51
|
Iozzo P, Guzzardi MA. Imaging of brain glucose uptake by PET in obesity and cognitive dysfunction: life-course perspective. Endocr Connect 2019; 8:R169-R183. [PMID: 31590145 PMCID: PMC6865363 DOI: 10.1530/ec-19-0348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/07/2019] [Indexed: 12/17/2022]
Abstract
The prevalence of obesity has reached epidemic proportions and keeps growing. Obesity seems implicated in the pathogenesis of cognitive dysfunction, Alzheimer's disease and dementia, and vice versa. Growing scientific efforts are being devoted to the identification of central mechanisms underlying the frequent association between obesity and cognitive dysfunction. Glucose brain handling undergoes dynamic changes during the life-course, suggesting that its alterations might precede and contribute to degenerative changes or signaling abnormalities. Imaging of the glucose analog 18F-labeled fluorodeoxyglucose (18FDG) by positron emission tomography (PET) is the gold-standard for the assessment of cerebral glucose metabolism in vivo. This review summarizes the current literature addressing brain glucose uptake measured by PET imaging, and the effect of insulin on brain metabolism, trying to embrace a life-course vision in the identification of patterns that may explain (and contribute to) the frequent association between obesity and cognitive dysfunction. The current evidence supports that brain hypermetabolism and brain insulin resistance occur in selected high-risk conditions as a transient phenomenon, eventually evolving toward normal or low values during life or disease progression. Associative studies suggest that brain hypermetabolism predicts low BDNF levels, hepatic and whole body insulin resistance, food desire and an unfavorable balance between anticipated reward from food and cognitive inhibitory control. Emerging mechanistic links involve the microbiota and the metabolome, which correlate with brain metabolism and cognition, deserving attention as potential future prevention targets.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Correspondence should be addressed to P Iozzo:
| | | |
Collapse
|
52
|
Li N, Yan QT, Jing Q, Pan RY, Wang HJ, Jiang B, Li XJ, Wang Y, Dong JH, Wang XJ, Zhang MJ, Meng QG, Li XZ, Liu ZJ, Gao ZQ, Qu MH. Duodenal-Jejunal Bypass Ameliorates Type 2 Diabetes Mellitus by Activating Insulin Signaling and Improving Glucose Utilization in the Brain. Obes Surg 2019; 30:279-289. [DOI: 10.1007/s11695-019-04153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
53
|
Pontiroli AE, Tagliabue E. Therapeutic Use of Intranasal Glucagon: Resolution of Hypoglycemia. Int J Mol Sci 2019; 20:E3646. [PMID: 31349701 PMCID: PMC6695717 DOI: 10.3390/ijms20153646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Episodes of hypoglycemia are frequent in patients with diabetes treated with insulin or sulphonylureas. Hypoglycemia can lead to severe acute complications, and, as such, both prevention and treatment of hypoglycemia are important for the well-being of patients with diabetes. The experience of hypoglycemia also leads to fear of hypoglycemia, that in turn can limit optimal glycemic control in patients, especially with type 1 diabetes. Treatment of hypoglycemia is still based on administration of carbohydrates (oral or parenteral according to the level of consciousness) or of glucagon (intramuscular or subcutaneous injection). In 1983, it was shown for the first time that intranasal (IN) glucagon drops (with sodium glycocholate as a promoter) increase blood glucose levels in healthy volunteers. During the following decade, several authors showed the efficacy of IN glucagon (drops, powders, and sprays) to resolve hypoglycemia in normal volunteers and in patients with diabetes, both adults and children. Only in 2010, based on evaluation of patients' beliefs and patients' expectations, a canadian pharmaceutical company (Locemia Solutions, Montreal, Canada) reinitiated efforts to develop glucagon for IN administration. The project has been continued by Eli Lilly, that is seeking to obtain registration in order to make IN glucagon available to insulin users (children and adolescents) worldwide. IN glucagon is as effective as injectable glucagon, and devoid of most of the technical difficulties associated with administration of injectable glucagon. IN glucagon appears to represent a major breakthrough in the treatment of severe hypoglycemia in insulin-treated patients with diabetes, both children and adults.
Collapse
Affiliation(s)
- Antonio E Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Ospedale San Paolo, Via Antonio di Rudinì 8, 20142 Milan, Italy.
| | | |
Collapse
|
54
|
Agarwal SM, Caravaggio F, Costa-Dookhan KA, Castellani L, Kowalchuk C, Asgariroozbehani R, Graff-Guerrero A, Hahn M. Brain insulin action in schizophrenia: Something borrowed and something new. Neuropharmacology 2019; 163:107633. [PMID: 31077731 DOI: 10.1016/j.neuropharm.2019.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/15/2019] [Accepted: 05/07/2019] [Indexed: 12/24/2022]
Abstract
Insulin signaling in the central nervous system is at the intersection of brain and body interactions, and represents a fundamental link between metabolic and cognitive disorders. Abnormalities in brain insulin action could underlie the development of comorbid schizophrenia and type 2 diabetes. Among its functions, central nervous system insulin is involved in regulation of striatal dopamine levels, peripheral glucose homeostasis, and feeding regulation. In this review, we discuss the role and importance of central nervous system insulin in schizophrenia and diabetes pathogenesis from a historical and mechanistic perspective. We describe central nervous system insulin sites and pathways of action, with special emphasis on glucose metabolism, cognitive functioning, inflammation, and food preferences. Finally, we suggest possible mechanisms that may explain the actions of central nervous system insulin in relation to schizophrenia and diabetes, focusing on glutamate and dopamine signaling, intracellular signal transduction pathways, and brain energetics. Understanding the interplay between central nervous system insulin and schizophrenia is essential to disentangling this comorbid relationship and may provide novel treatment approaches for both neuropsychiatric and metabolic dysfunction. This article is part of the issue entitled 'Special Issue on Antipsychotics'.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Fernando Caravaggio
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kenya A Costa-Dookhan
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Chantel Kowalchuk
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
55
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
56
|
Plomgaard P, Hansen JS, Ingerslev B, Clemmesen JO, Secher NH, van Hall G, Fritsche A, Weigert C, Lehmann R, Häring HU, Heni M. Nasal insulin administration does not affect hepatic glucose production at systemic fasting insulin levels. Diabetes Obes Metab 2019; 21:993-1000. [PMID: 30552787 DOI: 10.1111/dom.13615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/27/2022]
Abstract
AIMS To evaluate the effects of brain insulin on endogenous glucose production in fasting humans, with a focus on hepatic glucose release by performing a randomized, placebo-controlled, blinded, crossover experiment. MATERIALS AND METHODS On two separate days, 2 H2 -glucose was infused to nine healthy lean men, and blood was sampled from the hepatic vein and a radial artery. On day 1, participants received 160 U human insulin through nasal spray, and on day 2 they received placebo spray, together with an intravenous insulin bolus to mimic spillover of nasal insulin to the circulation. Hepatic glucose fluxes and endogenous glucose production were calculated. RESULTS Plasma insulin concentrations were similar on the two study days, and no differences in whole-body endogenous glucose production or hepato-splanchnic glucose turnover were detected. CONCLUSIONS Nasal administration of insulin does not influence whole-body or hepatic glucose production in fasting humans. By contrast, pharmacological delivery of insulin to the brain might modulate insulin effectiveness in glucose-producing tissue when circulating insulin levels are elevated; therefore, the metabolic consequences of brain insulin action appear to be dependent on metabolic prandial status.
Collapse
Affiliation(s)
- Peter Plomgaard
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Jakob S Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bodil Ingerslev
- Centre of Inflammation and Metabolism, and the Centre for Physical Activity Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jens O Clemmesen
- Department of Hepatology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Niels H Secher
- Department of Anaesthesiology, Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Cora Weigert
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Rainer Lehmann
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases, Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tuebingen, Tuebingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
57
|
A long noncoding RNA LOC103690121 promotes hippocampus neuronal apoptosis in streptozotocin-induced type 1 diabetes. Neurosci Lett 2019; 703:11-18. [PMID: 30851305 DOI: 10.1016/j.neulet.2019.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/07/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Diabetes related cognitive impairment is a severe complication. The diabetes-induced cognitive impairment is associated with insulin resistance and glucose-induced neuron apoptosis in the brain. We intended to investigate the association of long non-coding RNAs with diabetes-induced cognitive impairment in rats. Here, Type 1diabetes (T1D) rat model was induced using streptozotocin (STZ). The diabetic rats showed significant cognitive dysfunction, with increased latency period to find the hidden platform during morris water maze test. The brain injury and reduced neuronsin STZ-induced diabetic rats was determined using hematoxylin and eosin staining and Nissl's staining. We performed the LncRNA microarray analysis and identified 101 differentially expressed lncRNAs in streptozotocin (STZ)-induced type 1 diabetes (T1D) comparing with control. Among these lncRNA, LOC103690121 was upregulated. in vitro glucose treatment in hippocampal neurons showed LOC103690121 and neuron apoptosis was increased by glucose treatment. Transfection experiments showed LOC103690121 overexpression promoted neuron apoptosis, and its inhibition suppressed glucose-induced apoptosis. Western blot analysis showed that the expression profiles of apoptosis related proteins (cleaved-caspase-3, -8, -9, and Bax) were in line with LOC103690121 expression, while the profiles of Bcl-2 and PI3K/Akt signaling pathway was contrast to LOC103690121 expression. In conclusion, the results of our study confirmed lncRNA LOC103690121 promoted STZ-induced cognitive impairment in diabetic rats by promoting neuron apoptosis through PI3K/Akt signaling pathway.
Collapse
|
58
|
Wardelmann K, Blümel S, Rath M, Alfine E, Chudoba C, Schell M, Cai W, Hauffe R, Warnke K, Flore T, Ritter K, Weiß J, Kahn CR, Kleinridders A. Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Mol Metab 2019; 21:68-81. [PMID: 30670351 PMCID: PMC6407370 DOI: 10.1016/j.molmet.2019.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Insulin action in the brain controls metabolism and brain function, which is linked to proper mitochondrial function. Conversely, brain insulin resistance associates with mitochondrial stress and metabolic and neurodegenerative diseases. In the present study, we aimed to decipher the impact of hypothalamic insulin action on mitochondrial stress responses, function and metabolism. METHODS To investigate the crosstalk of insulin action and mitochondrial stress responses (MSR), namely the mitochondrial unfolded protein response (UPRmt) and integrated stress response (ISR), qPCR, western blotting, and mitochondrial activity assays were performed. These methods were used to analyze the hypothalamic cell line CLU183 treated with insulin in the presence or absence of the insulin receptor as well as in mice fed a high fat diet (HFD) for three days and STZ-treated mice without or with insulin therapy. Intranasal insulin treatment was used to investigate the effect of acute brain insulin action on metabolism and mitochondrial stress responses. RESULTS Acute HFD feeding reduces hypothalamic mitochondrial stress responsive gene expression of Atf4, Chop, Hsp60, Hsp10, ClpP, and Lonp1 in C57BL/6N mice. We show that insulin via ERK activation increases the expression of MSR genes in vitro as well as in the hypothalamus of streptozotocin-treated mice. This regulation propagates mitochondrial function by controlling mitochondrial proteostasis and prevents excessive autophagy under serum deprivation. Finally, short-term intranasal insulin treatment activates MSR gene expression in the hypothalamus of HFD-fed C57BL/6N mice and reduces food intake and body weight development. CONCLUSIONS We define hypothalamic insulin action as a novel master regulator of MSR, ensuring proper mitochondrial function by controlling mitochondrial proteostasis and regulating metabolism.
Collapse
Affiliation(s)
- Kristina Wardelmann
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Sabine Blümel
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Michaela Rath
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Eugenia Alfine
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Chantal Chudoba
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Mareike Schell
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Weikang Cai
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Robert Hauffe
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Kathrin Warnke
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Tanina Flore
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Katrin Ritter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany; Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research, Düsseldorf, Germany
| | - C Ronald Kahn
- Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - André Kleinridders
- German Institute of Human Nutrition Potsdam-Rehbruecke, Central Regulation of Metabolism, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), Ingolstaedter Land Str. 1, 85764 Neuherberg, Germany.
| |
Collapse
|
59
|
Yang J, Zhang LJ, Wang F, Hong T, Liu Z. Molecular imaging of diabetes and diabetic complications: Beyond pancreatic β-cell targeting. Adv Drug Deliv Rev 2019; 139:32-50. [PMID: 30529307 DOI: 10.1016/j.addr.2018.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Diabetes is a chronic non-communicable disease affecting over 400 million people worldwide. Diabetic patients are at a high risk of various complications, such as cardiovascular, renal, and other diseases. The pathogenesis of diabetes (both type 1 and type 2 diabetes) is associated with a functional impairment of pancreatic β-cells. Consequently, most efforts to manage and prevent diabetes have focused on preserving β-cells and their function. Advances in imaging techniques, such as magnetic resonance imaging, magnetic resonance spectroscopy, positron emission tomography, and single-photon-emission computed tomography, have enabled noninvasive and quantitative detection and characterization of the population and function of β-cells in vivo. These advantages aid in defining and monitoring the progress of diabetes and determining the efficacy of anti-diabetic therapies. Beyond β-cell targeting, molecular imaging of biomarkers associated with the development of diabetes, e.g., lymphocyte infiltration, insulitis, and metabolic changes, may also be a promising strategy for early detection of diabetes, monitoring its progression, and occurrence of complications, as well as facilitating exploration of new therapeutic interventions. Moreover, molecular imaging of glucose uptake, production and excretion in specified tissues is critical for understanding the pathogenesis of diabetes. In the current review, we summarize and discuss recent advances in noninvasive imaging technologies for imaging of biomarkers beyond β-cells for early diagnosis of diabetes, investigation of glucose metabolism, and precise diagnosis and monitoring of diabetic complications for better management of diabetic patients.
Collapse
Affiliation(s)
- Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences Peking University Health Science Center, Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Beijing 100191, China.
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing 100191, China.
| | - Zhaofei Liu
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
60
|
Kovačević S, Nestorov J, Matić G, Elaković I. Chronic Stress Combined with a Fructose Diet Reduces Hypothalamic Insulin Signaling and Antioxidative Defense in Female Rats. Neuroendocrinology 2019; 108:278-290. [PMID: 30572328 DOI: 10.1159/000496391] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Increased fructose consumption and chronic exposure to stress have been associated with the development of obesity and insulin resistance. In the hypothalamus, a crossroad of stress responses and energy balance, insulin and glucocorticoids regulate the expression of orexigenic neuropeptides, neuropeptide Y (NPY) and agouti-related protein (AgRP), and anorexigenic neuropeptides, proopio-melanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART). OBJECTIVES We investigated whether chronic stress and fructose diet disrupt these hormonal signaling pathways and appetite control in the hypothalamus, contributing to the development of insulin resistance and obesity. Potential roles of hypothalamic inflammation and oxidative stress in the development of insulin resistance were also analyzed. METHODS Insulin, glucocorticoid, and leptin signaling, expression of orexigenic and anorexigenic neuropeptides, and antioxidative and inflammatory statuses in the whole hypothalamus of fructose-fed female rats exposed to unpredictable stress for 9 weeks were analyzed using quantitative PCR and Western blotting. RESULTS Chronic stress combined with a fructose-enriched diet reduced protein content and stimulatory phosphorylation of Akt kinase, and elevated 11β-hydroxysteroid dehydrogenase 1 and glucocorticoid receptor expression, while alterations in appetite regulation (NPY, AgRP, POMC, CART, leptin receptor, and SOCS3 expression) were not observed. The expression of antioxidative defense enzymes (mitochondrial manganese superoxide dismutase 2, glutathione reductase, and catalase) and proinflammatory cytokines (IL-1β, IL-6, and TNFα) was reduced. CONCLUSIONS Our results underline the combination of long-term stress exposure and fructose overconsumption as more detrimental for hypothalamic function than for either of the factors separately, as it enhanced glucocorticoid and impaired insulin signaling, antioxidative -defense, and inflammatory responses of this homeostasis- regulating center.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Jelena Nestorov
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Gordana Matić
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research Siniša Stanković, University of Belgrade, Belgrade, Serbia,
| |
Collapse
|
61
|
Balland E, Chen W, Dodd GT, Conductier G, Coppari R, Tiganis T, Cowley MA. Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice. Cell Rep 2019; 26:346-355.e3. [DOI: 10.1016/j.celrep.2018.12.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 11/29/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
|
62
|
Balland E, Chen W, Tiganis T, Cowley MA. Persistent Leptin Signaling in the Arcuate Nucleus Impairs Hypothalamic Insulin Signaling and Glucose Homeostasis in Obese Mice. Neuroendocrinology 2019; 109:374-390. [PMID: 30995667 DOI: 10.1159/000500201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is associated with reduced physiological responses to leptin and insulin, leading to the concept of obesity-associated hormonal resistance. OBJECTIVES Here, we demonstrate that contrary to expectations, leptin signaling not only remains functional but also is constantly activated in the arcuate nucleus of the hypothalamus (ARH) neurons of obese mice. This state of persistent response to endogenous leptin underpins the lack of response to exogenous leptin. METHODS AND RESULTS The study of combined leptin and insulin signaling demonstrates that there is a common pool of ARH neurons responding to both hormones. More importantly, we show that the constant activation of leptin receptor neurons in the ARH prevents insulin signaling in these neurons, leading to impaired glucose tolerance. Accordingly, antagonising leptin signaling in diet-induced obese (DIO) mice restores insulin signaling in the ARH and improves glucose homeostasis. Direct inhibition of PTP1B in the CNS restores arcuate insulin signaling similarly to leptin inhibition; this effect is likely to be mediated by AgRP neurons since PTP1B deletion specifically in AgRP neurons restores glucose and insulin tolerance in DIO mice. CONCLUSIONS Finally, our results suggest that the constant activation of arcuate leptin signaling in DIO mice increases PTP1B expression, which exerts an inhibitory effect on insulin signaling leading to impaired glucose homeostasis.
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia,
| | - Weiyi Chen
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Tony Tiganis
- Department of Biochemistry and Molecular Biology , Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Michael A Cowley
- Department of Physiology, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
63
|
Benomar Y, Taouis M. Molecular Mechanisms Underlying Obesity-Induced Hypothalamic Inflammation and Insulin Resistance: Pivotal Role of Resistin/TLR4 Pathways. Front Endocrinol (Lausanne) 2019; 10:140. [PMID: 30906281 PMCID: PMC6418006 DOI: 10.3389/fendo.2019.00140] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022] Open
Abstract
Low-grade inflammation and insulin resistance are among the clinical features of obesity that are thought to promote the progressive onset of type 2 diabetes. However, the underlying mechanisms linking these disorders remain not fully understood. Recent reports pointed out hypothalamic inflammation as a major step in the onset of obesity-induced insulin resistance. In light of the increasing prevalence of obesity and T2D, two worldwide public health concerns, deciphering mechanisms implicated in hypothalamic inflammation constitutes a major challenge in the field of insulin-resistance/obesity. Several clinical and experimental studies have identified resistin as a key hormone linking insulin-resistance to obesity, notably through the activation of Toll Like Receptor (TLR) 4 signaling pathways. In this review, we present an overview of the molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance with peculiar focus on the role of resistin/TLR4 signaling pathway.
Collapse
|
64
|
Berends LM, Dearden L, Tung YCL, Voshol P, Fernandez-Twinn DS, Ozanne SE. Programming of central and peripheral insulin resistance by low birthweight and postnatal catch-up growth in male mice. Diabetologia 2018; 61:2225-2234. [PMID: 30043179 PMCID: PMC6133152 DOI: 10.1007/s00125-018-4694-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023]
Abstract
AIMS Intra-uterine growth restriction (IUGR) followed by accelerated postnatal growth is associated with an increased risk of obesity and type 2 diabetes. We aimed to determine central and peripheral insulin sensitivity in mice that underwent IUGR followed by postnatal catch-up growth and investigate potential molecular mechanisms underpinning their physiology. METHODS We used a C57BL/6J mouse model of maternal diet-induced IUGR (maternal diet, 8% protein) followed by cross-fostering to a normal nutrition dam (maternal diet, 20% protein) and litter size manipulation to cause accelerated postnatal catch-up growth. We performed intracerebroventricular insulin injection and hyperinsulinaemic-euglycaemic clamp studies to examine the effect of this early nutritional manipulation on central and peripheral insulin resistance. Furthermore, we performed quantitative real-time PCR and western blotting to examine the expression of key insulin-signalling components in discrete regions of the hypothalamus. RESULTS IUGR followed by accelerated postnatal growth caused impaired glucose tolerance and peripheral insulin resistance. In addition, these 'recuperated' animals were resistant to the anorectic effects of central insulin administration. This central insulin resistance was associated with reduced protein levels of the p110β subunit of phosphoinositide 3-kinase (PI3K) and increased serine phosphorylation of IRS-1 in the arcuate nucleus (ARC) of the hypothalamus. Expression of the gene encoding protein tyrosine phosphatase 1B (PTP1B; Ptpn1) was also increased specifically in this region of the hypothalamus. CONCLUSIONS/INTERPRETATION Mice that undergo IUGR followed by catch-up growth display peripheral and central insulin resistance in adulthood. Recuperated offspring show changes in expression/phosphorylation of components of the insulin signalling pathway in the ARC. These defects may contribute to the resistance to the anorectic effects of central insulin, as well as the impaired glucose homeostasis seen in these animals.
Collapse
Affiliation(s)
- Lindsey M Berends
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Laura Dearden
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Yi Chun L Tung
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Peter Voshol
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
65
|
Inhibitory Effects of Intranasal Administration of Insulin on Fat Oxidation during Exercise Are Diminished in Young Overweight Individuals. J Clin Med 2018; 7:jcm7100308. [PMID: 30274197 PMCID: PMC6210388 DOI: 10.3390/jcm7100308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/22/2023] Open
Abstract
It remains unknown whether the high insulin (INS) levels in the brain affect fat oxidation during exercise. We examined the effects of the intranasal administration of INS, which increases the INS concentration in the cerebrospinal fluid when peripheral effects are lacking, on the maximum fat oxidation rate (maxFOR) and its intensity (FATmax) during exercise in 15 young normal-weight (N group) and eight young overweight (O group) individuals. On two separate days, either INS or placebo (PL) was randomly administered intranasally before a graded exercise test. Indirect calorimetry was used to assess maxFOR and FATmax during exercise. Blood INS and glucose levels did not change after INS administration. In the N group, maxFOR and FATmax were significantly smaller in the INS trial than in the PL trial. MaxFOR was significantly smaller in the O group than in the N group and was not influenced by INS administration. Exercise-induced elevation in blood epinephrine levels tended to be reduced by INS administration only in the N group. Intranasal INS administration reduces fat oxidation during exercise without any peripheral effects, possibly by suppressing sympathetic nerve activity. This inhibitory effect is diminished in overweight subjects, suggesting that cerebral insulin effects are attenuated in this population.
Collapse
|
66
|
Dodd GT, Michael NJ, Lee-Young RS, Mangiafico SP, Pryor JT, Munder AC, Simonds SE, Brüning JC, Zhang ZY, Cowley MA, Andrikopoulos S, Horvath TL, Spanswick D, Tiganis T. Insulin regulates POMC neuronal plasticity to control glucose metabolism. eLife 2018; 7:38704. [PMID: 30230471 PMCID: PMC6170188 DOI: 10.7554/elife.38704] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Hypothalamic neurons respond to nutritional cues by altering gene expression and neuronal excitability. The mechanisms that control such adaptive processes remain unclear. Here we define populations of POMC neurons in mice that are activated or inhibited by insulin and thereby repress or inhibit hepatic glucose production (HGP). The proportion of POMC neurons activated by insulin was dependent on the regulation of insulin receptor signaling by the phosphatase TCPTP, which is increased by fasting, degraded after feeding and elevated in diet-induced obesity. TCPTP-deficiency enhanced insulin signaling and the proportion of POMC neurons activated by insulin to repress HGP. Elevated TCPTP in POMC neurons in obesity and/or after fasting repressed insulin signaling, the activation of POMC neurons by insulin and the insulin-induced and POMC-mediated repression of HGP. Our findings define a molecular mechanism for integrating POMC neural responses with feeding to control glucose metabolism.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Natalie J Michael
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Robert S Lee-Young
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| | - Salvatore P Mangiafico
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Jack T Pryor
- Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Astrid C Munder
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Stephanie E Simonds
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Jens Claus Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.,Center for Endocrinology, Diabetes, and Preventive Medicine, University Hospital Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,National Center for Diabetes Research, Neuherberg, Germany
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, United States
| | - Michael A Cowley
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine (Austin Hospital), The University of Melbourne, Melbourne, Australia
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale University School of Medicine, New Haven, United States.,Department of Anatomy and Histology, University of Veterinary Medicine, Hungary, Europe
| | - David Spanswick
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Victoria, Australia.,Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,Monash Metabolic Phenotyping Facility, Monash University, Victoria, Australia
| |
Collapse
|
67
|
Spetter MS. Current state of the use of neuroimaging techniques to understand and alter appetite control in humans. Curr Opin Clin Nutr Metab Care 2018; 21:329-335. [PMID: 29927764 DOI: 10.1097/mco.0000000000000493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW It is in the brain where the decision is made what and how much to eat. In the last decades neuroimaging research has contributed extensively to new knowledge about appetite control by revealing the underlying brain processes. Interestingly, there is the fast growing idea of using these methods to develop new treatments for obesity and eating disorders. In this review, we summarize the findings of the importance of the use of neuropharmacology and neuroimaging techniques in understanding and modifying appetite control. RECENT FINDINGS Appetite control is a complex interplay between homeostatic, hedonic, and cognitive processes. Administration of the neuropeptides insulin and oxytocin curb food intake and alter brain responses in reward and cognitive control areas. Additionally, these areas can be targeted for neuromodulation or neurofeedback to reduce food cravings and increase self-control to alter food intake. SUMMARY The recent findings reveal the potential of intranasal administration of hormones or modifying appetite control brain networks to reduce food consumption in volunteers with overweight and obesity or individuals with an eating disorder. Although long-term clinical studies are still needed.
Collapse
Affiliation(s)
- Maartje S Spetter
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
68
|
Pontiroli AE, Ceriani V. Intranasal glucagon for hypoglycaemia in diabetic patients. An old dream is becoming reality? Diabetes Obes Metab 2018; 20:1812-1816. [PMID: 29652110 DOI: 10.1111/dom.13317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/20/2018] [Accepted: 04/01/2018] [Indexed: 11/28/2022]
Abstract
In 1983 it was shown that glucagon administered intranasally (IN) was absorbed through the nasal mucosa and increased blood glucose in healthy subjects. Shortly thereafter, it was shown that IN glucagon counteracts with hypoglycaemia in insulin-treated diabetic patients. In spite of this evidence, IN glucagon was not developed by any pharmaceutical company before 2010, when renewed interest led to intensive evaluation of a possible remedy for hypoglycaemia in insulin-treated diabetic adults and children. IN glucagon is now being developed as a needle-free device that delivers glucagon powder for treatment of severe hypoglycaemia; the ease of using this device stands in stark contrast to the difficulties encountered in use of the current intramuscular glucagon emergency kits. Studies have demonstrated the efficacy, safety and ease-of-use of this IN glucagon preparation, and suggest IN glucagon as a promising alternative to injectable glucagon for treating severe hypoglycaemia in children and adults who use insulin. This would meet the unmet medical need for an easily administered glucagon preparation.
Collapse
Affiliation(s)
- Antonio E Pontiroli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Valerio Ceriani
- Istituto Multimedica, Dipartimento di Chirurgia, Milan, Italy
| |
Collapse
|
69
|
Pozo M, Claret M. Hypothalamic Control of Systemic Glucose Homeostasis: The Pancreas Connection. Trends Endocrinol Metab 2018; 29:581-594. [PMID: 29866501 DOI: 10.1016/j.tem.2018.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/22/2022]
Abstract
Maintenance of glucose homeostasis is mandatory for organismal survival. It is accomplished by complex and coordinated interplay between glucose detection mechanisms and multiple effector systems. The brain, in particular homeostatic regions such as the hypothalamus, plays a crucial role in orchestrating such a highly integral response. We review here current understanding of how the hypothalamus senses glucose availability and participates in systemic glucose homeostasis. We provide an update of the relevant signaling pathways and neuronal subsets involved, as well as of the mechanisms modulating metabolic processes in peripheral tissues such as liver, skeletal muscle, fat, and especially the pancreas. We also discuss the relevance of these networks in human biology and prevalent metabolic conditions such as diabetes and obesity.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 08036 Barcelona, Spain.
| |
Collapse
|
70
|
Ladel S, Flamm J, Zadeh AS, Filzwieser D, Walter JC, Schlossbauer P, Kinscherf R, Lischka K, Luksch H, Schindowski K. Allogenic Fc Domain-Facilitated Uptake of IgG in Nasal Lamina Propria: Friend or Foe for Intranasal CNS Delivery? Pharmaceutics 2018; 10:pharmaceutics10030107. [PMID: 30050027 PMCID: PMC6161100 DOI: 10.3390/pharmaceutics10030107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
Background: The use of therapeutic antibodies for the treatment of neurological diseases is of increasing interest. Nose-to-brain drug delivery is one strategy to bypass the blood brain barrier. The neonatal Fc receptor (FcRn) plays an important role in transepithelial transcytosis of immunoglobulin G (IgG). Recently, the presence of the FcRn was observed in nasal respiratory mucosa. The aim of the present study was to determine the presence of functional FcRn in olfactory mucosa and to evaluate its role in drug delivery. Methods: Immunoreactivity and messenger RNA (mRNA) expression of FcRn was determined in ex vivo porcine olfactory mucosa. Uptake of IgG was performed in a side-by-side cell and analysed by immunofluorescence. Results: FcRn was found in epithelial and basal cells of the olfactory epithelium as well as in glands, cavernous bodies and blood vessels. Allogenic porcine IgGs were found time-dependently in the lamina propria and along axonal bundles, while only small amounts of xenogenic human IgGs were detected. Interestingly, lymphoid follicles were spared from allogenic IgGs. Conclusion: Fc-mediated transport of IgG across the nasal epithelial barrier may have significant potential for intranasal delivery, but the relevance of immune interaction in lymphoid follicles must be clarified to avoid immunogenicity.
Collapse
Affiliation(s)
- Simone Ladel
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Johannes Flamm
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Arghavan Soleimani Zadeh
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
- Faculty of Medicine, Graduate School 'Molecular Medicine', University of Ulm, 89081 Ulm, Germany.
| | - Dorothea Filzwieser
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Julia-Christina Walter
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
- Faculty for Natural Sciences, University of Ulm, 89081 Ulm, Germany.
| | - Patrick Schlossbauer
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University Marburg, 35032 Marburg, Germany.
| | - Katharina Lischka
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Harald Luksch
- Chair of Zoology, Technical University of Munich, 85354 Freising-Weihenstephan, Germany.
| | - Katharina Schindowski
- Institute of Applied Biotechnology, University of Applied Science Biberach, 88400 Biberach, Germany.
| |
Collapse
|
71
|
Schmid V, Kullmann S, Gfrörer W, Hund V, Hallschmid M, Lipp HP, Häring HU, Preissl H, Fritsche A, Heni M. Safety of intranasal human insulin: A review. Diabetes Obes Metab 2018; 20:1563-1577. [PMID: 29508509 DOI: 10.1111/dom.13279] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
AIMS To conduct a review in order to assess the safety of intranasal human insulin in clinical studies as well as the temporal stability of nasal insulin sprays. MATERIAL AND METHODS An electronic search was performed using MEDLINE. We selected original research on intranasal human insulin without further additives in humans. The studies included could be of any design as long as they used human intranasal insulin as their study product. All outcomes and adverse side effects were extracted. RESULTS A total of 38 studies in 1092 individuals receiving acute human intranasal insulin treatment and 18 studies in 832 individuals receiving human intranasal insulin treatment lasting between 21 days and 9.7 years were identified. No cases of symptomatic hypoglycaemia or severe adverse events (AEs) were reported. Transient local side effects in the nasal area were frequently experienced after intranasal insulin and placebo spray, while other AEs were less commonly reported. There were no reports of participants being excluded as a result of AEs. No instances of temporal stability of nasal insulin were reported in the literature. Tests on insulin that had been repacked into spray flasks showed that it had a chemical stability of up to 57 days. CONCLUSIONS Our retrospective review of published studies on intranasal insulin did not reveal any safety concerns; however, there were insufficient data to ensure the long-term safety of this method of chronic insulin administration. Improved insulin preparations that cause less nasal irritation would be desirable for future treatment.
Collapse
MESH Headings
- Administration, Intranasal
- Aerosols
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Drug Compounding
- Drug Stability
- Humans
- Hyperglycemia/prevention & control
- Hypoglycemia/chemically induced
- Hypoglycemia/prevention & control
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/adverse effects
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/therapeutic use
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/adverse effects
- Insulin, Regular, Human/chemistry
- Insulin, Regular, Human/therapeutic use
- Protein Stability
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/adverse effects
- Recombinant Proteins/chemistry
- Recombinant Proteins/therapeutic use
Collapse
Affiliation(s)
- Vera Schmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
| | | | - Verena Hund
- University Pharmacy, University Hospital, Tübingen, Germany
| | - Manfred Hallschmid
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Medical Psychology and Behavioral Neurobiology, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Centre at Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center, Munich, at the University of Tübingen, Tübingen, Germany
- German Centre for Diabetes Research (DZD e.V.), Tübingen, Germany
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
72
|
Xiao C, Dash S, Stahel P, Lewis GF. Effects of intranasal insulin on endogenous glucose production in insulin-resistant men. Diabetes Obes Metab 2018. [PMID: 29536605 DOI: 10.1111/dom.13289] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The effects of intranasal insulin on the regulation of endogenous glucose production (EGP) in individuals with insulin resistance were assessed in a single-blind, crossover study. Overweight or obese insulin-resistant men (n = 7; body mass index 35.4 ± 4.4 kg/m2 , homeostatic model assessment of insulin resistance 5.6 ± 1.6) received intranasal spray of either 40 IU insulin lispro or placebo in 2 randomized visits. Acute systemic spillover of intranasal insulin into the circulation was matched with a 30-minute intravenous infusion of insulin lispro in the nasal placebo arm. EGP was assessed under conditions of a pancreatic clamp with a primed, constant infusion of glucose tracer. Under these experimental conditions, compared with placebo, intranasal administration of insulin did not significantly affect plasma glucose concentrations, EGP or glucose disposal in overweight/obese, insulin-resistant men, in contrast to our previous study, in which an equivalent dose of intranasal insulin significantly suppressed EGP in lean, insulin-sensitive men. Insulin resistance is probably associated with impairment in centrally mediated insulin suppression of EGP.
Collapse
Affiliation(s)
- Changting Xiao
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Satya Dash
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Priska Stahel
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Gary F Lewis
- Division of Endocrinology and Metabolism, Departments of Medicine and Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
73
|
Dodd GT, Lee-Young RS, Brüning JC, Tiganis T. TCPTP Regulates Insulin Signaling in AgRP Neurons to Coordinate Glucose Metabolism With Feeding. Diabetes 2018; 67:1246-1257. [PMID: 29712668 DOI: 10.2337/db17-1485] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/19/2018] [Indexed: 11/13/2022]
Abstract
Insulin regulates glucose metabolism by eliciting effects on peripheral tissues as well as the brain. Insulin receptor (IR) signaling inhibits AgRP-expressing neurons in the hypothalamus to contribute to the suppression of hepatic glucose production (HGP) by insulin, whereas AgRP neuronal activation attenuates brown adipose tissue (BAT) glucose uptake. The tyrosine phosphatase TCPTP suppresses IR signaling in AgRP neurons. Hypothalamic TCPTP is induced by fasting and degraded after feeding. Here we assessed the influence of TCPTP in AgRP neurons in the control of glucose metabolism. TCPTP deletion in AgRP neurons (Agrp-Cre;Ptpn2fl/fl ) enhanced insulin sensitivity, as assessed by the increased glucose infusion rates, and reduced HGP during hyperinsulinemic-euglycemic clamps, accompanied by increased [14C]-2-deoxy-d-glucose uptake in BAT and browned white adipose tissue. TCPTP deficiency in AgRP neurons promoted the intracerebroventricular insulin-induced repression of hepatic gluconeogenesis in otherwise unresponsive food-restricted mice, yet had no effect in fed/satiated mice where hypothalamic TCPTP levels are reduced. The improvement in glucose homeostasis in Agrp-Cre;Ptpn2fl/fl mice was corrected by IR heterozygosity (Agrp-Cre;Ptpn2fl/fl ;Insrfl/+ ), causally linking the effects on glucose metabolism with the IR signaling in AgRP neurons. Our findings demonstrate that TCPTP controls IR signaling in AgRP neurons to coordinate HGP and brown/beige adipocyte glucose uptake in response to feeding/fasting.
Collapse
Affiliation(s)
- Garron T Dodd
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Robert S Lee-Young
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
- Monash Metabolic Phenotyping Facility, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Plank Institute for Metabolism Research, Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- National Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tony Tiganis
- Metabolism, Diabetes and Obesity Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria, Australia
- Monash Metabolic Phenotyping Facility, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
74
|
Dhindsa S, Chemitiganti R, Ghanim H, Santiago E, Haider A, Chaar N, Mok M, McKee A, Dandona P. Intranasal Insulin Administration Does Not Affect LH Concentrations in Men with Diabetes. Int J Endocrinol 2018; 2018:6170154. [PMID: 30515210 PMCID: PMC6234437 DOI: 10.1155/2018/6170154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/10/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
A quarter of men with obesity or type 2 diabetes have hypogonadotropic hypogonadism. Animal studies and in vitro data have shown that insulin action and insulin responsiveness in the brain are necessary for the maintenance of the functional integrity of the hypothalamo-hypophyseal-gonadal axis. We conducted a randomized, placebo-controlled trial to evaluate the effect of one dose of intranasal insulin (40 IU of regular insulin) or saline on LH concentrations in 14 men (8 with type 2 diabetes and 6 healthy lean men). Insulin or saline was administered intranasally on two different occasions, at least one week apart. Blood samples were collected to measure LH concentrations every 15 minutes for 5 hours. Study drug was administered intranasally after a 2-hour baseline sampling period. Patients remained fasting throughout the procedure. The primary endpoint of the study was to compare the change in LH concentrations after intranasal insulin as compared to placebo (intranasal saline). Change was defined as the difference between baseline LH concentrations (average of the 9 samples collected in two hours prior to drug administration) and average LH concentrations following drug administration (average of the 12 samples collected in 3 hours). There was no change in LH concentrations following insulin administration as compared to placebo in men with diabetes or in lean men. We conclude that one dose of 40 IU of regular insulin administered intranasally does not change LH concentrations acutely in men.
Collapse
Affiliation(s)
- Sandeep Dhindsa
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, 1402 S Grand Blvd, St. Louis MO-63141, USA
| | - Rama Chemitiganti
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
| | - Evangelina Santiago
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Adnan Haider
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Natalia Chaar
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Mary Mok
- Division of Endocrinology, Diabetes and Metabolism, Texas Tech University Health Sciences Center, 800 West 4th Street, Odessa, TX 79763, USA
| | - Alexis McKee
- Division of Endocrinology, Diabetes and Metabolism, Saint Louis University, 1402 S Grand Blvd, St. Louis MO-63141, USA
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York, Buffalo and Kaleida Health 462 Grider Street, Buffalo NY-14215, USA
| |
Collapse
|
75
|
Kullmann S, Veit R, Peter A, Pohmann R, Scheffler K, Häring HU, Fritsche A, Preissl H, Heni M. Dose-Dependent Effects of Intranasal Insulin on Resting-State Brain Activity. J Clin Endocrinol Metab 2018; 103:253-262. [PMID: 29095982 DOI: 10.1210/jc.2017-01976] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/23/2017] [Indexed: 02/05/2023]
Abstract
CONTEXT Insulin action in the human brain influences eating behavior, cognition, and whole-body metabolism. Studies investigating brain insulin rely on intranasal application. OBJECTIVE To investigate effects of three doses of insulin and placebo as nasal sprays on the central and autonomous nervous system and analyze absorption of insulin into the bloodstream. DESIGN, PARTICIPANTS, AND METHODS Nine healthy men received placebo or 40 U, 80 U, and 160 U insulin spray in randomized order. Before and after spray, brain activity was assessed by functional magnetic resonance imaging, and heart rate variability (HRV) was assessed from electrocardiogram. Plasma insulin, C-peptide, and glucose were measured regularly. SETTING General community. RESULTS Nasal insulin administration dose-dependently modulated regional brain activity and the normalized high-frequency component of the HRV. Post hoc analyses revealed that only 160 U insulin showed a considerable difference from placebo. Dose-dependent spillover of nasal insulin into the bloodstream was detected. The brain response was not correlated with this temporary rise in circulating insulin. CONCLUSIONS Nasal insulin dose-dependently modulated regional brain activity with the strongest effects after 160 U. However, this dose was accompanied by a transient increase in circulating insulin concentrations due to a spillover into circulation. Our current results may serve as a basis for future studies with nasal insulin to untangle brain insulin effects in health and disease.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Rolf Pohmann
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Klaus Scheffler
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department for Biomedical Magnetic Resonance, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research, Tübingen, Germany
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
76
|
Eckstrand KL, Mummareddy N, Kang H, Cowan R, Zhou M, Zald D, Silver HJ, Niswender KD, Avison MJ. An insulin resistance associated neural correlate of impulsivity in type 2 diabetes mellitus. PLoS One 2017; 12:e0189113. [PMID: 29228027 PMCID: PMC5724830 DOI: 10.1371/journal.pone.0189113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023] Open
Abstract
Central insulin resistance (IR) influences striatal dopamine (DA) tone, an important determinant of behavioral self-regulation. We hypothesized that an association exists between the degree of peripheral IR and impulse control, mediated by the impact of IR on brain circuits controlling the speed of executing “go” and/or “stop” responses. We measured brain activation and associated performance on a stop signal task (SST) in obese adults with type 2 diabetes (age, 48.1 ± 6.9 yrs (mean ± SD); BMI, 36.5 ± 4.0 kg/m2; HOMA-IR, 7.2 ± 4.1; 12 male, 18 female). Increasing IR, but not BMI, was a predictor of shorter critical stop signal delay (cSSD), a measure of the time window during which a go response can be successfully countermanded (R2 = 0.12). This decline was explained by an IR-associated increase in go speed (R2 = 0.13) with little impact of IR or BMI on stop speed. Greater striatal fMRI activation contrast in stop error (SE) compared with stop success (SS) trials (CONSE>SS) was a significant predictor of faster go speeds (R2 = 0.33, p = 0.002), and was itself predicted by greater IR (CONSE>SS vs HOMA-IR: R2 = 0.10, p = 0.04). Furthermore, this impact of IR on striatal activation was a significant mediator of the faster go speeds and greater impulsivity observed with greater IR. These findings suggest a neural mechanism by which IR may increase impulsivity and degrade behavioral self-regulation.
Collapse
Affiliation(s)
- Kristen L. Eckstrand
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Nishit Mummareddy
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Ronald Cowan
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Minchun Zhou
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - David Zald
- Department of Psychology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Heidi J. Silver
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Kevin D. Niswender
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Malcolm J. Avison
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| |
Collapse
|
77
|
Brown A, Guess N, Dornhorst A, Taheri S, Frost G. Insulin-associated weight gain in obese type 2 diabetes mellitus patients: What can be done? Diabetes Obes Metab 2017; 19:1655-1668. [PMID: 28509408 DOI: 10.1111/dom.13009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/06/2017] [Accepted: 05/11/2017] [Indexed: 12/11/2022]
Abstract
Insulin therapy (IT) is initiated for patients with type 2 diabetes mellitus when glycaemic targets are not met with diet and other hypoglycaemic agents. The initiation of IT improves glycaemic control and reduces the risk of microvascular complications. There is, however, an associated weight gain following IT, which may adversely affect diabetic and cardiovascular morbidity and mortality. A 3 to 9 kg insulin-associated weight gain (IAWG) is reported to occur in the first year of initiating IT, predominantly caused by adipose tissue. The potential causes for this weight gain include an increase in energy intake linked to a fear of hypoglycaemia, a reduction in glycosuria, catch-up weight, and central effects on weight and appetite regulation. Patients with type 2 diabetes who are receiving IT often have multiple co-morbidities, including obesity, that are exacerbated by weight gain, making the management of their diabetes and obesity challenging. There are several treatment strategies for patients with type 2 diabetes, who require IT, that attenuate weight gain, help improve glycaemic control, and help promote body weight homeostasis. This review addresses the effects of insulin initiation and intensification on IAWG, and explores its potential underlying mechanisms, the predictors for this weight gain, and the available treatment options for managing and limiting weight gain.
Collapse
Affiliation(s)
- Adrian Brown
- Department of Medicine, Faculty of Medicine, Nutrition and Dietetic Research Group, Imperial College, London, UK
| | - Nicola Guess
- Department of Medicine, Faculty of Medicine, Nutrition and Dietetic Research Group, Imperial College, London, UK
- Division of Diabetes and Nutritional Sciences, Kings College London, London, UK
| | - Anne Dornhorst
- Department of Metabolic Medicine, Imperial College London, London, UK
| | - Shahrad Taheri
- Department of Metabolic Medicine, Imperial College London, London, UK
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine, New York, New York
- Department of Medicine and Clinical Research Core, Weill Cornell Medicine, Doha, Qatar
| | - Gary Frost
- Department of Medicine, Faculty of Medicine, Nutrition and Dietetic Research Group, Imperial College, London, UK
| |
Collapse
|
78
|
Akintola AA, van Opstal AM, Westendorp RG, Postmus I, van der Grond J, van Heemst D. Effect of intranasally administered insulin on cerebral blood flow and perfusion; a randomized experiment in young and older adults. Aging (Albany NY) 2017; 9:790-802. [PMID: 28291957 PMCID: PMC5391232 DOI: 10.18632/aging.101192] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/26/2017] [Indexed: 12/19/2022]
Abstract
Insulin, a vasoactive modulator regulating peripheral and cerebral blood flow, has been consistently linked to aging and longevity. In this proof of principle study, using a randomized, double-blinded, placebo-controlled crossover design, we explored the effects of intranasally administered insulin (40IU) on cerebral blood flow (CBF) and perfusion in older (60-69 years, n=11) and younger (20-26 years, n=8) adults. Changes in CBF through the major cerebropetal arteries were assessed via phase contrast MR-angiography, and regional cortical tissue perfusion via pseudo-continuous arterial spin labelling. Total flow through the major cerebropetal arteries was unchanged in both young and old. In the older participants, intranasal insulin compared to placebo increased perfusion through the occipital gray matter (65.2±11.0 mL/100g/min vs 61.2±10.1 mL/100g/min, P=0.001), and in the thalamus (68.28±6.75 mL/100g/min versus 63.31±6.84 mL/100g/min, P=0.003). Thus, intranasal insulin improved tissue perfusion of the occipital cortical brain region and the thalamus in older adults.
Collapse
Affiliation(s)
- Abimbola A Akintola
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Anna M van Opstal
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Rudi G Westendorp
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Public Health and Center for Healthy Aging, University of Copenhagen, Denmark
| | - Iris Postmus
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| | - Diana van Heemst
- Department of Internal Medicine, section Gerontology and Geriatrics, Leiden University Medical Centre, Leiden, the Netherlands.,Netherlands Consortium for Healthy Ageing, Leiden, the Netherlands
| |
Collapse
|
79
|
Samaridou E, Alonso MJ. Nose-to-brain peptide delivery - The potential of nanotechnology. Bioorg Med Chem 2017; 26:2888-2905. [PMID: 29170026 DOI: 10.1016/j.bmc.2017.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/26/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Abstract
Nose-to-brain (N-to-B) delivery offers to protein and peptide drugs the possibility to reach the brain in a non-invasive way. This article is a comprehensive review of the state-of-the-art of this emerging peptide delivery route, as well as of the challenges associated to it. Emphasis is given on the potential of nanosized drug delivery carriers to enhance the direct N-to-B transport of protein or peptide drugs. In particular, polymer- and lipid- based nanocarriers are comparatively analyzed in terms of the influence of their physicochemical characteristics and composition on their in vivo fate and efficacy. The use of biorecognitive ligands and permeation enhancers in order to enhance their brain targeting efficiency is also discussed. The article concludes highlighting the early stage of this research field and its still unveiled potential. The final message is that more explicatory PK/PD studies are required in order to achieve the translation from preclinical to the clinical development phase.
Collapse
Affiliation(s)
- Eleni Samaridou
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Maria José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Av. Barcelona s/n, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
80
|
Gancheva S, Bierwagen A, Markgraf DF, Bönhof GJ, Murphy KG, Hatziagelaki E, Lundbom J, Ziegler D, Roden M. Constant hepatic ATP concentrations during prolonged fasting and absence of effects of Cerbomed Nemos ® on parasympathetic tone and hepatic energy metabolism. Mol Metab 2017; 7:71-79. [PMID: 29122559 PMCID: PMC5784324 DOI: 10.1016/j.molmet.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/19/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Objective Brain insulin-induced improvement in glucose homeostasis has been proposed to be mediated by the parasympathetic nervous system. Non-invasive transcutaneous auricular vagus nerve stimulation (taVNS) activating afferent branches of the vagus nerve may prevent hyperglycemia in diabetes models. We examined the effects of 14-min taVNS vs sham stimulation by Cerbomed Nemos® on glucose metabolism, lipids, and hepatic energy homeostasis in fasted healthy humans (n = 10, age 51 ± 6 yrs, BMI 25.5 ± 2.7 kg/m2). Methods Heart rate variability (HRV), reflecting sympathetic and parasympathetic nerve activity, was measured before, during and after taVNS or sham stimulation. Endogenous glucose production was determined using [6,6-2H2]glucose, and hepatic concentrations of triglycerides (HCL), adenosine triphosphate (ATP), and inorganic phosphate (Pi) were quantified from 1H/31P magnetic resonance spectroscopy at baseline and for 180 min following stimulation. Results taVNS did not affect circulating glucose, free fatty acids, insulin, glucagon, or pancreatic polypeptide. Rates of endogenous glucose production (P = 0.79), hepatic HCL, ATP, and Pi were also not different (P = 0.91, P = 0.48 and P = 0.24) between taVNS or sham stimulation. Hepatic HCL, ATP, and Pi remained constant during prolonged fasting for 3 h. No changes in heart rate or shift in cardiac autonomic function from HRV towards sympathetic or parasympathetic predominance were detected. Conclusion Non-invasive vagus stimulation by Cerbomed Nemos® does not acutely modulate the autonomic tone to the visceral organs and thereby does not affect hepatic glucose and energy metabolism. This technique is therefore unable to mimic brain insulin-mediated effects on peripheral homeostasis in humans. Constant hepatic energy metabolism during prolonged fasting. Vagus stimulation with Cerbomed Nemos® does not alter parasympathetic tone. Cerbomed Nemos® does not modulate hepatic glucose and energy metabolism in humans.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Alessandra Bierwagen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Daniel F Markgraf
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Erifili Hatziagelaki
- 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University, "Attikon" University General Hospital, Athens, Greece
| | - Jesper Lundbom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany; German Center of Diabetes Research (DZD e.V.), München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
81
|
Dodd GT, Tiganis T. Insulin action in the brain: Roles in energy and glucose homeostasis. J Neuroendocrinol 2017; 29. [PMID: 28758251 DOI: 10.1111/jne.12513] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/05/2017] [Accepted: 07/26/2017] [Indexed: 12/14/2022]
Abstract
A growing body of evidence from research in rodents and humans has identified insulin as an important neuoregulatory peptide in the brain, where it coordinates diverse aspects of energy balance and peripheral glucose homeostasis. This review discusses where and how insulin interacts within the brain and evaluates the physiological and pathophysiological consequences of central insulin signalling in metabolism, obesity and type 2 diabetes.
Collapse
Affiliation(s)
- G T Dodd
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - T Tiganis
- Metabolic Disease and Obesity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
82
|
Maimaiti S, Frazier HN, Anderson KL, Ghoweri AO, Brewer LD, Porter NM, Thibault O. Novel calcium-related targets of insulin in hippocampal neurons. Neuroscience 2017; 364:130-142. [PMID: 28939258 DOI: 10.1016/j.neuroscience.2017.09.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 01/28/2023]
Abstract
Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer's disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic.
Collapse
Affiliation(s)
- Shaniya Maimaiti
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Hilaree N Frazier
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Katie L Anderson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Adam O Ghoweri
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States
| | - Olivier Thibault
- Department of Pharmacology and Nutritional Sciences, University of Kentucky Medical Center, UKMC, MS-310; 800 Rose Street, Lexington, KY 40536, United States.
| |
Collapse
|
83
|
Xiao C, Dash S, Stahel P, Lewis GF. Effects of Intranasal Insulin on Triglyceride-Rich Lipoprotein Particle Production in Healthy Men. Arterioscler Thromb Vasc Biol 2017; 37:1776-1781. [DOI: 10.1161/atvbaha.117.309705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Affiliation(s)
- Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Satya Dash
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Priska Stahel
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Gary F. Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| |
Collapse
|
84
|
Intranasal insulin reverts central pathology and cognitive impairment in diabetic mother offspring. Mol Neurodegener 2017; 12:57. [PMID: 28768549 PMCID: PMC5541692 DOI: 10.1186/s13024-017-0198-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Background Adverse effects in diabetic mothers offspring (DMO) are a major concern of increasing incidence. Among these, chronic central complications in DMO remain poorly understood, and in extreme cases, diabetes can essentially function as a gestational brain insult. Nevertheless, therapeutic alternatives for DMO are limited. Methods Therefore, we have analyzed the central long-term complications in the offspring from CD1 diabetic mothers treated with streptozotozin, as well as the possible reversion of these alterations by insulin administration to neonates. Brain atrophy, neuronal morphology, tau phosphorylation, proliferation and neurogenesis were assessed in the short term (P7) and in the early adulthood (10 weeks) and cognitive function was also analyzed in the long-term. Results Central complications in DMO were still detected in the adulthood, including cortical and hippocampal thinning due to synaptic loss and neuronal simplification, increased tau hyperphosphorylation, and diminished cell proliferation and neurogenesis. Additionally, maternal diabetes increased the long-term susceptibility to spontaneous central bleeding, inflammation and cognition impairment in the offspring. On the other hand, intracerebroventricular insulin administration to neonates significantly reduced observed alterations. Moreover, non-invasive intranasal insulin reversed central atrophy and tau hyperphosphorylation, and rescued central proliferation and neurogenesis. Vascular damage, inflammation and cognitive alterations were also comparable to their counterparts born to nondiabetic mice, supporting the utility of this pathway to access the central nervous system. Conclusions Our data underlie the long-term effects of central complications in DMO. Moreover, observed improvement after insulin treatment opens the door to therapeutic alternatives for children who are exposed to poorly controlled gestational diabetes, and who may benefit from more individualized treatments.
Collapse
|
85
|
Hypothalamic insulin responsiveness is associated with pancreatic insulin secretion in humans. Physiol Behav 2017; 176:134-138. [DOI: 10.1016/j.physbeh.2017.03.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
|
86
|
Heni M, Wagner R, Kullmann S, Gancheva S, Roden M, Peter A, Stefan N, Preissl H, Häring HU, Fritsche A. Hypothalamic and Striatal Insulin Action Suppresses Endogenous Glucose Production and May Stimulate Glucose Uptake During Hyperinsulinemia in Lean but Not in Overweight Men. Diabetes 2017; 66:1797-1806. [PMID: 28174292 DOI: 10.2337/db16-1380] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/31/2017] [Indexed: 01/12/2023]
Abstract
Intranasal spray application facilitates insulin delivery to the human brain. Although brain insulin modulates peripheral metabolism, the mechanisms involved remain elusive. Twenty-one men underwent two hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose infusion to measure endogenous glucose production and glucose disappearance. On two separate days, participants received intranasal insulin or placebo. Insulin spillover into circulation after intranasal insulin application was mimicked by an intravenous insulin bolus on placebo day. On a different day, brain insulin sensitivity was assessed by functional MRI. Glucose infusion rates (GIRs) had to be increased more after nasal insulin than after placebo to maintain euglycemia in lean but not in overweight people. The increase in GIRs was associated with regional brain insulin action in hypothalamus and striatum. Suppression of endogenous glucose production by circulating insulin was more pronounced after administration of nasal insulin than after placebo. Furthermore, glucose uptake into tissue tended to be higher after nasal insulin application. No such effects were detected in overweight participants. By increasing insulin-mediated suppression of endogenous glucose production and stimulating peripheral glucose uptake, brain insulin may improve glucose metabolism during systemic hyperinsulinemia. Obese people appear to lack these mechanisms. Therefore, brain insulin resistance in obesity may have unfavorable consequences for whole-body glucose homeostasis.
Collapse
Affiliation(s)
- Martin Heni
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sofiya Gancheva
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Roden
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Andreas Peter
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Stefan
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hubert Preissl
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Hans-Ulrich Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, Department of Internal Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
87
|
Kullmann S, Heni M, Veit R, Scheffler K, Machann J, Häring HU, Fritsche A, Preissl H. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Sci Rep 2017; 7:1627. [PMID: 28487570 PMCID: PMC5431641 DOI: 10.1038/s41598-017-01907-w] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022] Open
Abstract
Brain insulin sensitivity is an important link between metabolism and cognitive dysfunction. Intranasal insulin is a promising tool to investigate central insulin action in humans. We evaluated the acute effects of 160 U intranasal insulin on resting-state brain functional connectivity in healthy young adults. Twenty-five lean and twenty-two overweight and obese participants underwent functional magnetic resonance imaging, on two separate days, before and after intranasal insulin or placebo application. Insulin compared to placebo administration resulted in increased functional connectivity between the prefrontal regions of the default-mode network and the hippocampus as well as the hypothalamus. The change in hippocampal functional connectivity significantly correlated with visceral adipose tissue and the change in subjective feeling of hunger after intranasal insulin. Mediation analysis revealed that the intranasal insulin induced hippocampal functional connectivity increase served as a mediator, suppressing the relationship between visceral adipose tissue and hunger. The insulin-induced hypothalamic functional connectivity change showed a significant interaction with peripheral insulin sensitivity. Only participants with high peripheral insulin sensitivity showed a boost in hypothalamic functional connectivity. Hence, brain insulin action may regulate eating behavior and facilitate weight loss by modifying brain functional connectivity within and between cognitive and homeostatic brain regions.
Collapse
Affiliation(s)
- Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany. .,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany. .,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany.
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Ralf Veit
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department of High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Department of Internal Medicine IV, University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
88
|
Ruud J, Steculorum SM, Brüning JC. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun 2017; 8:15259. [PMID: 28469281 PMCID: PMC5418592 DOI: 10.1038/ncomms15259] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/14/2017] [Indexed: 12/19/2022] Open
Abstract
The central nervous system (CNS) has an important role in the regulation of peripheral insulin sensitivity and glucose homeostasis. Research in this dynamically developing field has progressed rapidly due to techniques allowing targeted transgenesis and neurocircuitry mapping, which have defined the primary responsive neurons, associated molecular mechanisms and downstream neurocircuitries and processes involved. Here we review the brain regions, neurons and molecular mechanisms by which the CNS controls peripheral glucose metabolism, particularly via regulation of liver, brown adipose tissue and pancreatic function, and highlight the potential implications of these regulatory pathways in type 2 diabetes and obesity. The brain controls peripheral glucose metabolism, for example by modulating hepatic gluconeogenesis or by regulating glucose uptake into brown adipose tissue. Here, the authors review the brain regions, neurons and molecular mechanisms involved in these processes, and discuss their relevance to disease.
Collapse
Affiliation(s)
- Johan Ruud
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Sophie M. Steculorum
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jens C. Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Policlinic for Endocrinology, Diabetes and Preventive Medicine (PEDP), University Hospital Cologne, Kerpener Strasse 26, 50924 Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- National Center for Diabetes Research (DZD), Ingolstädter Land Strasse 1, 85764 Neuherberg, Germany
| |
Collapse
|
89
|
Scherer T, Wolf P, Smajis S, Gaggini M, Hackl M, Gastaldelli A, Klimek P, Einwallner E, Marculescu R, Luger A, Fürnsinn C, Trattnig S, Buettner C, Krššák M, Krebs M. Chronic Intranasal Insulin Does Not Affect Hepatic Lipids but Lowers Circulating BCAAs in Healthy Male Subjects. J Clin Endocrinol Metab 2017; 102:1325-1332. [PMID: 28323986 PMCID: PMC6283450 DOI: 10.1210/jc.2016-3623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/11/2017] [Indexed: 02/08/2023]
Abstract
CONTEXT Nonalcoholic fatty liver disease and elevated circulating branched-chain amino acids (BCAAs) are common characteristics of obesity and type 2 diabetes. In rodents, brain insulin signaling controls both hepatic triglyceride secretion and BCAA catabolism. Whether brain insulin signaling controls similar metabolic pathways in humans is unknown. OBJECTIVE Here we assessed if intranasal insulin, a method to preferentially deliver insulin to the central nervous system, is able to modulate hepatic lipid content and plasma BCAAs in humans. DESIGN/SETTING We conducted a randomized, double-blind, placebo-controlled trial at the Medical University of Vienna. PARTICIPANTS/INTERVENTION We assessed if a chronic 4-week intranasal insulin treatment (40 IU, 4 times daily) reduces hepatic triglyceride content and circulating BCAAs in 20 healthy male volunteers. MAIN OUTCOME MEASURES Hepatic lipid content was assessed noninvasively by 1H-magnetic resonance spectroscopy, and BCAAs were measured by gas chromatography mass spectrometry at defined time points during the study. RESULTS Chronic intranasal insulin treatment did not alter body weight, body mass index, and hepatic lipid content but reduced circulating BCAA levels. CONCLUSIONS These findings support the notion that brain insulin controls BCAA metabolism in humans. Thus, brain insulin resistance could account at least in part for the elevated BCAA levels observed in the insulin-resistant state.
Collapse
Affiliation(s)
- Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Peter Wolf
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Sabina Smajis
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Melania Gaggini
- National Research Council Institute of Clinical Physiology, 56124 Pisa, Italy
| | - Martina Hackl
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Amalia Gastaldelli
- National Research Council Institute of Clinical Physiology, 56124 Pisa, Italy
| | | | | | | | - Anton Luger
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Clemens Fürnsinn
- Department of Medicine III, Division of Endocrinology and Metabolism
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Buettner
- Department of Medicine and Department of Neuroscience, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Martin Krššák
- Department of Medicine III, Division of Endocrinology and Metabolism
- High Field MR Centre, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Michael Krebs
- Department of Medicine III, Division of Endocrinology and Metabolism
| |
Collapse
|
90
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
91
|
Filippi BM, Abraham MA, Silva PN, Rasti M, LaPierre MP, Bauer PV, Rocheleau JV, Lam TK. Dynamin-Related Protein 1-Dependent Mitochondrial Fission Changes in the Dorsal Vagal Complex Regulate Insulin Action. Cell Rep 2017; 18:2301-2309. [DOI: 10.1016/j.celrep.2017.02.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 01/26/2017] [Accepted: 02/11/2017] [Indexed: 11/25/2022] Open
|
92
|
Maier SU, Hare TA. Higher Heart-Rate Variability Is Associated with Ventromedial Prefrontal Cortex Activity and Increased Resistance to Temptation in Dietary Self-Control Challenges. J Neurosci 2017; 37:446-455. [PMID: 28077722 PMCID: PMC6596577 DOI: 10.1523/jneurosci.2815-16.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/31/2016] [Accepted: 11/13/2016] [Indexed: 12/25/2022] Open
Abstract
Higher levels of self-control in decision making have been linked to better psychosocial and physical health. A similar link to health outcomes has been reported for heart-rate variability (HRV), a marker of physiological flexibility. Here, we sought to link these two, largely separate, research domains by testing the hypothesis that greater HRV would be associated with better dietary self-control in humans. Specifically, we examined whether total HRV at sedentary rest (measured as the SD of normal-to-normal intervals) can serve as a biomarker for the neurophysiological adaptability that putatively underlies self-controlled behavior. We found that HRV explained a significant portion of the individual variability in dietary self-control, with individuals having higher HRV being better able to downregulate their cravings in the face of taste temptations. Furthermore, HRV was associated with activity patterns in the ventromedial prefrontal cortex (vmPFC), a key node in the brain's valuation and decision circuitry. Specifically, individuals with higher HRV showed both higher overall vmPFC blood-oxygen-level-dependent activity and attenuated taste representations when presented with a dietary self-control challenge. Last, the behavioral and neural associations with HRV were consistent across both our stress induction and control experimental conditions. The stability of this association across experimental conditions suggests that HRV may serve as both a readily obtainable and robust biomarker for self-control ability across environmental contexts. SIGNIFICANCE STATEMENT Self-control is associated with better health, but behavioral and psychometric self-control measures allow only indirect associations with health outcomes and may be distorted by reporting bias. We tested whether resting heart-rate variability (HRV), a physiological indicator of psychological and physical health, can predict individual differences in dietary self-control in humans. We found that higher HRV was associated with better self-control and improved predictions of choice behavior. Specifically, higher HRV was associated with more effective downregulation of taste temptations, and with a diminished neural representation of taste temptations during self-control challenges. Our results suggest that HRV may serve as an easily acquired, noninvasive, and low-cost biomarker for self-control ability.
Collapse
Affiliation(s)
- Silvia U Maier
- Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, CH-8006 Zurich, Switzerland
| | - Todd A Hare
- Department of Economics, Laboratory for Social and Neural Systems Research, University of Zurich, CH-8006 Zurich, Switzerland
| |
Collapse
|
93
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
94
|
Fehlert E, Willmann K, Fritsche L, Linder K, Mat-Husin H, Schleger F, Weiss M, Kiefer-Schmidt I, Brucker S, Häring HU, Preissl H, Fritsche A. Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study. BJOG 2016; 124:1891-1898. [PMID: 28029217 DOI: 10.1111/1471-0528.14474] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) potentially harms the child before birth. We previously found GDM to be associated with developmental changes in the central nervous system. We now hypothesise that GDM may also impact on the fetal autonomic nervous system under metabolic stress like an oral glucose tolerance test (OGTT). DESIGN We measured heart rate variability (HRV) of mothers and fetuses during a three-point OGTT using fetal magnetocardiography (fMCG). SETTING Measurements were performed in the fMEG Centre in Tübingen. POPULATION After exclusion of 23 participants, 13 pregnant women with GDM and 36 pregnant women with normal glucose tolerance were examined. METHODS All women underwent the same examination setting with OGTT during which fMCG was recorded three times. MAIN OUTCOME MEASURE(S) Parameters of heart rate variability were measured. RESULTS Compared with mothers with normal glucose regulation, mothers with GDM showed increased heart rate but no significant differences of maternal HRV. In contrast, HRV in fetuses of mothers with GDM differed from those in the metabolically healthy group regarding standard deviation normal to normal beat (SDNN) (P = 0.012), low-frequency band (P = 0.008) and high-frequency band (P = 0.031). These HRV parameters exhibit a decrease only in GDM fetuses during the second hour of the OGTT. CONCLUSIONS These results show an altered response of the fetal autonomic nervous system to metabolic stress in GDM-complicated pregnancies. Hence, disturbances in maternal glucose metabolism might not only impact on the central nervous system of the fetus but may also affect the fetal autonomic nervous system. TWEETABLE ABSTRACT Metabolic stress reveals a different response of fetal autonomic nervous system in GDM-complicated pregnancies.
Collapse
Affiliation(s)
- E Fehlert
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - K Willmann
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - L Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - K Linder
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - H Mat-Husin
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - F Schleger
- Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - M Weiss
- Department of Obstetrics and Gynaecology, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - I Kiefer-Schmidt
- Department of Obstetrics and Gynaecology, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - S Brucker
- Department of Obstetrics and Gynaecology, University Hospital, Eberhard Karls University, Tübingen, Germany
| | - H-U Häring
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| | - H Preissl
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany.,Department of Pharmacy and Biochemistry, Institute of Pharmaceutical Sciences, Tübingen, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls Universität Tübingen, Tübingen, Germany.,Institute for Diabetes and Obesity, Helmholtz Diabetes Centre, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), Neuherberg, Germany
| | - A Fritsche
- Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Department of Internal Medicine, University Hospital, Eberhard Karls University, Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases, Helmholtz Centre Munich, University of Tübingen, Tübingen, Germany.,German Centre for Diabetes Research (DZD), Tübingen, Germany
| |
Collapse
|
95
|
Heni M, Kullmann S, Ahlqvist E, Wagner R, Machicao F, Staiger H, Häring HU, Almgren P, Groop LC, Small DM, Fritsche A, Preissl H. Interaction between the obesity-risk gene FTO and the dopamine D2 receptor gene ANKK1/TaqIA on insulin sensitivity. Diabetologia 2016; 59:2622-2631. [PMID: 27600277 DOI: 10.1007/s00125-016-4095-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/11/2016] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS Variations in FTO are the strongest common genetic determinants of adiposity, and may partly act by influencing dopaminergic signalling in the brain leading to altered reward processing that promotes increased food intake. Therefore, we investigated the impact of such an interaction on body composition, and peripheral and brain insulin sensitivity. METHODS Participants from the Tübingen Family study (n = 2245) and the Malmö Diet and Cancer study (n = 2921) were genotyped for FTO SNP rs8050136 and ANKK1 SNP rs1800497. Insulin sensitivity in the caudate nucleus, an important reward area in the brain, was assessed by fMRI in 45 participants combined with intranasal insulin administration. RESULTS We found evidence of an interaction between variations in FTO and an ANKK1 polymorphism that associates with dopamine (D2) receptor density. In cases of reduced D2 receptor availability, as indicated by the ANKK1 polymorphism, FTO variation was associated with increased body fat and waist circumference and reduced peripheral insulin sensitivity. Similarly, altered central insulin sensitivity was observed in the caudate nucleus in individuals with the FTO obesity-risk allele and diminished D2 receptors. CONCLUSIONS/INTERPRETATION The effects of variations in FTO are dependent on dopamine D2 receptor density (determined by the ANKK1 polymorphism). Carriers of both risk alleles might, therefore, be at increased risk of obesity and diabetes.
Collapse
Affiliation(s)
- Martin Heni
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Stephanie Kullmann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany.
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany.
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Robert Wagner
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Fausto Machicao
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Peter Almgren
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Leif C Groop
- Lund University Diabetes Centre, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Finnish Institute for Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Dana M Small
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- The John B. Pierce Laboratory, New Haven, CT, USA
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
| | - Hubert Preissl
- Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Otfried-Müller-Straße 47, 72076, Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), Tübingen, Germany
- Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
- Interfaculty Centre for Pharmacogenomics and Pharma Research, Eberhard Karls University Tübingen, Tübingen, Germany
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
96
|
Yue JTY, Abraham MA, Bauer PV, LaPierre MP, Wang P, Duca FA, Filippi BM, Chan O, Lam TKT. Inhibition of glycine transporter-1 in the dorsal vagal complex improves metabolic homeostasis in diabetes and obesity. Nat Commun 2016; 7:13501. [PMID: 27874011 PMCID: PMC5121412 DOI: 10.1038/ncomms13501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/10/2016] [Indexed: 12/14/2022] Open
Abstract
Impaired glucose homeostasis and energy balance are integral to the pathophysiology of diabetes and obesity. Here we show that administration of a glycine transporter 1 (GlyT1) inhibitor, or molecular GlyT1 knockdown, in the dorsal vagal complex (DVC) suppresses glucose production, increases glucose tolerance and reduces food intake and body weight gain in healthy, obese and diabetic rats. These findings provide proof of concept that GlyT1 inhibition in the brain improves glucose and energy homeostasis. Considering the clinical safety and efficacy of GlyT1 inhibitors in raising glycine levels in clinical trials for schizophrenia, we propose that GlyT1 inhibitors have the potential to be repurposed as a treatment of both obesity and diabetes.
Collapse
Affiliation(s)
- Jessica T Y Yue
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Mona A Abraham
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Paige V Bauer
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Mary P LaPierre
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8
| | - Peili Wang
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Frank A Duca
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Beatrice M Filippi
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7
| | - Owen Chan
- Department of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute and Department of Medicine, UHN, Toronto, Ontario, Canada M5G 1L7.,Departments of Physiology, Toronto, Ontario, Canada M5S 1A8.,Departments of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8.,Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada M5G 2C4
| |
Collapse
|
97
|
Kleinridders A. Deciphering Brain Insulin Receptor and Insulin-Like Growth Factor 1 Receptor Signalling. J Neuroendocrinol 2016; 28:10.1111/jne.12433. [PMID: 27631195 PMCID: PMC5129466 DOI: 10.1111/jne.12433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) are highly conserved receptor tyrosine kinases that share signalling proteins and are ubiquitously expressed in the brain. Central application of insulin or IGF1 exerts several similar physiological outcomes, varying in strength, whereas disruption of the corresponding receptors in the brain leads to remarkably different effects on brain size and physiology, thus highlighting the unique effects of the corresponding hormone receptors. Central insulin/IGF1 resistance impacts upon various levels of the IR/IGF1R signalling pathways and is a feature of the metabolic syndrome and neurodegenerative diseases such as Alzheimer's disease. The intricacy of brain insulin and IGF1 signalling represents a challenge for the identification of specific IR and IGF1R signalling differences in pathophysiological conditions. The present perspective sheds light on signalling differences and methodologies for specifically deciphering brain IR and IGF1R signalling.
Collapse
Affiliation(s)
- A. Kleinridders
- German Institute of Human Nutrition Potsdam‐RehbrueckeCentral Regulation of MetabolismNuthetalGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| |
Collapse
|
98
|
Meijer RI, Gray SM, Aylor KW, Barrett EJ. Pathways for insulin access to the brain: the role of the microvascular endothelial cell. Am J Physiol Heart Circ Physiol 2016; 311:H1132-H1138. [PMID: 27591216 DOI: 10.1152/ajpheart.00081.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 08/26/2016] [Indexed: 02/08/2023]
Abstract
Insulin affects multiple important central nervous system (CNS) functions including memory and appetite, yet the pathway(s) by which insulin reaches brain interstitial fluid (bISF) has not been clarified. Recent studies demonstrate that to reach bISF, subarachnoid cerebrospinal fluid (CSF) courses through the Virchow-Robin space (VRS) which sheaths penetrating pial vessels down to the capillary level. Whether insulin predominantly enters the VRS and bISF by local transport through the blood-brain barrier, or by being secreted into the CSF by the choroid plexus, is unknown. We injected 125I-TyrA14-insulin or regular insulin intravenously and compared the rates of insulin reaching subarachnoid CSF with its plasma clearance by brain tissue samples (an index of microvascular endothelial cell binding/uptake/transport). The latter process was more than 40-fold more rapid. We then showed that selective insulin receptor blockade or 4 wk of high-fat feeding each inhibited microvascular brain 125I-TyrA14-insulin clearance. We further confirmed that 125I-TyrA14-insulin was internalized by brain microvascular endothelial cells, indicating that the in vivo tissue association reflected cellular transport, not simply microvascular tracer binding.
Collapse
Affiliation(s)
- Rick I Meijer
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Sarah M Gray
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - Kevin W Aylor
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and
| | - Eugene J Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, School of Medicine, Charlottesville, Virginia; and .,Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, Virginia
| |
Collapse
|
99
|
Abstract
This article describes phenotypes observed in a prediabetic population (i.e. a population with increased risk for type 2 diabetes) from data collected at the University hospital of Tübingen. We discuss the impact of genetic variation on insulin secretion, in particular the effect on compensatory hypersecretion, and the incretin-resistant phenotype of carriers of the gene variant TCF7L2 is described. Imaging studies used to characterise subphenotypes of fat distribution, metabolically healthy obesity and metabolically unhealthy obesity are described. Also discussed are ectopic fat stores in liver and pancreas that determine the phenotype of metabolically healthy and unhealthy fatty liver and the recently recognised phenotype of fatty pancreas. The metabolic impact of perivascular adipose tissue and pancreatic fat is discussed. The role of hepatokines, particularly that of fetuin-A, in the crosstalk between these organs is described. Finally, the role of brain insulin resistance in the development of the different prediabetes phenotypes is discussed.
Collapse
Affiliation(s)
- Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology, Angiology, Nephrology and Clinical Chemistry, University of Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.
- Institute of Diabetes Research and Metabolic Diseases (IDM), University of Tübingen, Tübingen, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
100
|
Affiliation(s)
- Sofiya Gancheva
- Institute for Clinical Diabetology and Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology and Leibniz Center for Diabetes Research at Heinrich-Heine University Düsseldorf, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|