51
|
Kim JY, Bai Y, Jayne LA, Cianciolo RE, Bajwa A, Pabla NS. Involvement of the CDKL5-SOX9 signaling axis in rhabdomyolysis-associated acute kidney injury. Am J Physiol Renal Physiol 2020; 319:F920-F929. [PMID: 33044867 DOI: 10.1152/ajprenal.00429.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome associated with adverse short- and long-term sequelae. Renal tubular epithelial cell (RTEC) dysfunction and cell death are among the key pathological features of AKI. Diverse systemic and localized stress conditions such as sepsis, rhabdomyolysis, cardiac surgery, and nephrotoxic drugs can trigger RTEC dysfunction. Through an unbiased RNA inhibition screen, we recently identified cyclin-dependent kinase-like 5 (Cdkl5), also known as serine/threonine kinase-9, as a critical regulator of RTEC dysfunction associated with nephrotoxic and ischemia-associated AKI. In the present study, we examined the role of Cdkl5 in rhabdomyolysis-associated AKI. Using activation-specific antibodies and kinase assays, we found that Cdkl5 is activated in RTECs early during the development of rhabdomyolysis-associated AKI. Furthermore, we found that RTEC-specific Cdkl5 gene ablation mitigates rhabdomyolysis-associated renal impairment. In addition, the small-molecule kinase inhibitor AST-487 alleviated rhabdomyolysis-associated AKI in a Cdkl5-dependent manner. Mechanistically, we demonstrated that Cdkl5 phosphorylates the transcriptional regulator sex-determining region Y box 9 (Sox9) and suppresses its protective function under stress conditions. On the basis of these results, we propose that, by suppressing the protective Sox9-directed transcriptional program, Cdkl5 contributes to rhabdomyolysis-associated renal impairment. All together, the present study identified Cdkl5 as a critical stress-induced kinase that drives RTEC dysfunction and kidney injury linked with distinct etiologies.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Yuntao Bai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Laura A Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Rachel E Cianciolo
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
52
|
Shen L, de Vries J, Ince C, van Boven WJ. Novel non-invasive imaging method for baseline risk stratification in cardiac surgery patients. BMJ Case Rep 2020; 13:13/9/e234950. [PMID: 32900711 DOI: 10.1136/bcr-2020-234950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Lucinda Shen
- Department of Cardiothoracic Surgery, Amsterdam UMC-AMC Campus, Amsterdam, The Netherlands.,Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Jelmer de Vries
- Department of Cardiothoracic Surgery, Amsterdam UMC-AMC Campus, Amsterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Wim Jan van Boven
- Department of Cardiothoracic Surgery, Amsterdam UMC-AMC Campus, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Kim JY, Bai Y, Jayne LA, Abdulkader F, Gandhi M, Perreau T, Parikh SV, Gardner DS, Davidson AJ, Sander V, Song MA, Bajwa A, Pabla NS. SOX9 promotes stress-responsive transcription of VGF nerve growth factor inducible gene in renal tubular epithelial cells. J Biol Chem 2020; 295:16328-16341. [PMID: 32887795 DOI: 10.1074/jbc.ra120.015110] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/28/2020] [Indexed: 01/06/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical condition associated with diverse etiologies and abrupt loss of renal function. In patients with sepsis, rhabdomyolysis, cancer, and cardiovascular disorders, the underlying disease or associated therapeutic interventions can cause hypoxia, cytotoxicity, and inflammatory insults to renal tubular epithelial cells (RTECs), resulting in the onset of AKI. To uncover stress-responsive disease-modifying genes, here we have carried out renal transcriptome profiling in three distinct murine models of AKI. We find that Vgf nerve growth factor inducible gene up-regulation is a common transcriptional stress response in RTECs to ischemia-, cisplatin-, and rhabdomyolysis-associated renal injury. The Vgf gene encodes a secretory peptide precursor protein that has critical neuroendocrine functions; however, its role in the kidneys remains unknown. Our functional studies show that RTEC-specific Vgf gene ablation exacerbates ischemia-, cisplatin-, and rhabdomyolysis-associated AKI in vivo and cisplatin-induced RTEC cell death in vitro Importantly, aggravation of cisplatin-induced renal injury caused by Vgf gene ablation is partly reversed by TLQP-21, a Vgf-derived peptide. Finally, in vitro and in vivo mechanistic studies showed that injury-induced Vgf up-regulation in RTECs is driven by the transcriptional regulator Sox9. These findings reveal a crucial downstream target of the Sox9-directed transcriptional program and identify Vgf as a stress-responsive protective gene in kidney tubular epithelial cells.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | - Yuntao Bai
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Laura A Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ferdos Abdulkader
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Megha Gandhi
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Tayla Perreau
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Samir V Parikh
- Wexner Medical Center, The Ohio State University, Columbus, Ohio, USA
| | - David S Gardner
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Veronika Sander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Min-Ae Song
- Division of Environmental Health Science, College of Public Health and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
54
|
Sierra-Parraga JM, Merino A, Eijken M, Leuvenink H, Ploeg R, Møller BK, Jespersen B, Baan CC, Hoogduijn MJ. Reparative effect of mesenchymal stromal cells on endothelial cells after hypoxic and inflammatory injury. Stem Cell Res Ther 2020; 11:352. [PMID: 32787906 PMCID: PMC7424997 DOI: 10.1186/s13287-020-01869-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 01/02/2023] Open
Abstract
Background The renal endothelium is a prime target for ischemia-reperfusion injury (IRI) during donation and transplantation procedures. Mesenchymal stromal cells (MSC) have been shown to ameliorate kidney function after IRI. However, whether this involves repair of the endothelium is not clear. Therefore, our objective is to study potential regenerative effects of MSC on injured endothelial cells and to identify the molecular mechanisms involved. Methods Human umbilical vein endothelial cells (HUVEC) were submitted to hypoxia and reoxygenation and TNF-α treatment. To determine whether physical interaction or soluble factors released by MSC were responsible for the potential regenerative effects of MSC on endothelial cells, dose-response experiments were performed in co-culture and transwell conditions and with secretome-deficient MSC. Results MSC showed increased migration and adhesion to injured HUVEC, mediated by CD29 and CD44 on the MSC membrane. MSC decreased membrane injury marker expression, oxidative stress levels, and monolayer permeability of injured HUVEC, which was observed only when allowing both physical and paracrine interaction between MSC and HUVEC. Furthermore, viable MSC in direct contact with injured HUVEC improved wound healing capacity by 45% and completely restored their angiogenic capacity. In addition, MSC exhibited an increased ability to migrate through an injured HUVEC monolayer compared to non-injured HUVEC in vitro. Conclusions These results show that MSC have regenerative effects on injured HUVEC via a mechanism which requires both physical and paracrine interaction. The identification of specific effector molecules involved in MSC-HUVEC interaction will allow targeted modification of MSC to apply and enhance the therapeutic effects of MSC in IRI. ![]()
Collapse
Affiliation(s)
- Jesus M Sierra-Parraga
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands.
| | - Ana Merino
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Marco Eijken
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Henri Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rutger Ploeg
- Nuffield Department of Surgical Sciences and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Jespersen
- Department of Renal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Carla C Baan
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| | - Martin J Hoogduijn
- Internal Medicine Department, Sector Nephrology & Transplantation, University Medical Center Rotterdam, Erasmus MC, Postbus 2040, 3000 CA, Rotterdam, the Netherlands
| |
Collapse
|
55
|
Genetic Deletion of Vasohibin-2 Exacerbates Ischemia-Reperfusion-Induced Acute Kidney Injury. Int J Mol Sci 2020; 21:ijms21124545. [PMID: 32604722 PMCID: PMC7352238 DOI: 10.3390/ijms21124545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) has been increasingly recognized as a risk factor for transition to chronic kidney disease. Recent evidence suggests that endothelial damage in peritubular capillaries can accelerate the progression of renal injury. Vasohibin-2 (VASH2) is a novel proangiogenic factor that promotes tumor angiogenesis. However, the pathophysiological roles of VASH2 in kidney diseases remain unknown. In the present study, we examined the effects of VASH2 deficiency on the progression of ischemia–reperfusion (I/R) injury-induced AKI. I/R injury was induced by bilaterally clamping renal pedicles for 25 min in male wild-type (WT) and Vash2 homozygous knockout mice. Twenty-four hours later, I/R injury-induced renal dysfunction and tubular damage were more severe in VASH2-deficient mice than in WT mice, with more prominent neutrophil infiltration and peritubular capillary loss. After induction of I/R injury, VASH2 expression was markedly increased in injured renal tubules. These results suggest that VASH2 expression in renal tubular epithelial cells might be essential for alleviating I/R injury-induced AKI, probably through protecting peritubular capillaries and preventing inflammatory infiltration.
Collapse
|
56
|
Tian Y, Shu J, Huang R, Chu X, Mei X. Protective effect of renal ischemic postconditioning in renal ischemic-reperfusion injury. Transl Androl Urol 2020; 9:1356-1365. [PMID: 32676420 PMCID: PMC7354320 DOI: 10.21037/tau-20-859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background Renal ischemic postconditioning (RIPo) can protect the kidney from renal ischemia/reperfusion injury (RIRI). However, the underlying molecular mechanisms for RIPo in renal protection remained elusive. This study aimed to investigate the renoprotective effects of RIPo in an RIR rat model. Method The Sprague Dawley (SD) rats were randomly divided into three groups respectively: sham group, the RIRI group and the RIPo group. The levels of proteinuria, blood urea nitrogen (BUN), creatinine (Cr), malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), reactive oxidative species (ROS), interleukins (IL)-6, IL-1β, and IL-18 were measured by ELISA. Apoptotic cells and caspase-3 positive cells were detected by TUNEL assay and immunohistochemistry, respectively. The protein expressive levels of caspase-3, caspase-9, ATG8, Beclin1, p62, LC3-II, P-P13K, P-AKT and P-mTOR were detected by western blot. Results Our results showed that pretreatment with RIPo significantly reduced ischemic pathological and morphological changes. The levels of proteinuria, BUN, and Cr were also significantly reduced by RIPo pretreatment. Besides, ATG8, LC3-II and Beclin-1 were upregulated in the RIPo group, but p62 was downregulated. Moreover, RIPo pretreatment resulted in higher levels of phosphorylated PI3K, Akt, and mTOR. These results showed that RIPo protects the kidneys of rats from IRI with suppressed apoptosis and activated autophagy. Mechanically, the activated PI3K/AKT/mTOR signaling pathway were activated. Conclusions Collectively, our data demonstrated that RIPo could suppress Inflammatory response, oxidative stress, apoptosis and induce autophagy as well as activate the PI3K/AKT/mTOR pathway, which may play an important role in renal protection against RIRI.
Collapse
Affiliation(s)
- Ying Tian
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Jia Shu
- Functional Inspection Division, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Ruizhen Huang
- Department of Cardiovascular, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xin Chu
- Nursing Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| | - Xuefeng Mei
- Department of Urology Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610039, China
| |
Collapse
|
57
|
Kidney Perfusion as an Organ Quality Assessment Tool-Are We Counting Our Chickens Before They Have Hatched? J Clin Med 2020; 9:jcm9030879. [PMID: 32210197 PMCID: PMC7141526 DOI: 10.3390/jcm9030879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The final decision to accept an organ for transplantation remains a subjective one. With “poor organ quality” commonly cited as a major reason for kidney discard, accurate, objective, and reliable quality assessment is essential. In an era of increasingly higher-risk deceased donor kidneys, the catch is to accept those where the risk–benefit scale will tip in the right direction. Currently available assessment tools, such as risk-scores predicting outcome and zero-time biopsy, perform unsatisfactory, and assessment options during static cold storage are limited. Kidney perfusion technologies are finding their way into clinical practice, and they bring a new opportunity to assess kidney graft viability and quality, both in hypothermic and normothermic conditions. We give an overview of the current understanding of kidney viability assessment during ex situ kidney perfusion. A pragmatic framework to approach viability assessment is proposed as an interplay of three different compartments: the nephron, the vascular compartment, and the immune compartment. Although many interesting ways to assess kidney injury and function during perfusion have been proposed, none have reached the stage where they can reliably predict posttransplant outcome. Larger well-designed studies and validation cohorts are needed to provide better guidance.
Collapse
|
58
|
Chen Q, Yu J, Rush BM, Stocker SD, Tan RJ, Kim K. Ultrasound super-resolution imaging provides a noninvasive assessment of renal microvasculature changes during mouse acute kidney injury. Kidney Int 2020; 98:355-365. [PMID: 32600826 DOI: 10.1016/j.kint.2020.02.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/22/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
Acute kidney injury (AKI) is a risk factor for the development of chronic kidney disease (CKD). One mechanism for this phenomenon is renal microvascular rarefaction and subsequent chronic impairment in perfusion. However, diagnostic tools to monitor the renal microvasculature in a noninvasive and quantitative manner are still lacking. Ultrasound super-resolution imaging is an emerging technology that can identify microvessels with unprecedented resolution. Here, we applied this imaging technique to identify microvessels in the unilateral ischemia-reperfusion injury mouse model of AKI-to-CKD progression in vivo. Kidneys from 21 and 42 day post- ischemia-reperfusion injury, the contralateral uninjured kidneys, and kidneys from sham-operated mice were examined by ultrasound super-resolution and histology. Renal microvessels were successfully identified by this imaging modality with a resolution down to 32 μm. Renal fibrosis was observed in all kidneys with ischemia-reperfusion injury and was associated with a significant reduction in kidney size, cortical thickness, relative blood volume, and microvascular density as assessed by this imaging. Tortuosity of the cortical microvasculature was also significantly increased at 42 days compared to sham. These vessel density measurements correlated significantly with CD31 immunohistochemistry (R2=0.77). Thus, ultrasound super-resolution imaging provides unprecedented resolution and is capable of noninvasive quantification of renal vasculature changes associated with AKI-to-CKD progression in mice. Hence, this technique could be a promising diagnostic tool for monitoring progressive kidney disease.
Collapse
Affiliation(s)
- Qiyang Chen
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jaesok Yu
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brittney M Rush
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sean D Stocker
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Roderick J Tan
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| | - Kang Kim
- Department of Bioengineering, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA; Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, Heart and Vascular Institute, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh School of Engineering, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
59
|
Noh MR, Jang HS, Kim J, Padanilam BJ. Renal Sympathetic Nerve-Derived Signaling in Acute and Chronic kidney Diseases. Int J Mol Sci 2020; 21:ijms21051647. [PMID: 32121260 PMCID: PMC7084190 DOI: 10.3390/ijms21051647] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
The kidney is innervated by afferent sensory and efferent sympathetic nerve fibers. Norepinephrine (NE) is the primary neurotransmitter for post-ganglionic sympathetic adrenergic nerves, and its signaling, regulated through adrenergic receptors (AR), modulates renal function and pathophysiology under disease conditions. Renal sympathetic overactivity and increased NE level are commonly seen in chronic kidney disease (CKD) and are critical factors in the progression of renal disease. Blockade of sympathetic nerve-derived signaling by renal denervation or AR blockade in clinical and experimental studies demonstrates that renal nerves and its downstream signaling contribute to progression of acute kidney injury (AKI) to CKD and fibrogenesis. This review summarizes our current knowledge of the role of renal sympathetic nerve and adrenergic receptors in AKI, AKI to CKD transition and CKDand provides new insights into the therapeutic potential of intervening in its signaling pathways.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
| | - Jinu Kim
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Anatomy, Jeju National University School of Medicine, Jeju 63243, Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Babu J. Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA; (M.R.N.); (H.-S.J.); (J.K.)
- Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE 68198-5850, USA
- Correspondence:
| |
Collapse
|
60
|
Abassi Z, Armaly Z, Heyman SN. Glycocalyx Degradation in Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:752-767. [PMID: 32035883 DOI: 10.1016/j.ajpath.2019.08.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
The glycocalyx is a layer coating the luminal surface of vascular endothelial cells. It is vital for endothelial function as it participates in microvascular reactivity, endothelium interaction with blood constituents, and vascular permeability. Structural and functional damage to glycocalyx occurs in various disease states. A prominent clinical situation characterized by glycocalyx derangement is ischemia-reperfusion (I/R) of the whole body as well as during selective I/R to organs such as the kidney, heart, lung, or liver. Degradation of the glycocalyx is now considered a cornerstone in I/R-related endothelial dysfunction, which further impairs local microcirculation with a feed-forward loop of organ damage, due to vasoconstriction, leukocyte adherence, and activation of the immune response. Glycocalyx damage during I/R is evidenced by rising plasma levels of its principal constituents, heparan sulfate and syndecan-1. By contrast, the concentrations of these compounds in the circulation decrease after successful protective interventions in I/R, suggesting their use as surrogate biomarkers of endothelial integrity. In light of the importance of the glycocalyx in preserving endothelial cell integrity and its involvement in pathologic conditions, several promising therapeutic strategies to restore the damaged glycocalyx and to attenuate its deleterious consequences have been suggested. This review focuses on alterations of glycocalyx during I/R injury in general (to vital organs in particular), and on maneuvers aimed at glycocalyx recovery during I/R injury.
Collapse
Affiliation(s)
- Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israeli Institute of Technology, Haifa, Israel; Laboratory Medicine, Rambam Health Campus, Haifa, Israel.
| | - Zaher Armaly
- Department of Nephrology, Nazareth Hospital, Nazareth, Azrieli Faculty of Medicine-Bar Ilan University, Jerusalem, Israel
| | - Samuel N Heyman
- Department of Medicine, Hadassah Hebrew University Hospital, Mt. Scopus, Jerusalem, Israel
| |
Collapse
|
61
|
Topdağı Ö, Tanyeli A, Akdemir FNE, Eraslan E, Güler MC, Çomaklı S. Preventive effects of fraxin on ischemia/reperfusion-induced acute kidney injury in rats. Life Sci 2019; 242:117217. [PMID: 31884094 DOI: 10.1016/j.lfs.2019.117217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/01/2022]
Abstract
AIM Kidney ischemia reperfusion (IR) injury is an important health problem resulting in acute kidney failure. The oxidative stress and inflammatory process are the underlying mechanisms of IR injury. It has been purposed in this study to research the possible protective effects of fraxin on kidney injury induced by IR. MATERIAL AND METHODS 32 Sprague Dawley male rats were divided into 4 groups. The groups were organized as follows; sham, IR, IR + fraxin 10 mg/kg, and IR + 50 mg/kg fraxin groups. Some oxidant, antioxidant and inflammatory parameters were evaluated in kidney tissues removed at the end of our experimental study. KEY FINDINGS It was detected that the oxidant and proinflammatory markers increased and antioxidant parameters decreased in IR group but the results significantly reversed in treatment groups compared to IR group. And also, 8-OHdG, NF-κB, HAVCR1 immunopositivities were at severe levels and these results attenuated in IR fraxin + 10 mg/kg, and IR + fraxin 50 mg/kg groups. SIGNIFICANCE These presented results have shown that fraxin performed protective effects against kidney injury induced by IR.
Collapse
Affiliation(s)
- Ömer Topdağı
- Department of Internal Medicine, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Fazile Nur Ekinci Akdemir
- Department of Nutrition and Dietetics, High School of Health, Ağrı İbrahim Çeçen University, Ağrı, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey.
| | - Mustafa Can Güler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| |
Collapse
|
62
|
Dupre TV, Jenkins DP, Muise-Helmericks RC, Schnellmann RG. The 5-hydroxytryptamine receptor 1F stimulates mitochondrial biogenesis and angiogenesis in endothelial cells. Biochem Pharmacol 2019; 169:113644. [PMID: 31542386 PMCID: PMC7749638 DOI: 10.1016/j.bcp.2019.113644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/17/2019] [Indexed: 12/19/2022]
Abstract
A hallmark of acute kidney injury (AKI) is vascular rarefication and mitochondrial dysfunction. Promoting vascular recovery following AKI could facilitate kidney repair as the vasculature is responsible for oxygen and nutrient delivery to extravascular tissues. Little is known about mitochondrial biogenesis (MB) in endothelial cells, and the role of 5-HT1F receptor signaling in MB has only been studied in epithelial cells. Our laboratory has shown that stimulating MB through the 5-HT1F receptor promotes recovery from AKI and that 5-HT1F receptor knockout mice have decreased MB and poor renal recovery. We hypothesized that the 5-HT1F receptor plays a role in vascular homeostasis and mediates MB in renal endothelial cells. 5-HT1F receptor knockout mice had decreased renal vascular content, as evidenced by decreased CD31+ endothelial cells and αSMA+ vessels. Human glomerular endothelial cells (HEC) and mouse glomerular endothelial cells (MEC) expressed the 5-HT1F receptor. Treatment of HEC and MEC with 5-HT1F receptor agonists LY344864 or lasmiditan (0-500 nM) induced MB as evidenced by maximal mitochondrial respiration, a marker of MB. HEC and MEC treated with lasmiditan or LY344864 also had increased nuclear- and mitochondrial-encoded proteins (PGC1α, COX-1, and VDAC), and mitochondrial number, confirming MB. Treatment of HEC with LY344864 or lasmiditan enhanced endothelial branching morphogenesis and migration, indicating a role for 5-HT1F receptor stimulation in angiogenic pathways. We propose that stimulation of 5-HT1F receptor is involved in MB in endothelial cells and that treatment with 5-HT1F receptor agonists could restore stimulate repair and recovery following kidney injury.
Collapse
Affiliation(s)
- Tess V Dupre
- Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States
| | - Dorea P Jenkins
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Robin C Muise-Helmericks
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Rick G Schnellmann
- Dept. of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721, United States; Southern Arizona VA Health Care System, Tucson, AZ, United States.
| |
Collapse
|
63
|
Basile DP. The case for capillary rarefaction in the AKI to CKD progression: insights from multiple injury models. Am J Physiol Renal Physiol 2019; 317:F1253-F1254. [DOI: 10.1152/ajprenal.00468.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- David P. Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
64
|
Aksoy F, Bagcı A. Predictive value of ATRIA risk score for contrast-induced nephropathy after percutaneous coronary intervention for ST-segment elevation myocardial infarction. Rev Assoc Med Bras (1992) 2019; 65:1384-1390. [DOI: 10.1590/1806-9282.65.11.1384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/01/2019] [Indexed: 01/27/2023] Open
Abstract
SUMMARY BACKGROUND: The AnTicoagulation and Risk factors In Atrial fibrillation (ATRIA) risk score used to detect the thromboembolic and hemorrhagic risk in atrial fibrillation patients has been shown recently to predict poor clinical outcomes in patients with acute myocardial infarction (ACS), regardless of having atrial fibrillation (AF). We aimed to analyze the relationship between different risk scores and contrast-induced nephropathy (CIN) development in patients with ACS who underwent urgent percutaneous coronary intervention (PCI) and compare the predictive ability of the ATRIA risk score with the MEHRAN risk score. METHODS: We analyzed 429 patients having St-segment Elevation Myocardial Infarction (STEMI) who underwent urgent PCI between January 2016 and February 2017. Patients were divided into two groups: those with and those without CIN and both groups were compared according to clinical, laboratory, and demographic features, including the CHA2DS2-VASc and ATRIA risk score. Predictors of CIN were determined by multivariate regression analysis. Receiver operating characteristics (ROC) curve analysis was used to analyze the prognostic value of CHA2DS2-VASc and ATRIA risk score for CIN, following STEMI. RESULTS: Multivariate regression analysis showed that Athe TRIA risk score, Opaque/Creatinine Clearance ratio, and low left ventricular ejection fraction was an independent predictor of CIN. The C-statistics for the ATRIA risk score and CHA2DS2-VASC risk score were 0.66 and 0.64 (p<0.001, and p<0.001), respectively. A pair-wise comparison of ROC curves showed that both scores were not inferior to the MEHRAN score in predicting CIN. CONCLUSION: The ATRIA and CHA2DS2-VASC scoring systems were useful for detecting CIN following STEMI.
Collapse
|
65
|
Abstract
Acute kidney injury (AKI), a major public health problem associated with high mortality and increased risk of progression towards end-stage renal disease, is characterized by the activation of intra-renal haemostatic and inflammatory processes. Platelets, which are present in high numbers in the circulation and can rapidly release a broad spectrum of bioactive mediators, are important acute modulators of inflammation and haemostasis, as they are the first cells to arrive at sites of acute injury, where they interact with endothelial cells and leukocytes. Diminished control of platelet reactivity by endothelial cells and/or an increased release of platelet-activating mediators can lead to uncontrolled platelet activation in AKI. As increased platelet sequestration and increased expression levels of the markers P-selectin, thromboxane A2, CC-chemokine ligand 5 and platelet factor 4 on platelets have been reported in kidneys following AKI, platelet activation likely plays a part in AKI pathology. Results from animal models and some clinical studies highlight the potential of antiplatelet therapies in the preservation of renal function in the context of AKI, but as current strategies also affect other cell types and non-platelet-derived mediators, additional studies are required to further elucidate the extent of platelet contribution to the pathology of AKI and to determine the best therapeutic approach by which to specifically target related pathogenic pathways.
Collapse
Affiliation(s)
- Marcel P B Jansen
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
66
|
Cordeiro PM, Fernandes SM, Fonseca CDD, Watanabe M, Lopes SM, Vattimo MDFF. Effects of Justicia acuminatissima, or Amazonian Sara Tudo, on ischemic acute kidney injury: an experimental study. Rev Esc Enferm USP 2019; 53:e03487. [PMID: 31433017 DOI: 10.1590/s1980-220x2018019203487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To evaluate the effects of Justicia acuminatissima , or Amazonian Sara Tudo , on renal hemodynamics, oxidative profile, and renal histology in rats with ischemic acute kidney injury. METHOD Preclinical assay with adult male Wistar rats, weighing from 250 g to 350 g, distributed into Sham, ischemia, and ischemia + Sara Tudo groups. Hemodynamic parameters, renal function, oxidative stress, and renal histology were evaluated. RESULTS Pretreatment with Sara Tudo reduced the functional injury, which was shown by the increase in creatinine clearance and thiols; reduction of oxidative markers, renal vascular resistance, and tubulointerstitial injury in the renal tissue; and the significant improvement in renal blood flow. CONCLUSION The renoprotection provided by Justicia acuminatissima , or Sara Tudo , in cases of ischemic acute kidney injury was characterized by a marked improvement in renal function, reducing the oxidative injury, and impacting on renal histology positively.
Collapse
Affiliation(s)
| | - Sheila Marques Fernandes
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Cassiane Dezoti da Fonseca
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Mirian Watanabe
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | - Sérgio Martins Lopes
- Universidade de São Paulo, Escola de Enfermagem, Laboratório Experimental de Modelos Animais, São Paulo, SP, Brazil
| | | |
Collapse
|
67
|
Mohammadi M, Najafi H, Mohamadi Yarijani Z, Vaezi G, Hojati V. Protective effect of piperine in ischemia-reperfusion induced acute kidney injury through inhibition of inflammation and oxidative stress. J Tradit Complement Med 2019; 10:570-576. [PMID: 33134133 PMCID: PMC7588331 DOI: 10.1016/j.jtcme.2019.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 11/21/2022] Open
Abstract
Background and aim Renal ischemia-reperfusion is associated with inflammation and oxidative stress. As a major compound in black pepper, piperine has anti-inflammatory and anti-oxidative properties. In present study, the protective effects of oral administration of piperine in renal ischemia-reperfusion (IR) induced acute kidney injuries (AKI) were investigated. Experimental procedure Male Wistar rats received piperine (10 or 20 mg/kg.bw) or vehicle for 10 days. The artery and vein of both kidneys were then clamped for 30 min, followed by a 24-h reperfusion period. Concentrations of creatinine and urea-nitrogen in descending aorta blood were measured, and malondialdehyde (MDA) and ferric reducing/antioxidant power (FRAP) levels were measured in kidney tissue to evaluate the oxidative stress. Inflammation was evaluated by measuring the TNF-α and ICAM-1 mRNA expression levels in renal cortical tissue using Real Time PCR method and counting leukocytes infiltration to interstitium. Further measured were tissue damages in H & E stained sections. Results Renal IR reduced FRAP, while increasing the plasma concentrations of creatinine and urea-nitrogen, tissue MDA level, TNF-α and ICAM-1 mRNA expressions, leukocyte infiltration and histopathologic injuries. Piperine administration significantly reduced the plasma concentrations of creatinine and urea-nitrogen, expression of pro-inflammatory factors, oxidative stress and renal histopathologic injuries. It is to be noted that 20 mg/kg dose was more effective. Conclusion Our results suggest piperine protects the kidney against ischemia-reperfusion induced acute kidney injuries by its anti-inflammatory and anti-oxidative properties. Renal ischemia-reperfusion increased the inflammation and oxidative stress parameters. Ischemia-reperfusion increased histopathological damages and functional parameters. Piperine pretreatment significantly reduced the inflammation and oxidative stress. Piperine administration ameliorated renal function and histopathologic damages.
Collapse
Key Words
- AKI, Acute kidney injury
- Acute kidney injury
- FRAP, Ferric reducing antioxidant power
- GFR, Glomerular filtration rate
- ICAM-1, Intercellular adhesion molecule-1
- IL-1, Interleukin-1
- IL-6, Interleukin-6
- IR, Ischemia-reperfusion
- Inflammation
- Ischemia-reperfusion
- MDA, Malondialdehyde
- NF-κB, Nuclear factor-κB
- NO, Nitric oxide
- Oxidative stress
- PBS, Phosphate buffer saline
- Piperine
- ROS, Reactive oxygen species
- TNF-α, Tumor necrosis factor-α
- TPTZ, Tripyridyl-s-triazine
- eNOS, Endothelial nitric oxide synthase
- iNOS, Inducible nitric oxide synthase
- qRT-PCR, quantitative real-time PCR
Collapse
Affiliation(s)
- Maryam Mohammadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeynab Mohamadi Yarijani
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
68
|
Baranauskas T, Kaunienė A, Švagždienė M, Širvinskas E, Lenkutis T. The correlation of post-operative acute kidney injury and perioperative anaemia in patients undergoing cardiac surgery with cardiopulmonary bypass. Acta Med Litu 2019; 26:79-86. [PMID: 31281220 DOI: 10.6001/actamedica.v26i1.3959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background and objective Acute kidney injury (AKI) following cardiac surgery with cardiopulmonary bypass (CPB) is polyethiological clinical syndrome. During CPB haemodilution develops, which is useful in reducing the risk of thrombosis; however, haemodilutional anaemia decreases oxygen transfer and provokes tissue hypoxia, which can lead to acute organ damage. The aim of the study was to find out the impact of perioperative anaemia on AKI after cardiac surgery with CPB. Materials and methods This prospective study included 58 adult patients undergoing elective cardiac surgery with CPB, without any preoperative chronic renal disease or any systemic autoimmune disease. Serum concentrations of NGAL had been tested before the surgery, 2 hours, 6 hours, and one day after the surgery. Perioperative anaemia was assessed according to the Ht value before the surgery, the Ht value during CPB, and immediately after the surgery. Results The rate of haemodilutional anaemia is 77.59% in this study. The average of serum NGAL concentration before CPB was 63.95 ± 33.25 ng/mL and it was significantly lower than the average concentration 2 hours after the surgery, 6 hours after the surgery and one day after the surgery (respectively 148.51 ± 62.39, 119.44 ± 55, 128.70 ± 59.04 ng/mL, p < 0.05). AKI developed in 46.55% of the patients. A significant positive reasonable correlation between the development of perioperative anaemia and AKI was determined (r = 0.50, p < 0.05). Conclusions Post-operative AKI after cardiac surgery with CPB has a moderate positive correlation with perioperative haemodilutional anaemia. A longer CPB time and aortic cross-clamping time were found to be the risk factors for the development of AKI.
Collapse
Affiliation(s)
| | - Agnė Kaunienė
- Department of Internal Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Milda Švagždienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Edmundas Širvinskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Tadas Lenkutis
- Clinic of Anaesthesiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
69
|
Huang L, Liao X, Sun H, Jiang X, Liu Q, Zhang L. Augmenter of liver regeneration protects the kidney from ischaemia-reperfusion injury in ferroptosis. J Cell Mol Med 2019; 23:4153-4164. [PMID: 30993878 PMCID: PMC6533476 DOI: 10.1111/jcmm.14302] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/02/2019] [Accepted: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a common and severe clinical condition with high morbidity and mortality. Ischaemia-reperfusion (I/R) injury remains the major cause of AKI in the clinic. Ferroptosis is a recently discovered form of programmed cell death (PCD) that is characterized by iron-dependent accumulation of reactive oxygen species (ROS). Compelling evidence has shown that renal tubular cell death involves ferroptosis, although the underlying mechanisms remain unclear. Augmenter of liver regeneration (ALR) is a widely distributed multifunctional protein that is expressed in many tissues. Our previous study demonstrated that ALR possesses an anti-oxidant function. However, the modulatory mechanism of ALR remains unclear and warrants further investigation. Here, to elucidate the role of ALR in ferroptosis, ALR expression was inhibited using short hairpin RNA lentivirals (shRNA) in vitro model of I/R-induced AKI. The results suggest that the level of ferroptosis is increased, particularly in the shRNA/ALR group, accompanied by increased ROS and mitochondrial damage. Furthermore, inhibition of system xc- with erastin aggravates ferroptosis, particularly silencing of the expression of ALR. Unexpectedly, we demonstrate a novel signalling pathway of ferroptosis. In summary, we show for the first time that silencing ALR aggravates ferroptosis in an in vitro model of I/R. Notably, we show that I/R induced kidney ferroptosis is mediated by ALR, which is linked to the glutathione-glutathione peroxidase (GSH-GPx) system.
Collapse
Affiliation(s)
- Li‐li Huang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiao‐hui Liao
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingPeople's Republic of China
| | - Hang Sun
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalInstitute for Viral HepatitisChongqing Medical UniversityChongqingPeople's Republic of China
| | - Xiao Jiang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingPeople's Republic of China
| | - Qi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Department of Infectious DiseasesThe Second Affiliated HospitalInstitute for Viral HepatitisChongqing Medical UniversityChongqingPeople's Republic of China
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqingPeople's Republic of China
| |
Collapse
|
70
|
Situmorang GR, Sheerin NS. Ischaemia reperfusion injury: mechanisms of progression to chronic graft dysfunction. Pediatr Nephrol 2019; 34:951-963. [PMID: 29603016 PMCID: PMC6477994 DOI: 10.1007/s00467-018-3940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/18/2018] [Accepted: 03/02/2018] [Indexed: 12/18/2022]
Abstract
The increasing use of extended criteria organs to meet the demand for kidney transplantation raises an important question of how the severity of early ischaemic injury influences long-term outcomes. Significant acute ischaemic kidney injury is associated with delayed graft function, increased immune-associated events and, ultimately, earlier deterioration of graft function. A comprehensive understanding of immediate molecular events that ensue post-ischaemia and their potential long-term consequences are key to the discovery of novel therapeutic targets. Acute ischaemic injury primarily affects tubular structure and function. Depending on the severity and persistence of the insult, this may resolve completely, leading to restoration of normal function, or be sustained, resulting in persistent renal impairment and progressive functional loss. Long-term effects of acute renal ischaemia are mediated by several mechanisms including hypoxia, HIF-1 activation, endothelial dysfunction leading to vascular rarefaction, sustained pro-inflammatory stimuli involving innate and adaptive immune responses, failure of tubular cells to recover and epigenetic changes. This review describes the biological relevance and interaction of these mechanisms based on currently available evidence.
Collapse
Affiliation(s)
- Gerhard R Situmorang
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Urology Department, Faculty of Medicine Universitas Indonesia - Cipto Mangunkusumo Hospital, Jakarta, 10430, Indonesia
| | - Neil S Sheerin
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
71
|
Complement-mediated Damage to the Glycocalyx Plays a Role in Renal Ischemia-reperfusion Injury in Mice. Transplant Direct 2019; 5:e341. [PMID: 30993186 PMCID: PMC6445655 DOI: 10.1097/txd.0000000000000881] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Background Complement activation plays an important role in the pathogenesis of renal ischemia-reperfusion (IR) injury (IRI), but whether this involves damage to the vasculoprotective endothelial glycocalyx is not clear. We investigated the impact of complement activation on glycocalyx integrity and renal dysfunction in a mouse model of renal IRI. Methods Right nephrectomized male C57BL/6 mice were subjected to 22 minutes left renal ischemia and sacrificed 24 hours after reperfusion to analyze renal function, complement activation, glycocalyx damage, endothelial cell activation, inflammation, and infiltration of neutrophils and macrophages. Results Ischemia-reperfusion induced severe renal injury, manifested by significantly increased serum creatinine and urea, complement activation and deposition, loss of glycocalyx, endothelial activation, inflammation, and innate cell infiltration. Treatment with the anti-C5 antibody BB5.1 protected against IRI as indicated by significantly lower serum creatinine (P = 0.04) and urea (P = 0.003), tissue C3b/c and C9 deposition (both P = 0.004), plasma C3b (P = 0.001) and C5a (P = 0.006), endothelial vascular cell adhesion molecule-1 expression (P = 0.003), glycocalyx shedding (tissue heparan sulfate [P = 0.001], plasma syndecan-1 [P = 0.007], and hyaluronan [P = 0.02]), inflammation (high mobility group box-1 [P = 0.0003]), and tissue neutrophil (P = 0.0009) and macrophage (P = 0.004) infiltration. Conclusions Together, our data confirm that the terminal pathway of complement activation plays a key role in renal IRI and demonstrate that the mechanism of injury involves shedding of the glycocalyx.
Collapse
|
72
|
Kohansal P, Rajai N, Dehpour AR, Rashidian A, Shafaroodi H. The protective effect of acute pantoprazole pretreatment on renal ischemia/reperfusion injury in rats. Fundam Clin Pharmacol 2019; 33:405-411. [DOI: 10.1111/fcp.12451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/21/2019] [Accepted: 01/31/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Parichehr Kohansal
- Department of Pharmacology and Toxicology Pharmaceutical Sciences Branch Islamic Azad University Tehran Iran
| | - Nazanin Rajai
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Amir Rashidian
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| | - Hamed Shafaroodi
- Department of Pharmacology School of medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
73
|
Bath MF, Hosgood SA, Nicholson ML. Vasoreactivity to Acetylcholine During Porcine Kidney Perfusion for the Assessment of Ischemic Injury. J Surg Res 2019; 238:96-101. [PMID: 30769250 DOI: 10.1016/j.jss.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 12/07/2018] [Accepted: 01/08/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The effects of renal allograft ischemic injury on vascular endothelial function have not been clearly established. The aim of this study was to examine vascular reactivity to acetylcholine (ACh) in kidneys subjected to ischemic injury and reperfusion. METHODS Porcine kidneys were exposed to different combinations of warm ischemic time (WIT) and cold ischemic time (CIT) as follows: 15 min (n = 7), 60 min (n = 6), 90 min (n = 6), or 120 min (n = 4) WIT + 2 h CIT or 15 min WIT + 16 h CIT (n = 8). Kidneys were reperfused at 38°C for 3 h. After reperfusion, ACh was infused into the circuit to assess endothelium-dependent vascular reactivity. RESULTS The dose-response relationships between renal blood flow and ACh demonstrated that ACh doses of 10-10 to 10-7 mmol/L caused vasodilatation, whereas doses in the range 10-6 to 10-4 mmol/L led to vasoconstriction. For kidneys exposed to 15-90 min WIT, there was a clear relationship between increasing ischemic injury and reduced vasodilatation to ACh. In contrast, kidneys subjected to 120 min WIT completely lost vasoreactivity. The vasodilatory response to ACh was diminished, but not lost, when CIT was increased from 2 h to 16 h. Peak renal blood flow after ACh infusion correlated with the functional parameters in kidneys with 2 h CIT (P < 0.05). CONCLUSIONS The loss of renal vascular reactivity after 120 min WIT suggests endothelial dysfunction leading to loss of nitric oxide synthesis/release. Measurement of vasoreactivity to ACh in an isolated organ perfusion system has the potential to be developed as a marker of ischemic renal injury before transplantation.
Collapse
Affiliation(s)
- Michael F Bath
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
74
|
Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle 2019; 18:425-436. [PMID: 30700227 DOI: 10.1080/15384101.2019.1568746] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 6 (SIRT6) has the function of regulating autophagy. The aim of this study was to investigate the mechanism through which SIRT6 relieved acute kidney injury (AKI) caused by sepsis. The AKI model was established with lipopolysaccharides (LPS) using mice. Hematoxylin-eosin (HE) staining and streptavidin-perosidase (SP) staining was used to observe kidney tissue and test SIRT6 and LC3B proteins in kidney. Enzyme-linked immunosorbent assay (ELISA) was performed to detected the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations. Cell counting kit-8 (CCK-8) assay and flow cytometry were carried out to test the cell viability and apoptosis rate respectively. Protein and mRNA were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). AKI induced by LPS had self-repairing ability. At 12 h after modeling, the expression levels of TNF-α, IL-6, SIRT6 and LC3B-II/LC3B-I were first significantly increased and were then significantly decreased at 48 h after modeling. LPS inhibited the growth of HK-2 cells and promoted the expressions of TNF-α, IL-6, SIRT6 and LC3B. Overexpression of SIRT6 down-regulated the secretion of TNF-α and IL-6 induced by LPS. SIRT6 overexpression inhibited apoptosis induced by LPS and promoted autophagy in HK-2 cells. Silencing of the SIRT6 gene not only promoted the secretion of TNF-α and IL-6 by HK-2 cells, but also promoted apoptosis and reduced autophagy. LPS up-regulated the expression of SIRT6 gene in HK-2 cells. Overexpression of the SIRT6 gene could inhibit apoptosis and induce autophagy, which might be involved in repairing kidney damage caused by LPS.
Collapse
Affiliation(s)
- Yang Zhang
- a College of Anesthesia , Xuzhou Medical University , Xuzhou , China
| | - Ling Wang
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Lei Meng
- c Department of Intensive Care Unit , The Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guangke Cao
- d Department of Intensive Care Unit , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Yu Wu
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| |
Collapse
|
75
|
Elagin V, Bratchikov O, Zatolokina M. Correction of morphofunctional disorders with asialoerythropoietin and selective inhibitor of arginase II KUD975 in cases of ischemic kidney damage in the experiment. RESEARCH RESULTS IN PHARMACOLOGY 2018. [DOI: 10.3897/rrpharmacology.4.31846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Acute kidney injury (AKI), which is based on ischemic-reperfusion damage, is a widespread life-threatening condition and remains a serious public health problem with a high mortality rate among patients. Despite significant advances in various areas of medicine, the prevention and correction of ischemic-reperfusion kidney damage are still far from being at the desired level. Pharmacological preconditioning and the use of endothelioprotectors are promising areas in this field, therefore the purpose of this study was to analyze the nephroprotective properties of asialoerythropoietin and selective inhibitor of arginase II KUD975 in ischemic kidney damage in the experiment.Materials and methods: The study was performed on 260 white adult male Wistar rats, each weighing 180-220 g. Ischemic-reperfusion damage was simulated by applying a clamp on the renal leg for 40 minutes. To determine a degree of correction caused by morphofunctional disorders traditional functional, biochemical and morphological criteria were used.Results and discussion: When administering asialoerythropoietin and selective inhibitor of arginase II KUD975, there is observed an improvement in the glomerular filtration and microcirculation in the kidneys, decrease in the concentration of creatinine and urea, a decrease in fractional excretion of sodium and improvement in the histological pattern at different periods. The most pronounced nephroprotective effects are observed in the combined use of the test pharmacological agents, which are superior to such used in a monotherapy. The use of glibenclamide and L-NAME against the background of the correction of the pathology caused by asialoerythropoietin completely eliminates its positive effects. When glibenclamide and L-NAME are used against the background of correction of the pathology caused by the selective inhibitor of arginase II KUD975, its positive effects are completely eliminated by L-NAME. Glibenclamide does not eliminate positive effects.Conclusions: The results of the experiment prove the presence of pronounced nephroprotective properties of asialoerythropoietin and selective inhibitor of arginase II KUD975 in ischemic kidney damage in the experiment. The most pronounced effects are observed in the combined use of these pharmacological agents. The leading role in causing the positive effects from asialoerythropoietin is played by the activation of K+ATP channels and the activation of eNOS. The leading role in causing the positive effects from the selective inhibitor of arginase II KUD975 is played by the activation of eNOS.
Collapse
|
76
|
Jang MJ, You D, Park JY, Kim K, Aum J, Lee C, Song G, Shin HC, Suh N, Kim YM, Kim CS. Hypoxic Preconditioned Mesenchymal Stromal Cell Therapy in a Rat Model of Renal Ischemia-reperfusion Injury: Development of Optimal Protocol to Potentiate Therapeutic Efficacy. Int J Stem Cells 2018; 11:157-167. [PMID: 30497128 PMCID: PMC6285294 DOI: 10.15283/ijsc18073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 08/28/2018] [Accepted: 10/12/2018] [Indexed: 12/18/2022] Open
Abstract
Although previous and ongoing clinical studies have used stromal cells during renal ischemia-reperfusion injury (IRI), there is little consensus regarding the optimal protocol. We aimed to optimize the protocol for hypoxic preconditioned human bone marrow-derived mesenchymal stromal cell (HP-hBMSC) therapy in a rat model of renal IRI. We determined the optimal injection route (renal arterial, renal parenchymal, and tail venous injection), dose (low-dose: 1×106, moderate-dose: 2×106, and high-dose: 4×106), and injection period (pre-, concurrent-, and post-IRI). During optimal injection route study, renal arterial injections significantly reduced the decreasing glomerular filtration rate (GFR), as compared to GFRs for the IRI control group, 2 and 4 days after IRI. Therapeutic effects and histological recoveries were the greatest in the group receiving renal arterial injections. During the dose finding study, high-dose injections significantly reduced the decreasing GFR, as compared to GFRs for the IRI control group, 3 days after IRI. Therapeutic effects and histological recoveries were the greatest in the high-dose injection group. While determining the optimal injection timing study, concurrent-IRI injection reduced elevated serum creatinine levels, as compared to those of the IRI control group, 1 day after IRI. Pre-IRI injection significantly reduced the decreasing GFR, as compared with GFRs for the IRI control group, 1 day after IRI. Therapeutic effects and histological recoveries were the greatest in the concurrent-IRI group. In conclusion, the concurrent-IRI administration of a high dose of HP-hBMSC via the renal artery leads to an optimal recovery of renal function after renal IRI.
Collapse
Affiliation(s)
- Myoung Jin Jang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.,Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin Young Park
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kyung Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Joomin Aum
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chunwoo Lee
- Department of Urology, Gyeongsang National University Changwon Hospital, Gyeongsang National University School of Medicine, Changwon, Korea
| | - Geehyun Song
- Department of Urology, Kangwon National University Hospital, Chuncheon, Korea
| | | | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, Korea
| | | | - Choung-Soo Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
77
|
Patschan D, Sugiarto N, Henze E, Mößner R, Mohr J, Müller GA, Patschan S. Early endothelial progenitor cells and vascular stiffness in psoriasis and psoriatic arthritis. Eur J Med Res 2018; 23:56. [PMID: 30413175 PMCID: PMC6225664 DOI: 10.1186/s40001-018-0352-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 10/21/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both psoriasis (Ps) and psoriasis arthritis (PsA) have been associated with increased cardiovascular risk. Also, both are characterized by increased neovascularization. Endothelial progenitor cells (EPCs) have been implicated in promoting vascular repair in ischemic diseases. The aim of the study was to correlate the EPC system with CV risk factors and with parameters of vascular stiffness in Ps and PsA. METHODS Twenty-six healthy subjects, 30 patients with Ps, and 31 patients PsA were included in the study. eEPC regeneration was evaluated by a colony-forming assay, circulating eEPCs were measured by cytometric analysis. For vascular analysis, all subjects underwent quantification of pulse wave velocity (PWV) and augmentation index (AIX). RESULTS Patients were categorized upon the duration of disease, severity of skin involvement (PASI-Ps), individual pain as reflected by the VAS (PsA), CRP values, and history of treatment with one or more biologicals. Regarding the eEPC system, no significant differences were observed between the respective categories. Correlation analyses between parameters of vascular stiffness (PWV and AIX) and patterns of colony formation/circulating eEPCs did not show any correlation at all. CONCLUSION Parameters of vascular stiffness are not significantly deteriorated in Ps/PsA. Thus, pulse wave analysis may not be suitable for CVR assessment in certain autoimmune-mediated diseases. Regenerative activity of the eEPC system/circulating eEPC numbers are not altered in Ps/PsA. One may conclude that malfunctions of the eEPC are not substantially involved in perpetuating the micro-/macrovascular alterations in Ps/PsA.
Collapse
Affiliation(s)
- D Patschan
- Department of Medicine I, Cardiology-Angiology-Nephrology, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Brandenburg, Germany. .,Clinic of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany.
| | - N Sugiarto
- Clinic of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany
| | - E Henze
- Clinic of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany
| | - R Mößner
- Department of Dermatology and Venerology, University Hospital Göttingen, Göttingen, Germany
| | - J Mohr
- Department of Dermatology and Venerology, University Hospital Göttingen, Göttingen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital Göttingen, Göttingen, Germany
| | - S Patschan
- Department of Medicine I, Cardiology-Angiology-Nephrology, Klinikum Brandenburg, Medizinische Hochschule Brandenburg, Brandenburg, Germany
| |
Collapse
|
78
|
Doreille A, Dieudé M, Cardinal H. The determinants, biomarkers, and consequences of microvascular injury in kidney transplant recipients. Am J Physiol Renal Physiol 2018; 316:F9-F19. [PMID: 30379097 DOI: 10.1152/ajprenal.00163.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Independent of the initial cause of kidney disease, microvascular injury to the peritubular capillary network appears to play a central role in the development of interstitial fibrosis in both native and transplanted kidney disease. This association is explained by mechanisms such as the upregulation of profibrotic genes and epigenetic changes induced by hypoxia, capillary leakage, endothelial and pericyte transition to interstitial fibroblasts, as well as modifications in the secretome of endothelial cells. Alloimmune injury due to antibody-mediated rejection and ischemia-reperfusion injury are the two main etiologies of microvascular damage in kidney transplant recipients. The presence of circulating donor-specific anti-human leukocyte antigen (HLA) antibodies, histological findings, such as diffuse C4d staining in peritubular capillaries, and the extent and severity of peritubular capillaritis, are commonly used clinically to provide both diagnostic and prognostic information. Complement-dependent assays, circulating non-HLA antibodies, or evaluation of the microvasculature with novel imaging techniques are the subject of ongoing studies.
Collapse
Affiliation(s)
- Alice Doreille
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Université Paris-Sud , Paris , France
| | - Mélanie Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| | - Heloise Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal , Montreal, Quebec , Canada.,Canadian Donation and Transplantation Research Program, Montreal, Quebec, Canada
| |
Collapse
|
79
|
Meng Y, Jiang Z, Li N, Zhao Z, Cheng T, Yao Y, Wang L, Liu Y, Deng X. Protective Effects of Methane-Rich Saline on Renal Ischemic-Reperfusion Injury in a Mouse Model. Med Sci Monit 2018; 24:7794-7801. [PMID: 30379804 PMCID: PMC6223098 DOI: 10.12659/msm.911156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Renal ischemic-reperfusion (RIR) injury remains a major cause of acute kidney injury, with increased in-hospital mortality and risks for chronic kidney disease. Previous studies have proposed that oxidative stress, inflammation, and renal apoptosis are the most common causes of injury, whereas recent research proved that methane, the simplest alkane generated by an enteric microorganism or accompanying the production of reactive oxygen species (ROS), can alleviate inflammation and oxidative stress and reduce apoptosis in different organs. MATERIAL AND METHODS In the present study, we analyzed the possible effects of methane-rich saline in RIR injury in a mouse model and analyzed its possible protective effects on inflammation, oxidative stress, and apoptosis. RESULTS The results showed that treatment with methane significantly improved blood creatinine and blood urea nitrogen (BUN) levels and improved renal histology in RIR injury. Further experimentation proved that this protective effect was primarily manifested in decreased oxidative stress, less apoptosis, and reduced inflammation in renal tissues, as well as improved general responses. CONCLUSIONS Our present study proved the protective effects of methane in RIR injury and, together with previous research, confirmed the multi-organ protective effects. This may help to translate methane application and develop its use in organ ischemic-reperfusion injury.
Collapse
Affiliation(s)
- Yan Meng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Zhengyu Jiang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Na Li
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Zhenzhen Zhao
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Tingting Cheng
- Department of Anesthesiology, Ruijin Hospital North Affiliated to Shanghai Jiaotong University, Shanghai, China (mainland)
| | - Ying Yao
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of People's Liberation Army (PLA), Fuzhou, Fujian, China (mainland)
| | - Yi Liu
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| | - Xiaoming Deng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China (mainland)
| |
Collapse
|
80
|
Jung JH, Lee DH, Cho YI, Chae YJ, Jung YJ, Kang KP, Kim W. Serum nitric oxide level correlates with serum brain natriuretic peptide and whole blood viscosity in hemodialysis patients. Nitric Oxide 2018; 77:1-5. [PMID: 29578055 DOI: 10.1016/j.niox.2018.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/18/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Nitric oxide (NO) is tonically synthesized by the vascular endothelium and known as a marker of vasodilatation and blood flow. As NO has a critical role in hemodynamics, NO may be associated with other hemodynamics-related factors including atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and whole blood viscosity (WBV). It has been reported that serum NO level increased in patients undergoing hemodialysis. However, there are few reports about the relationship between NO and hemodynamic parameters in hemodialysis patients. OBJECTIVE We investigated the associations between serum levels of NO and other hemodynamics-related factors such as ANP, BNP and WBV in patients with hemodialysis. METHODS NO, ANP, and BNP levels before hemodialysis were measured using ELISA method. We measured WBV in pre- and post-dialysis. RESULTS Mean serum levels of NO, ANP, and BNP were 13.97 ± 10.34 μg/mL, 198.85 ± 61.56 pg/mL, and 1233.32 ± 280.81 pg/mL, respectively in patients with hemodialysis. The mean WBV values at shear rates of 1, 5, and 300 s-1 for pre-dialyses were 168.5 ± 62.5, 76.9 ± 20.6, and 33.3 ± 3.8 mP, respectively. Serum NO level was positively correlated with WBV at shear rates of 1, 5, and 300 s-1 at pre- and post-hemodialysis. There is a correlation between serum nitrite levels and the change of SBV during hemodialysis. Serum nitrite levels correlated with the serum BNP levels. ANP levels have a negative correlation with pre-dialytic WBV. However, BNP levels did not correlate with WBV during hemodialysis. CONCLUSIONS WBV is linked to an imbalance in serum vasoactive substances in hemodialysis patients and can cause significant hemodynamic disturbance.
Collapse
Affiliation(s)
- Jong Hwan Jung
- Division of Nephrology, Department of Internal Medicine, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Dong Hwan Lee
- Department of Mechanical Design Engineering, Engineering College, Chonbuk National University, Jeonju, Republic of Korea
| | - Young I Cho
- Department of Mechanical Eng. and Mechanics, Drexel University, Philadelphia, PA, USA
| | - Yoon Jung Chae
- College of Nursing, Chonbuk National University, Jeonju, Republic of Korea
| | - Yu Jin Jung
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Kyung Pyo Kang
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Won Kim
- Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
81
|
Schwarze K, Kribben A, Ritter O, Müller GA, Patschan D. Autophagy activation in circulating proangiogenic cells aggravates AKI in type I diabetes mellitus. Am J Physiol Renal Physiol 2018; 315:F1139-F1148. [PMID: 29897281 DOI: 10.1152/ajprenal.00502.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) occurs frequently in hospitals worldwide, but the therapeutic options are limited. Diabetes mellitus (DM) affects more and more people around the globe. The disease worsens the prognosis of AKI even further. In recent years, cell-based therapies have increasingly been applied in experimental AKI. The aim of the study was to utilize two established autophagy inducers for pharmacological preconditioning of so-called proangiogenic cells (PACs) in PAC treatment of diabetic AKI. Insulin-dependent DM was induced in male C57/Bl6N mice by intraperitoneal injections of streptozotocine. Six weeks later, animals underwent bilateral renal ischemia for 45 min, followed by intravenous injections of either native or zVAD (benzyloxycarbonyl-Val-Ala-Asp-fluoro-methylketone)- or Z-Leu-Leu-Leu-al (MG132)-pretreated syngeneic murine PACs. Mice were analyzed 48 h (short term) and 6 wk (long term) later, respectively. DM worsened postischemic AKI, and PAC preconditioning with zVAD and MG132 resulted in a further decline of excretory kidney function. Injection of native PACs reduced fibrosis in nondiabetic mice, but cell preconditioning promoted interstitial matrix accumulation significantly. Both substances aggravated endothelial-to-mesenchymal transition (EndoMT) under diabetic conditions; these effects occurred either exclusively in the short (zVAD) or in the short and long term (MG132). Preconditioned cells stimulated the autophagocytic flux in intrarenal endothelial cells, and all experimental groups displayed increased endothelial abundances of senescence-associated β-galactosidase, a marker of premature cell senescence. Pharmacological autophagy activation may not serve as an effective strategy for improving PAC competence in diabetic AKI in general. On the contrary, several outcome parameters (excretory function, fibrosis, EndoMT) may even be worsened.
Collapse
Affiliation(s)
- K Schwarze
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - A Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen , Essen , Germany
| | - O Ritter
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Hospital of Göttingen , Göttingen , Germany
| | - D Patschan
- Department of Cardiology, Pulmology, Angiology, and Nephrology, Brandenburg Medical School, University Hospital Brandenburg , Brandenburg , Germany
| |
Collapse
|
82
|
Baban B, Hoda N, Malik A, Khodadadi H, Simmerman E, Vaibhav K, Mozaffari MS. Impact of cannabidiol treatment on regulatory T-17 cells and neutrophil polarization in acute kidney injury. Am J Physiol Renal Physiol 2018; 315:F1149-F1158. [PMID: 29897289 DOI: 10.1152/ajprenal.00112.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hallmark features of acute kidney injury (AKI) include mobilization of immune and inflammatory mechanisms culminating in tissue injury. Emerging information indicates heterogeneity of neutrophils with pro- and anti-inflammatory functions (N1 and N2, respectively). Also, regulatory T-17 (Treg17) cells curtail T helper 17 (Th-17)-mediated proinflammatory responses. However, the status of Treg17 cells and neutrophil phenotypes in AKI are not established. Furthermore, cannabidiol exerts immunoregulatory effects, but its impact on Treg17 cells and neutrophil subtypes is not established. Thus, we examined the status of Treg17 cells and neutrophil subtypes in AKI and determined whether cannabidiol favors regulatory neutrophils and T cells accompanied with renoprotection. Accordingly, mice were subjected to bilateral renal ischemia-reperfusion injury (IRI), without or with cannabidiol treatment; thereafter, kidneys were processed for flow cytometry analyses. Renal IRI increased N1 and Th-17 but reduced N2 and Treg17 cells accompanied with disruption of mitochondrial membrane potential (ψm) and increased apoptosis/necrosis and kidney injury molecule-1 (KIM-1) immunostaining compared with their sham controls. Importantly, cannabidiol treatment preserved ψm and reduced cell death and KIM-1 accompanied by restoration of N1 and N2 imbalance and preservation of Treg17 cells while decreasing Th-17 cells. The ability of cannabidiol to favor development of Treg17 cells was further established using functional mixed lymphocytic reaction. Subsequent studies showed higher renal blood flow and reduced serum creatinine in cannabidiol-treated IRI animals. Collectively, our novel observations establish that renal IRI causes neutrophil polarization in favor of N1 and also reduces Treg17 cells in favor of Th-17, effects that are reversed by cannabidiol treatment accompanied with significant renoprotection.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology, Dental College of Georgia, Augusta University , Augusta, Georgia.,Department of Neurology, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Nasrul Hoda
- Department of Neurology, Medical College of Georgia, Augusta University , Augusta, Georgia.,Department of Medical Laboratory, Imaging, and Radiological Sciences, College of Allied Health Sciences, Augusta University , Augusta, Georgia
| | - Aneeq Malik
- Department of Oral Biology, Dental College of Georgia, Augusta University , Augusta, Georgia
| | - Hesam Khodadadi
- Department of Oral Biology, Dental College of Georgia, Augusta University , Augusta, Georgia
| | - Erika Simmerman
- Department of Surgery, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University , Augusta, Georgia
| | - Mahmood S Mozaffari
- Department of Oral Biology, Dental College of Georgia, Augusta University , Augusta, Georgia
| |
Collapse
|
83
|
Cardinal H, Dieudé M, Hébert MJ. Endothelial Dysfunction in Kidney Transplantation. Front Immunol 2018; 9:1130. [PMID: 29875776 PMCID: PMC5974048 DOI: 10.3389/fimmu.2018.01130] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Kidney transplantation entails a high likelihood of endothelial injury. The endothelium is a target of choice for injury by ischemia-reperfusion, alloantibodies, and autoantibodies. A certain degree of ischemia-reperfusion injury inevitably occurs in the immediate posttransplant setting and can manifest as delayed graft function. Acute rejection episodes, whether T-cell or antibody-mediated, can involve the graft micro- and macrovasculature, leading to endothelial injury and adverse long-term consequences on graft function and survival. In turn, caspase-3 activation in injured and dying endothelial cells favors the release of extracellular vesicles (apoptotic bodies and apoptotic exosome-like vesicles) that further enhance autoantibody production, complement deposition, and microvascular rarefaction. In this review, we present the evidence for endothelial injury, its causes and long-term consequences on graft outcomes in the field of kidney transplantation.
Collapse
Affiliation(s)
- Héloïse Cardinal
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada.,University of Montreal, Montreal, QC, Canada
| | - Mélanie Dieudé
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada
| | - Marie-Josée Hébert
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Montreal, QC, Canada.,University of Montreal, Montreal, QC, Canada
| |
Collapse
|
84
|
Greite R, Thorenz A, Chen R, Jang MS, Rong S, Brownstein MJ, Tewes S, Wang L, Baniassad B, Kirsch T, Bräsen JH, Lichtinghagen R, Meier M, Haller H, Hueper K, Gueler F. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 2018; 314:F881-F892. [DOI: 10.1152/ajprenal.00519.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a severe complication of major surgery and a risk factor for increased morbidity and mortality. Here, we investigated mechanisms that might contribute to IRI-induced progression to chronic kidney disease (CKD). Acute kidney injury (AKI) was induced by unilateral IRI for 35 min in CD1 and C57BL/6 (B6) mice. Unilateral IRI was used to overcome early mortality. Renal morphology, NGAL upregulation, and neutrophil infiltration as well as peritubular capillary density were studied by immunohistochemistry. The composition of leukocyte infiltrates in the kidney after IRI was investigated by flow cytometry. Systemic blood pressure was measured with a tail cuff, and renal perfusion was quantified by functional magnetic resonance imaging (fMRI). Mesangial matrix expansion was assessed by silver staining. Following IRI, CD1 and B6 mice developed similar morphological signs of AKI and increases in NGAL expression, but neutrophil infiltration was greater in CD1 than B6 mice. IRI induced an increase in systemic blood pressure of 20 mmHg in CD1, but not in B6 mice; and CD1 mice also had a greater loss of renal perfusion and kidney volume than B6 mice ( P < 0.05). CD1 mice developed substantial interstitial fibrosis and decreased peritubular capillary (PTC) density by day 14 while B6 mice showed only mild renal scarring and almost normal PTC. Our results show that after IRI, CD1 mice develop more inflammation, hypertension, and later mesangial matrix expansion than B6 mice do. Subsequently, CD1 animals suffer from CKD due to impaired renal perfusion and pronounced permanent loss of peritubular capillaries.
Collapse
Affiliation(s)
- Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center of the Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | | | - Susanne Tewes
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Li Wang
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | | | - Katja Hueper
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
85
|
Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res 2018; 64:1-55. [PMID: 29229445 PMCID: PMC6404988 DOI: 10.1016/j.preteyeres.2017.11.003] [Citation(s) in RCA: 1095] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography (OCT) was one of the biggest advances in ophthalmic imaging. Building on that platform, OCT angiography (OCTA) provides depth resolved images of blood flow in the retina and choroid with levels of detail far exceeding that obtained with older forms of imaging. This new modality is challenging because of the need for new equipment and processing techniques, current limitations of imaging capability, and rapid advancements in both imaging and in our understanding of the imaging and applicable pathophysiology of the retina and choroid. These factors lead to a steep learning curve, even for those with a working understanding dye-based ocular angiography. All for a method of imaging that is a little more than 10 years old. This review begins with a historical account of the development of OCTA, and the methods used in OCTA, including signal processing, image generation, and display techniques. This forms the basis to understand what OCTA images show as well as how image artifacts arise. The anatomy and imaging of specific vascular layers of the eye are reviewed. The integration of OCTA in multimodal imaging in the evaluation of retinal vascular occlusive diseases, diabetic retinopathy, uveitis, inherited diseases, age-related macular degeneration, and disorders of the optic nerve is presented. OCTA is an exciting, disruptive technology. Its use is rapidly expanding in clinical practice as well as for research into the pathophysiology of diseases of the posterior pole.
Collapse
Affiliation(s)
- Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, NY, United States.
| | - James G Fujimoto
- Department of Electrical Engineering & Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge MA, United States
| | - Nadia K Waheed
- The Department of Ophthalmology, Tufts University School of Medicine, Boston MA, United States
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California - Los Angeles, Los Angeles, CA, United States
| | - Giovanni Staurenghi
- Eye Clinic, Department of Biomedical and Clinical Sciences "Luigi Sacco", Luigi Sacco Hospital, University of Milan, Milan, Italy
| |
Collapse
|
86
|
Huertas A, Guignabert C, Barberà JA, Bärtsch P, Bhattacharya J, Bhattacharya S, Bonsignore MR, Dewachter L, Dinh-Xuan AT, Dorfmüller P, Gladwin MT, Humbert M, Kotsimbos T, Vassilakopoulos T, Sanchez O, Savale L, Testa U, Wilkins MR. Pulmonary vascular endothelium: the orchestra conductor in respiratory diseases. Eur Respir J 2018; 51:13993003.00745-2017. [DOI: 10.1183/13993003.00745-2017] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 02/03/2018] [Indexed: 12/15/2022]
Abstract
The European Respiratory Society (ERS) Research Seminar entitled “Pulmonary vascular endothelium: orchestra conductor in respiratory diseases - highlights from basic research to therapy” brought together international experts in dysfunctional pulmonary endothelium, from basic science to translational medicine, to discuss several important aspects in acute and chronic lung diseases. This review will briefly sum up the different topics of discussion from this meeting which was held in Paris, France on October 27–28, 2016. It is important to consider that this paper does not address all aspects of endothelial dysfunction but focuses on specific themes such as: 1) the complex role of the pulmonary endothelium in orchestrating the host response in both health and disease (acute lung injury, chronic obstructive pulmonary disease, high-altitude pulmonary oedema and pulmonary hypertension); and 2) the potential value of dysfunctional pulmonary endothelium as a target for innovative therapies.
Collapse
|
87
|
Basile DP, Collett JA, Yoder MC. Endothelial colony-forming cells and pro-angiogenic cells: clarifying definitions and their potential role in mitigating acute kidney injury. Acta Physiol (Oxf) 2018; 222:10.1111/apha.12914. [PMID: 28656611 PMCID: PMC5745310 DOI: 10.1111/apha.12914] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 05/10/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
Acute kidney injury (AKI) represents a significant clinical concern that is associated with high mortality rates and also represents a significant risk factor for the development of chronic kidney disease (CKD). This article will consider alterations in renal endothelial function in the setting of AKI that may underlie impairment in renal perfusion and how inefficient vascular repair may manifest post-AKI and contribute to the potential transition to CKD. We provide updated terminology for cells previously classified as 'endothelial progenitor' that may mediate vascular repair such as pro-angiogenic cells and endothelial colony-forming cells. We consider how endothelial repair may be mediated by these different cell types following vascular injury, particularly in models of AKI. We further summarize the potential ability of these different cells to mitigate the severity of AKI, improve perfusion and maintain vascular structure in pre-clinical studies.
Collapse
Affiliation(s)
- David P. Basile
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Jason A. Collett
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine
| |
Collapse
|
88
|
Kolb AL, Corridon PR, Zhang S, Xu W, Witzmann FA, Collett JA, Rhodes GJ, Winfree S, Bready D, Pfeffenberger ZJ, Pomerantz JM, Hato T, Nagami GT, Molitoris BA, Basile DP, Atkinson SJ, Bacallao RL. Exogenous Gene Transmission of Isocitrate Dehydrogenase 2 Mimics Ischemic Preconditioning Protection. J Am Soc Nephrol 2018; 29:1154-1164. [PMID: 29371417 DOI: 10.1681/asn.2017060675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Ischemic preconditioning confers organ-wide protection against subsequent ischemic stress. A substantial body of evidence underscores the importance of mitochondria adaptation as a critical component of cell protection from ischemia. To identify changes in mitochondria protein expression in response to ischemic preconditioning, we isolated mitochondria from ischemic preconditioned kidneys and sham-treated kidneys as a basis for comparison. The proteomic screen identified highly upregulated proteins, including NADP+-dependent isocitrate dehydrogenase 2 (IDH2), and we confirmed the ability of this protein to confer cellular protection from injury in murine S3 proximal tubule cells subjected to hypoxia. To further evaluate the role of IDH2 in cell protection, we performed detailed analysis of the effects of Idh2 gene delivery on kidney susceptibility to ischemia-reperfusion injury. Gene delivery of IDH2 before injury attenuated the injury-induced rise in serum creatinine (P<0.05) observed in controls and increased the mitochondria membrane potential (P<0.05), maximal respiratory capacity (P<0.05), and intracellular ATP levels (P<0.05) above those in controls. This communication shows that gene delivery of Idh2 can confer organ-wide protection against subsequent ischemia-reperfusion injury and mimics ischemic preconditioning.
Collapse
Affiliation(s)
- Alexander L Kolb
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| | | | - Shijun Zhang
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana
| | | | | | | | | | - Seth Winfree
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | - Devin Bready
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | | | | | | | - Glenn T Nagami
- Division of Nephrology, Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California; and.,Department of Medicine, David Geffen School of Medicine at the University of California, Los Angeles Veterans Affairs Medical Center, Los Angeles, California
| | - Bruce A Molitoris
- Division of Nephrology.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Simon J Atkinson
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indianapolis, Indiana.,Division of Nephrology
| | - Robert L Bacallao
- Research Division, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana; .,Division of Nephrology
| |
Collapse
|
89
|
MICROVASCULAR FLOW ABNORMALITIES ASSOCIATED WITH RETINAL VASCULITIS: A Potential of Mechanism of Retinal Injury. Retina 2018; 37:1034-1042. [PMID: 27759582 DOI: 10.1097/iae.0000000000001359] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE To investigate the structural optical coherence tomography and related microvascular flow characteristics in eyes with retinal vasculitis. METHODS Regions involved with perivascular infiltration in eyes with retinal vasculitis, but no evidence of large vessel occlusion were evaluated with optical coherence tomography (OCT), OCT angiography, and fluorescein angiography. RESULTS Ten eyes of 5 patients with a variety of etiologies of retinal vasculitis were evaluated. These patients did not have either cotton wool spots or deeper placoid areas of retinal ischemia. Around large vessels there was perivascular infiltration with leakage and staining seen during fluorescein angiography. Structural OCT showed slight thickening with loss of visualization of normal retinal laminations. OCT angiography showed a lack of flow signal in capillary sized vessels in the same areas. Treatment resulted in a rapid thinning of the affected areas, with the inner and middle layers of the retina becoming thinner than surrounding uninvolved areas. OCT angiography did not show a return of capillary perfusion in these regions. The thickness change in the structural OCT as shown by a heat map had a pattern mimicking the original perivascular infiltration around large retinal vessels. CONCLUSION Capillary level perfusion abnormalities can develop in regions adjacent to large vessel inflammatory infiltrate that result in retinal thinning without the development of usual stigmata of acute microvascular flow obstruction such as cotton wool spots. This suggests that retinal damage may occur in retinal vasculitis that would not be recognized without using OCT-based imaging modalities.
Collapse
|
90
|
Najafi H, Mohamadi Yarijani Z, Changizi-Ashtiyani S, Mansouri K, Modarresi M, Madani SH, Bastani B. Protective effect of Malva sylvestris L. extract in ischemia-reperfusion induced acute kidney and remote liver injury. PLoS One 2017; 12:e0188270. [PMID: 29155898 PMCID: PMC5695808 DOI: 10.1371/journal.pone.0188270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023] Open
Abstract
Mallow (Malva sylvestris L.) has had medicinal and therapeutic uses in addition to its oral consumption. The present study was conducted to examine the protective effect of Malva sylvestris L. extract on ischemia-reperfusion-induced kidney injury and remote organ injuries in the liver. Before ischemia-reperfusion, rats in the different groups received intraperitoneal normal saline or mallow extract at the doses of 200, 400 or 600 mg/kg of body weight. After 30-minutes of bilateral renal ischemia followed by 24-hours of reperfusion, tissue damage in the kidney and liver samples were determined through studying H&E-stained slides under a light microscope. The degree of leukocyte infiltration and tissue mRNA expressions of TNF- and ICAM-1 were then measured to examine the degree of renal inflammation. The renal tissue MDA and FRAP levels were measured for determining the amount of oxidative stress. Plasma concentrations of creatinine, urea, ALT and ALP were also measured. Ischemia-reperfusion led to a significant increase in plasma concentrations of creatinine, urea, ALT and ALP, and renal tissue MDA, and a significant decrease in renal tissue FRAP. The expression of pro-inflammatory factors in the kidney tissue, the level of leukocyte infiltration and the amount of tissue damage in the kidney and liver also increased. Pretreatment by mallow extract led to a significant improvement in all the variables measured. The 200- and 400-mg doses yielded better results in most parameters compared to the 600-mg dose. The findings showed that mallow extract protects the kidney against ischemia-reperfusion and reduces remote organ injury in the liver.
Collapse
Affiliation(s)
- Houshang Najafi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Saeed Changizi-Ashtiyani
- Department of Physiology, School of Paramedical Sciences, Arak University of Medical Sciences, Arak, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Modarresi
- Pharmacognosy and Biotechnology Department, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hamid Madani
- Department of Pathology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bahar Bastani
- Division of Nephrology, School of Medicine, Saint Louis University, Saint Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
91
|
Bhatwadekar AD, Duan Y, Korah M, Thinschmidt JS, Hu P, Leley SP, Caballero S, Shaw L, Busik J, Grant MB. Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation. Vision Res 2017; 139:211-220. [PMID: 29042190 DOI: 10.1016/j.visres.2017.06.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.
Collapse
Affiliation(s)
- Ashay D Bhatwadekar
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| | - Yaqian Duan
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Maria Korah
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | | | - Ping Hu
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sameer P Leley
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Sergio Caballero
- Department of Pharmacology, University of Florida, Gainesville, FL 32610, USA
| | - Lynn Shaw
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA
| | - Julia Busik
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Maria B Grant
- Department of Ophthalmology, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
92
|
Pahlitzsch T, Liu ZZ, Al-Masri A, Braun D, Dietze S, Persson PB, Schunck WH, Blum M, Kupsch E, Ludwig M, Patzak A. Hypoxia-reoxygenation enhances murine afferent arteriolar vasoconstriction by angiotensin II. Am J Physiol Renal Physiol 2017; 314:F430-F438. [PMID: 29070570 DOI: 10.1152/ajprenal.00252.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We tested the hypothesis that hypoxia-reoxygenation (H/R) augments vasoreactivity to angiotensin II (ANG II). In particular, we compared an in situ live kidney slice model with isolated afferent arterioles (C57Bl6 mice) to assess the impact of tubules on microvessel response. Hematoxylin and eosin staining was used to estimate slice viability. Arterioles in the slices were located by differential interference contrast microscopy, and responses to vasoactive substances were assessed. Cytosolic calcium transients and NADPH oxidase (NOX) mRNA expression were studied in isolated afferent arterioles. SOD activity was measured in live slices. Both experimental models were subjected to control and H/R treatment (60 min). Slices were further analyzed after 30-, 60-, and 90-min hypoxia followed by 10- or 20-min reoxygenation (H/R). H/R resulted in enhanced necrotic tissue damage compared with control conditions. To characterize the slice model, we applied ANG II (10-7 M), norepinephrine (NE; 10-5 M), endothelin-1 (ET-1; 10-7 M), and ATP (10-4 M), reducing the initial diameter to 44.5 ± 2.8, 50.0 ± 2.2, 45.3 ± 2.6, and 74.1 ± 1.8%, respectively. H/R significantly increased the ANG II response compared with control in live slices and in isolated afferent arterioles, although calcium transients remained similar. TEMPOL incubation prevented the H/R effect on ANG II responses. H/R significantly increased NOX2 mRNA expression in isolated arterioles. SOD activity was significantly decreased after H/R. Enhanced arteriolar responses after H/R occurred independently from the surrounding tissue, indicating no influence of tubules on vascular function in this model. The mechanism of increased ANG II response after H/R might be increased oxidative stress and increased calcium sensitivity of the contractile apparatus.
Collapse
Affiliation(s)
- Tamara Pahlitzsch
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Zhi Zhao Liu
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Amira Al-Masri
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Diana Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Stefanie Dietze
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | | | - Maximilian Blum
- Max-Delbrück Center for Molecular Medicine , Berlin , Germany
| | - Eckehardt Kupsch
- PHZ Institut für Pathologie, Hannover Zentrum, Hannover , Germany
| | - Marion Ludwig
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Berlin , Germany
| |
Collapse
|
93
|
Hosgood SA, Nicholson ML. An Assessment of Urinary Biomarkers in a Series of Declined Human Kidneys Measured During Ex Vivo Normothermic Kidney Perfusion. Transplantation 2017; 101:2120-2125. [PMID: 27681269 DOI: 10.1097/tp.0000000000001504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND The measurement of urinary biomarkers during ex vivo normothermic kidney perfusion (EVKP) may aid in the assessment of a kidney prior to transplantation. This study measured levels of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1) and endothelin-1 (ET-1) during EVKP in a series of discarded human kidneys. METHODS Fifty-six kidneys from deceased donors were recruited into the study. Each kidney underwent 60 minutes of EVKP and was scored based on the macroscopic appearance, renal blood flow and urine output. The scores ranged from 1 (least injury) to 5 (most severe). Levels of oxygen consumption, extraction, creatinine fall and fractional excretion of sodium were measured during perfusion. Urinary levels of NGAL, KIM-1, and ET-1 were measured after EVKP. RESULTS Thirty-eight kidneys had an EVKP score of 1 or 2, 8 a score of 3 and 10 a score of 4 or 5. During EVKP lower levels of oxygen consumption, higher oxygen extraction, a lower decrement of serum creatinine, and higher levels of NGAL and ET-1 were associated with a higher EVKP score (P < 0.05). These parameters were also associated with a raised creatinine level in the donor before organ retrieval. Levels of KIM-1 were not associated with the perfusion parameters (P = 0.649) or renal function in the donor (R = 0.02458: P = 0.271). CONCLUSIONS The measurement of urinary biomarkers, particularly NGAL in combination with functional perfusion parameters and the EVKP score provides an informative measure of kidney quality which may aid the decision to transplant the kidney.
Collapse
Affiliation(s)
- Sarah A Hosgood
- 1 Department of Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom. 2 Department Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, United Kingdom
| | | |
Collapse
|
94
|
Pu T, Liao XH, Sun H, Guo H, Jiang X, Peng JB, Zhang L, Liu Q. Augmenter of liver regeneration regulates autophagy in renal ischemia–reperfusion injury via the AMPK/mTOR pathway. Apoptosis 2017; 22:955-969. [DOI: 10.1007/s10495-017-1370-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
95
|
The role of renal sympathetic nerves in ischemia reperfusion injury. Auton Neurosci 2017; 204:105-111. [DOI: 10.1016/j.autneu.2017.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 12/22/2016] [Accepted: 01/14/2017] [Indexed: 11/21/2022]
|
96
|
Ge QM, Huang CM, Zhu XY, Bian F, Pan SM. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS One 2017; 12:e0173292. [PMID: 28296904 PMCID: PMC5351858 DOI: 10.1371/journal.pone.0173292] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022] Open
Abstract
Objective To identify specific miRNAs involved in sepsis-induced AKI and to explore their targeting pathways. Methods The expression profiles of miRNAs in serum from patients with sepsis-induced AKI (n = 6), sepsis-non AKI (n = 6), and healthy volunteers (n = 3) were investigated by microarray assay and validated by quantitative PCR (qPCR). The targets of the differentially expressed miRNAs were predicted by Target Scan, mirbase and Miranda. Then the significant functions and involvement in signaling pathways of gene ontology (GO) and KEGG pathways were analyzed. Furthermore, eight miRNAs were randomly selected out of the differentially expressed miRNAs for further testing by qPCR. Results qPCR analysis confirmed that the expressions levels of hsa-miR-23a-3p, hsa-miR-4456, hsa-miR-142-5p, hsa-miR-22-3p and hsa-miR-191-5p were significantly lower in patients with sepsis compared with the healthy volunteers, while hsa-miR-4270, hsa-miR-4321, hsa-miR-3165 were higher in the sepsis patients. Statistically, miR-4321; miR-4270 were significantly upregulated in the sepsis-induced AKI compared with sepsis-non AKI, while only miR-4321 significantly overexpressed in the sepsis groups compared with control groups. GO analysis showed that biological processes regulated by the predicted target genes included diverse terms. They were related to kidney development, regulation of nitrogen compound metabolic process, regulation of cellular metabolic process, cellular response to oxidative stress, mitochondrial outer membrane permeabilization, etc. Pathway analysis showed that several significant pathways of the predicted target genes related to oxidative stress. miR-4321 was involved in regulating AKT1, mTOR and NOX5 expression while miR-4270 was involved in regulating PPARGC1A, AKT3, NOX5, PIK3C3, WNT1 expression. Function and pathway analysis highlighted the possible involvement of miRNA-deregulated mRNAs in oxidative stress and mitochondrial dysfunction. Conclusion This study might help to improve understanding of the relationship between serum miRNAs and sepsis-induced AKI, and laid an important foundation for further identification of the potential mechanisms of sepsis-induced AKI and oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qin-Min Ge
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chun-Mei Huang
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States of America
| | - Fan Bian
- Department of Nephrology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shu-Ming Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
97
|
Collett JA, Mehrotra P, Crone A, Shelley WC, Yoder MC, Basile DP. Endothelial colony-forming cells ameliorate endothelial dysfunction via secreted factors following ischemia-reperfusion injury. Am J Physiol Renal Physiol 2017; 312:F897-F907. [PMID: 28228404 DOI: 10.1152/ajprenal.00643.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 01/07/2023] Open
Abstract
Damage to endothelial cells contributes to acute kidney injury (AKI) by leading to impaired perfusion. Endothelial colony-forming cells (ECFC) are endothelial precursor cells with high proliferative capacity, pro-angiogenic activity, and in vivo vessel forming potential. We hypothesized that ECFC may ameliorate the degree of AKI and/or promote repair of the renal vasculature following ischemia-reperfusion (I/R). Rat pulmonary microvascular endothelial cells (PMVEC) with high proliferative potential were compared with pulmonary artery endothelial cells (PAEC) with low proliferative potential in rats subjected to renal I/R. PMVEC administration reduced renal injury and hastened recovery as indicated by serum creatinine and tubular injury scores, while PAEC did not. Vehicle-treated control animals showed consistent reductions in renal medullary blood flow (MBF) within 2 h of reperfusion, while PMVEC protected against loss in MBF as measured by laser Doppler. Interestingly, PMVEC mediated protection occurred in the absence of homing to the kidney. Conditioned medium (CM) from human cultured cord blood ECFC also conveyed beneficial effects against I/R injury and loss of MBF. Moreover, ECFC-CM significantly reduced the expression of ICAM-1 and decreased the number of differentiated lymphocytes typically recruited into the kidney following renal ischemia. Taken together, these data suggest that ECFC secrete factors that preserve renal function post ischemia, in part, by preserving microvascular function.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Purvi Mehrotra
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - Allison Crone
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| | - W Christopher Shelley
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mervin C Yoder
- Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - David P Basile
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, Indiana; and
| |
Collapse
|
98
|
Patschan D, Schwarze K, Tampe B, Zeisberg M, Patschan S, Müller GA. Endothelial Colony Forming Cells (ECFCs) in murine AKI - implications for future cell-based therapies. BMC Nephrol 2017; 18:53. [PMID: 28166726 PMCID: PMC5294892 DOI: 10.1186/s12882-017-0471-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/31/2017] [Indexed: 12/12/2022] Open
Abstract
Background In recent years, early Endothelial Progenitor Cells (eEPCs) have been proven as effective tool in murine ischemic AKI and in diabetic nephropathy. The mechanisms of eEPC-mediated vasoprotection have been elucidated in detail. Besides producing a diverse range of humoral factors, the cells also act by secreting vasomodulatory microvesicles. Only few data in contrast have been published about the role of so-called Endothelial Colony Forming Cells (ECFCs - late EPCs) in ischemic AKI. We thus aimed to investigate ECFC effects on postischemic kidney function over several weeks. Our special interest focused on endothelial-to-mesenchymal transition (EndoMT), peritubular capillary density (PTCD), endothelial alpha-Tubulin (aT - cytoskeletal integrity), and endothelial p62 (marker of autophagocytic flux). Methods Eight to twelve weeks old male C57Bl/6 N mice were subjected to bilateral renal pedicle clamping for 35 or 45 min, respectively. Donor-derived syngeneic ECFCs (0.5 × 106) were i.v. injected at the end of ischemia. Animals were analyzed 1, 4 and 6 weeks later. Results Cell therapy improved kidney function exclusively at week 1 (35 and 45 min). Ischemia-induced fibrosis was diminished in all experimental groups by ECFCs, while PTCD loss remained unaffected. Significant EndoMT was detected in only two of 6 groups (35 min, week 4 and 45 min, week 6), ECFCs reduced EndoMT only in the latter. Endothelial aT declined under almost all experimental conditions and these effects were further aggravated by ECFCs. p62 was elevated in endothelial cells, more so after 45 than after 35 min of ischemia. Cell therapy did not modulate p62 abundances at any time point. Conclusion A single dose of ECFCs administered shortly post-ischemia is capable to reduce interstitial fibrosis in the mid- to long-term whereas excretory dysfunction is improved only in a transient manner. There are certain differences in renal outcome parameters between eEPCs and ECFC. The latter do not prevent animals from peritubular capillary loss and they also do not further elevate endothelial p62. We conclude that differences between eEPCs and ECFCs result from certain mechanisms by which the cells act around and within vessels. Overall, ECFC treatment was not as efficient as eEPC therapy in preventing mice from ischemia-induced mid- to long-term damage.
Collapse
Affiliation(s)
- D Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| | - K Schwarze
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - B Tampe
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - M Zeisberg
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - S Patschan
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - G A Müller
- Clinic of Nephrology and Rheumatology, University Medicine Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany
| |
Collapse
|
99
|
Collett JA, Corridon PR, Mehrotra P, Kolb AL, Rhodes GJ, Miller CA, Molitoris BA, Pennington JG, Sandoval RM, Atkinson SJ, Campos-Bilderback SB, Basile DP, Bacallao RL. Hydrodynamic Isotonic Fluid Delivery Ameliorates Moderate-to-Severe Ischemia-Reperfusion Injury in Rat Kidneys. J Am Soc Nephrol 2017; 28:2081-2092. [PMID: 28122967 DOI: 10.1681/asn.2016040404] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/17/2016] [Indexed: 01/03/2023] Open
Abstract
Highly aerobic organs like the kidney are innately susceptible to ischemia-reperfusion (I/R) injury, which can originate from sources including myocardial infarction, renal trauma, and transplant. Therapy is mainly supportive and depends on the cause(s) of damage. In the absence of hypervolemia, intravenous fluid delivery is frequently the first course of treatment but does not reverse established AKI. Evidence suggests that disrupting leukocyte adhesion may prevent the impairment of renal microvascular perfusion and the heightened inflammatory response that exacerbate ischemic renal injury. We investigated the therapeutic potential of hydrodynamic isotonic fluid delivery (HIFD) to the left renal vein 24 hours after inducing moderate-to-severe unilateral IRI in rats. HIFD significantly increased hydrostatic pressure within the renal vein. When conducted after established AKI, 24 hours after I/R injury, HIFD produced substantial and statistically significant decreases in serum creatinine levels compared with levels in animals given an equivalent volume of saline via peripheral infusion (P<0.05). Intravital confocal microscopy performed immediately after HIFD showed improved microvascular perfusion. Notably, HIFD also resulted in immediate enhancement of parenchymal labeling with the fluorescent dye Hoechst 33342. HIFD also associated with a significant reduction in the accumulation of renal leukocytes, including proinflammatory T cells. Additionally, HIFD significantly reduced peritubular capillary erythrocyte congestion and improved histologic scores of tubular injury 4 days after IRI. Taken together, these results indicate that HIFD performed after establishment of AKI rapidly restores microvascular perfusion and small molecule accessibility, with improvement in overall renal function.
Collapse
Affiliation(s)
| | - Peter R Corridon
- Department of Craniofacial Biology, University of Colorado Denver, Anschutz Campus, Aurora, Colorado
| | | | - Alexander L Kolb
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana; and
| | | | | | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine.,Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | - Simon J Atkinson
- Department of Biology, Indiana University-Purdue University, Indianapolis, Indiana; and
| | | | - David P Basile
- Department of Cellular and Integrative Physiology.,Division of Nephrology, Department of Medicine
| | - Robert L Bacallao
- Division of Nephrology, Department of Medicine, .,Department of Medicine, Division of Nephrology, Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
100
|
Yang B, Dieudé M, Hamelin K, Hénault-Rondeau M, Patey N, Turgeon J, Lan S, Pomerleau L, Quesnel M, Peng J, Tremblay J, Shi Y, Chan JS, Hébert MJ, Cardinal H. Anti-LG3 Antibodies Aggravate Renal Ischemia-Reperfusion Injury and Long-Term Renal Allograft Dysfunction. Am J Transplant 2016; 16:3416-3429. [PMID: 27172087 DOI: 10.1111/ajt.13866] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 01/25/2023]
Abstract
Pretransplant autoantibodies to LG3 and angiotensin II type 1 receptors (AT1R) are associated with acute rejection in kidney transplant recipients, whereas antivimentin autoantibodies participate in heart transplant rejection. Ischemia-reperfusion injury (IRI) can modify self-antigenic targets. We hypothesized that ischemia-reperfusion creates permissive conditions for autoantibodies to interact with their antigenic targets and leads to enhanced renal damage and dysfunction. In 172 kidney transplant recipients, we found that pretransplant anti-LG3 antibodies were associated with an increased risk of delayed graft function (DGF). Pretransplant anti-LG3 antibodies are inversely associated with graft function at 1 year after transplantation in patients who experienced DGF, independent of rejection. Pretransplant anti-AT1R and antivimentin were not associated with DGF or its functional outcome. In a model of renal IRI in mice, passive transfer of anti-LG3 IgG led to enhanced dysfunction and microvascular injury compared with passive transfer with control IgG. Passive transfer of anti-LG3 antibodies also favored intrarenal microvascular complement activation, microvascular rarefaction and fibrosis after IRI. Our results suggest that anti-LG3 antibodies are novel aggravating factors for renal IRI. These results provide novel insights into the pathways that modulate the severity of renal injury at the time of transplantation and their impact on long-term outcomes.
Collapse
Affiliation(s)
- B Yang
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - M Dieudé
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - K Hamelin
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - M Hénault-Rondeau
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - N Patey
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada.,Department of Pathology, CHU Ste-Justine, Université de Montréal, Montreal, QC, Canada
| | - J Turgeon
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - S Lan
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - L Pomerleau
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - M Quesnel
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - J Peng
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - J Tremblay
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Y Shi
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada
| | - J S Chan
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Université de Montréal, Montreal, QC, Canada
| | - M J Hébert
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| | - H Cardinal
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada.,Canadian National Transplant Research Program, Edmonton, Alberta, T6G 2E1, Canada.,Université de Montréal, Montreal, QC, Canada
| |
Collapse
|