsburgh PA USA
- The American College of Clinical Pharmacology; Rockville MD USA
| | | | | | - Timothy F. Burns
- University of Pittsburgh Cancer Institute; Pittsburgh PA USA
- The UPMC Shadyside; Pittsburgh PA USA
| | - Bernd Meibohm
- The American College of Clinical Pharmacology; Rockville MD USA
- The University of Tennessee Health Science Center; Memphis TN USA
| | - Joan M. Korth-Bradley
- The American College of Clinical Pharmacology; Rockville MD USA
- Pfizer Inc.; Collegeville PA USA
| |
Collapse
|
85
|
Kang W, Liu H, Ma L, Wang M, Wei S, Sun P, Jiang M, Guo M, Zhou C, Dou J. Effective antimicrobial activity of a peptide mutant Cbf-14-2 against penicillin-resistant bacteria based on its unnatural amino acids. Eur J Pharm Sci 2017; 105:169-177. [PMID: 28522372 DOI: 10.1016/j.ejps.2017.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/21/2017] [Accepted: 05/13/2017] [Indexed: 01/31/2023]
Abstract
Broad spectrum activities, a unique mode of actions and rare resistant variants make antimicrobial peptide (AMP) a potential alternative to antibiotics. However, AMPs still have limitations in clinical development due to their physiological stability, toxicity and manufacturing costs. Cbf-14, derived from cathelicidin-BF has been proven to be effective against drug-resistant bacteria. Herein, a series of Cbf-14 mutants were designed to overcome these limitations. Design strategies included substitutions of lysine (Lys) or leucine (Leu) with similar residues such as ornithine (Orn) and norleucine (Ile), which are unnatural amino acids, to generate AMPs with enhanced therapeutic potential. Antimicrobial activity, hemolytic activity and cytotoxicity against mouse spleen cells of the peptide mutants were investigated. Among all of the mutants, Cbf-14-2 was regarded as the most potent candidate with the amino acid sequence of RLLR-Orn-FFR-Orn-LKKSV-NH2, which exhibited a superior antimicrobial activity with a minimum inhibitory concentration (MIC) of 4-32μg/ml. Meanwhile, Cbf-14-2 displayed low levels of hemolysis in sheep red blood cells (sRBCs) and negligible cytotoxicity against mouse spleen cells, suggesting low toxicity against mammalian cells. A circular dichroism (CD) study indicated that Cbf-14-2 has a higher alpha-helix content than Cbf-14 (68.3% vs 35.1%) in SDS, which may contribute to its superior activity. Time-killing curves showed Cbf-14-2 can eliminate all tested bacteria within 240min, suggesting its rapid bactericidal effect. Transmission electron microscopy (TEM), flow cytometry and calcein release assays revealed its excellent antimicrobial potency by inducing membrane permeation and disruption. In addition, Cbf-14-2 (10mg/kg) could significantly elevate the survival rate of clinical strain infected mice, with a survival rate of 70.0%. Taken together, the data suggest that Cbf-14-2 possesses effective antimicrobial activity against penicillin-resistant bacteria in vitro and in vitro, thus rendering it as a potential anti-infective agent in clinical settings.
Collapse
Affiliation(s)
- Wei Kang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Hanhan Liu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Lingman Ma
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Mengxiao Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Shanshan Wei
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Pengbo Sun
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Meiling Jiang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China
| | - Changlin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
86
|
Hedayati MH, Norouzian D, Aminian M, Teimourian S, Ahangari Cohan R, Sardari S, Khorramizadeh MR. Molecular Design, Expression and Evaluation of PASylated Human Recombinant Erythropoietin with Enhanced Functional Properties. Protein J 2017; 36:36-48. [DOI: 10.1007/s10930-017-9699-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
87
|
Coming-of-Age of Antibodies in Cancer Therapeutics. Trends Pharmacol Sci 2016; 37:1009-1028. [DOI: 10.1016/j.tips.2016.09.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/07/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
|
88
|
Liu S, Wei W, Xie B, Yue H, Ni D, Bao Y, Ma G, Su ZG. Breaching the Hyaluronan Barrier with PH20-Fc Facilitates Intratumoral Permeation and Enhances Antitumor Efficiency: A Comparative Investigation of Typical Therapeutic Agents in Different Nanoscales. Adv Healthc Mater 2016; 5:2872-2881. [PMID: 27676694 DOI: 10.1002/adhm.201600528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/20/2016] [Indexed: 12/18/2022]
Abstract
In contrast to traditional strategies based on external driving forces, an internal path for intratumoral delivery is explored by degrading the tumor microenvironment component hyaluronan. Natural hyaluronidase PH20 and constructed long-acting PH20-Fc have been used to achieve this objective. It has been then evaluated how these agents facilitate the diffusion of the following typical therapeutic agents varying in nanoscales: doxorubicin (≈1.5 × 1.0 × 0.7 nm) chemotherapy, trastuzumab (10-15 nm) biotherapy, and gold nanorod (≈100 × 35 nm) thermotherapy. In traditional 2D cultures, PH20 and PH20-Fc have little influence on cytotoxicity due to lack of a tumor microenvironment. However, the cytotoxicities of the three therapeutic agents in 3D tumor spheroids are all enhanced by PH20 or PH20-Fc because hyaluronan degradation facilitates therapeutic penetration and accumulation. Furthermore, in vivo evaluations reveal that the significantly prolonged circulation time of PH20-Fc leads to accumulation in the tumor and subsequent hyaluronan degradation. Consequently, PH20-Fc coadministration further inhibits tumor growth. The performance of PH20-Fc varies for the three therapeutic agents due to their different nanoscales. Trastuzumab benefits most from combination with PH20-Fc. The results provide here novel insights that can aid in the development of more effective hyaluronidase-based therapeutic systems.
Collapse
Affiliation(s)
- Shan Liu
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Bo Xie
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Dezhi Ni
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yali Bao
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM); Nanjing 210009 China
| | - Zhiguo G. Su
- State Key Laboratory of Biochemical Engineering; Institute of Process Engineering; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
89
|
Au KY, Shi WW, Qian S, Zuo Z, Shaw PC. Improvement of the Pharmacological Properties of Maize RIP by Cysteine-Specific PEGylation. Toxins (Basel) 2016; 8:toxins8100298. [PMID: 27763506 PMCID: PMC5086658 DOI: 10.3390/toxins8100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
To improve the pharmacological properties of maize ribosome-inactivating protein (maize RIP) for targeting HIV-infected cells, the previously engineered TAT-fused active form of maize RIP (MOD) was further engineered for cysteine-directed PEGylation. In this work, two potential antigenic sites, namely Lys-78 and Lys-264, were identified. They were mutated to cysteine residue and conjugated with PEG5k or PEG20k. The resultant PEG derivatives of MOD variants were examined for ribosome-inactivating activity, circulating half-life and immunogenicity. Our results showed that MOD-PEG conjugates had two- to five-fold lower biological activity compared to the wild-type. Mutation of the two sites respectively did not decrease the anti-MOD IgG and IgE level in mice, but the conjugation of PEG did dramatically reduce the antigenicity. Furthermore, pharmacokinetics studies demonstrated that attachment of PEG20k prolonged the plasma half-life by five-fold for MOD-K78C and 17-fold for MOD-K264C, respectively. The site-specific mutation together with PEGylation therefore generated MOD derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Ka-Yee Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Shuai Qian
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
90
|
Jacobson O, Kiesewetter DO, Chen X. Albumin-Binding Evans Blue Derivatives for Diagnostic Imaging and Production of Long-Acting Therapeutics. Bioconjug Chem 2016; 27:2239-2247. [DOI: 10.1021/acs.bioconjchem.6b00487] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Orit Jacobson
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Dale O. Kiesewetter
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging
and Nanomedicine (LOMIN), National Institute of Biomedical Imaging
and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
91
|
Davé E, Adams R, Zaccheo O, Carrington B, Compson JE, Dugdale S, Airey M, Malcolm S, Hailu H, Wild G, Turner A, Heads J, Sarkar K, Ventom A, Marshall D, Jairaj M, Kopotsha T, Christodoulou L, Zamacona M, Lawson AD, Heywood S, Humphreys DP. Fab-dsFv: A bispecific antibody format with extended serum half-life through albumin binding. MAbs 2016; 8:1319-1335. [PMID: 27532598 PMCID: PMC5058625 DOI: 10.1080/19420862.2016.1210747] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/19/2016] [Accepted: 07/05/2016] [Indexed: 11/24/2022] Open
Abstract
An antibody format, termed Fab-dsFv, has been designed for clinical indications that require monovalent target binding in the absence of direct Fc receptor (FcR) binding while retaining substantial serum presence. The variable fragment (Fv) domain of a humanized albumin-binding antibody was fused to the C-termini of Fab constant domains, such that the VL and VH domains were individually connected to the Cκ and CH1 domains by peptide linkers, respectively. The anti-albumin Fv was selected for properties thought to be desirable to ensure a durable serum half-life mediated via FcRn. The Fv domain was further stabilized by an inter-domain disulfide bond. The bispecific format was shown to be thermodynamically and biophysically stable, and retained good affinity and efficacy to both antigens simultaneously. In in vivo studies, the serum half-life of Fab-dsFv, 2.6 d in mice and 7.9 d in cynomolgus monkeys, was equivalent to Fab'-PEG.
Collapse
|
92
|
Rojas LA, Condezo GN, Moreno R, Fajardo CA, Arias-Badia M, San Martín C, Alemany R. Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. J Control Release 2016; 237:78-88. [DOI: 10.1016/j.jconrel.2016.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/30/2016] [Accepted: 07/02/2016] [Indexed: 12/28/2022]
|
93
|
Ragni MV. New and Emerging Agents for the Treatment of Hemophilia: Focus on Extended Half-Life Recombinant Clotting Proteins. Drugs 2016; 75:1587-600. [PMID: 26310188 DOI: 10.1007/s40265-015-0451-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hemophilia A and B are X-linked disorders caused by deficient or defective clotting factor VIII (FVIII) or IX factor (FIX) proteins, and characterized by spontaneous or traumatic bleeding into joints and muscles. Previous use of plasma and plasma-derived clotting factors that lacked appropriate viral inactivation steps in manufacturing led to significant morbidity associated with transfusion-transmitted HIV and hepatitis C virus (HCV). The development of recombinant proteins revolutionized their treatment, and, with no new HIV or HCV infection via clotting proteins for nearly 30 years, greatly improved their lifespan, which now approaches that of the general population, and with the same risks for aging complications. Novel long-acting factor proteins are being licensed to extend FVIII and FIX half-life, thereby reducing infusion frequency and potentially bleed frequency and associated morbidity. Further, novel therapeutics which take advantage of new technologies, including siRNA, monoclonal antibody, and small peptide inhibition technologies, have the potential to simplify treatment and improve outcomes for those with inhibitors.
Collapse
Affiliation(s)
- Margaret V Ragni
- Division Hematology/Oncology, Department of Medicine, Hemophilia Center of Western Pennsylvania, University of Pittsburgh, 3636 Boulevard of the Allies, Pittsburgh, PA, 15213-4306, USA.
| |
Collapse
|
94
|
Kobayashi H, Choyke PL, Ogawa M. Monoclonal antibody-based optical molecular imaging probes; considerations and caveats in chemistry, biology and pharmacology. Curr Opin Chem Biol 2016; 33:32-8. [PMID: 27281509 DOI: 10.1016/j.cbpa.2016.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/18/2016] [Indexed: 01/06/2023]
Abstract
The monoclonal antibody (mAb) has proven to be a good platform for designing specific molecular imaging probes due to its superior binding specificity. Several optical imaging probes have been developed for surgical navigation in patients and are in early phase clinical trials. However, an inherent limitation of using the mAb is its pharmacokinetics which result in a prolonged circulating half-life and slow clearance from the body. This results in undesirable target to background ratios during imaging. In this review, we first describe the mAb as a platform material for optical probe design and then discuss optimizing the design of monoclonal antibody-based optical molecular imaging probes by focusing on chemistry, biology and pharmacology.
Collapse
Affiliation(s)
- Hisataka Kobayashi
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Mikako Ogawa
- Laboratory for Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
95
|
Qiu Y, Lv W, Xu M, Xu Y. Single chain antibody fragments with pH dependent binding to FcRn enabled prolonged circulation of therapeutic peptide in vivo. J Control Release 2016; 229:37-47. [DOI: 10.1016/j.jconrel.2016.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/07/2016] [Accepted: 03/12/2016] [Indexed: 12/25/2022]
|
96
|
Abstract
INTRODUCTION Many of the biotherapeutics approved or under development suffer from a short half-life necessitating frequent applications in order to maintain a therapeutic concentration over an extended period of time. The implementation of half-life extension strategies allows the generation of long-lasting therapeutics with improved pharmacokinetic and pharmacodynamic properties. AREAS COVERED This review gives an overview of the different half-life extension strategies developed over the past years and their application to generate next-generation biotherapeutics. It focuses on srategies already used in approved drugs and drugs that are in clinical development. These strategies include those aimed at increasing the hydrodynamic radius of the biotherapeutic and strategies which further implement recycling by the neonatal Fc receptor (FcRn). EXPERT OPINION Half-life extension strategies have become an integral part of development for many biotherapeutics. A diverse set of these strategies is available for the fine-tuning of half-life and adaption to the intended treatment modality and disease. Currently, half-life extension is dominated by strategies utilizing albumin binding or fusion, fusion to an immunoglobulin Fc region and PEGylation. However, a variety of alternative strategies, such as fusion of flexible polypeptide chains as PEG mimetic substitute, have reached advanced stages and offer further alternatives for half-life extension.
Collapse
Affiliation(s)
- Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
97
|
Li R, Yang H, Jia D, Nie Q, Cai H, Fan Q, Wan L, Li L, Lu X. Fusion to an albumin-binding domain with a high affinity for albumin extends the circulatory half-life and enhances the in vivo antitumor effects of human TRAIL. J Control Release 2016; 228:96-106. [DOI: 10.1016/j.jconrel.2016.03.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/27/2016] [Accepted: 03/02/2016] [Indexed: 12/13/2022]
|
98
|
Bernedo-Navarro RA, Yano T. Phage display and Shiga toxin neutralizers. Toxicon 2016; 113:60-9. [DOI: 10.1016/j.toxicon.2016.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 02/01/2023]
|
99
|
Bioanalytical approaches to assess the proteolytic stability of therapeutic fusion proteins. Bioanalysis 2015; 7:3035-51. [DOI: 10.4155/bio.15.217] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic fusion proteins (TFPs) are designed to improve the therapeutic profile of an endogenous protein or protein fragment with a limited dose frequency providing the desired pharmacological activity in vivo. Fusion of a therapeutic protein to a half-life extension or targeting domain can improve the disposition of the molecule or introduce a novel mechanism of action. Prolonged exposure and altered biodistribution of an endogenous protein through fusion technology increases the potential for local protein unfolding during circulation increasing the chance for partial proteolysis of the therapeutic domain. Characterizing the proteolytic liabilities of a TFP can guide engineering efforts to inhibit or hinder partial proteolysis. This review focuses on considerations and techniques for evaluating the stability of a TFP both in vivo and in vitro.
Collapse
|
100
|
Xu Y, Lee J, Tran C, Heibeck TH, Wang WD, Yang J, Stafford RL, Steiner AR, Sato AK, Hallam TJ, Yin G. Production of bispecific antibodies in "knobs-into-holes" using a cell-free expression system. MAbs 2015; 7:231-42. [PMID: 25427258 PMCID: PMC4623329 DOI: 10.4161/19420862.2015.989013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bispecific antibodies have emerged in recent years as a promising field of research for therapies in oncology, inflammable diseases, and infectious diseases. Their capability of dual target recognition allows for novel therapeutic hypothesis to be tested, where traditional mono-specific antibodies would lack the needed mode of target engagement. Among extremely diverse architectures of bispecific antibodies, knobs-into-holes (KIHs) technology, which involves engineering CH3 domains to create either a “knob” or a “hole” in each heavy chain to promote heterodimerization, has been widely applied. Here, we describe the use of a cell-free expression system (Xpress CF) to produce KIH bispecific antibodies in multiple scaffolds, including 2-armed heterodimeric scFv-KIH and one-armed asymmetric BiTE-KIH with tandem scFv. Efficient KIH production can be achieved by manipulating the plasmid ratio between knob and hole, and further improved by addition of prefabricated knob or hole. These studies demonstrate the versatility of Xpress CF in KIH production and provide valuable insights into KIH construct design for better assembly and expression titer.
Collapse
Key Words
- BiTE, bispecific T-cell engager
- BiTE-KIH
- CHO, Chinese hamster ovary
- ELISA, enzyme-linked immunosorbent assay
- EpCAM, epithelial cell adhesion molecule
- FACS, fluorescence-activated cell sorting
- Fab, antigen-binding fragment
- Fc, fragment crystallizable
- FcR, Fc receptor
- HC, immunoglobulin heavy chain
- HER2, human epidermal growth factor receptor 2
- IgG, immunoglobulin G
- KIH, knob-into-hole
- LC, immunoglobulin light chain
- LC-MS, liquid chromatography-mass spectrometry
- PK, pharmacokinetics
- bispecific antibody
- cell-free protein expression
- knob-into-hole
- prefabrication
- scFv, single-chain fragment variable
- scFv-KIH
Collapse
Affiliation(s)
- Yiren Xu
- a Sutro Biopharma, Inc. ; South San Francisco , CA USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|